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Abstract: This work investigates the mechano-biological features of cells cultured in monolayers
in response to different osmotic conditions. In-vitro experiments have been performed to quantify
the long-term effects of prolonged osmotic stresses on the morphology and proliferation capacity of
glioblastoma cells. The experimental results highlight that both hypotonic and hypertonic conditions
affect the proliferative rate of glioblastoma cells on different cell cycle phases. Moreover, glioblastoma
cells in hypertonic conditions display a flattened and elongated shape. The latter effect is explained
using a nonlinear elastic model for the single cell. Due to a crossover between the free energy
contributions related to the cytosol and the cytoskeletal fibers, a critical osmotic stress determines a
morphological transition from a uniformly compressed to an elongated shape.
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1. Introduction

Glioblastoma (or glioblastoma multiforme, GBM) is the most common and aggressive adult
glioma. It has been estimated that it accounts for approximately 15% of all primary brain and central
nervous system tumors and, in particular, for 55% of all gliomas, presenting a more than 90% 2-years
mortality [1].

The GBM arises from astrocytes, the most abundant category of glial cells and almost half of the
cells contained in the brain glia. From a morphological point of view, this kind of cells is characterized
by a star-shape and the presence of ramified protrusions. To be more precise, within the GBM group it
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is possible to pinpoint two categories on the base of the clinical appearance: the primary and secondary
glioblastoma subtypes. A GBM is defined primary (approximately 90%) if it develops rapidly de novo
in elderly patients, without clinical or histologic evidence of a less malignant precursor lesion; in
this case, patients have symptoms less than six months prior to diagnosis. Conversely, a GBM is
defined secondary when it progresses from low-grade diffuse astrocytoma or anaplastic astrocytoma
and generally it develops in younger patients with signs and/or symptoms for longer than six months
and carries a significant better prognosis. Histologically, primary and secondary glioblastomas are
indistinguishable, but they differ in their genetic and epigenetic profiles [2].

Nowadays, the current standard protocol for the treatment of GBM is the maximally possible
surgery resection of the tumor combined with radiotherapy and/or chemotherapy [2, 3]. Surgical
resection is case-specific and depends on the tumor size, shape, proximity to blood vessels and on the
brain region importance in terms of life-function. Radiotherapy in some cases has limited effects,
since cells may develop the ability to upregulating the DNA double-stranded break repair machinery,
making the treatment ineffective [4]. However, in combination with chemotherapy the median
survival rates increase up to 26.5% at 24 months, a vast improvement over the 10.4% with
radiotherapy alone [5].

Despite the great progress made in the last decades for the development of new imaging techniques
for brain tumours and for genetic targeting of adjuvant therapies [5, 6], the survival rate after clinical
treatment of GBM has remained substantially unaltered. Notwithstanding, recent experiments on in-
vitro system models of GBM have shown that the chemo-mechanical feedbacks due to interactions
with the tumour microenvironment may play a key role in determining its invasiveness and its highly
infiltrative growth.

The most common system model for the avascular growth phase of solid tumours is the Multicellular
Tumour Spheroid (MTS) [7–9]. The MTS is a three dimensional aggregate of cancer cells either seeded
in agarose gel or floating within a biological medium filled with nutrients. In [10], MTSs were grown
within an inert matrix of agarose gel. Thus, the growing MTS is subjected to a mechanical stress due to
the external spatial constraint of the matrix, that mimics the peritumoral stroma. It has been found that
the apoptosis rate is directly proportional to the matrix stiffness, with a progressive inhibition on the
proliferation rate up to growth saturation. Later works were able to quantify how the local distribution
of mechanical stress affect the shape of tumor spheroids [11]. A novel approach has been proposed
in [12] by immersing a floating MTS into an external medium enriched with a Dextran solution, that
exerts an osmotic pressure independent on the size. The results confirmed the inhibiting effect of a
compressive stress, the full reversibility to the stress-free growth curve as far as the Dextran is removed
from the culture medium. The imposition of a osmotic stress affects the biological activity of the cells,
with an external rim of proliferative cells with reduced apoptosis and a central core characterized by
the reverse situation [13]. Regarding specifically the human glioblastoma multiforme, in [14] a set of
experiments has been performed investigating the growth of U-87MG spheroids. In the free growth
case, it has been shown that it is possible to distinguish between a first stages of growth characterized
by an exponential/linear behavior and a second saturation phase where the radius reaches a steady
value. On the other hand, the compression experiments performed with Dextran have revealed one
more time both the inhibitory effect of stress on growth and the reversibility of this phenomenon.

This inhibiting effect of osmotic stress on tumour cells has been also observed in a
two-dimensional system model, where cells are cultured either individually or to form a monolayer.
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Although MTS give a more realistic representation of the force transmission between neighboring
cells in a three-dimensional embedding, the monolayers are easier to handle experimentally, and can
be used to investigate the single cell response in terms of morphology, cell cycle and adhesion. Using
different osmotic conditions, gross morphological changes were quantified in cancer cells [15]:
hyperosmotic media induce cells to have an elliptical and more tapered shape than cells cultured in
isotonic conditions. For the hypotonic treatment, cells tend toward a more rounded morphology at late
times. A similar behavior was observed in condrocytes exposed to osmotic shock gang, from
hypertonic to hypotonic they exhibit a more spherical shape and membrane ruffles reduction [16].
Beyond the morphological observations, the effect of low osmotic pressure (1 kPa) exerted by
Dextran on melanoma proliferation, growth and motility has been investigated in [17, 18]. The
reported results show that few functional properties of the cells are heavily affected by osmotic
pressure: both proliferation and motility are reduced and significant changes in F-actin organization
have been observed. These modifications are more evident in primary melanoma cell lines than in the
metastatic one and they are supposed to be responsible for the cells elongation. Moreover, several
studies have suggested that chemo-mechanical stimuli from the tumor micro–environment are
responsible for alteration in the cell cycle. The effect of the hyposmotic condition has been studied on
different colonic and pancreatic cell lines [19], highlighting a reversible growth arrest and, in some
cases, the accumulation at the G1/S checkpoint of the cell cycle. The mechanism controlling
hyperosmotic stress-induced growth arrest, while it is unknown, seemed not to affect the cell cycle in
monolayers culture of murine colon cancer cells [20].

In this work, we introduce a mechanical model that may support a deeper understanding of the
mechano-biological features of cells cultured in monolayers in response to different osmotic
conditions. The article is structured as follows. In Section 2, we describe the experimental method
developed to perform in-vitro experiments on a GBM cell line. The main results, presented in Section
3, pertain the experimental characterization of the effects of the osmotic stress on the proliferation and
the morphology of a cell monolayer. In Chapter 4, we develop a novel mathematical framework that
explains the observed morphological transition triggered by a critical osmotic stress. The main results
are summarized and discussed in Section 5.

2. Materials and methods

The experiments were performed at IFOM laboratory. A glioblastoma cell line, T98G, was
obtained by ATCC (American Type Culture Collection) consortium. Cells were cultured under 37 ◦C
and 5% CO2 in Dulbecco’s modified Eagle’s medium plus Fetal Bovine Serum (FBS, 10% in
volume), L-glutamine (2 mM), Sodium Pyruvate (1 mM), Non-Essential Amino-Acids (1% in
volume) and Penicillin/Streptomycin (100 µg/mL).

Dextran-containing mediums were prepared according to [14]. Briefly, high molecular weight
purified Dextran (Mw = 100 kDa, from Sigma-Aldrich, code 0918) was dissolved in complete
medium at room temperature till full solubilization. To exert 2 and 5 kPa of mechanical stress on cells,
Dextran-containing mediums were prepared with a concentration of 32.5 and 55 g/L respectively.

Hypotonic mediums were prepared according to [21]. Briefly, a solution of sterile water + 1 mM
CaCl2 + 1 mM MgCl2 + 10% FBS was prepared. To obtain 50% hypotonic mediums, complete
medium was diluted 1:1 with the aforementioned solution. To obtain 25% hypotonic solution, complete
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medium was diluted 1:1 with 50% hypotonic medium.
At Day 0, T98G cells were seeded in 100-mm cell culture dishes, in 10 mL of complete medium.

Around 4 · 105 cells were seeded in each dish. After 8 hours, isotonic medium was replaced by the
same amount of Dextran-containing or hypotonic medium. At Day 3 and 6, cells were imaged at 4X
magnification using an EVOS-FL bright-field microscope (ThermoFisher Scientific), equipped with a
high-sensitivity monochrome camera (1360 x 1024 pixels, 6.45 µm/pixels). Then, cells were detached
by tripsinization and counted with a Multisizer 3 Coulter Counter (Beckman Coulter).

To perform cell cycle analysis, collected cells were re–suspended in 0.3 mL of Phosphate-buffered
saline (PBS) solution for every million of cells. Fixation was performed by adding 0.7 mL of cold
Ethanol (EtOH 100%) for every million of cells, dropwise while vortexing. DNA staining was
performed washing cellular pellets once in PBS-BSA solution (1% w/v) and incubating them in 0.5
mL of PI solution (Propidium Iodide, 50 mg/mL in H20, light protected) plus RNAse A (0.25 mg/mL)
overnight at 4 ◦C. Collected cells were analyzed by DNA content with a Attune NxT Acoustic
Focusing Cytometer (ThermoFisher). Quantification of cell cycle distribution and apoptosis was
performed with FlowJo software.

3. Experimental results

To understand the long-term effects of prolonged mechanical stimulation on the morphology and
proliferation capacity of glioblastoma cells, we cultured T98G cells with Dextran-containing or
hypotonic medium for 6 days.

The use of Dextran-containing medium is a well-established method to apply an isotropic
compression to single cells or multi-cellular spheroids. Indeed, this high-weight biopolymer is not
able to penetrate cell membrane, but accumulates at cell surface, thus exerting a mechanical
stress [12, 14, 20].

At day 3, the number of cells growing in Dextran mediums (either 2 or 5 kPa) was smaller than in
isotonic medium. Moreover, cells showed an elongated morphology and are more dispersed, without
the formation of compact clusters. At day 6 the growth defect was even more evident, since the vast
majority of living cells are aberrantly flattened with a certain amount of dead cells floating in the dish,
see Figure 1. Conversely, cells growing in hypotonic medium (either 25% or 50%) displayed a mild
growth defect without appreciable morphological alterations compared to isotonic control, either at
day 3 or day 6, see Figure 1.

The resulting growth curves confirmed the observations by bright-field microscope. The treatment
with 25% hypotonic medium had no major effect, whereas cells grown in 50% hypotonic medium
showed a delay in proliferation compared to control. On the contrary, cells cultured in
Dextran-containing medium experienced a strong growth defect, being almost stacked under 5 kPa of
mechanical stress, Figure 2.

To further characterize the effect on cell proliferation, we analyzed cell cycle progression of
Dextran/hypotonic-treated cells. Prolonged culture in hypotonic medium caused an accumulation in
G1 phase, which is likely the cause of the observed growth delay, Figure 2. Instead,
Dextran-containing medium induced an initial accumulation in S phase at day 3, later resulting in a
G1-phase accumulation at day 6, Figure 2. Moreover, analysis of fractional DNA content (sub-G1
analysis) highlighted that around 30% of cells underwent apoptosis when constantly cultured in
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Figure 1. Bright-field microscopy images of T98G cells grown in isotonic, Dextran-
containing and hypotonic medium at Day 3 (left), at Day 6 (center), and 4x zoom at Day
3 (right), where the yellow lines depict the cell contours. The white scale bar is 1 mm.
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Figure 2. (Top) Growth curves of T98G cells in isotonic, Dextran-containing and hypotonic
medium, from day 0 (cell seeding) to day 6. (Bottom) Cell cycle distribution of T98G cells
grown in isotonic, Dextran-containing and hypotonic medium, at day 3 and day 6. Collected
cells were stained with PI and analyzed for DNA content by flow citometry.
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Figure 3. Quantification of apoptotic cells in isotonic, Dextran-containing and hypotonic
medium, at day 3 and day 6. Apoptotic cells were measured by sub-G1 analysis of DNA
content.

presence of high mechanical stress (5 kPa), Figure 3. These results clearly highlight that prolonged
mechanical stimuli impinge on the growth properties of glioblastoma cells on specific cell cycle
phases, ultimately limiting the proliferative capacity of tumor cells.

We finally provide a quantitative measurement of the single cell morphology in the different culture
conditions. For this purpose we used the Fiji software [22] on the collected images to measure the
perimeter pc and the area Ac for each cell in a sample area of dimension 278 x 252 pixels taken
randomly in the central area of the dish. The collected measures allowed to compute an average
circularity ratio Γ = 4πAc/p2

c , that is depicted in Figure 4.

Notably, we find that there is no statistically significant difference between the morphology of the
cells in hypotonic and in isotonic conditions, with a mean circularity value of about Γ = 0.6. On
the contrary, the cells immersed into a hypertonic solution have a significantly lower circularity ratio,
with a mean value in the range Γ = 0.25 − 0.35. Thus, the Dextran molecules are found to trigger
a morphological transition towards an elongated shape, that is investigated in the following using a
mechanical model.

4. The mathematical model

In this Section we derive a mathematical framework to model the mechano-biological responses
observed in-vitro, focusing on the morphological changes of a single cell in response to hypertonic
conditions.
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4.1. The nonlinear elastic boundary value problem

Living cells possess structural and physical properties that enable them to withstand physical forces
exerted by the surrounding environment and to adapt themselves to external chemo-mechanical stimuli.
At the time scale of interest (days), we can neglect the much faster active dynamics (seconds) of the
cytoskeletal units of the cells [23] and the viscoelastic response (minutes) [24]. Thus, we model the
adherent GBM cell at equilibrium as a continuous material possessing a solid-like elastic response and
an internal microstructure depending on the preferential spatial arrangement of the cytoskeletal fibers.

The cell occupies a portion Ω of the three-dimensional Euclidean space E in the current
configuration, whilst Ω0 is the reference domain, that is assumed to have a smooth boundary ∂Ω0.

Let X and x be the material and current position vectors, and ei, i = 1, 2, 3 be a orthonormal
Cartesian base. The smooth vectorial mapping:

x = φ(X),

is taken to be twice differentiable, injective except possibly at the boundary ∂Ω0 and orientation
preserving [25], which means that the material cannot penetrate itself or reverse the orientation of
material coordinates. We define the displacement vector field as:

u = φ(X) − X,

and the deformation gradient tensor as:

F(X) = ∇φ(X) =
∂x

∂X
,

where the dependence of φ on time t drops off because we are at equilibrium.
The single cell is assumed to have a homogeneous mass density per unit volume, thus neglecting

the heterogeneity around its cortical layer, and to behave as a perfectly elastic material. Accordingly,

Figure 4. Quantification of mean circularity ratio Γ in isotonic, Dextran-containing and
hypotonic medium, at day 3 and day 6. Error bars describe the standard deviation, measuring
about 20 cells per sample area.
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we define a hyperelastic strain energy function Ψ per unit volume to describe its passive mechanical
response, so that the first Piola-Kirchhoff stress tensor P reads:

P =
∂Ψ

∂F
. (4.1)

In the absence of bulk forces, the balances of linear and angular momentum impose the equation for
the elasto–static equilibrium:

Div P = 0; FP = PT F; (4.2)

where Div is the divergence operator material coordinates.
The equilibrium equation is complemented by the following boundary condition at the boundary ∂Ω:

PN|∂Ω = −pD JF−T N; (4.3)

where J = det F is the Jacobian of the mapping, N is the unit material normal vector, and pD is the
osmotic pressure exerted by the Dextran molecules in the solution.

4.2. Constitutive assumptions and basic solutions

The nonlinear elastic boundary value problem expressed by Eqs (4.2,4.3) can be solved after giving
the constitutive law of the strain energy function, that relates the mechanical stress to the local strain
within the material.
We assume that the cytoskeletal fibers are mainly oriented along two directions a and b in the material
configuration, so that the strain energy function is in the form Ψ = Ψ(F, a,b). Even though fiber
dispersion could be accounted using a more realistic model [26], this simpler assumption contains the
minimal ingredients to describe the tensional pattern within the cytoskeleton [27].

By application of the representation theorem of tensor functions [28, 29] to enforce the material
symmetry group, this functional dependence can be described with respect to the following invariants:

I1 = tr(FT F), I2 = 1
2

(
(tr)2(FT F) − tr(FT F)2

)
, I3 = det(FT F)

I4 = (Fa) · (Fa); I5 = (FT Fa) · (FT Fa);
I6 = (Fb) · (Fb); I7 = (FT Fb) · (FT Fb);

I8 = (Fa) · (Fb)

(4.4)

We further assume that the anisotropic contributions due to the extensional response of the fibers
(expressed by the dependence on the invariants I4, I5, I6, I7) are negligible with respect to the energy
contribution due to the presence of crosslinks in the fiber network, that is encoded in the explicit
dependence on I8. The contour length of the fibers is indeed much bigger than the average distance
of fiber entanglement. Thus, the entropic contribution due to the fiber uncrimping is negligible with
respect to the enthalpic terms corresponding to the fibers splay. Therefore, we assume the following
strain energy function:

W(F, a,b) =
µ1

2
(
I1 − 3 − log

(
I3
))
−
µ2

2
(I8 − a · b)2 log

(
I3
)
, (4.5)

where µ1 and µ2 are the material parameters that describe the isotropic and the anisotropic responses,
respectively. The energy term multiplying µ1 describes a compressible neo-Hookean material, that is
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the minimal model used to describe the solid stress in tumour cells [30]. The anisotropic contribution
contains a novel functional dependence on both I8 and I3, mimicking the passive response due to
the fiber splay within the cytoskeleton, also affecting the cell compressibility. We remark that in the
absence of deformation, i.e. for F = I, the anisotropic strain measure (I8 − a · b) vanishes [31]. By
simple application of the chain differentiation rule to Eq (4.5), the first Piola-Kirchhoff stress tensor is
given by:

P =
∂W(F, a,b)

∂F
= µ1F −

(
µ1 + (I8 − a · b)2µ2

)
F−T −

µ2

2
log

(
I3
)(

I8 − a · b)
(
Fa ⊗ b + Fb ⊗ a

)
, (4.6)

where ⊗ denotes the dyadic product between vectors.
In order to make analytic calculations, we consider the simple case in which the cells initially

occupies the domain Ω0 = [0, L] × [0, L] × [0,H], thus it has a thin geometry with planar square
section of width L, and an out-of-plane thickness H < L. We also assume that the fibers are initially
orthogonal, so that a = e1 and b = e2. We derive in the following two basic solutions of the elastic
boundary value problems representing the two morphologies observed in experiments.

4.2.1. Uniformly compressed solution

By substituting Eq (4.6) into Eqs (4.2,4.3), we search for a uniformly compressed solution, so that
the deformation gradient is given by F = λI, with λ < 1. We find that λ must be the real root solving :

λ(λ2 − 1) + λ4 pD

µ1
= 0 (4.7)

Due to the uniform compression, we remark that I8 = 0, so there is no anisotropic contribution to the
stress. The solution of Eq (4.7) is shown in Figure 5 as a function of the dimensionless osmotic stress
pD/µ1.

0 2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

1.0

pD

μ1

λ

Figure 5. Uniform compressive stretch λ solving Eq (4.7) as a function of the dimensionless
osmotic stress pD/µ1.
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4.2.2. Elongated solution

We search now for an elongated solution of Eqs (4.2,4.3) with the constitutive assumption given by
Eq (4.5). Our ansatz for the mapping solution reads:

x = (αX1 + δX2)e1 + βX2e2 + γX3e3 (4.8)

where α, β, γ, δ are four unknown parameters.
Substituting Eq (4.8) into Eqs (4.3,4.6), we find the following algebraic system of nonlinear equations:

δ2(µ1 + α2δ2µ2) + β2(µ1 − α
2µ1 + α2δ2µ2)−αβ3γpD−αβγδ

2 pD = 0
µ1 − β

2µ1 + α2δ2µ2−αβγpD = 0
µ1 − γ

2µ1 + α2δ2µ2−αβγpD = 0
δ(µ1 + α2δ2µ2−αβγpD − 2α2β2µ2 log(αβγ)) = 0.

(4.9)

The solution of Eqs (4.9) can be numerically computed using the Newton’s methods as a function of
the dimensionless osmotic stress pD/µ1 at different anisotropy ratios µ2/µ1. In particular, we select the
solutions such that δ does not vanish, so that the resulting morphology is characterized by a fiber splay
causing the elongated shape observed in experiments.

4.3. Results

In this paragraph, we use energetic arguments to identify the onset of a morphology transition
between the two basic solutions of the elastic boundary value problem.
For this purpose we write the total mechanical energy E of the system in the spatial configuration as:

E =

∫
Ω

Ψd3x − pD(|Ω| − |Ω0|) (4.10)

where the first term on the rhs is the total elastic energy within the cell and the second term is the
mechanical work performed by the osmotic stress. In the following we use the subscripts c and el to
indicate the corresponding values evaluated for the basic solutions given by Eq (4.7) and Eq (4.9) ,
respectively.

In Figure 6 we depict the total energies of the two basic solution as a function of the dimensionless
osmotic stress pD/µ1 at a fixed anisotropy ratio µ2/µ1 = 0.15. We find that the uniformly compressed
solution has a lower total energy compared to the elongated solution if pD/µ1 is lower than a critical
value of about 1.2, beyond which the elongated solution is energetically favourable. This means that
the cells keeps a symmetric rounded morphology whilst being squeezed by the outer the osmotic
pressure, but a topological crossover occurs beyond this critical pressure value towards an elongated
shape dictated by the fiber splay. An illustration of the experimental morphologies and the
corresponding elastic solutions is depicted in Figure 7.
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Figure 6. Total dimensionless energies per unit initial volume Ec/µ1(yellow line) and Eel/µ1

(blue line) of the uniformly compressed and the elongated solutions, respectively, as a
function of the dimensionless osmotic stress pD/µ1, shown at µ2 = 0.15µ1. The two curves
intersect at a critical level pcr = pD/µ1 = 1.2.

Figure 7. (Top) Zoomed microscopy images showing the red contours of the cells in isotonic
(left) and hypertonic (right) conditions. (Bottom) Sketch of the corresponding homogeneous
solutions of the elastic boundary problem.

In Figure 8 we depict the critical value pcr = pD/µ1 of this morphological crossover as a function
of the anisotropy ratio µ2/µ1, showing that the critical threshold for the osmotic pressure is of the same
order as µ1 if µ2/µ1 = O(1). Since for living cells the shear modulus is about 1 − 10 KPa [32], the
critical osmotic pressure is of the same order as the one applied in experiments.
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Figure 8. Critical dimensionless threshold pcr/µ1 of the osmotic stress for the morphological
crossover as a function of the dimensionless anisotropic ratio µ2/µ1. The region above the
curve is characterized by the energetic dominance of the elongated configuration, while the
uniformly compressed solution is favoured below.

5. Discussion and concluding remarks

Glioblastoma Multiforme (GBM) is one of the most common and aggressive tumors and
practically impossible to treat due to its high invasive and infiltrative growth, despite the great
progress made in the last decades for the development of new imaging techniques for brain tumours
and for genetic targeting of adjuvant therapies. Our results suggest the micro–environment is a key
factor in GBM development owing to the mutual chemo-mechanical feedback exchanged with the
tumour. In particular, we have proven new insights on the effect of different osmotic conditions on
monolayers made of human glioblastoma cell line (T98G), particularly focusing on the effect on
growth and on morphological changes. By means of in-vitro experiments, we have shown that the
osmotic pressure exerted by a medium rich in Dextran (either 2 or 5 kPa) gives an inhibitory effect on
growth compared to the standard isotonic medium. The relative effects on growth and proliferation
become more evident at long times, where the majority of living cells flatten and a certain amount of
dead cells float in suspension. In both hypertonic and hypotonic cases the results on proliferation
were also confirmed by the analysis of the experimental growth curves. Moreover, we correlated the
effect of pressure alteration on cell proliferation with the cell cycle progression of
Dextran/hypotonic-treated cells. We observed that prolonged culture in hypotonic medium caused an
accumulation in G1 phase, which is likely the cause of the observed growth delay; instead, the
presence of Dextran in the medium induced an initial accumulation in S phase that definitively
resulted in a a G1-phase accumulation at later time. In addition, the analysis of fractional DNA
content showed that in presence of high mechanical stress (5 kPa) around 30% of cells did undergo
apoptosis. Interestingly, we reported that cells undertake a peculiar elongated morphology in presence
of Dextran, in agreement with previous results [15, 17], and they appear more dispersed rather than
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gathered in compact clusters. On the contrary, the hypotonic treatment had only a mild effect on
growth, without appreciable alteration of the cells morphology.

Thus, we have proposed a mathematical model for the single cell in order to understand the
mechanical origin of the morphological transition observed in monolayers in presence of hypertonic
stress. Despite the tumour consists in an aggregate of cell, the importance of focusing on the single
cell behaviour is due to the need of understanding how the micro-environment can influence the
biological processes of the single during the migration process. Considering the time scale of interest
(days), the adherent GBM cell is assumed to respond to external solicitation as a solid-like elastic
material characterized by the presence in the bulk of an internal micro–structure that accounts for the
preferential spatial arrangement of the cytoskeletal fibers, which are assumed to be mainly distributed
around two orthogonal directions in the reference configuration. After stating the constitutive law of
the strain energy density using the representation theorem of tensor functions, we computed two
homogeneous solutions of the nonlinear elastic boundary value problem, corresponding to uniform
symmetric compression and elongated shape observed in experiments.
Through energetic considerations we suggested a plausible explanation of the morphology crossover
between the two solutions, based on a competition between the isotropic response and the splay
contribution given by the cytoskeletal fibers. The theoretical results are in good agreement with the
experiments: the uniformly compressed solution is energetic favourable in presence of low osmotic
stresses, whilst the elongated solution is dictated by the fiber splay, and it only occurs if the cell is
subjected to an osmotic stress beyond a critical threshold, which is of the order of magnitude as the
one used in experiments.
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