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ABSTRACT
A reduced-dimensional effective-mode representation is developed in order to efficiently describe excited-state dynamics of multichro-
mophoric donor-acceptor aggregates within a linear vibronic coupling model. Specifically, we consider systems where vibrational modes
pertaining to a given molecular fragment couple both to local excitations of Frenkel type and delocalized states of charge transfer exciton
type. A hierarchical chain representation is constructed which is suitable to describe correlated fluctuations, leading to a set of correlated
spectral densities. An application is shown for a first-principles parameterized model of an oligothiophene H-type aggregate whose proper-
ties are modified due to the presence of charge transfer excitons. Within a pentamer model comprising 13 electronic states and 195 normal
modes, good convergence of the effective-mode representation of the spectral densities is achieved at the eighth order of the hierarchy with
104 modes, and a qualitatively correct picture is obtained at the sixth order with 78 modes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100529

I. INTRODUCTION

The explicit theoretical treatment of photoinduced quantum
dynamics of molecular aggregates is a current issue in many fields
of biological, chemical, and materials science.1,2 Examples are the
photophysics of DNA fragments,3,4 light-harvesting systems,5,6 and
other complexes of biological importance. Another class of rele-
vant systems is conjugated polymer materials, especially in view
of their use in organic electronics.7–9 In the present study, we
focus on the latter class of systems and specifically address the
photophysics of regioregular poly-(3-hexylthiophene) (rrP3HT)

assemblies,10–15 which represent paradigm donor materials in
organic photovoltaics.

Over the past few years, it has become increasingly clear
that electron-phonon coupling plays a key role in the photo-
physics of semiconducting polymers,16,17 and conventional rate
theories turn out insufficient to describe the primary electronic
conversion and transport steps.18 Hence, a quantum dynamical
treatment is in order, comprising a large number of electronic
states and vibrational modes. Yet, the explicit quantum dynam-
ical treatment of all vibrational modes and the construction of
full-dimensional potential energy surfaces (PESs) are prohibitive
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already for a single polyatomic molecule. For example, a quater-3-
hexylthiophene oligomer already features about 300 molecular nor-
mal modes (NMs). Even with state-of-the-art wavefunction prop-
agation methods like the Multi-Configuration Time-Dependent
Hartree (MCTDH) method19–22 and its multilayer ML-MCTDH
extension,23,24 a simulation of three stacked oligomers is a tall
order.

To circumvent this problem, it is necessary to (i) simplify the
representation of the excited-state PESs and (ii) reduce the high-
dimensional vibrational space. For large molecular aggregates, the
first aspect can often be accomplished using a Linear Vibronic Cou-
pling (LVC) model,25 assuming that large-amplitude motions do not
play a dominant role. The LVC model represents excited-state PESs
in the basis of the ground-state normal mode space, focusing on the
shift of the state-dependent equilibrium geometries and neglecting
second-order modifications of the PES. The LVC model can also be
understood as a generalization of the ubiquitous spin-boson model26

and directly connects to system-bath theory formulations in terms of
spectral densities (SDs).1,26

The second issue—i.e., the reduction of the vibrational space—
can be achieved by different approaches. A straightforward strat-
egy is to discard vibrational modes that have a minor influence
on the electronic subsystem. A less biased strategy is an effective
mode representation that has been developed in the context of the
LVC model.27–30 In the effective mode representation, an orthogonal
transformation is constructed such as to identify a small number of
first-layer effective modes (FLEMs) that couple directly to the elec-
tronic subsystem, while the complementary set of residual modes is
coupled in turn to the first-layer modes. The first-layer modes have
been shown to subsume the short-time evolution of the vibronic
system.27–30 Inclusion of the residual modes permits the successive
unraveling of the dynamics as a function of time if a hierarchical,
Mori type31 chain construction is employed.32–35 This also suggests
systematic truncation schemes by discarding chain modes beyond a
chosen order. From a complementary perspective, this scheme can
be viewed as an unraveling of non-Markovian system-environment
dynamics in terms of a hierarchical chain representation of the
memory kernel.36–41 In the frequency domain, truncated chain rep-
resentations yield a series of SD approximants which converge to the
exact SD.38,41,42

Effective-mode methods have been employed either in cases
where the subsystem consists of a single electronic operator or vibra-
tional mode36–40 or in situations where several subsystem operators
are present.27,34,42 In the latter category, the focus was on conical
intersection topologies where vibronically active modes can couple
both diagonally and off-diagonally to the electronic subsystem in a
diabatic representation.27–30,42 In the present work, we introduce a
related construction scheme which is suitable to describe photoex-
citations in molecular aggregates.1 Specifically, we consider multi-
chromophoric donor-acceptor aggregates where vibrational modes
pertaining to a given molecular fragment couple both to local exci-
tations (typically of Frenkel type) and delocalized states (typically
of charge transfer type). This situation gives rise to correlated fluc-
tuations that are captured by correlated spectral densities and their
effective-mode representations.42

As a representative model system, we choose a small
H-aggregate14 composed of quaterthiophene oligomers, i.e., (OT4)n
with n = 2, . . . 5, representative of rrP3HT. This type of aggregate

can be described as an H-aggregate of Frenkel excitonic (XT) states
with a strong admixture of charge transfer excitons (CTXs).14,43

The pronounced participation of CTX species has been reported
in various time-independent and time-resolved spectroscopic stud-
ies.16,44,45 The aggregate model Hamiltonian is parameterized based
upon Time-Dependent Density Functional Theory (TDDFT) elec-
tronic structure calculations for an (OT4)2 species,46 and quan-
tum dynamical calculations are subsequently performed for larger
(OT4)n systems up to n = 5.47 In the present paper, the performance
of the effective mode transformation will be evaluated by comparing
the resulting effective-mode SDs for the dimer (OT4)2 and pen-
tamer (OT4)5 with the SDs obtained for the full normal mode space.
In a companion study, we report on high-dimensional quantum
dynamical simulations for an (OT4)5 pentamer system using the
ML-MCTDH method.47

The remainder of the paper is organized as follows.
Section II introduces the multisite LVC model employed in this
work, and Sec. III details the effective-mode approach. The param-
eterization of the (OT4)5 system resulting from electronic struc-
ture calculations and the performance of the effective mode rep-
resentation are described in Sec. IV. Finally, Sec. V summa-
rizes our findings. The supplementary material presents additional
information on the electronic structure calculations and effective
mode analysis.

II. VIBRONIC LATTICE MODEL FOR
MULTICHROMOPHORIC SYSTEMS

Following Refs. 17, 46 and 48, we employ a first-principles
parameterized vibronic lattice Hamiltonian to describe a multichro-
mophoric system exhibiting a pronounced mixture of XT and CTX
states. We specifically consider a model system consisting of five
quaterthiophene molecules stacked on top of each other, i.e., an
(OT4)5 aggregate, as illustrated in Fig. 1. While the model is taken to
be restricted to homo-aggregates with identical monomer species, a
generalization to hetero-aggregates is straightforward.

Figure 1 shows the molecular geometry of the system as well as
a schematic sketch of the electronic and vibronic couplings, shown
as connectivities between electronic states and vibrational modes.
Each OT4 fragment, denoted monomer Mn in the following, is asso-
ciated with its own subset of normal modes qMn

, which we will refer
to as local normal modes (local NMs). Furthermore, the associated
state-specific sets of vibronic couplings are obtained from electronic
structure calculations, and coordinate-independent electronic cou-
plings are obtained via a quasidiabatization scheme.49 Additional
details on the electronic structure aspects are provided in Sec. IV.

The corresponding model Hamiltonian is set up in a single
excitation subspace in an electron-hole (e-h) representation, using
basis states |νµ⟩ with the electron located at site νe = ν and the hole
located at site µh = µ. Localized e-h pairs where the electron and
hole are located on the same molecular fragment correspond to a
Frenkel excitonic (XT) configuration, |XTn⟩ = |ν = n, µ = n⟩ (with
n = 1, . . ., N for an N-site system). Conversely, if an e-h pair is spa-
tially separated, the configuration represents a charge transfer exci-
ton (CTX) state, i.e., |CTXn ,n′⟩ = |ν = n, µ = n′⟩, where n ≠ n′. In the
present study, we make the approximation that the electron and hole
are always located on neighboring fragments, i.e., only |CTXn ,n′⟩
states with n′ = n ± 1 will be considered. Hence, nearest-neighbor
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FIG. 1. (a) Molecular representation of the stacked (OT4)5 pentamer aggregate at the center of the present studies. (b) Schematic representation of the electronic couplings
in the aggregate system, involving XT and CTX states (blue circles). Various types of electronic couplings appearing in Eqs. (4)–(6) are marked along the edges connecting
two nodes describing electronic states. (c) Schematic representation of the vibronic couplings of Eqs. (14) and (15) where the monomer-specific vibrations are shown as
additional nodes (red circles), the electronic states appear as in panel b (blue circles), and the relevant local (cXT) and nonlocal (c±CTX) vibronic couplings are marked along
the edges connecting two nodes of vibrational (blue) and electronic (red) types.

electron transfer pathways, |XTn⟩ → |CTXn±1,n⟩, are distinguished
from the corresponding hole transfer pathways, |XTn⟩→ |CTXn ,n±1⟩.
The nearest-neighbor approximation is justified by our previous
study46 which showed that longer-range charge separation within
an OT aggregate does not play a prominent role. In the present
work, up to five stacked OT4 monomers are included, resulting in
13 electronic states, i.e., five XT states and eight CTX states.

The overall Hamiltonian Ĥ can be split into three terms

Ĥ = Ĥel + Ĥph + Ĥe-ph, (1)

where the first term (Ĥel) corresponds to the purely electronic part
of the Hamiltonian including the electronic couplings, while the sec-
ond term (Ĥph) represents the zeroth-order vibrational (phonon)
Hamiltonian. The third term (Ĥe-ph) subsumes all vibronic
interactions. These terms will be successively addressed in the
following.

A. Electronic Hamiltonian
The electronic part of the Hamiltonian is in turn split into four

contributions

Ĥel = Ĥon-site + Ĥcoup
XT + Ĥcoup

XT,CTX + Ĥcoup
CTX . (2)

The first contribution, i.e., the on-site Hamiltonian Ĥon-site, contains
the static energy shifts of XT and CTX states within an aggregate
composed of N monomers,

Ĥon-site =
N
∑
n=1
(�XT∣XTn⟩⟨XTn∣ + �CTX∣CTXn,n±1⟩⟨CTXn,n±1∣), (3)

with 1 ≤ n ± 1 ≤ N. Here, all Frenkel states have the same on-site
energy �XT and all nearest-neighbor charge-separated states have the
same on-site energy �CTX.

The remaining terms in Eq. (2) describe several types of elec-
tronic couplings, including the excitonic (Frenkel type) coupling
between two neighboring XT states,

Ĥcoup
XT = j

N
∑
n=1
(∣XTn⟩⟨XTn+1∣ + h.c.), (4)

and the coupling between XT and CTX states,

Ĥcoup
XT,CTX =

N
∑
n=1
(κ1∣XTn⟩⟨CTXn±1,n∣ + κ2∣XTn⟩⟨CTXn,n±1∣ + h.c.),

(5)

again with 1 ≤ n ± 1 ≤N. That is, XT states are coupled to CTX states
with either the electron or the hole displaced to a neighboring site
such that κ1 is associated with electron transfer and κ2 is associated
with hole transfer. Furthermore, the Hamiltonian Eq. (2) includes
the coupling between CTX states,

Ĥcoup
CTX =

N
∑

n,m,m′=1
l∆m∆m′(∣CTXn+1,n⟩⟨CTXm,m′ ∣

+ ∣CTXn,n+1⟩⟨CTXm′ ,m∣ + h.c.), (6)

where |m −m′| = 1 and the two indices of the couplings l∆m∆m′ indi-
cate the shift in electron and hole positions, i.e., ∆m = m − (n + 1)
and ∆m′ = m′ − n. We specifically include the couplings with
(∆m, ∆m′ ) = (1, 1), (0, 2), (−1, 1); see Table I and also Fig. S4 of the
supplementary material.

The electronic Hamiltonian of Eqs. (2)–(6) can be rewritten
in the matrix form, highlighting the coupling between the different
excitonic and charge transfer states. Here, we specifically show the
pentamer Hamiltonian, N = 5, which is at the center of our study,
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Hel =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

�XT j κ1 κ2

j �XT j κ2 κ1 κ1 κ2

j �XT j κ2 κ1 κ1 κ2

j �XT j κ2 κ1 κ1 κ2

j �XT κ2 κ1

κ1 κ2 �CTX l11 l−11 l02

κ1 κ2 l11 �CTX l11 l−11 l02

κ1 κ2 l11 �CTX l11 l−11 l02

κ1 κ2 l11 �CTX l−11

κ2 κ1 l−11 �CTX l11

κ2 κ1 l02 l−11 l11 �CTX l11

κ2 κ1 l02 l−11 l11 �CTX l11

κ2 κ1 l02 l−11 l11 �CTX

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (7)

In Eq. (7), the following sequence of basis states was chosen:
{∣XT1⟩ . . . , ∣XT5⟩, ∣CTX1,2⟩ . . . ∣CTX4,5⟩, ∣CTX2,1⟩ . . . ∣CTX5,4⟩}.

As further detailed in Sec. IV, all parameters appearing in
Eq. (7), i.e., the on-site energies and diabatic electronic couplings
employed for our (OT4)n models, are based on TDDFT calculations.

B. Vibronic interactions
The vibrational and vibronic coupling parts of the Hamilto-

nian are constructed in mass and frequency weighted coordinates
such that the zeroth-order vibrational (or phonon) part of the
Hamiltonian Eq. (1) reads

Ĥph = 1
2
(p̂Tωp̂ + q̂Tωq̂), (8)

where ω is a diagonal frequency matrix in the local NM represen-
tation, (ω)ij = ωiδij, and the q̂ and p̂ vectors refer to the total nor-
mal mode space which is spanned by N monomeric (local) NM
subspaces,

q̂T = ( q̂TM1
, q̂TM2

, ⋯, q̂TMN−1
, q̂TMN

), (9)

where the index MN denotes the MN th monomer and q̂TMn

= (̂qMn ,1, . . . , q̂Mn ,NM), with NM the number of phonon modes for a

TABLE I. On-site energies and diabatic couplings obtained from TDDFT calculations
(ωB97XD//SVP) for an (OT4)2 dimer. All parameters are given in eV.

On-site Diabatic
energies (eV) couplings (eV)

�XT �CT κ1 κ2 j l11 l02 l−11

0.00 0.41 0.21 −0.06 0.09 −0.12 −0.06 0.06

given fragment (which is equal for all fragments in the present case).
Hence, the dimensionality of the q̂ vector corresponds to the total
number of phonon (vibrational) modes, Nph = NNM .

Vibronic interactions are defined within the shifted harmonic
oscillator approximation of the LVC model for Ns electronic
states,

Ĥe-ph =
Ns

∑
s=1

CT
s q̂ ∣s⟩⟨s∣, (10)

where s runs over the manifolds of XT and CTX states. The state-
specific vibronic couplings {Cs ,j}, j = 1, . . ., Nph, are calculated
from Franck-Condon (FC) gradients of every state of interest. While
all modes are taken to be local in our model—i.e., localized on a
given molecular fragment—the vibronic couplings may be nonlo-
cal, depending on the nature of the excited state. That is, we refer
to local vibronic interactions in the case of Frenkel XT states, while
nonlocal vibronic interactions arise in the case of charge-transfer
excitons, i.e., CTX states. In the latter case, modes q̂Mn

belonging
to the nth fragment also couple to the (n + 1)-th and (n − 1)-th frag-
ment due to the delocalized nature of the CTX states. Hence, we split
the electron-phonon coupling term into two contributions

Ĥe-ph = Ĥe-ph
local + Ĥe-ph

non-local (11)

with the local vibronic couplings

Ĥe-ph
local =

N
∑
n=1

CT
XT,nq̂∣XTn⟩⟨XTn∣ (12)

and the nonlocal vibronic couplings

Ĥe-ph
non-local =

N
∑
n=1

N
∑
n′=1
n′≠n

CT
CTX,nn′ q̂∣CTXn,n′⟩⟨CTXn,n′ ∣. (13)

The respective vibronic coupling vectors are given as

CT
XT,n = ( 0(n−1), cTXT, 0(N−n) ), (14)
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where the modes of the nth monomer couple to the nth Frenkel
states with vibronic couplings cTXT = (cXT,1, . . . , cXT,NM) and

CT
CTX,nn′ = ( 0(n−1), c(±)TCTX , c(∓)TCTX , 0(N−n−1) ), (15)

where the modes of the nth and (n + 1)-th monomer states couple to
the negatively (positively) charged nth monomer and the positively
(negatively) charged (n + 1)-th monomer, with different vibronic
couplings c(−)CTX and c(+)CTX. Each of the full vibronic coupling vectors
C has Nph = NNM entries, while each subvector c has NM entries.
Correspondingly, the 0(m) vectors have length mNM . In practice, the
(n, n′) combinations are limited to nearest neighbor CTX states with
n′ = n ± 1 as explained above.

C. Correlated spectral densities
If the frequency distribution of the vibrational modes is dense,

it is natural to characterize the influence of the vibrations on the elec-
tronic subsystem in terms of a spectral density or its discretized rep-
resentation.1,26 Due to the nonlocal part of the electron-phonon cou-
pling, the electronic subsystem in the aggregate system under study
experiences correlated fluctuations,42 which are described by a set of
spectral densities resulting from the vibronic coupling Hamiltonian
Eq. (10),

Jss′(ω) =
π
2

Nph

∑
j=1

Cs,jCs′ ,jδ(ω − ωj), (16)

which define a Ns × Ns dimensional spectral density matrix J. From
the structure of the Hamiltonian, particular elements of J are zero
by construction—e.g., in our model the Frenkel-type |XTn⟩ states
are uncorrelated as long as all vibrational modes are assumed to be
of local type.

In the analysis reported below, we will employ Eq. (16) in con-
junction with the convolution with a Lorentzian function, generat-
ing a series of continuous spectral densities.

III. EFFECTIVE MODE APPROACH
For the study of extended systems comprising various molec-

ular fragments, the large number of degrees of freedom is the com-
putational bottleneck of the dynamical simulations. The approach
of choice is to reduce the dimension of the vibrational sub-
space. To this end, we employ the above-mentioned effective mode
approach,27,28,34,42 which relies on an orthogonal transformation in
the vibrational subspace, as a result of which only few collective
modes couple to the electronic subsystem. These will be termed first-
layer effective modes (FLEMs) in the following. In molecular aggre-
gates with N monomer units (M1 − M2 − ⋯ − MN), there are NXT
=N Frenkel excitonic states and NCTX = (2N − 2) CTX states—i.e., in
total, Ns = 3N − 2 electronic states—which leads to the definition of
Ns FLEMs. In the following, we first consider the construction of the
latter and then turn to the full orthogonal coordinate transformation
that also includes a set of residual modes.

A. Construction of FLEM space
The FLEMs are constructed to subsume the state-specific

vibronic couplings of Eq. (10) into a single collective coordinate per

electronic state,

Q̂s =
1
cs
CT
s q̂, (17)

where cs is a normalization constant. Hence, by construction, the
electron-phonon coupling is cast in the form

Ĥe-ph =
Ns

∑
s
csQ̂s ∣s⟩⟨s∣. (18)

Specifically, NXT = N effective modes are constructed to capture the
vibronic coupling with the Frenkel XT states

Q̂XT,n =
1

cXT,n
CT

XT,nq̂, (19)

where n = 1, . . ., N. Furthermore, NCTX = 2N − 2 effective modes
are constructed to account for the vibronic coupling with the CTX
states

Q̂CTX,nn′ =
1

cCTX,nn′
CT

CTX,nn′ q̂, (20)

where n = 1, . . ., N and n′ = n ± 1. As a result, the local
and nonlocal parts of the electron-phonon coupling Hamiltonian,
Ĥe-ph = Ĥe-ph

local + Ĥe-ph
non-local of Eq. (11), are recast as follows in terms of

3N − 2 modes:

Ĥe-ph
local =

N
∑
n
cXT,nQ̂XT,n∣XTn⟩⟨XTn∣ (21)

and

Ĥe-ph
non-local =

N
∑
n
cCTX,nn±1Q̂CTX,nn±1∣CTXn,n±1⟩⟨CTXn,n±1∣. (22)

While the modes {Q̂XT,n} are orthogonal to each other, they are
not orthogonal to the {Q̂CTX,nn′} modes. Hence, in a next step, the
primary FLEM modes Q̂ will be orthogonalized. Furthermore, the
remaining modes will be included, which couple to the FLEMs and
therefore exert an indirect influence on the electronic subsystem.

B. Full coordinate transformation
The starting point of the full coordinate transformation relating

the original set of normal modes and the new set of effective modes is
the definition of the orthogonalized FLEM modes which determine
the first rows of an orthogonal transformation matrix T,

Q̂ = T q̂. (23)

As a consequence of the transformation Eq. (23) and noting that the
transformation can alternatively be formulated such as to comprise
the momentum vector,

(Q̂ ± iP̂) = T(q̂ ± ip̂), (24)

the phonon part of the Hamiltonian, Ĥph of Eq. (8), takes the form

Ĥph = 1
2
(P̂TΩP̂ + Q̂TΩQ̂) (25)

with

ω = TTΩT. (26)
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The diagonal frequency matrix ω in the local NM space is thus
transformed to a nondiagonal form in the effective-mode represen-
tation. The diagonal entries of 
 are the effective mode frequencies,
while the off diagonal elements (in the following denoted as dij) are
intermode couplings whose explicit form is as follows:28,34

Ωi =∑
j
ωjT2

ji, dij =∑
k
ωkTkiTkj . (27)

Up to here, no conditions have been imposed on the matrix T.
The most important constraint is to ensure orthonormality of the
effective modes so that the columns of T have to be orthonormal as
well. The second constraint results from the definition of the FLEMs
according to Eqs. (19) and (20). The first Ns columns of the initial
matrix T are thus constructed by the normalized—but only partially
orthogonal—vibronic coupling vectors of Eqs. (19) and (20) which
span the Ns-dimensional FLEM space. The remaining columns are
initially filled with random numbers and will be orthogonalized in
the next step.

The first NXT = N columns are orthogonal by construction;
hence, the remaining N(NM − 1) columns are iteratively orthogo-
nalized with respect to the first N columns,

Tfinal
:k = T:k −

k−1
∑
l=1

TT
:kT:l

∣T:l∣2
T:l

= T:k −
k−1
∑
l=1

Λl,kT:l, (28)

with k = NXT + 1, . . ., NNM . The matrix Λ in Eq. (28) contains
the Gram-Schmidt factors for the columns to be orthonormalized.
This results in the general effective mode transformation matrix
by analogy with the construction scheme described in Refs. 28, 33,
and 34.

C. Transformations in the residual mode space
As detailed in Refs. 28, 30, 33, and 42, there are several possi-

bilities to reshape the effective mode frequency matrix by additional
transformations,

Ω′ = ZTΩZ. (29)

One of the possibilities is to band-diagonalize the frequency matrix
by sequential Givens rotations, which results in a hierarchical, Mori-
type31 effective mode chain. The effective mode chain can now be
truncated at a threshold K = kNs, i.e., a multiple of the number
of FLEMs. Figure 2 shows a matrix 
′ of this type for Ns = 3 and
K = 2Ns = 6, i.e., for two layers of effective modes.

Truncation of the frequency matrix 
′ yields a reduced-
dimensional kth-order matrix 
(k) of dimension K × K. In the
present work, we use this type of truncation scheme, which leads
to reduction in dimensionality for the dynamical problem. In appli-
cations to multichromophoric systems, this scheme turns out to
suffice for generating an effectively irreversible dynamics due to effi-
cient decoherence in systems exhibiting vibronic coupling in the
presence of multiple electronic subsystem operators. Alternatively,
Markovian closure procedures have been suggested.32,33,36,38,39,41

According to Eq. (25), the off diagonal entries for 
′ or 
(k)

give rise to coordinate and momentum couplings in the phonon

FIG. 2. Schematic representation of a transformed 
′ of Eq. (29) in a band-
diagonal form for Ns = 3 and K = 2Ns = 6, i.e., for two layers of effective modes,
as indicated by a red frame. Bullets represent the effective mode frequencies
and intralayer effective mode couplings on the diagonal, and squares indicate
couplings between effective modes of different layers.

part of the Hamiltonian, (Ĥph)ij = (1/2)d′ij(Q̂iQ̂j + P̂iP̂j). In pre-
vious applications, these bilinear momentum couplings were found
to cause numerical convergence issues and led to increased prop-
agation times. Therefore, an alternative representation may be
preferable once the Mori chain representation has been truncated.
Following the procedure of Ref. 50, we rediagonalize the trun-
cated chain representation. The final frequency matrix is therefore
diagonal,

ω(k) = UTΩ(k)U, (30)

similar to the original form [Eq. (26)] but in a reduced dimen-
sionality. The representation of Eq. (30) corresponds to the nor-
mal mode representation of the truncated chain. In contrast to the
local NM representation that we used as a starting point, the trun-
cated chain representation will be seen to yield global normal modes
(global NMs) as eigenvectors of 
(k). In the following, these global
NMs resulting from the kth order truncated representation will be
denoted as q̂(k).

In this final truncated representation, the electron-phonon
coupling Hamiltonian reads as follows:

Ĥe-ph
local =

N
∑
n=1

C(k)TXT,n q̂
(k)∣XTn⟩⟨XTn∣ (31)

and

Ĥe-ph
non-local =

N
∑
n=1

N
∑
n′=1
n′≠n

C(k)TCTX,nn′ q̂
(k)∣CTXn,n′⟩⟨CTXn,n′ ∣, (32)

where

q̂(k)T = (q(k)1 , q(k)2 , . . . , q(k)K ). (33)

This is the representation which is most convenient for the numeri-
cal implementation.

Equations (31) and (32) are entirely analogous in formal
appearance to Eqs. (12) and (13), but the phonon space has been
reduced from Nph to K = kNs modes. The procedure is perhaps
best appreciated when the bath comprises an infinitely dense set
of modes and the vibronic couplings of Eqs. (12) and (13) become
integrals over such modes. Equations (31) and (32) then represent
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quadrature formulas for such an integral, using quadrature points—
here, effective modes—that reproduce the correct dynamical behav-
ior in time.

D. Spectral density approximants
A reduced discretized representation of the spectral densi-

ties Eq. (16) is naturally obtained from the above truncated chain
representation,

J(k)ss′ (ω) =
π
2

K
∑
j=1

C(k)s,j C(k)s′ ,j δ(ω − ωj). (34)

This version of the SD represents the kth-order approximant to
the full SD resulting from the truncation of the chain Hamilto-
nian. Below, we will show a series of such approximants for various
truncation levels, and we will analyze their convergence for succes-
sive truncation levels. Since we refer to reduced-dimensional sub-
spaces, a suitable convolution with a line shape function—here, a
Lorentzian—is employed in practice,

J(k)ss′ (ω) =
1
2

K
∑
j=1

C(k)s,j C(k)s′ ,j σ
(ω − ωj)2 + σ2 , (35)

where the Lorentzian width parameter σ is typically chosen as
σ = 0.1 ∆ω, i.e., as a scaled mean of the average local normal mode
frequency spacings (∆ω).

Alternative formulations of this procedure in a continuous
representation can be found in Refs. 36, 37, 39, 42, and 48.

IV. APPLICATION TO STACKED OLIGOTHIOPHENE
AGGREGATES

The (OT4)5 pentamer is a minimal system permitting a realistic
description of spatially extended excitons in an H type aggregate. We
consider an initial system size of 13 electronic states and 195 modes
(reduced from a total of 420 normal modes of the pentamer species
as further explained below); this full system size is employed in a
companion paper47 in reference calculations using the ML-MCTDH
method.21–24 Subsequently, a systematic reduction is carried out
using the above effective mode construction. In the present paper,
the convergence of the resulting spectral density approximants is
analyzed. As illustrated in the companion paper,47 convergence at
the SD level is found to be directly related to convergence of the
dynamical simulations.

In the following, we first report on the details of our elec-
tronic structure calculations including the relevant diabatization
procedure, followed by the results of the effective mode reduction
procedure.

A. Electronic structure calculations
and diabatization

The parameterization of the electronic Hamiltonian of Eq. (2)
was based upon supermolecular electronic structure calculations
for an (OT4)3 trimer aggregate representative of a minimal frag-
ment of regioregular rrP3HT. The ground state geometry of the
(OT4)3 species was optimized using DFT calculations with the
long-range corrected ωB97XD functional51 (including empirical

vdW dispersion) and the split valence polarization (SVP) basis set52

as implemented in Gaussian09 Rev.D01.53 Based on this ground
state structure, all relevant parameters for the quantum dynamical
simulations were obtained using TDDFT with the same functional,
i.e., vertical excitation energies and diabatic couplings of Ĥel [Eq. (2)]
and vibronic couplings of Ĥel-ph [Eq. (10)]. Due to the pronounced
charge transfer characteristics expected for this system, high-level
ab initio benchmark calculations at the ADC(2) level54 were per-
formed for the (OT4)2 dimer in order to validate the reliability of the
above-mentioned DFT functional. Indeed, the ωB97XD functional
was previously shown to give good results for both excitonic and
charge transfer states of P3HT as compared to ADC(2).55 We con-
firmed this observation in our calculations for the (OT4)2 aggregate
(see Fig. S1 of the supplementary material).

The diabatic Hamiltonian described above requires obtain-
ing electronic couplings from a diabatization procedure; here, we
specifically employed the procedure of Ref. 49. The resulting elec-
tronic couplings and on-site energies are summarized in Table I
(see Sec. II). These parameters differ to some extent from Ref. 46
where the role of CTX states on charge separation at polythiophene-
fullerene heterojunctions was addressed. The modified parameteri-
zation permits to achieve better agreement with supermolecular cal-
culations and a qualitatively correct representation of the absorption
spectrum.47

FIG. 3. Calculated vibronic couplings cXT and spectral density J(ω) for the bright
S2 state (of XT type) from excited-state gradients calculated at the TDDFT level
for a (OT4)2 dimer. The local modes of a single OT4 fragment have been used
for the determination of the vibronic couplings while keeping the other fragment
frozen. (a) Full normal mode vibronic couplings and corresponding spectral den-
sity obtained by convolution with a Lorentzian (∆ = 0.1∆ω). (b) Vibronic couplings
above a threshold value of |cXT | = 0.005 eV and corresponding spectral density.
By imposing this threshold, the full number of modes for each OT4 fragment
is reduced from 84 to 39. The reorganization energy changes only marginally
by 3%.
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From Table I (see Sec. II), one can see that the difference in
on-site energies between the bright XT and CTX states is 0.41 eV.
The diabatic coupling κ1 is found to correspond to nearly half of this
energy splitting, and κ2 is non-negligible as well; both will therefore
likely give rise to significant mixing between the XT and CTX man-
ifolds. The excitonic coupling j is of the order of 0.1 eV as in our
previous analyses48 and has a positive sign, which is consistent with
an H-type aggregation.

B. Vibronic couplings and spectral densities
In view of the good performance of the ωB97XD DFT func-

tional, vibronic coupling constants were calculated at the TDDFT
level. To obtain fragment-specific couplings, the excited-state gra-
dients of the (OT4)2 dimer at the FC geometry were projected
onto the normal modes of one of the fragments. The remain-
ing modes of the other fragment were kept frozen. In the (OT4)2
dimer, the excited-state characteristics at the FC geometry corre-
sponds approximately to the diabatic states of the Hamiltonian
Eqs. (2)–(7) such that the diabatic vibronic couplings are identified
with the adiabatic excited-state gradients in the present study. As
shown in Fig. S5 of the supplementary material, the vibronic cou-
plings computed for the OT4 model system are representative of
P3HT oligomers.

Figure 3(a) shows the cXT vibronic coupling constants for a sin-
gle OT4 fragment, obtained from the excited-state gradient of the
bright S2 state of the (OT4)2 dimer which exhibits XT characteris-
tics. In the same panel, the associated spectral density obtained by
convolution with a Lorentzian according to Eq. (35) is shown. Like-
wise, the cCTX vibronic couplings were computed for the S3 state of
the (OT4)2 dimer which exhibits charge-transfer excitonic charac-
teristics. It turns out that the relevant vibronic couplings show a
similar frequency dependence but different amplitudes for the XT vs

FIG. 4. Visualization of the two most strongly coupled normal modes. Mode I corre-
sponds to the 76th normal mode of one OT4 fragment, while mode II corresponds
to the 78th normal mode. Frequencies are indicated in cm−1.

CTX states (see Figs. S6–S8 of the supplementary material). Notably,
the vibronic couplings take larger values for the CTX states, show-
ing that reorganization effects are more pronounced in the CTX
states.

The monomer XT spectral density shown in Fig. 3(a) exhibits
vibronic couplings in the full normal-mode space spanned by
84 modes. Among these, two modes around ∼1550–1600 cm−1 are
dominant which are collective modes involving symmetric (mode I)
and antisymmetric (mode II) stretching of the aromatic C==C bonds,
combined with C−−C displacements of the conjugated backbone56

(see Fig. 4). These two modes exhibit large vibronic coupling val-
ues since they entail deformations within the π electronic structure
and therefore influence the optical properties of the system. Fur-
thermore, a large number of small vibronic couplings are present,
covering the full frequency range. The influence of these vibronic
couplings on the reorganization energy λXT = ∑n c

2
XT,n/(2ωn) is

small such that we introduced a threshold value of cXT,n = 0.005 eV,
below which the couplings were neglected. Figure 3(b) shows the
reduced set of vibronic couplings—now for 39 modes—after impos-
ing this threshold value. The difference in reorganization energy λXT
between the full normal mode representation and the reduced set of

FIG. 5. Graphical representation of effective modes in the basis of the original
local NMs. Within each local NM subspace, modes are shown in order of ascend-
ing frequency. (a) First layer effective mode (FLEM) space of dimension Ns = 13
in the band-diagonal representation. The absolute values of the transformation
matrix elements T ij , i = 1, . . ., Ns, j = 1, . . ., Nph, according to Eq. (23) are
shown. (b) Truncated effective mode space for k = 6 (truncation at the sixth order),
leading to K = kNs = 78 modes; the rediagonalized representation is shown, i.e.,
global NMs of the truncated effective Hamiltonian. The graphical representation
shows absolute values of the transformation matrix elements T′ij , i = 1, . . ., kNs,
j = 1, . . ., Nph, where the transformation T ′ is a concatenation of Eq. (23) and the
additional transformations of Eqs. (29) and (30).
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normal modes is 3%. The same set of modes is retained for the CTX
states.

As detailed in the companion paper,47 the above approximation
permits us to reduce the overall system size such that ML-MCTDH
reference calculations can be conducted for the (OT4)5 pentamer
system for a model involving 13 electronic states and 195 modes.
This system size is therefore taken as a reference for the present
assessment of the effective-mode reduction as well.

C. Effective mode transformation and spectral
density approximants

The effective mode transformation as described in Sec. III is
now illustrated for the (OT4)5 pentamer species. To start with, Fig. 5
shows the FLEM subspace in the basis of local NMs [panel (a)]. In
a complementary fashion, the full set of effective modes is shown
in Fig. S10 of the supplementary material, illustrating that the first
few layers feature high-frequency and low-frequency modes in alter-
nation, as in related systems that we investigated.32–34,50 Following
the rediagonalization procedure described in Sec. III, the final set
of effective modes is obtained, which correspond to the normal
modes of the truncated effective-mode space. Figure 5(b) shows
this final set of effective modes, resulting from a truncation at the
order k = 6 such that the band-diagonal representation of Eq. (29)
spans K = kNs = 78 modes. The rediagonalized representation
provides an equivalent representation within the truncated space
and is employed for the SD reconstruction and quantum propaga-
tion.

As discussed above, five of the 13 FLEM modes are of local
characteristics by construction and subsume the XT vibronic cou-
plings, whereas the remaining eight effective modes relate to
the CTX vibronic couplings and require initial orthogonalization.
As a result, these latter modes are delocalized across the frag-
ments [see Fig. 5(a)]. In the complementary representation of

Fig. 5(b)—in the normal mode representation of the truncated
effective-mode space—all modes are delocalized across the frag-
ments and therefore appear as collective vibrations across the aggre-
gate. As discussed in Sec. III C, the normal-mode representation in
the truncated effective-mode space naturally yields a global NM pic-
ture. Each of these global NMs is seen to cover a narrow band of
frequencies.

Convergence of the effective mode chain is first analyzed for
the (OT4)2 dimer species. The kth order SD matrix of Eq. (35)
is constructed for four electronic states (two XT states and two
CTX states), and the convergence properties as a function of k
are illustrated in Fig. 6. For reference, the full SD in the fragment
normal-mode representation, with 39 modes, is shown in black.
The SDs resulting from a truncation at the orders k = 1, . . ., 4
with up to 16 effective modes (depicted in gray) differ significantly
from the frequency dependence and shape of the normal-mode
SD. By including two more layers of effective modes (i.e., k = 6,
shown in red), the spectral density becomes bimodal, but the inten-
sity ratio is not yet correct. Finally, for eight layers (i.e., k = 8,
shown in green), convergence is very good, and the SD exhibits the
correct intensity ratio between the two prominent high-frequency
peaks.

Since convergence at the k = 8 order was found to be good
in the case of the (OT4)2 system, we adopt the same level of
treatment for our target system, the (OT4)5 pentamer. As shown
in Fig. 7, the SD is again in excellent agreement with the refer-
ence normal-mode SD at this order, both for the diagonal and
off diagonal components. At this level, the number of modes has
been reduced from 195 to 104. The reduction to the k = 6 level
(78 modes), which is qualitatively correct even though amplitudes
tend to deviate visibly, is shown in Fig. S9 of the supplementary
material. The SD matrix of Fig. 7 illustrates that correlated fluc-
tuations are a prominent feature of the system; in fact, the off
diagonal SD contributions are of the same magnitude as the diagonal

FIG. 6. For the (OT4)2 dimer, the con-
vergence behavior of the J(k)XT,XT [panel

(a)], J(k)CTX,CTX [panel (b)], and J(k)XT,CTX
[panel (c)] component spectral densities
is shown for different truncation orders
k of the effective-mode hierarchy, as
compared with the corresponding orig-
inal spectral densities in the local NM
representation (shown in black). For the
dimer species, Ns = 4 such that the num-
ber of effective modes is given as K = 4k.
The effective mode spectral densities
comprising up to 16 effective modes are
drawn in gray, while those comprising 24
(k = 6) and 32 (k = 8) effective modes are
depicted in red and green, respectively.
Note the different scales for the SD com-
ponents; specifically, the diagonal CTX
SD takes a large value, reflecting large
reorganization effects in the CTX state.
All spectral densities have been con-
structed with a Lorentzian broadening of
∆ = 0.1∆ω.
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FIG. 7. For the (OT4)5 pentamer, selected elements (absolute values) of the spectral density matrix J(k =8), i.e., for K = 104 effective modes, are shown (red traces), as
compared with the reference spectral density in the original local NM representation (black traces). It is seen that all diagonal and off diagonal spectral density components
exhibit a similar frequency dependence, mainly characterized by the bimodal feature that is already prominent in the monomer spectral density. Note that XT-XT cross
correlations vanish by construction (and are almost zero at the k = 8 level of treatment). The convergence at the k = 8 order is very good and of similar quality as observed
in the dimer case of the preceding figure.

contributions. Note, though, that the XT-XT cross correlations van-
ish by construction due to the local nature of the electronic operators
and the site-local modes.

From a dynamical perspective, we anticipate that vibronic
XT-CTX correlations are going to drive a correlated multistate
wavepacket dynamics. As described in the companion paper47 on
quantum dynamical simulations using the present vibronic Hamil-
tonian, a correlated, coherent transfer dynamics between the XT and
CTX manifolds is indeed observed. A striking feature is the regu-
lar modulation of all electronic state populations with a frequency
of ∼22 fs which corresponds to the dominant SD modes. Hence,
correlated vibronic effects are directly observable in the multistate
dynamics.

As also detailed in the companion paper,47 the convergence of
the spectral densities is used as a guideline for the number of effective
modes that should be included in the quantum dynamical treatment.
Indeed, ML-MCTDH simulations at the k = 6 order (13 electronic
states and 78 modes) can be shown to reproduce the full dynamics
(13 states and 195 modes) quite accurately, and the k = 8 order brings
further improvement.

V. CONCLUSION
This paper demonstrates the construction and application of

reduced effective-mode schemes for the description of vibronic
coupling in donor-acceptor aggregates where fragment vibrations
couple both to local excitations (Frenkel states) and charge-
transfer excitonic states. We demonstrated the method for a homo-
aggregate of stacked oligothiophene species, representative of sim-
ilar instances of mixed Frenkel and charge-transfer excitons, e.g.,
in pentacene57 and perylenes.58 Furthermore, the generalization
to hetero-aggregates is straightforward, i.e., different on-site ener-
gies and monomer-specific spectral densities are easily accom-
modated within the effective-mode construction scheme. Hence,
the present procedure could be straightforwardly transposed to
a variant of the (OT4)n Hamiltonian containing static disorder
effects or else to related cases like charge transfer excitons in
DNA.3,4

Following our earlier treatments, notably involving conical
intersection topologies in polyatomic systems,27,42 the effective-
mode approach is employed in the framework of a linear vibronic
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coupling model.25 In the absence of large amplitude motions, this
approximation is suitable and offers the advantage of connecting
to model Hamiltonians and system-bath theory approaches where
spectral densities appear as the key quantities. Furthermore, the
model in its present form could be combined with the explicit inclu-
sion of selected low-frequency anharmonic modes, e.g., intermolec-
ular modes and torsional degrees of freedom.

In practice, the construction of the LVC model Hamilto-
nian for the (OT4)n systems under study involves the determi-
nation of electronic energies and diabatic couplings, which were
here calculated by a suitable quasidiabatization scheme.49 Intrastate
vibronic couplings were determined by projecting the excited-
state gradients onto the normal-mode space of individual frag-
ments.

As explained above, the effective-mode approach is based upon
the truncation of the LVC Hamiltonian when transformed to a
chain representation. In the present procedure, we perform an addi-
tional transformation which generates the normal modes of the
truncated chain Hamiltonian, whose coupling to the electronic sub-
space is again of LVC type. These modes correspond to global,
delocalized normal modes of the entire system. This procedure
permits the reconstruction of a series of spectral density approxi-
mants without having recourse to the continued-fraction represen-
tation of the SDs that results from the chain representation of the
Hamiltonian.36–40,42 Furthermore, the use of a reduced-dimensional
Hamiltonian in the LVC form is straightforward in the context of
quantum dynamical propagation, where the bilinear coordinate and
momentum couplings of the chain representation prove numerically
demanding.

In the present discussion, the level of truncation of the effec-
tive mode hierarchy was determined by the reconstruction of the
spectral density. This generally requires higher truncation orders
than reproducing, e.g., the first few moments of linear absorption
spectra, which is guaranteed by the FLEM space.27–30 In the present
treatment, the FLEMs need to be complemented by additional lay-
ers comprising lower-frequency modes to reproduce the full SD in a
qualitatively correct fashion. This coincides with the observation—
similar to our previous studies of simpler systems32–34—that low-
frequency modes play an essential role in the dynamics, even
though high-frequency modes dominate the vibronic coupling. In
the present case, this observation underscores that a dynamical
approximation which entirely relies on the most prominent high-
frequency modes of the original spectral density tends to be inac-
curate beyond the shortest time scale, as further detailed in our
companion paper.47

Effective mode schemes, which are closely related to time-
dependent density matrix renormalization group (DMRG)
approaches,59 provide a flexible strategy to describe vibronic cou-
pling in molecular aggregates. The case of correlated fluctuations of
electronic subsystem variables induced by the vibrational modes is of
particular interest in this context, and the effective-mode treatment
is naturally suited to capture these correlations. Given that vibronic
interactions are a ubiquitous phenomenon in molecular aggregates
where dense manifolds of electronic states interact and electronic
delocalization prevails, correlated vibronic effects are expected to
play an important role and contribute to the coherent, collective
nature of the dynamics.

SUPPLEMENTARY MATERIAL

See supplementary material for various additional electronic
structure results and details of the effective-mode analysis.
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