THE CATEGORY OF COLOMBEAU ALGEBRAS

LORENZO LUPERI BAGLINI AND PAOLO GIORDANO

ABSTRACT. Since the beginning of Colombeau’s the theory of algebras of gen-
eralized functions, the role of its characteristic polynomial growth versus a
more general condition has been explored. Recently, we introduced the notion
of asymptotic gauge (AG), and we used it to study Colombeau AG-algebras.
This construction concurrently generalizes many different algebras used in
Colombeau’s theory and, at the same time, allows for more general growth
scales. In this paper, we study the categorical properties of Colombeau AG-
algebras with respect to the choice of the AG. The main aim of the paper is
to study suitable functors to relate differential equations framed in algebras
having different growth scales.

1. INTRODUCTION

Colombeau algebras are algebras of generalized functions introduced by J.F. Co-
lombeau in the early 1980’s in order to rigorously define multiplication and other
nonlinear operations on Schwartz distributions, see [1, 2, 3, 5]. Containing the
space of Schwartz distributions as a linear subspace and the algebra of smooth
functions as a subalgebra, they permit to bypass the Schwartz impossibility result.
This impossibility result, see [20], states that whenever the space D’(€2) of (real
valued) distributions on the open set 2 € R™ is embedded into an associative dif-
ferential algebra G(Q2), the latter cannot at the same time extend the distributional
derivatives and the pointwise product of continuous functions. In particular, if 7R"™
is the usual Euclidean topology on R", Colombeau’s construction resulted in the
following remarkable properties:

(a) Qe (TR™)P? — G(Q) is a presheaf of commutative and associative differential
algebras with respect to suitable derivations 03 : G(£2) — G(€2) for all o € N™.

(b) The set of generalized scalars R = {f € G(R) | ogf = 0 Va} is a non-
Archimedean ring (with zero divisors).

(¢) The embedding ¢ : D' —> G is a natural transformation between sheaves of
real vector spaces.

(d) The derivations are compatible, i.e. if D : D'(Q) — D’(Q) is the usual
a-derivation of distributions, then 08 (1q(T)) = tq (DG(T)) for all T € D' (Q).

(e) Let Sq : C*(Q) — D'(Q), (Sa(f),e) := §, fe, be the usual Schwartz em-
bedding of smooth functions. Then i [So(C*(Q)] is a differential subring
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of G(2) and is naturally isomorphic to C*(€2). This natural identification

C*(Q) = 1q [Sa(C*(Q)] € G() can also be understood as a suitable univer-

sal property.
Since Colombeau’s original construction, many other differential algebras satisfying
properties (a) - (e) have been constructed by Colombeau himself and other authors,
see e.g. [10, 11, 3, 5]. We also recall that every algebra of Colombeau’s type has
a non-standard counterpart (see e.g. [17, 24, 23]). In particular, the non-standard
algebra of asymptotic functions G, besides satisfing properties (a) - (e), presents
better formal properties: its definition involves a reduced number of quantifiers, the
ring R is a real closed Cantor complete field, the field of complex generalized scalars
C= f&(r 1) is algebraically closed, and a Hahn-Banach extension principle holds,

see e.g. [23]. For the analogue of R in non-standard analysis (NSA), see [19, 16, 23].
The relevance of properties (a) - (e) can also be highlighted by mentioning that
they are included in the axiomatic approach of [21, 22].

Due to its relative simplicity, the most studied Colombeau-like algebra is surely
the special one, which is the quotient algebra G*(Q) := Ex/(Q)/N*(£), where'

En(Q) := {(us) e C(Q) O | VK € QVa e N*IN € N : sup |0%u.(z)| = O(e™N)}
zeK

N(Q) := {(ue) € CP() O | VK € QYo e N*Vm e N : sup [0%u.(z)| = O(e™)}.
zeK
(1.1)

Although Colombeau algebras were essentially introduced to find solutions of
nonlinear differential equations which are not solvable in classical spaces of distri-
butions, it is well known that trivial R-linear ODESs remain not solvable also in
these algebras, like e.g.

-

(see also [5, 12]). A step towards the analysis of these problems is the generalization

of the role of the infinite nets (¢=") € R(®!, n e N, appearing in the definition of

Colombeau algebras, see (1.1). An understanding of the role of the nets (¢™™) €

R has already been realized through the notions of asymptotic scales, (C, &, P)-

algebras, (M, NN, Vp)-algebras, exponent weights and asymptotic gauges, see [12,
, 9, 8,7, 14, 15] and references therein.

In particular, if one considers the usual sheaf of smooth functions C*(—), Co-
lombeau AG-algebras are among the simplest and most general approaches (only
[14] is actually more general). In fact, Colombeau AG-algebras include in the same
abstract framework all known Colombeau-like algebras, like the special one G*, the
full one G®, [5], the NSA based algebra of asymptotic functions G, [23], the diffeo-
morphism invariant algebras G4, G2 and G, [5], the Egorov algebra, [10, 11, 27],
and the algebra of non-standard smooth functions *C*(Q2), |18, 4]; see [13, 12] and
below. The simplicity of the approach with AGs lies, for all the algebras mentioned
above, in the use of the simple logical structure of quantifiers that characterizes the
special algebra G*. In order to establish a conceptual knowledge of this multiplic-
ity of differential algebras, the abstract framework of Colombeau AG-algebras is

In the naturals N = {0,1,2,3...} we include zero.
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therefore a step towards the understanding of the core properties of Colombeau’s
construction.

Considering different scales instead of the polynomial one Bpq := {(¢™") | n € N}
occurring in (1.1), we can e.g. take

Bexp 1= {(e”/a) |ne N} or Bexp2 1= {(een/€> | ne N}

to obtain two different Colombeau AG-algebras G*(€2, Bexp) and G*(€2, Bexp2). In
both these algebras, we can solve the ODE (1.2), which is not solvable in the
classical special algebra G*(Q) = G*(€, Byo1). But these solutions z1 € G*(£2, Bexp)
and 9 € G*(§, Bexp2) of (1.2) belong to different quotient algebras, and it is hence
natural to investigate how to relate them. The best way to solve this kind of
problems is to study the categorical properties of Colombeau AG-algebras G*((2, B)
with respect to a change of the AG B. In fact, the right concept of morphism of AGs
permits to connect G*(§2, Bexp) and G*(£2, Bexp2) using the functorial properties of
G*(2,—). We shall frequently use (1.2) as a paradigmatic motivation, even if the
solution of this trivial ODE is not one of the aim of the present paper. For the
solution and uniqueness of all R-linear ODE in a minimal Colombeau AG-algebra,
see [12].

In the context of AGs, it is therefore natural to set the following questions as main
motivations of the present paper:

e Is the construction of the Colombeau algebra G(€2, B) functorial with respect to
the AG B? Is this construction functorial with respect to the open set 7

e When can we consider two AGs as isomorphic? For instance, we will show that
the AG of polynomial growth By, is isomorphic to the AG of exponential growth
Bexp- This isomorphism holds in spite of the fact that using the latter we can
solve ODE which are not solvable with the former, see Sec. 7.

e How to relate the solutions of differential equations framed in a given Colombeau
AG-algebra to those framed into another one?

e Colombeau theory can be more clearly summarized by saying that it permits to
define a differential algebra together with an embedding of Schwartz’s distribu-
tions. This embedding can be intrinsic, or diffeomorphism invariant, or it can
be chosen in order to have properties like H(0) = %, where H is the Heaviside’s
step function. Can we define a general category of Colombeau algebras having as
objects triples (G, 0d,t) made of an algebra G, a family of derivations ¢ and an
embedding of distributions 7 Can we see G° as a suitable functor with values in
this category? What is the domain of this functor?

e Similarly to the axiomatic approach of [21, 22], in defining this category of
Colombeau algebras, we need to focus on peculiar properties of Colombeau-like
algebras. This approach represents another way to establish a certain order of
importance in the properties satisfied by all algebras of Colombeau type.

In the present work, we answer these questions using basic category theory and the
abstract language of AGs as a unifying framework. In this way, we are going to solve
these problems for each one of the aforementioned Colombeau-like algebras. The
paper assumes a certain knowledge of Colombeau theory, even if it is completely
self-contained concerning concepts related to AGs.
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2. SETS OF INDICES

2.1. Basic definitions. In [13], the general notion of sets of indices has been
introduced. For reader’s convenience, in this section we recall the notations and
notions from [13] that we will use in the present work. For all the proofs, we refer
to [13].

Definition 1. We say that I = (I, <,7) is a set of indices if the following conditions
hold:

(i) (I,<) is a pre-ordered set, i.e., I is a non empty set with a reflexive and
transitive relation < ;

(ii) Z is a set of subsets of I such that (J ¢ Z and I € Z;

(ili) VA,BeZIiCeI: C< AnB.

Forallee I, set (J,e] :={cel|e<e}. Asusual, wesayec <eife <eande #e.

Using these notations, we state the last condition in the definition of set of indices:

(iv) Ife<aeAeT,theset Ac. := (J,e] n Ais downward directed by < , i.e.,
it is non empty and Vb,ce Ac.dde A<, : d < b, d < c.

The following are examples of sets of indices.

Example 2.

(i) Let I® := (0,1] € R, let < be the usual order relation on R, and let Z° :=
{(0,e0] | €0 € I}. Following [13], we denote by I* := (I®,<,Z°) this set of
indices.

(i) If p € D(R"), r € Rop and = € R™, we use the symbol r ® ¢ to denote the
function z € R" — L. ¢ (Z) € R, see [13]. With the usual notations of [3],
we define I¢ := Ay, I° := {A, | ¢e N}, and for €, e € I°, we set ¢ < e iff
there exists r € R such that 7 < 1 and e = r ®e. Then I° := (I®,<,Z°) is
a set of indices used in this framework to unify and simplify the full algebra
G® (see [13, Sec. 3]).

(iii) Let I¥ := N with the inverse < of the usual order notion on N (namely,
m < niff m > n), and let 7E be the Fréchet filter of cofinite sets. The
set of indices I¥ := (I¥, <, Z%) is used by [10, 11] to introduce the so-called
Egorov algebra. The analogue in NSA is I* := (N, <,Z%), where Z* is a free
ultrafilter that contains Z¥. The set of indices I* is used to define the algebra
of non-standard smooth functions *C*(Q), see [15].

(iv) For every ¢ € Ag, let us call order of ¢ the natural number
o(p) :=min{neN|¢pe A\ A1}
and, for every ¢, 1 € Ay, set
o <Y iff o(p) < o(yp)orp < Yinl®.

We have that I¢ = (A, <, {A, | g € N}) is a downward directed set of indices
that can be used to try a simplification of the full algebra G¢. See Sec. 3.1
for the nicer properties that downward directed sets have with respect to the
notions we are going to introduce.

Henceforward, functions of the type f : I — R are called nets, and for their
evaluation we both use the notations f. or f(e), the latter in case the subscript
notation were too cumbersome. When the domain I is clear, we use also the
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notation f = (f:) for the whole net. Analogous notations will be used for nets of
smooth functions u = (u.) € C*(Q)L.

In each set of indices, we can define two notions of big-O for nets of real numbers.
These two big-Os share the same (usual) properties of the classical one as preorders
and concerning algebraic operations (see [13, Thm. 2.8, Thm. 2.14]). Since each
set of the form A¢. = (J,e] n A is downward directed, the first big-O is the usual
one:

Definition 3. Let I = (I,<,Z) be a set of indices. Let a € A € T and let (x.),
(ye) € RY be two nets of real numbers defined in I. We write
e = O0g,a(ye) as el (2.1)
if
JH eRogJep € Aca Ve € Agey & x| < H - Jyel. (2.2)
The second notion of big-O is the following:

Definition 4. Let I = (I, < Z) be a set of indices. Let J < Z be a non empty
subset of Z such that

VA,Be JICeJ: C< An B. (2.3)
Finally, let (x.), (y.) € R? be nets of real numbers. Then we say
e =0g(y:) ase€el
if
JAe JVae A: . = Oqa(ye).
We simply write . = O(y.) (as € € I) when J = Z, i.e. to denote x. = Oz(y.).

For example, in the case of the set of indices I° used for the full algebra, we have
ze = O(y:) as e e I° if and only if 3g e NVp e A, : z(c©p) = O[y(c © ¢)] as
e — 071, where the latter big-O is the classical one, see [13, Thm. 3.2]. We can hence
recognise an important part of the usual definition of moderate and negligible nets
for the full algebra G°. The abstract approach we use in this paper can be easily
understood by interpreting I in the simplest case I° of the special algebra and in
the case I° of the full algebra. In the former, any formula of the form 3JA € ZVae A
becomes Jeg € (0, 1] Ve € (0,&0]. In the latter it becomes g € NVyp € A,.

In every set of indices we can formalize the notion of for e sufficiently small as
follows.

Definition 5. Let I = (I,<,Z) be a set of indices. Let a € A € Z and P(—) be a
property, then we say
Viee Ayt Ple),
and we read it for e sufficiently small in A<, the property P(e) holds, if
Jee A Ve € Ace : P(e). (2.4)

Note that, by condition (iv) of Def. 1, it follows that A<. # &, so that (2.4) is
equivalent to
de<aVee Ac.: Ple).
Moreover, we say that
Vie: P(e),
and we read it for ¢ sufficiently small in 1 the property P(e) holds, if 3A € TVa €
AVliee Ac,: Ple).
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Using this notion, we can define an order relation for nets.

Definition 6. Let I = (I, <,Z) be a set of indices, and i, j : I —> R be nets. Then
we say 1 >1 j if

vie Te > Je.
Finally, we recall the notion of limit of a net of real numbers:

Definition 7. Let I = (I,<,Z) be a set of indices, f : I — R a map, and
le Ry {+w,—00}. Then we say that I is the limit of [ in I if

JAeZVaec A: lzliglf|A(€), (2.5)

where the limit (2.5) is taken in the downward directed set (&, a] = I<q.

Let us observe that if | = lim.<, f|a(¢) and B € A, B€ Z, thenl = lim. <, f|p(¢);
moreover, there exists at most one [ verifying (2.5).

3. THE CATEGORY IND

We start by defining the notion of morphism between two sets of indices. This
is also a natural step to define the concept of morphism of asymptotic gauges. A
natural property to expect from a morphism f : [y — 5 between sets of indices
I, I, is the preservation of the notion of “eventually” for properties P, i.e. that
Viie; P(eyr) implies Vi2e5 P(f(e2)). Let us note that we start from a property P(ey),
for e1 € I;, and we want to arrive at a property P(f(g2)), for e € I.

Definition 8. Let I = (Ij, <g,Zy) be sets of indices for k =1, 2. Let a € A €

71, be B eZ,. Then we say that f: A<, — Bgp is infinitesimal if

(1) f . IQ —_— Il;

(11) Va e Aga VHQEQ € ng : f(EQ) € Aga.

Moreover, we say that f:1; — I, is a morphism of sets of indices if
VAeZ;Vae AABeIyVbe B: f: A¢c, — Bgy is infinitesimal.

Therefore, a morphism f : I; — I is a map in the opposite direction f : I, — I
between the underlying sets. Only in this way we have that the map f preserves
the asymptotic relations that hold in I, see Cor. 13 for a list of examples.

Example 9.

(i)  For every set of indices I = (I,<,Z) if 1; : I —> I is the identity function
then 1y : T — I is a morphism.

(ii) Let f:(0,1] — (0,1] be a map, then f :I* — I* is a morphism if and only
it Ve € (0,1]36 € (0,1] = f((0,6]) < (0,¢], i.e. if and only if lim_ ,q+ f(e) = 0.

(iii) For the set of indices I° of the full algebra, we recall that (Ag)_, = (&, ¢]
and ¢ := min {diam(suppy),1}. If f : I®* — I°® is a map, then we have
that f : (&, 9] — (F,4] is infinitesimal if and only if Ve € (0,1]36 €
(0,11 : f{r©yY|re(0,d8]}) € {rO¢|re(0,e]}. Therefore, this implies
that lim,_,g+ f(e ®¢) = 0. If we denote by @ the unique r € (0,1]

such that f(e ®¢¥) = r ® ¢ (in case it exists), then f : (J, o] — (F, 9] is

infinitesimal if and only if lim,_,q+ f=0v) _ g, Moreover, f : 1®* — [®is a

©
morphism if and only if Vm € NV € A, Ige NVip e A, : lim, o LEOD

0. This and the previous example justify our use of the name infinitesimal in
Def. 8.
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(iv) Let ¢ € Ap be fixed, let L, := ((, ¢], <, {(J, ¢]}), where the order relation
on I, is the restriction of the order relation on I°. If f : (0,1] — (&, ¢] is
the function f(r) := r ® ¢ for every r € (0, 1] then we have that f: I, — I°
is a morphism. Conversely, if g : (&, ] — (0, 1] maps every ¢ € (J, ¢] to
the unique r € (0, 1] such that ¢ = r ®© ¢, i.e. g(¢p) = %, then g : I — I, is
a morphism. We have that f = g~

(v) Let f: N — N be a map, then f : I¥ — IF is a morphism if and only if
lim, o f(n) = 400. Analogously, f : I* — I* is a morphism if and only
if there exists an ultrafilter set B € Z* such that limnq}rgoo f(n) = +oo.

ne

(vi) Let us denote by N the set of indices (N=, <,Z,) where < is the inverse
of the usual order notion on N (namely, m < n iff m > n) and, for every
natural number n, Z, ;== {m € N | m < n}. If f : Nog — (0,1] is the
function that maps n > 0 to %, we have that f : I¥ — N is a morphism.
Conversely, if g : (0,1] — N is the function that maps ¢ to the floor [%J
then g : N — T° is a morphism. We have go f = 1y_,, but there does not
exist any isomorphism between these two sets of indices N and I® because
they have different cardinalities.

(vii) For every n € N let us fix ¢, € A,\Ap+1. Let f: N — A be the func-
tion that maps n to ¢,. Then we have that f : I — Nis a morphism.
Conversely, if 0 : Ag — N is the function that maps ¢ to o(¢) (see (iv) in
Example 2) then 0 : N — Ie is a morphism.

Lemma 10. Let I, = (Ij, <y, Zy) be sets of indices for k = 1,2, 3. Letae A€
Th,beBeZy andce CeZs. Thenif f: A<, — Bgp and g : Bgpy —> Cg. are
infinitesimals, also the composition fog: A<y — C<. 1 infinitesimal.

Proof. By definition, for every o € A¢, there exists do < b such that f(e3) € A<q
for every €5 € B such that es < d5 < b. But g : B¢y, —> C«, infinitesimal means

VB e By Ve € Cc..: g(e3) € Bep.

We apply this property with 5 = o to get g(es3) € Bgs, for every e5 € Cg.
sufficiently small, let us say for each e3 < d3 < c¢. Therefore f(g(e3)) € A<n for
every €3 € C'<. such that €3 < d3. O

The following results motivate our definition of morphism of sets of indices.

Lemma 11. In the assumptions of Def. 8, let f : A<, —> Bxp be infinitesimal,
and let P(e1) be a given property of e, € I1. If P(e1) holds Ve, € Ac, then
P(f(e2)) holds V'2¢5 € Bgy,.

Proof. Let e; € A<, be such that P(e1) holds for all £; € A,,. Since f: A¢c, —
By, is infinitesimal, there exists eo € Bgp be such that f(eq) € A<, for all e €
B.,. Therefore P(f(e2)) holds for all €5 € B, . O

Theorem 12. Let I}, = (I, <p,Zy) be sets of indices for k =1,2. Let f : 1) — I
be a morphism of sets of indices and let P(e1) be a given property of e1 € I. If
V]I1€1 7)(61) then VH2€2 P(f(&g))

Proof. Let A € T, be such that Va € AVhe; € A, P(e1) holds. Since J ¢ 7y,
there exists a € A. But f : Iy — Iy is a morphism, so there exists B € Zy such
that f: A<, — By is infinitesimal for all b € B. By Lemma 11, we deduce that
V25 € B¢y P(f(e2)), which is our conclusion. O
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Three simple consequences of Theorem 12 are presented in the following corollary.

Corollary 13. Let Iy = (I, <k, Zy) be sets of indices for k =1,2. If f: I; — I,
is a morphism of sets of indices, then the following properties hold:

(i) Ifi>y jtheniof >y, jof;

(i) Ifxe, = O(ye,) as €1 € Iy, then xyc,) = O(ys(c,)) as €2 € Iy;

(iii) For every net g : Iy — R 4f I = limy, g then [ = limg, go f.

Proof. Property (i) follows directly from Thm. 12 because i >j, j means Y'e :
ie > je. To prove (ii), let A € Z; be such that z., = O44(ye,) for all a € A.
Therefore, there exists H € R.q such that YVie; € A<, |zo,| < H - |y, |- But
A # &, so we can pick a € A, and f : I; — I yields the existence of B € 7,
such that f : A<, — Bgp is infinitesimal for all b € B. By Lemma 11 we get
Vi2ey € Bg ‘ff(m)’ < H- ‘i‘/f(eZ)}: from which the conclusion follows. Using the
same ideas, we can prove (iii). O

Theorem 14. The class of all sets of indices together with their morphisms forms
a category Ind.

Proof. The only non-trivial property to prove concerns composition, namely that
for every pair of arrows I; BN Iy, I, g, I3, we have that Iy Jog, I3 is a morphism
of set of indices. By our hypotheses we know that:
VAeZyVae AABe I, Vbe B: f: Acy, — Bgyp is infinitesimal; (3.1)
VBeZyVbe BAC € I3Vee C : g: B¢y —> Cg. is infinitesimal. (3.2)
For a € A€ Z;, from (3.1) we get a non empty B € Z,. Take any element b € B, so
that (3.2) yields the existence of C € Z3. For ¢ € C, both (3.1) and (3.2) give that

f i1 A<a — Bgp and g : B¢y, —> Cx, are infinitesimal, and the conclusion follows
from Lemma 10. (]

3.1. Downward directed and segmented sets of indices. In this section, we
study suitable classes of sets of indices where the notion of morphism of the category
Ind simplifies.

Definition 15. Let I = (I, <,7) be a set of indices, then we say that

(i) Tis segmented if VAe Z3a: (J,a] < A4;
(ii) Tis downward directed if (I,<) is downward directed, i.e. for every a, b € I
there exists c € I such that ¢ < a, ¢ < b.

Moreover, if I is downward directed, we call canonical set of indices generated by
I, and we denote it by I, the set of indices I = (I, <, Sr), where

Sr:={(J,a]|ael}u{l}.
Since (I, <) is downward directed, it is immediate to prove that I is a set of indices.
Example 16.

(i)  The sets of indices I* and I* are both segmented and downward directed.

(ii) IfI=T1°then T =1 If I = I® then I # I, but we will see in Thm. 18 that
they are isomorphic in the category Ind.

(iii) If I =1I° then then I # L.

As mentioned above, the notion of morphism is simplified when we work with
this type of sets of indices.
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Theorem 17. Let I, be sets of indices and let f : Iy —> I; be a map. Let
us assume that I, is segmented and Iy is downward directed. Then the following
conditions are equivalent:

(i) f:1y — Iy is a morphism of sets of indices;

(i) VaeliIbely: f((,b]) € (F,al;

(ii) Yae 1Vbe ly: f:(I1)c, — (I2)g, is infinitesimal.

Proof. To prove that (i) entails (ii), let f : Iy — I be a morphism and let a € I;.
Setting A = I; in the definition of morphism, we get the existence of B € Z, such
that f: A<, — By is infinitesimal for each be B. Take any be B # (J. Setting
a = a in the definition of infinitesimal (Def. 8), we get the existence of be B < I>
such that f(eq2) € (I, a] for all e5 € (&, b], which is our conclusion.

To prove that (ii) entails (iii), let a € I1, b € Iy and let b € Iy be such that f(,b]
(&, a). Let o€ (F,a)] and let b e B_; be such that f(&,b] < (&, ). Since (I, <)

is downward directed, we can find 8 € I such that 8 < b, 8 < b. By construction,
F(,8] < (@,0] and (@, 8] € (&,b] = (I2) , - Therefore f : (I1) o —> (), is
infinitesimal.

To prove that (iii) entails (i), assume that a € A € Z;. Set B := I, and take any
b e B. By (iii) we obtain that f : (I1)., — (I2), is infinitesimal. Therefore,
for each o < a there exists § < b such that we have f(g2) < a for every g5 < f3.
small, let’s say for £ < 8 < b. But I is segmented, so there exists @’ such that
(J,d'] < A. Once again from (iii) we also have that f : (I1)., — (l2), is
infinitesimal. Hence for some 3 < b we have f(e2) < o for each g5 < B. Since
(Iz, <) is downward directed, we can find § € I = B such that 8 < B and B < B.
Therefore, for each g5 < 8 we have both f(e2) < o and f(e2) € (F,a’] < A. This
proves that f: A<, —> Bgp is infinitesimal, which completes the proof. O

Theorem 18. Every segmented downward directed set of indices I is isomorphic
to I in the category Ind.

Proof. 1t suffices to consider the identity 1; : ¢ € [ — i € I, which is a morphism
17 € Ind(I, I) n Ind(I,T) because of condition (ii) of Thm 17. O

Therefore, up to isomorphism, the only segmented downward directed set of indices
having (I, <) as underlying pre-ordered set is L.

4. AsymMPTOTIC GAUGE COLOMBEAU TYPE ALGEBRAS

4.1. Asymptotic Gauges. In [12], we introduced the notion of asymptotic gauge.
The idea was to use it as an asymptotic scale that generalizes the role of the
polynomial family (¢").¢(0,1],nen in classical constructions of Colombeau algebras.
We recall the notations and notions from [12] that we will use in the present work.
For all the proofs, we refer to [12].

Definition 19. Let I = (I,<,Z) be a set of indices. All big-Os in this definition
have to be meant as Oz in I (see Def. 4). We say that B is an asymptotic gauge on
I (briefly: AG on I) if

(i) BcZRI

(i) FieB: limpi=o0;

(iil) Vi,jeBIpeB: i-j=O0(p);

(iv) VieBVreR3ceB: r-i=0(0);
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(v) Vi,jeBiseB: s>10, [i|+|j] = O(s).
Let B be an AG on the set of indices T = (I,<,Z). The set of moderate nets
generated by B is

Ry (B):={zeR"|IbeB: 2. =O(b.)}.

Let us observe that Rps(B) is an AG, and that Ry (Rp(B)) = Ry (B). Every
asymptotic gauge formalizes a notion of “growth condition”. We can hence use an
asymptotic gauge B to define moderate nets. We can also use the reciprocals of
nets taken from another asymptotic gauge Z to define negligible nets. From this
point of view, it is natural to introduce the following:

Definition 20. Let Q € R" be an open set, let B, Z be AGs on the same set of
indices I = (I,<,Z). The set of B-moderate nets is

En(B,Q) :={ueC®(Q)! | VK €QVaeN"3Ibe B: sup|0%u.(x) = O(b.)}.
rzeK

The set of Z-negligible nets is
N(Z,9Q) :={ueC?Q) |VYK € QVaeN"Vze Z g : sup|d®u.(z)] = O(z-h)}.
zeK
(4.1)

In [12], we proved that if Ry (B) € Ry (Z) then the quotient Epy (B, Q)/N(Z,9Q)
is an algebra. When this happens, we will use the following;:

Definition 21. Let B, Z be AGs on the same set of indices I = (I, <,Z) such that
R (B) € Rp(Z). The Colombeau AG algebra generated by B and Z is the quotient

G(B,2):=Emu(B,Q)/N(Z,9Q).
Moreover, we set
(i)  (zc) ~z (yo) if and only if V2 € Zo¢ : 2. — y. = O(271), where (z.),
(ye) € Ras(B). R ~
(i) R(B,Z):=Rpy(B)/ ~z. We simply use the notation R(B) for R(5, B).
We will use the notation G(B, Z,€) to emphasize the dependence on the open set
Q.

Example. Both Egorov algebra G¥(f2) and the algebra of non-standard smooth
functions *C*(€)) are Colombeau AG algebras with B = Z = R". In fact, in both
cases (B, Q) = C*(Q)N because the AG B = RY is trivial. It is also easy to see
that in the former case (u,)neny € NE(RY, Q) if and only if for all K € Q, u,|x = 0
for all n € N sufficiently big. In the latter (uy,)nen € N*(RY, Q) if and only if for
all K € ) there exists an ultrafilter set A € Z* such that u,|x = 0 for all n € A.

Morphisms between sets of indices can be used to construct asymptotic gauges,
as the following theorem shows.

Theorem 22. Let B be an asymptotic gauge on the set of indices Iy and let f :
I; — 1y be a morphism. Then

Bof={bof|beB}

is an asymptotic gauge on .
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Proof. All the defining properties of an asymptotic gauge for B o f can be derived
from Cor. 13. For example, let us prove that Vi,j € Bo fis e Bo f : s >
0, |i| +|j] = O(s). Let i, je Bo f and let i = by o f, j = byo f. Let b3 € B be such
that |b1|+ |b2] = O(b3). Then by Cor. 13 we deduce that |byo f|+|bao f| = O(bszo f).
Setting s = b3 o f we therefore have that |i| + |j| = O(s). O

5. THE CATEGORIES AGy AND AG;

We want to prove that the Colombeau AG algebra construction of Def. 21 is
functorial in the pair (B, Z) of AGs. In proving this result, the following category
arises naturally:

Definition 23. We set

(i) (B,Z2)e€ Aaq if B, Z are AGs on some set of indices I and Ry, (B) € Ry, (2).

(ii) Let (B1, 21), (B2, Z2) € AGo be pairs of AGs on the sets of indices resp. Iy,
I,. We say that f € AGs ((B1, 21), (Bz, Z2)) is a morphism of pairs of AGs if
f € Ind(]h,l[g), RM(Bl o f) o RM(BQ) and RM(ZQ) < RM(Zl o f)

Theorem 24. AGy with set-theoretical composition and identity is a category.

Proof. Tt is sufficient to consider the composition. Let f € AGs ((B1, Z1), (B2, Z2))
and g € AGsy ((Bz, 23), (B3, Z3)). By definition, f € Ind(Iy,I;) and g € Ind (I, I3),
therefore f o g € Ind(Iy,I5) by Thm. 14. Moreover,

Ry (Bio(fog)) ={bofog|beBijc{bog|beBy}=DBrog,

since Ry (By o f) € Rp(Bz). But Baog € Ry (Bs 0 g) € Ry (Bs), from which the
first part of the conclusion follows. To prove the second part of the conclusion we
notice that, as Ry (23) € Ry (27 o f), we have that

Ry(2209) S Ru((Z10f)og) =Ru(Z10(foyg)),
and the thesis follows since Ry (Z3) € Ras (22 0 g) by hypothesis. O

The generalization with two AGs is a relatively new step in considering Colombeau
like algebras, and its main aim is to highlight what peculiar properties are used to
derive the fundamental properties (a) - (e), in particular the specific embedding
property (e). It is therefore natural to consider also the following

Definition 25. We say that B € Aq, if (B,B) € Aqs. We set f € Aay(By, Bs) if
f € Aca((By,B1), (B2, Bs)). We call such an f a morphism of AGs. In this case,
Def. 23 (ii) becomes Ry (B; o f) = Ry (Bo).

Of course AG; is embedded into AGs by means of B — (B, B) and of the identity
on arrows. By an innocuous abuse of language, we can hence say that AG; is a
subcategory of AGs.

Example 26.
(i) LetI =15 let By = {(e™) | n € N}, B, = {(¢7") | n € N}. Then f,
g :1—> T such that f(e) = £ and g() = 1/ induce morphisms By —> By

and By —% B;. Clearly fog = 1p, and go f = 1p,, therefore By, and By are
isomorphic.
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(i) LetI; =I5 I, = N (see Example 9 (vi)), let By = {(¢™™) | n e N}, By =
{(n™),, | m € N}. Then f :I; — I, such that f(n) = %H for every n e N

induces a morphism B L, B, and g : Iy — Iy such that g(¢) = [1] for
every ¢ € (0,1] induces a morphism By % By.

(iii) Let o : N — T° be the morphism given by the maps o that maps every
@ € Ay to the order o(yp) of . Let By = {(b™),, | m € N} where b, = L

n+1
for every n € N and let By = {(b}), | n € N}, where b, = for every

ol
p e Ag. Then By —% BB, is a morphism.

(iv) Set f(g) = e +¢e?-sin (L) for e € (0,1] and B* := {¢7* | a € R~o}. Then
e —e2 < f(e) < e + €2, and this implies f € AG;(B°,B°). Let us note that f
is not invertible in any neighbourhood of 0 so that it is not an isomorphism
of AGs.

In [12], we defined two asymptotic gauges B, B2 to be equivalent if and only
if Rps(B1) = Rps(B2). Within the present categorical framework, this definition is
motivated by the following result.

Theorem 27. Let B be an asymptotic gauge on 1. Then B is isomorphic to Ry (B).

Proof. 1t is sufficient to observe that, by definition, B L, Ry (B) is a morphism
and, since Ry (Ras(B)) = Ras(B), also Ry (B) -1, B is a morphism. O

In particular, it follows that for every two asymptotic gauges Bi, Bs defined
on the same set of indices I, we have that if 5; is equivalent to By then they are
isomorphic. Conversely, if f € Acy(B1,B2) is an isomorphism, then Ry (By) =
RM(Bl Of o f_l) = RM(BQ ¢} f_l) = RM(Bl), and hence RM(Bl) = RM(B2 o f_l).
Analogously, Ry (B2) = Ry (B o f). In particular, the identity 15 € AG1 (B, Ba) n
AGy(Bz, By) if and only if these AGs are equivalent. For example {(¢7%) | a € R>o}
and {(¢7™) | n € N} are equivalent. Nevertheless, it is not difficult to prove that not
all isomorphic AGs on the same set of indices are equivalent. To prove this result,
we need to recall (see [12, Def. 36]) that an AG B is called principal if there exists
a generator b € B such that Ry (AG(b)) = Ry (B), where AG(b) := {b™ | m € N}

Theorem 28. For every principal AGs By, By on I®, if Ry (B1) S Ry (B2) then
there exists a principal AG Bs such that Ry (B1) < Rar(Bs) < Rar(Bs).

Proof. Let By = AG(by) and By = AG(by). Without loss of generality we can
assume that by o, b2 > 1 for every ¢ € (0,1]. Moreover, as Ry (B1) & Rar(B2), we
have by = Ozs(b2). So, without loss of generality, we can also assume that by o < by ¢
for every € € (0,1]. Since Rps(B1) & Ryr(Bs), we have that by ¢ Rps(b1), namely
that

VneNVee (0,1]30 <e: n-bis5 <bas.

Now, we let bs € R(O!] be a net such that b1,e < b3 e < by, for € small, and VYn e N

b b1z, ifnisodd;
3,60 = e
bog, ifnis even,

. 1
an€{5<m1n{,5n_1 | n-bY . <bae
n ’ ’

where £; = 1 and
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for every n = 2. Since by . < bg . < by for ¢ small, we have that that Ry (B1) <
Rar(AG(bs)) < Rpr(Bz). Let us prove that the reverse inclusions do not hold. To
prove that, let us assume, by contradiction, that Rps(AG(bs)) < Rz (B1). In partic-
ular, there exists k € N such that b3 = O(b¥), namely there exists ¢ € (0,1], H € R~g
such that bz 5 < H - bf 5 for all § < e. Set

1
N := min{neN | n is even andn)max{[H],[J ,k}}
We have

N bV

_ k N
Ley <bszy =bszy <H- Uiz, <N-b

l1en>

which is absurd. To prove that Ry/(AG(bs3)) < Rps(Bz), we proceed in a similar
way. Let us assume, by contradiction, that Ry (Bs) < Ry (AG(b3)). Let k € N be
such that by = O(b5). Let ¢ € (0,1], H € R>q be such that bys < H - b§ 5 for all
0 <e. Set

N := min{neN | n is odd andn?max{[H],ﬁw ,k}}

We have
k N N
b27EN < H- b3,§1\7 < N- b3,§N =N- bl,EN < b27EN7

which is absurd. O

Corollary 29. For every principal AGs By,Bs on I®, if Ry (B1) < Ry (Bs) then
there exists an infinite sequence (A; | i € Z) of principal AGs on I® such that

Ry (B1) @ - S Rar(Ar) € Ryr(Ag) S Rar(Ar) & - < Ry (Ba).
Proof. This is an immediate consequence of Theorem 28. O

In particular, if we let Byol := {(¢™") | n. € N} and Bey, 1= {(e"/¥) | n € N}, by
Corollary 29 we have that there are infinitely many principal non equivalent AGs be-
tween Bpol and Bex,. However, as we will show in Section 7, Bpor := {(¢7") | n € N}
and Bexp := {(€"¢) | n € N} are isomorphic, and this shows that not all isomorphic
AGs are equivalent.

In [12], we proved that Ry (B) is the minimal (with respect to inclusion) asymp-
totically closed solid ring containing the AG B. Therefore, we deduce that, modulo
isomorphism, all the objects in a skeleton subcategory of AG; are asymptotically
closed solid rings.

In [12], we introduced the notion of “exponential of an AG”, which was crucial
to study linear ODE with generalized constant coefficients. We recall its definition.

Definition 30. Let B be an AG, and let p : R — Ry be a non decreasing
function such that

Jm () = 4003
VYbe Bice B: u(b:)? <1 pu(ce). (5.1)
We set, p1(B) := {(u(H - b)), | H € Rxo,b € B}. In particular,
eB = {eH'b | HeR.g,b€ B}
is called the exponential of B.

The following results will be needed to prove Thm. 35.
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Lemma 31. In the hypotheses of Def. 30, we have that u(B) is an AG.

Proof. Def. 19 (ii) and [12, Lemma 18] imply the existence of ¢ € B such that
limp¢ = +00. Therefore, our assumptions yield limey p(ic) = +00, which proves
Def. 19 (ii) for p(B). The asymptotic closure with respect to the sum of absolute
values follows from monotonicity of p and the inequality pu(H -ic) + pu(K - jo) <
2 pu(H-|ic| + K - |je|). The asymptotic closure with respect to product follows
from the inequality

P(H -ic) - (K - o) < p(H - Jic] + K - |e])

and from assumption (5.1). O

Lemma 32. Let [ = (I,<,7) be a set of indices, and let x, y, z € RI. Let
i R —> Rsg be a non decreasing function. Then x. = O [u(y:)] and y <y z imply
re =0 [M(Zs)]

Proof. From the assumptions we get

JAeIVae A: x. = Oqa[11(ye)];
dBeZVbe Blep <bVee Bgey @ Ye < Ze.

Def. 1 (iii) implies the existence of D € Z such that D € An B. For d € D, [13,
Thm. 2.8 (x)] yields z. = Ogp [u(y:)], and therefore, for suitable H € R and
g0 < d, e1 < d, we can write |z.| < H |u(ye)] = Hu(ye) for each € € D, and
Ye < ze for each € € D¢.,. Since (&, d] = I¢4 is directed, we can find & < d, &y,
e1. Therefore, for each € < & we have |z.| < Hu(y.) < Hpu(z:) because p is non
decreasing. This proves our conclusion. (]

Corollary 33. Let By, By be AGs on the same set of indices I, and let g : R — R
verify the assumptions of Def. 30. Then Ry, (B1) € Ras(B2) implies Ry (u(B1)) <
Rar(p(Bz)).

Proof. Let (y.) = (u(H -b.)) € u(By), with &' € By, and let " € By be such that
b <pb”. Then we have that (y.) <g (u(H - b”)) € 1 (B2) since p is monotone. [

Definition 34. Let AG¢ be the subcategory of AG; having the same objects of
Ady, and arrows such that f € Ac<(By,Bs) if f € IND(I1,15) and Ry (By o f) =
Ry (B2). Let p verifies the assumptions of Def. 30, and let E,, : AGc — AGg be
defined on objects and maps of AG¢ as follows:

(i) E(B):= u(B) for each B e Acg;

(ii) E(f):= f for each f e Aa<(Bi, B2).

Theorem 35. AG¢ is a subcategory of AGy. If u verifies the assumptions of
Def. 30, then E,, : AGc — AGg is a functor.

Proof. To prove the first part, assume that Ry; (By o f) = Rys (Bz) and Ry (Bz o g) =
Ras (Bs). Thenif byof <y, be and byog <y, bs, for b; € B;, then byo fog <y, baog <,
bs by Cor. 13. If b3 <y, be o g and by <g, by o f then b3 <p, baog <, byo fog
once again by Cor. 13. This implies that Ry (Bio(fog)) = R (Bs), hence
foge Ac<(By,B;3). This and Cor. 33 show that Acg is a category. By Cor. 33,
we also have that AG¢ is a subcategory of AG;. To show the second part, since
E, is the identity on arrows, it suffices to observe that 5 and p(5) have the same
set of indices for every AG B, and that u(B1) o f = u(By o f). Thus it follows by
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Cor. 33 that E,(B1) = u(B1) 7, u(B2) = E,(B2) is an arrow in AGg for every
arrow B J, By in AGg. [l

6. FUNCTORIALITY OF COLOMBEAU AG-ALGEBRAS

In this section, we want to prove that the map (B,Z,Q) — G(B,2,Q) is a
functor. Clearly, (B, Z) € Ads, so we need to introduce a category having open
sets like () as objects:

Definition 36. We denote by OR® the category having as objects {Q € R" | n €
N, Qopen} and as morphisms OR® (U, V) := C*(U, V).

Therefore, we can now prove the following:

Theorem 37. G : AGy x (OR®)® — ALGg is a functor, where ALGR is the
category of commutative algebras over R.

Proof. Let i € AGa((By,21), (B2, Z2)) be a morphism of pairs of AGs and h €
C*(02,81), Q; being an open set in R". The natural definition of G(i,h) to get
that G(i,h) : G(B1, Z1,Q1) — G(Ba, Z3,05) is a morphism of algebras is

G(i,h) : [ue, | — [uis2 Oh] )
To prove that this definition is correct, we assume K, € € and o € N™2. Since
(ue,) € Epr(Br, Q) and h(Ks) =: K1 € Q1, we obtain
30" € By : sup |0%ue, (z)| = O(b.,) as ey € 1. (6.1)

wEKl
But ¥ € By € Ry (By), so b oi € Ry (By oi) € Ry (Bz). We can hence write
bggz = O(b,) as €3 € Iy for a suitable b” € B,. This, Cor. 13 (ii) and (6.1) yield

sup [0 (u,, 0 1) ()| = O (br.,) =o®L) as ez € T,
This shows that [u;., o h] € Ex(Ba, Q2). Now assume that (ue,)—(ve,) € N (21, ),
K, a as above, and z € (23)_,. Since Rp/(22) < Ry(21 0 i), we can write
Ze, = O (Cz‘gz) as e € Iy for a suitable ¢ € (2) and hence C;j = O(z;;). We
thus obtain

>0

sup [0%ue, (z) — 0%ve, ()| = O(¢Z') aser €1y,

reK

where h(K5) =: K;. From this and Cor. 13 (ii) we obtain the conclusion

sup [0% (ui,, o h) () — 0% (v, o h) (z)| = O(2)) as &3 € L.
Z'EKQ
The proof that G(i,h) is a morphism of R-algebras follows immediately from the
pointwise definitions of the algebra operations. The functorial properties of G follow
directly from the definition of G(i,h) and the fact that in the domain AGs x
(OR®)°® composition and identity are the corresponding set-theoretical operations.
O

Now, let n € N be fixed. Let TR™ be the subcategory of OR® having as objects
the open subsets of R and, as morphisms, the inclusions. From Thm. 37 we get
that G(B,Z,—) : (TR™")®® — ALGg is a functor, i.e. it is a presheaf. Trivially
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generalizing [5], it is also possible to prove that G(B, Z, —) is a sheaf of differential
algebras. In particular, the following diagram commutes

g(i,h)
G(B1, Z1,) —— G(Bz, Z9,02) (6.2)

a;’l la

G(B1,21,0) ——= G(B2, Z2,Q2)
G(i,h)
for each multi-index o € N and each inclusion h € TR™({2, ;). Clearly, in (6.2),
o5« [ue] € G(Br, 2k, Q) — [0%u:] € G(Bi, Z1, ). Let us note that, in general,
the diagram (6.2) doesn’t commute if h is an arbitrary smooth function. For this
reason, when we want to deal with differential algebras, we will always consider
TR™ instead of the category OR™.

As a consequence of Thm. 37, we also have that essentially all the constructions
of Colombeau-like algebras are functorial. For example, we can consider the set
of indices I® of the special algebra, the AG B* := {(¢7%) | a € R~¢}, and the full
subcategory AGps of AGy of all the AGs on I*. Clearly, G*(B,Q) := G(B,B,Q) is a
functor G* : AGp x (OR®)°® — ALGg which corresponds to the usual sheaf via
the restriction G%(B%,Q2) only for Q € TR™. Analogously, we can consider G, G,
G4, G2, G¥ and *C*(Q).

We also finally note that if we consider an inclusion h € TR™ (22, ;) and a mor-
phism of pairs of AGs i € AGy((By, Z1), (B2, Z2)), then G(i,h) : G(By, Z1,21) —>
G(Ba, Z4,5) preserves all polynomial and differential operations. Of course, it also
takes generalized functions in the domain G(Bi, Z1,2) into generalized functions
in the codomain G(Bs, Z3,Q3). We can therefore state that G(¢, h) permits to relate
differential problems framed in G(B1, Z1,1) to those framed in G(Bsy, Z3,s); see
also the next Thm. 38.

7. AN UNEXPECTED ISOMORPHISM

If we set Bpor := {(¢7") | n € N} and Bexp 1= {(€"¢) | n € N}, it is well known
(see [5, 12]) that an ODE like

/(1) — —-17 . t) =0
Y1)~ [ - a(t) = 0 -
z(0) =1,

has no solutions in the algebra G(Bya, ) = G%(2), but it has a (unique) solu-
tion z(t) = [e%t], t € Ro(Boxp), in G(Bexp, R). On the other hand, if we set
Ae) 1= —pgz for € € (0,1), and X(1) := 1, then we have lim_o+ A(¢) = 0F
and hence, by Example 9 (ii), A € IND(I®,I°) is a morphism of set of indices.
Moreover, ((€"/¢) o)) () = e~ and hence Ry (Bexp © A) = Ras(Bpor). Therefore,

A € AG1(Bexp; Bpol) is a morphism of AGs. Analogously, if we set n(e) := e_%, for
g€ (0,1), and n(1) := 1, then we have A\ = ! and n € AG1(Bpol, Bexp). Therefore
Bpol =~ Bexp as AGs. Thm. 37 thus yields

g(Bpova) = g(Bexp> Q)
IR(Bpol) = I?K(Bexp)- (7.2)
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This does not imply that the algebra G(Bexp, R) is useless, because we still have the
fact that the Cauchy problem (7.1) has no solution in G(Bpe1, R). Nonetheless, we
can say that the isomorphism A € AG1(Bexp, Bpol) transforms (7.1) into
/ .
{x@)—r—bgd~x@>—o, 13)
z(0) = 1.
Therefore, (7.3) has solution in G(Bpe,R) if and only if (7.1) has solution in
G(Bexp, R). The algebra G(Bexp,R) is the classical example introduced in litera-
ture (see e.g. [3, 6]) as a completely different space with respect to the classical
Colombeau algebra G(Bpor, R). In fact, the space G(Bexp, R) is usually thought of
as one where we can solve differential problems which are unsolvable in G(Bp1, R).
Clearly this is still true, but here we have showed that these two algebras are re-
ally isomorphic and that the solution of (7.1) is equivalent to the solution of the
isomorphic problem (7.3). For these reasons, we are saying that this isomorphism
is unexpected.
This example is generalized in the following theorem, where we talk, essentially for
the sake of simplicity, of ODE.

Theorem 38. Let [ € IND be a set of indices and let b, ¢ € R be infinite nets,
i.e. such that lim.cy b, = lim.cc. = +00. Set
AG() = {(7) | ne N

for the AG generated by b (and analogously for c¢). Assume that n, A € IND(I, ) are
morphisms of I such that n = \"1:

bn(e) =01 (CE) » Ca(e) = Oz (bg) as e €. (74)
Then
(i) AG(b) ~ AG(c) as AGs;
(ii)  G(AG(D),Q) ~ G(AG(c), Q) and R(AG(b)) ~ R(AG(c
(iii) let F = [F.] € G(AG(b),R"” x R), T = [Z.] €

Cauchy problem
2'(t) = F(x(t),1);
a(t) =z,
has a solution x € G(AG(b), (t1,t2)) if and only if the Cauchy problem

{ya>=[Fx@]@@»w;
y (o)) = [2rxe]s
has a solution y € G(AG(c), (t1,t2))-

Proof. Assumption (7.4) yields (b" on) () = b)) ) = Oz (cf) so Rar(AG(b) o) =
Ras(AG(c)). Analogously, we have Ry (AG(c)oA) = Ry (AG(b)). This shows that
7 and A are morphisms of AGs, and hence it proves (i). Property (ii) follows from
the functorial property of G(—, ) : AG; — Arag. To show (iii), let = [z.] €
G(AG(b), (t1,t2)) be a solution of (7.5) and set y := G (A, 1, 1)) (@) = [22()]-
Therefore, Thm. 37 and (6.2) yield the conclusion. O

~

) in the category ALGR;
[t:] € R. Then the

F=Nd

\.3

|
Il

(7.5)

(7.6)

For instance, if b, ¢ : (0,1] — (0, 1] are homeomorphisms such that lim,_,q+ b, =
0 = lim._,y+ cc, then 1 := cob™! and X := n~! verify the assumptions of this
theorem.
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In this categorical framework, it is unnatural to expect that isomophisms as in
(ii) hold for every pair of generators b, c¢. It is simple to see that this is the case if b,
¢ are generators defined, respectively, on two sets of indices [y = (I1,<1,Z4), Is =
(Iz,<3,7,) such that I; and I, have different cardinalities, as in this case there can
not be a bijection between I; and I5. A more interesting question is if there exist
principal AGs on the same set of indices that are not isomorphic. This is actually
the case, as we will show after Def. 39, where we make precise the definition of the
category of principal AGs.

We finally note that an isomorphism similar to (ii) has been proved by [24, 21, 22]
in the context of NSA. However, note that in [24, 21, 22] the non-constructive
isomorphism strongly depends on the condition that the cardinality of the field of
generalized numbers equals the successor of card(R). On the contrary, here we have
a constructive, but less general, isomorphism strictly depending on the notion of
morphism of AGs and the functorial properties of Colombeau AG-algebras.

8. THE CATEGORY OF COLOMBEAU ALGEBRAS

In this section, we want to show that the Colombeau AG algebra, the related
derivation of generalized functions and the embedding of distributions are all func-
torial constructions with respect to the change of AG. Although in this section we
work on an arbitrary set of indices, we restrict our study only to embeddings of
Schwartz distributions defined through a mollifier. Therefore, we are going to deal
with mollifiers with null positive moments, namely with functions p € S(R™) such
that {p(z)z*dz = 0 for every k € N", |k| > 1. We call Colombeau mollifier any
such function.

It is now worth recalling here why we are going to consider only embedding
of Schwartz distributions based on a Colombeau mollifier and only principal AGs.
On the one hand, Colombeau AG-algebras with B = Z, which are not necessarily
of principal type, are important as a general framework. In fact, they include
several examples studied in literature (see e.g. [10, 11, &, 9, 7, 6, 15] and references
therein). Moreover, this general abstract setting is crucial to understand where
being a principal AG is a necessary property. For example, in [12, Thm. 4.12] we
proved that

fex [02 - plbe - —)] = fe + N(Z2,9), (8.1)
holds for all nets (fe) of smooth functions compactly supported in  such that (f:)
is moderate with respect to AG(b), if and only if b is a generator of Z. Note that
(8.1) is only slightly stronger than the usual universal property mentioned in (e) at
pag. 1, i.e.

Felbl-plo.-—)] = f+N(2,9) Vfel™(Q).

This result implies that there does not exist an embedding of Colombeau type (i.e. as
n (8.1)) for non principal AGs. Summarizing, non-principal AGs are important
because they include lots of interesting examples and because we need them to
formulate results like [12, Thm. 4.12]. On the other hand, if we want to study
embeddings of Colombeau type (8.1), we are forced to consider only principal AGs.
It is also worth mentioning that a different type of embedding would still be possible.
For example, using Zorn lemma and considering as Q a convex subset, [25] shows
that another interesting embedding is possible in Egorov algebras. We can therefore
state that the existence of, maybe more involved, optimal embeddings of Schwartz
distributions for non-principal AGs is still an open problem.
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Definition 39. Let n € N.g be a fixed natural number. Then PAG denotes
the category of principal AGs, whose objects are pairs (b, ), where B is a prin-
cipal AG on a set of indices I and b € B is a generator of B. Arrows f €
PAG((b1,By), (b, B2)) are morphisms f € AGy(By,B2) of AGs that preserve the
generator, i.e. such that by o f = by. Let us note that if f € PAG((b1, B1), (b2, B2))
and g € PAG((bg, B2), (b3, Bs)), then the composition in PAG is given as in AGy,
i.e. by fogbecause f: 1o — I1, g: I3 — Is.

We observe that there exist non isomorphic pairs (b, Ras (b)), (¢, Ras(c)) defined on
the set of indices I*. In fact, let b, = e~* and ¢. = [¢7!] for every € € (0,1]. Then
(ce) assumes only a countable amount of values, whilst (b.) assumes a continuum
of values. Hence, there can not be a morphism f such that b. = cg(.) for every
¢ € (0,1]. The existence of non-isomorphic principal AGs also implies that the
isomorphism stated in [24, 21, 22] is not an isomorphism of principal AGs, i.e. it is
not an arrow of the category PAG.

Whilst the category PAG acts as domain in the Colombeau construction, the fol-
lowing category of Colombeau algebras acts as codomain.

Definition 40. Let DALGR be the category of differential real algebras. We say

that (G, 0,1) € CoL,, if:

(i)  (G,0): (TR")® — DALGR is a functor (i.e. it is a presheaf of differential
real algebras). In particular, 03 : G(Q) — G(Q) is a derivation for all
ae N,

(ii) If we think at both functors D', G : (TR")°® — VECTg with values in the
category of real vector spaces, then « : D' — @ is a natural transformation
such that ker (1q) = {0} for every Q € TR™.

Moreover, for every 2 € TR™, we have:

(iii) C™(9) is a subalgebra of G(Q);

(iV) LQ(SQ(f)) = f for all f € COO(Q),

(v) Let D& : D'(2) — D'(Q) be the o € N derivation of distributions, then the
following diagram commutes

D(Q) 4= G(0) (8.2)

Dgl

Q) — > G(Q)

Lo

Yoy
)

-

An arrow ¢ € CoL, ((G,0,t),(H,d,)) is a natural transformation ¢ : (G,0) —
(H,d) such that for all 2 € TR the following diagram commutes:

D(Q) 25 H(Q) (8.3)
G(©)

The following results prove the goal of the present section:

Lemma 41. CoL, is a category.
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Proof. For every object (G,0,t) € COL,, the identity 1) : G(Q2) — G(Q)
serves as the identity arrow of (G, d,t¢) in CoL,. To conclude the proof, it is suf-
ficient to consider the composition of arrows. Let ¢ € CoL, ((G,0,t), (H,d, 7)),
v € CoLy, ((H,d, ), (F,D,k)), then ¢ o ¢ : (G,0) — (F, D) is a natural tranfor-
mation and the following diagram commutes:

G =— D(Q) —— F(Q)

H(Q)

In particular, we have that

D(Q) 2 F(Q)

L
%@)Q

G(©)
commutes, namely ¢ o ¢ € CoL,, ((G,d,¢), (F, D, k)). O
Theorem 42. Let p be a Colombeau mollifier. For each (b,B) € PAG, set
Col? (b, B) :== (G(B,—),0,7),

where 1} is the usual embedding defined using the generator b and the fized mollifier
p (see [12, Sec. 4] for details). For f € PAG((b1,B1), (b2, B2)) and Q € TR™, set

Colt (fa: [ue, ] € G(B1,92) — [uf(az)] € G(Bs, Q). (8.4)
Then

Cotlt : PAG — CoL,

is a functor.
Proof. The property Cot? (b, B) € CoL,, for every (b, B) € PAG is a consequence of
the results about Colombeau principal AG-algebras and embeddings of distributions
proved in [12, Sec. 3 and 4].

We are left to prove the properties of Cof? with respect to arrows. First of all, let
us prove that

Cot? (f) € CoLy,(Coth (b1, B1),Coll (b, Ba)) =
= CoL, ((G(B1,-), 2, t5,), (G(Ba, =), 0, ng)) (8.5)

for every f € PAG((b1,B1), (b2, B2)). Theorem 37 gives that Col?(f)q : G(B1,Q)) —
G(B2, ) is a morphism of R-algebras (we recall that G(B,Q) := G(B, B, Q) for every
AG B). From [12, Thm. 4.7], it suffices to prove the commutativity of the diagram

o
L
(”2)9

D'(Q)) —— G(B2,Q)

5

G(B1,Q)
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only for compactly supported 7 € D'(£2). In this case, we have

Coth(Ha | (1) (1] = Coth(Na [T+ brey © p] =
= [T b1y(e,) ©Op] = [T b2, © p] =
= (LZZ)Q (T).
If Q' < Q, then

Colh (flar {[ue, o} = Colh (f)a [ue, |or] =
= [ug(ey)lor] = {Coly (fa [ue, ]} lar-

This shows that Colf(f) : G(B1,—) — G(Ba,—) is a natural transformation. To
show (8.5), there remains to prove that Coff(f)q is a morphism of differential
algebras:

Coly (f)a {0%[ue, I} = Colfy(fla [oug, | =
= [0%up(ey)] = 0" {Colh(fla [ue 1} -

Since 1; € PAG((b, B), (b, B)) is the identity in the category PAG, it is immediate
to see that Colf,(11) = lg,—) = leossv,8) from the definition of the map (8.4).
Finally, let

f € PAG((bla Bl)a (b27 BQ))
g e PAG((bQ, 82)7 (537 33))

Let [ue,] € G(B1,€?), then

Colh (9)a {Colr,(fla([ue, )} = Colh (9)a([uf(ey)]) =
= [us(g(eq))] = Colh (f 0 g)a([ue,]).
0

Properties (a) - (e) of pag. 1 we started from have been taken as defining at-
tributes for the category CoL,, of Colombeau algebras. Althoug this gives an impor-
tant role to these properties, it clearly does not aim to be an axiomatic characteri-
zation. For results in this direction see [21, 22|, where an axiomatic characterization
is given but whose consistency depends on the generalized continuum hypothesis.

9. CONCLUSIONS

If we consider the most studied Colombeau algebra G*(2) = G(Bpor, §2) and if
we have to deal with particular differential problems whose solutions grow more
than polynomially in e, then we are forced to consider a different algebra. Since
our framework of Colombeau AG-algebras includes all known algebras of this type,
this means that we are forced to consider a different AG. It is therefore natural to
search for the correct notion of morphism of AGs, and to see whether Colombeau
AG constructions behave in the correct way with respect to these morphisms. The
results of Sec. 5, 7, 8 show that both the construction of the differential algebra
and that of the embedding by means of a mollifier are functorial with respect to a
natural notion of morphism of AGs. As shown in Sec. 6, 7, this permits to relate
differential problems solved for different AGs.
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