EMPIRICAL L?2-DISTANCE TEST STATISTICS FOR ERGODIC
DIFFUSIONS
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ABSTRACT. The aim of this paper is to introduce a new type of test statistic for simple null
hypothesis on one-dimensional ergodic diffusion processes sampled at discrete times. We deal
with a quasi-likelihood approach for stochastic differential equations (i.e. local gaussian ap-
proximation of the transition functions) and define a test statistic by means of the empirical
L2-distance between quasi-likelihoods. We prove that the introduced test statistic is asymp-
totically distribution free; namely it weakly converges to a x? random variable. Furthermore,
we study the power under local alternatives of the parametric test. We show by the Monte
Carlo analysis that, in the small sample case, the introduced test seems to perform better than
other tests proposed in literature.
Keywords: asymptotic distribution free test, local alternatives, maximum-likelihood type es-
timator, discrete observations, quasi-likelihood function, stochastic differential equation.

1. INTRODUCTION

Let (Q,F,F = (Ft)i>0, P) be a filtered complete probability space. Let us consider a 1-
dimensional processes X = (X;)¢>0 solution to the following stochastic differential equation

(11) dXt = b(OZ,Xt)dt + U(B,Xt)th, XO = Xy,

where z( is a deterministic initial value. We assume that b: ©, xR = R, 0 : ©g x R = R are
Borel known functions (up to o and 8) and (W;):> is a one-dimensional standard F;-Brownian
motion. Furthermore, o € O, C R™!, 8 € ©g C R™2,my, my € N, are unknown parameters and
0 = (o, 8) € © := O, x Og, where O represents a compact subset of R™*™2 We denote by
0o := (ap, Bo) the true value of 6 and assume that 0y € Int(©).

The sample path of X is observed only at n + 1 equidistant discrete times ¢}, such that
th =t = A, <oofori=1,..,n, (with t§ = 0). Therefore the data, denoted by (X )o<i<n,
are the discrete observations of the sample path of X. Let p be an integer with p > 2. The
asymptotic scheme adopted in this paper is the following: 7" = nA,, = oo, A,, = 0 and nA? — 0
as n — oo. This scheme is called rapidly increasing design, i.e. the number of observations grows
over time but no so fast.

This setting is useful, for instance, in the analysis of financial time series. In mathematical
finance and econometric theory, diffusion processes described by the stochastic differential equa-
tions (1.1) play a central role. Indeed, they have been used to model the behavior of stock prices,
exchange rates and interest rates. The underlying stochastic evolution of the financial assets can
be thought continuous in time, although the data are always recorded at discrete instants (e.g.
weekly, daily or each minute). For these reasons, the estimation problems for discretely observed
stochastic differential equations have been tackled by many authors with different approaches
(see, for instance, [10], [33], [11], [5], [23], [24], [2], [12], [18], [3], [6], [29], [34], [30], [26], [31], [20]).
For clustering time series arising from discrete observations of diffusion processes [7] propose a
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new dissimilarity measure based on the L' distance between the Markov operators. The change-
point problem in the diffusion term of a stochastic differential equation has been considered in
[6] and [16]. In [15], the authors faced the estimation problem for hidden diffusion processes ob-
served at discrete times. An adaptive Lasso-type estimator is proposed in [8]. For the simulation
and the practical implementation of the statistical inference for stochastic differential equations
see [13], [14] and [17].

We also recall that the statistical inference for continuously observed ergodic diffusions is a
well-developed research topic; on this point the reader can consult [25].

The main object of interest of the present paper is the problem of testing parametric hy-
potheses for diffusion processes from discrete observations. This research topic is less developed
in literature. It is well-known that for testing two simple alternative hypotheses, the Neyman-
Pearson lemma provides a procedure based on the likelihood ratio which leads to the uniformly
most powerful test. In the other cases uniformly most powerful tests do not exist and for this
reason the research of new criteria is justified.

For discretely observed stochastic differential equations, [21] introduced and studied the as-
ymptotic behavior of three kinds of test statistics: likelihood ratio type test statistic, Wald type
test statistic and Rao’s score type test statistic.

Another possible approach is based on the divergences. Indeed, several statistical divergence
measures (which are not necessarily a metric) and distances have been introduced in order to
decide if two probability distributions are close or far. The main goal of this metric is to make
“easy to distinguish” between a pair of distributions which are far from each other than between
those which are closer. These tools have been used for testing hypotheses in parametric models.
The reader can consult on this point, for example, [27] and [28]. For stochastic differential
equations sampled at discrete times, [9] introduced a family of test statistics (for p = 2 and
nA2 — () based on empirical ¢-divergences.

We consider the following hypotheses testing problem concerning the vector parameter 6

H()IQ:Q(), Vs H1207£00,

and assume that X is observed at discrete times; that is the data (Xt;‘)ogign are available. In
this work we study different test statistics with respect to those used in [9] and [21]. Indeed,
the purpose of this paper is to propose a methodology based on a suitable “distance” between
the approximated transition functions. This idea follows from the observation that in the case
of continuous observations of (1.1), we could define the L2-distance between the continuous
loglikelihood. Clearly this approach is not useful in our framework and then, similarly to the
aforementioned papers, we consider the local gaussian approximation of the transition density of
the process X from X;, , to Xy,. In other words, we resort the quasi-likelihood function intro-
duced in [23], defined by means of an approximation with higher order correction terms to relax
the condition of convergence of A,, to zero. Therefore, let 1,,(6),6 € O, be the approximated
log-transition function from X;, , to X, representing the parametric model (1.1). We deal with

n

1
Dp,n(01,02) = — Y 1) = 1p4(82)]%, 61,0 € O,

i=1

which can be interpreted as the empirical L?-distance between two loglikelihoods. If 9},7” is the
maximum quasi-likelihood estimator introduced in [23], we are able to prove that, under Hy, the
test statistic

Tp,n(ep,na 90) = nDp,TL(epﬂﬂ 90)

is asymptotically distribution free; i.e. it converges in distribution to a chi squared random
variable. Furthermore, we study the power function of the test under local alternatives.
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The paper is organized as follows. Section 2 contains the notations and the assumptions of
the paper. The contrast function arising from the quasi-likelihood approach is briefly discussed
in Section 3. In the same section we define the maximum quasi-likelihood estimator and recall
its main asymptotic properties. In Section 4 we introduce and study a test statistic for the
hypotheses problem Hy : 8 = 0y vs Hy : 0 # 6. The proposed new test statistic shares the
same asymptotic properties of the other test statistics presented in the literature. Therefore,
to justify its use in practice among its competitors, a numerical study is included in Section 5
which contains a comparison of several test statistics in the “small sample” case, i.e., when the
asymptotic conditions are not met. Our numerical analysis shows that, at least for p = 2, the
performance of test statistic 75, is very good. The proofs are collected in Section 6.

It is worth to point out that for the sake of simplicity in this paper a 1-dimensional diffusion is
treated. Nevertheless, it is possible to extend our methodology to the multidimensional stochastic
differential equations setting.

2. NOTATIONS AND ASSUMPTIONS

Throughout this paper, we will use the following notation.

e 0:=(a, ) and ay, By and Oy denote the true values of a, 8 and 6 respectively.

o ¢(B,x) =0*(B,2).

e (' is a positive constant. If C' depends on a fixed quantity, for instance an integer k, we
may write Cl.

. _0 . _0 - 22 _ - 22 —

i 804h T E’aﬂk T @)aihak T m,h,k - 17 ---7m158?3h5k = m,h,k’ -
1,...,m2782h,6k = ﬁ,h = 1,...,mi,k = 1,...,ma, O := (Ou,03)’, where 9, :=
(Gal,...,aaml)’ and 35 = (851, ...,857"2)’, 83 = [agj,ﬁk]hzl’...,ml,kzl,-..,mz-

o If f:© xR — R, we denote by f;_1(¢) the value f(6, Xy» ); for instance c(3, X¢r ) =
ci—1(8).

e For 0 <4 <mn,tl! :=iA, and G := o(W,, s < t7).

e The random sample is given by X,, := (Xty)ogign and X := Xjn.

e The probability law of (1.1) is denoted by Py and E} '[-] := E,[-|G" ,]. We set Py := Py,
and Eé_lH = E;O_I[]

o % and -4 stand for the convergence in probability and in distribution, respectively.
n—oo n—oo

e Let F, :©xXxR" > Rand F:0 = R; “F,(0,X,) Lo, F(0) uniformly in 6” stands for

n—oo

sup |Fo (0, X,,) — F(0)] =2 0.

0cO n— o0

Furthermore, if F,,(6,X,,) Lo 0 uniformly in 6 we set

n—oo
Fo(6,X,) = op, (1).

o Let u, be a R-valued sequence. We indicate by R a function © x R? — R for which there
exists a constant C such that

R(0,upn, ) <u,C(1+ |z|)¢, foralld € ©,2cR:neN.

Let us set R;_1(Ak) := R(9, A% X;_ ).
e For a m x n matrix A, ||A[]> = tr(AA4") = >, Z;‘l:1 |4;;1%.

Let C’f’h(R x O;R) be the space of all functions f such that:
(i) f(0,z) is a R-valued function on © x R;
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(ii) f(#,z) is continuously differentiable with respect to  up to order k > 1 for all ; these
z-derivatives up to order k are of polynomial growth in z, uniformly in 6;

(iii) f(0,z) and all z-derivatives up to order k > 1, are h > 1 times continuously differentiable
with respect to 6 for all x € R. Moreover, these derivatives up to the h-th order with
respect to 6 are of polynomial growth in x, uniformly in 6.

We need some standard assumptions on the regularity of the process X.

A;. (Existence and Uniqueness) There exists a constant C' such that

sup [b(a, ) = ba, y)| + Sup 0(B,2) = (B,y)| < Clz —yl.

8

a€B,

As. (Ergodicity) The process X is ergodic for § = 6y with invariant probability measure
mo(dz). Thus

T
7| e s [ @)

where f € L'(m). Furthermore, we assume that 7y admits all moments finite.
As. inf, go(B,z) > 0.
Ay. (Moments) For all ¢ > 0 and for all § € ©, sup, E|X,;|? < co.
As. [k] (Smoothness) b € C£*(0, x R,R) and o € C£*(05 x R,R).
Ag. (Identifiability) If the coefficients b(a,z) = b(ag,z) and o(8,2) = o(By,x) for all x
(mo-almost surely), then o = ag and 8 = fy.
Let Ly the infinitesimal generator of X with domain given by C?(R) (the space of the twice
continuously differentiable function on R); that is if f € C?(R)

0 c(B,z) 02
Lof(e) =o)L (@) + DI 0y 1y = 1y,
Under the assumption A5[2(j — 1)] we can define L} := Ly o L} ™" with domain C?/(R) and

LY =Id.
We conclude this section with some well-known examples of ergodic diffusion processes be-
longing to the class (1.1):

e the Ornstein-Uhlenbeck or Vasicek model is the unique solution to

(2.1) dX; = ag (e — Xy)dt + 81dWy, Xy = w0,

where b(a1, a2, z) = ai1(as — x) and o(fr,2) = B1 with a;,as € R and 1 > 0. This
stochastic process is a Gaussian process and it is often used in finance where 3 is the
volatility, ag is the long-run equilibrium of the model and «; is the speed of mean
reversion. For a; > 0 the Vasicek process is ergodic with invariant law 7y given by a
Gaussian law with mean as and variance % It is easy to check that all the conditions
A1 - A6 fulﬁll,

o the Cox-Ingersoll-Ross (CIR) process is the solution to

(22) dX; = 011(042 — Xf)dt + ﬂl V Xtth, Xo=1x¢ > 0,

where b(ay, az,2) = ai(az — x) and o(B1,2) = B1v/Z With a1, ag, f1 > 0. If 2070 > 33
the process is strictly positive, otherwise non negative. This model has a conditional
density given by the non central x? distribution. The CIR process is useful in the
description of short-term interest rates and admits invariant law 7y given by a Gamma
distribution with shape parameter ”’231720‘2 and scale parameter % If (2.2) is strictly

1
positive, we can prove that the above assumptions hold true.
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3. PRELIMINARIES ON THE QUASI-LIKELIHOOD FUNCTION

We briefly recall the quasi-likelihood function introduced by [23] based on the It6-Taylor
expansion. The main problem in the statistical analysis of the diffusion process X is that its
transition density is in general unknown and then the likelihood function is unknown as well. To
overcome this difficulty one can discretizes the sample path of X by means of Euler-Maruyama’s
scheme; namely
(3.1)

tn tn
X, - Xiq = / b(a, Xo)ds + / 0 (B, X)AW, = by () Ay + 031 () (Wer — Wi ).
t

n n
i—1 t'ifl

Hence (3.1) leads to consider a local-Gaussian approximation to the transition density; that is
L(X;|Xi—1) = N(bi—1(a)An, ci—1(B)An)

and the approximated loglikelihood function of the random sample X,,, called quasi-loglikelihood
function, becomes

n

(3.2) n(8) == %Z { S XZZZ&EZL(Q)A”) +logeia(s )} '

i=1
This approach suggests to consider the mean and the variance of the transition density of X;
that is

(33) m(@,Xi_l) = Eg[Xi‘Xi_l], mQ(Q,X,-_l) = Eg[(Xz - m(G,Xi_l))2|Xi_1],

and assume
L(Xi|Xi-1) = N(m(8, Xi—1), m2(0, Xi—1)).
Thus we can consider as contrast function the following one
1 - ()(Z — m(&, Xi,1))2
3.4 = 1 0,X;-1)¢.
&4 2 Z{ m (6, X;—1) +logma( v

=1

Nevertheless, (3.4) does not have a closed form because m(6, X;_1) and my (6, X;_1) are unknown.
Therefore we substitute in (3.4) closed approximations of m and my based on the It6-Taylor
expansion.

Let f(y) :=y, for [ > 0, under the assumption As[2{], we have the following approximation
(see Lemma 1, [23])

(3.5) m(0, X;_1) = (A, Xi_1,0) + RO, AL X 1)

where
l

Tl(An, X,L',]_, 9) = Z

=0

A,
il

of (@).

Now let us consider the function (y —r;(A,, X;_1,0))?, which is for fixed z, y and 6 a polynomial
in A, of degree 2/. We indicate by ga, . ¢,(y) the sum of its first terms up to degree [; that is

_ 1 .z
gAn,:c,G,l(y) = Zj:o A%Q;,o(y) where

(36)  Bul) =)
(3.7) a0(y) = —2(y — 2)Lo f(x)
38 g =-2y-n B WL, oy

|
J: r,s>1,r4+s=j
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Under the assumption A5[2(I —1)](i), we have that Lgﬁi,(, (y) is well-defined for r + j = [ and we
set

l—j r
(3.9) Ly(A,2,0) : ZAJZA Ly, o(x ZA 750, z),
r=0

where 7; (6, z) are the coefficients of AJ. Therefore by (3.6) to (3.9), we obtain, for instance,

70(0, ) = Lggy ¢(x) =0
71(0,7) = Leﬁgﬂg(x) =c(B,x)

L270
72(97x) = Ggw,e

(z) + LO?i,e(f) + ngi,e(x)

1 0 8 c(B,x) iz

=3 b(a,m)a—yc(ﬁ, z) +2c(B,2) 5~ ay

Let
(A, z,0) = Anc(B,2)[1 +T1(An, z,0))

— U Ad
where T}(A,, z,0) := %. For [ > 0, under the assumption Aj[2l](i), we have that
(see Lemma 2, [23])

(3.10) my(0, Xio1) = Ancim1 (B)[1+Tu(An, Xim1, )] + R(0, AT, Xi 1),

It seems quite natural at this point to substitute (3.5) and (3.10) into the expression (3.4).
Nevertheless, in order to avoid technical difficulties related to the control of denominator and
logarithmic we consider a further expansion in A,, of (1 +T;)~! and log(1 + T).

Let ko = [p/2]. Under the assumption As[2ko](i), we define the quasi-loglikelihood function of
X,, as

(3.11) lpn(0) := 1, n(0,X,,) le,

where

(Xz — Tkq (An, Xi—lv 0))2
2Anci-1(P)

ko
1+ AJd;(0,Xi 1)

Jj=1

(3.12) 1,,(0) ==

ko
1 .
g loseina(8) + 3 Anei(6, Xic)
]:

and d;, resp. e;, is the coefficient of AJ in the Taylor expansion of (1+ Tgy+1(A,, x,0)) 1, resp.
log(1 + Tkys1(An, z,0)). It is not hard to show that, for example,

72(97 x)
c(B,x)’

d>(0,7) = —e2(0,2) = cwl 2) 12(;97;)) ~s(é2)

Remark 3.1. It is worth to point out that by assumptions Az and As emerge that d; and e;,
for all j < ko, are three times differentiable with respect to 6. Furthermore, all their derivatives
with respect to 6 are of polynomial growth in x uniformly in 6.

d1(0,2) = —e1(0,2) = —
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The contrast function (3.11) yields to the maximum quasi-likelihood estimator ép,n = (Gpn, Bp,n)
defined as

(3.13) lpn(Op.n) = inf 1 n (6).
Let 1(6p) be the Fisher information matrix at 6y defined as follows

LM (00) = 0
3.14 1(9) = (o )=ty ,
(3.14) (60) ( 0 (25 (00)nk=1,....mo
where

C

12500 = 3 [ (2229) o opmo(as).

c?

1400) = [ (2220 0o,y

We recall an important asymptotic result which will be useful in the proof of our main theorem.

Theorem 1 ([23]). Let p be an integer and ko = [p/2]. Under assumptions Ay to Aa, As[2ko]
and As, if A, = 0,nA, — 00, as n — 0o, the estimator 0, , is consistent; i.e.

(315) ép,n ﬁ> 90'

n— oo

If in addition nAL — 0 and 6y € Int(©) then

B10) ) Gy 00) = (VDA TO) A N 0.7 00

where )
—1 0
P nA, ~Mi

Remark 3.2. We observe that la,, does not coincide with (3.2), because (3.11) contains two
more terms with respect l,; i.e. dy and ey. Nevertheless, l,, also yields an asymptotical efficient
estimator for 8 and then we refer to it when p = 2.

Remark 3.3. Under the same framework adopted in this paper, alternatively to ép,n, [22] and
[30] proposed different types of adaptive mazimum quasi-likelihood estimators. For instance, in
[30], the first type of adaptive estimator is introduced starting from the initial estimator Bo., is
defined by U, (Bon) = infgco, Un(B), where

0a9) =3 3 { G g},

i=1
Forp > 2ko = [p/2] and ly = [(p — 1)/2], the first type adaptive estimator ép,n = (&ko’n,ﬁlmn)
is defined for k = 1,2, ..., kg, as follows

lp,n(dk,naék—l,n) = aienga lp,n(awék—l,n)a

lp,n (dk,na Bk,n) = ﬂien(gg lp,n(dk:,na B)

The mazimum quasi-likelihood estimator ép,n and its adaptive versions, like 0,,, are asymp-
totically equivalent (under a minor change of the initial assumptions); i.e. they have the same
properties (3.15) and (3.16) (see [30]). In what follow we will developed a test based on Hpn,
nevertheless in light of the previous discussion, it would be possible to replace Hp n With 9p n-
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4. TEST STATISTICS

The goal of this section is to define and to analyze test statistics for the following parametric
hypotheses problem

(41) H0:9:00, Vs H1 29#90,

concerning the stochastic differential equation (1.1). X is partially observed and therefore we
have discrete observations represented by X,,. The motivation of this research is due to the fact
that under non-simple alternative hypotheses do not exist uniformly most powerful parametric
tests. Therefore, we need proper procedure for making the right decision concerning statistical
hypothesis.

The first step consists in the introduction of a suitable measure regarding the “discrepancy”,
or the “distance”, between diffusions belonging to the parametric class (1.1). Furthermore, we
bearing in mind that as recalled in the previous section, for a general stochastic differential
equation X, the true probability transitions from X; ; to X; do not exist in closed form as
well as the likelihood function. Suppose known the parameter S and assume observable the
sample path up to time 7' = nA,. Let 3 be the probability law of the process solution to
dY; = o(B,Y;)dW;. The continuous loglikelihood of X is given by

bgﬂ@_/Tw%&hX 1/T@wxa&
by [P Xy, LX) g,
dQs  Jo (B, X¢) 2Jy (B, Xy)
Py,

Thus we can consider the (squared) L?(Qp)-distance between the loglikelihoods log leﬁ

log (;geg with 1,6, € ©; that is

and

dpy, | dPy, 2

dPy, dp, 12
— log :/ [log — log d@s.
Qs Qs || 2, dQs ~ **dQs

Clearly for testing the hypotheses (4.1) in the framework of discretely observed stochastic dif-
ferential equations, the distance (4.2) is not useful. Nevertheless, the above L?—metric for the
continuos observations suggests to consider

(42) D(91,92) = 10g

n

1
(4.3) D, (01,60:) := - Z[lm(el) —1,:(02)]%, 61,05 €O,

i=1
which can be interpreted as the empirical version of (4.2), where the theoretical loglikelihood
is replaced by the quasi-loglikelihood defined by (3.11). The following theorem provides the
convergence in probability of D, .

Theorem 2. Let p be an integer and ko = [p/2]. Assume Ay — A4, As5[2ko] and Ag. Under Hy,
if A, — 0,nA,, = 00, as n — 0o, we have that

Dp,n(aa 90) n%?c U(ﬂ, 50)

uniformly in 0, where

U(B, Bo)
C X 2 C X 2 C X C X
=1/ {3[6(55,;)) 1] e (53] 2 S IOg(cgf,x)))}”“(d”'

The above result shows that D, ,,(6,6) is not a true approximation of D, ,(6,6y) because

it does not converge to f[log(ﬂg(dx)/7r0(d:z7))]2 mo(dz). Nevertheless, the function (4.3) allows
to construct the main object of interest of the paper. Let 6,, be the maximum quasi-likelihood
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estimator defined by (3.13), for testing the hypotheses (4.1) we introduce the following class of
test statistics

(4.4) Tp,n(ép,m bo) := ”Dp,n(ép,na Bo)-

The first result concerns the weak convergence of T}, »(0pn,60). We prove that T}, ,,(0p.r,60) is
asymptotically distribution free under Hy; namely it weakly converges to a chi-squared random
variable with two degrees of freedom.
Theorem 3. Let p be an integer and ko = [p/2]. Assume Ay — Ay, A5[2ko] and Ag. Under Hy,
if Ay, — 0,nA, — 00,nAP — 0, as n — oo, we have that

5 d
(45) Tp,n(ep,na 00) — X

2
L

Given the level a € (0,1), our criterion suggests to
reject Ho if Ty (0pn, 00) > Xy g
where X2, 1., o is the 1 — a quantile of the limiting random variable X7, ,,,; that is under Hy
. A 2
nlggo Pg(TPv"(GP,m to) > Xm1+mz,a) = .
Under Hj, the power function of the proposed test are equal to the following map

0 Py (Tpn(Opns 00) > Xy rmave )

Often a way to judge the quality of sequences of tests is provided by the powers at alternatives
that become closer and closer to the null hypothesis. This justify the study of local limiting
power. Indeed, usually the power functions of test statistic (4.4) cannot be calculated explicitly.
Nevertheless, Py (Tp)n(ép,n, 00) > X2, +m2’a) can be studied and approximated under contiguous

alternatives written as
(4.6) Hyp 0 =00+ @(n)"/?h,

where h € R™1™2 such that 6y +p(n)'/2h € ©. In order to get a reasonable approximation of the

power function, we analyze the asymptotic law of the test statistics under the local alternatives

Hj ,,. We need the following assumption on the contiguity of probability measures (see [32]):
Bi. Py,4pn)n 18 a sequence of contiguous probability measures with respect to Fp; i.e.

lim,, 00 Po(An) = 0 implies lim, o0 P90+¢(7l)1/2h(An) = 0 for every measurable sets
A,.

Remark 4.1. The assumption By holds if we assume Ay — Ay, As[2ko] and the conditions:
(i) there exists a constant C' > 0 such that the following estimates hold

2b(o<7 x)

<
) < CO+lab, |-

<C

o8, + | o(5.a)

for all (o, 5) € © and x € R;
(ii) there exists Co > 0 and K > 0 such that

ba,z)r < —Colz|* + K
for all (a,z) € Oy x R;
(iil) there exists a constant C1 > 0 such that
1

a S 0'(67.'1/') S CVl-
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Under the above assumptions, [12] proved the Local Asymptotic Normality (LAN) for the likeli-
hood of the ergodic diffusions (1.1); i.e.

dP90+¢(n)h d , 1 ,
log (dPO(X”) =2 h' Ny +m, (0, 1(60)) + 5h I(0o)h.

By means of Le Cam’s first lemma (see [32]), LAN property implies the contiguity of Py, 1 n)n
with respect to Py.

Now, we are able to study the asymptotic probability distribution of T}, ,, under Hy ,,.

Theorem 4. Let p be an integer and ko = [p/2]. Assume Ay — Ay, As[2ko], As and By fulfill.
Under the local alternative hypothesis Hy 5, if A, — 0,nA, — 00,nAP — 0 as n — oo, the
following weak convergence holds

(4.7) Ty (Opons 00) —5 X201 g (W T(60) 1),

n—0o0

where the random variable X7, (h'I(00)h) is a non-central chi square random variable with [+m
degrees of freedom and non-centrality parameter h'I(0)h.

Remark 4.2. If we deal with Hy : 0 = 0y and the local alternative hypothesis H; ,, Theorem 4
leads to the following approzimation of the power functions

(4.8) Py (Tw(ép,n,eo) > X;ﬁmz,a) =1 F (pma) s 1> 1,
where F(-) is the cumulative function of the random variable X2, .. (hW'I(6o)h).

Remark 4.3. The Generalized Quasi-Likelihood Ratio, Wald, Rao type test statistics have been
studied by [21], respectively, given by

(4.9) Lp,n(ep,m bo) == 2(lp¢n (ép,n) —lpn (6o))

(4.10) W (0p.ns00) == (9(n) "2 — 00)) Iy (00) 0 (1) "2(0,0 — o)
(4.11) Rp,n(ép,naao) = (@(n)l/Qﬁelp,n(GO))/I;vln(ép,n)ﬁo(”)lﬂ%lnn(eo)a
where

I (9) _ ﬁ@ilnn(ﬁ) ﬁaaaﬁlp,n(o)
. a 7Ljfn8ﬁaalpan(0) %5%%,” (9)

and Ry, ,, is well-defined if I, ,(0) is nonsingular. The above test statistics are asymptotically
equivalent to T, p; i.e. under Hy, Ly, n, Wy, and R, ,, weakly converge to a x? random variable.

Remark 4.4. In [9], the authors dealt with (for p = 2) test statistics based on an empirical
version of the true ¢-divergences; i.e.
n
exp 1, (0) )

4.12 23 "% (

( ) ; exp ln(QO)

where ¢ represents a suitable convex function and l,, is given by (3.2). In the present paper,
the starting point is represented by the L2-distance between two diffusion parametric models.
Somehow, the approach developed in this work is close to that developed by [1], where a test

based on the L?-distance measure between the density function and its nonparametric estimator
1s introduced.
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5. NUMERICAL ANALYSIS

Although all test statistics presented in the above and in the literature satisfy the same
asymptotic results, for small sample sizes the performance of each test statistic is determined
by the statistical model generating the data and the quality of the approximation of the quasi-
likelihood function. To put in evidence these effects we consider the two stochastic models
presented in Section 2, namely the Ornstein-Uhlenbeck (OU in the tables) of equation 2.1 and
the CIR model of equation 2.2. In this numerical study we consider the power of the test under
local alternatives for different test statistics:

e the ¢ divergence of equation (4.12) with ¢(z) = 1 — x + xlog(z), which is equivalent to
the approximated Kullback-Leibler divergence (see, [9]). We use the label AKL in the
tables for this approximate KL;

2
e the ¢ divergence with ¢(z) = (”—_1) : this was proposed in [4], we name it BS in the

x+1
tables;
e the Generalized Quasi-Likelihood Ratio test, see e.g., (4.9), denoted as GQLRT in the
tables;

e the Rao test statistics' R(épm, o) of equation (4.11), denoted as RAO in the tables;
e and the statistic Tp,n(ép,n, o) proposed in this paper and defined in equation (4.4), with
p = 2, denoted as T3, in the tables.

The sample sizes have been chosen to be equal to n = 50, 100, 250, 500, 1000 observations and
time horizon is set to T' = n%, in order to satisfy the asymptotic theory. For testing 6y against
the local alternatives 6y + \/%Tn for the parameters in the drift coefficient and 69 + % for the
parameters in the diffusion coefficient, h is taken in a grid from 0 to 1, and A = 0 corresponds
to the null hypothesis Hy. For the data generating process, we consider the following statistical
models

OU: the one-dimensional Ornstein-Uhlenbeck model solution to dX; = ay (ag—X;)dt+ 51 dWe,
XO = 1, with 90 = (011,0427ﬁ1) = (0.5,0.5,0.25);

CIR: the one-dimensional CIR model solution to dX; = a1 (ag — X;)dt + S1vV/ X dWy, Xo = 1,
with 90 = (0417042, 61) = (0.5,0.5, 0.125).

In each experiments the process have been simulated at high frequency using the Euler-
Maruyama scheme and resampled to obtain n = 50,100,250, 500,1000 observations. Remark
that, even if the Ornstein-Uhlenbeck process has a Gaussian transition density, this density is
different from the Euler-Maruyama Gaussian density for non negligible time mesh A,, (see, [13]).
For the simulation we user the R package yuima (see, [17]). Each experiment is replicated 1000
times and from the empirical distribution of each test statistic, say .S,,, we define the rejection
threshold of the test as X3 .05, i-6. X3,0.05 18 the 95% quantile of the empirical distribution of S,

0.05 = Freq(Sn (0, 00) > V3 0.05)-
Similarly, we define the empirical power function of the test as
EPow (h) = Freq(Sy (6, 0 + ¢(n)"/*h) > X3 .05),

where 6, is the maximum quasi-likelihood estimator defined in (3.13). The choice of using the
empirical threshold )2%70_05 instead of the theoretical threshold X§70_05 from the x3 distribution,
is due to the fact that otherwise the tests are non comparable. Indeed, the empirical level of
the test is not 0.05 for small sample sizes when X%,o,os is used as rejection threshold and, for
example, when h = 0 different choices of the test statistic produce different empirical levels of the

IWe do not consider the Wald test of (4.10) because it was shown in [21] that it performs similarly to the Rao
test statistics.
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test. Tables 1 and 2 contain the empirical power function of each test. In these tables the bold
face font is used to put in evidence the test statistics with the highest empirical power function
EPow(h) for a given local alternative h > 0. As mentioned before, the natural benchmark test
statistics is the generalised quasi likelihood ratio test (GQLRT).

From this numerical analysis we can see several facts:

e the test statistic based on the AKL test statistics does not perform as the GQLR test
despite they are related to the same divergence; the latter being sometimes better;

e the T3, seems to be (almost) uniformly more powerful in this experiment;

e all but RAO test seem to have a good behaviour when the alternative is sufficiently large;

e for the CIR model, the RAO test does not perform well under the alternative hypothesis
and this is probably because it requires very large T" which, in our case, is at most T' = 10.
For the OU Gaussian case, the performance are better and in line from those presented
in [21] for similar sample sizes.

Therefore, we can conclude that, despite all the test statistics share the same asymptotic prop-
erties, the proposed T}, ,, seems to perform very well in the small sample case examined in the
above Monte Carlo experlments, at least for p = 2.

6. PROOFS

In order to prove the theorems appearing in the paper, we need some preliminary results. Let
us start with the following lemmas.

Lemma 1. Fork>1 andt} ;| <t <t}

(6.1) By 1 — Xima [ < Cult — £, /21 4 X )5

If f:© xR — R is of polynomial growth in x uniformly in 6 then

(6.2) Ey (0, X0)] < Coo (14 [Xia])9, 1Ly St <87

Proof. See the proof of Lemma 6 in [23]. O

Lemma 2. Forl>1

(6.3) (A, Xio1,0) = Xi1 + Apbi_1(a) + R(0, A%, X; 1)

(6.4) By H(Xi = mi(An, Xio1,0))%) = Apci1(Bo) + R(0, A%, X; 1)

(6.5) Eé 1[(Xz ri(An, Xi- 1a0))3] R(0, AQ Xi-1)

(6.6) Ey (X = ri(An, Xio1,0))"] = 3A%¢2_ 1 (Bo) + R(0, A5, Xi—1)
(6.7) ES (X, = mi(An, Xio1,60))°] = R(0,A3, X; 1)

(6.8) Ey (X — (A, Xio1,0))°] = 5-3A5 ¢, (Bo) + R(6, A%, X 1)
(6.9) Ey (X —ri(An, Xi-1,0))] = R(0, A%, Xi—1)

(6.10) Ey (X — (A, Xi-1,0))%] = 7-5-3A%¢ 1 (Bo) + R(0, A}, Xi 1)

Proof. The equalities from (6.3) to (6.6) represent the statement of Lemma 7 in [23]. By using
the same approach adopted for the proof of the aforementioned lemma, we observe that from
(6.3) to (6.6), the result (6.7) and (6.8) hold, if we are able to show that

(6.11) By N(Xi — Xis1)®] = R(0, A3, X, 1)
(6.12) By (X = Xio1)] = 5-3A%¢1(Bo) + R(6, Ay, Xi—1)
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TABLE 1. Empirical power function EPow(h), for different sample sizes n and
local alternatives h. The empirical power and theoretical power is 0.05. Data
generating model: the 1-dimensional Ornstein-Uhlenbeck process.

n = 50 n = 100
AKL GQLRT BS RAO T2 pn AKL GQLRT BS RAO T2 pn
h=0.00 0.050 0.050  0.050 0.050 0.050 h=0.00 0.050 0.050  0.050 0.050 0.050
h=0.01 0.044 0.048 0.046 0.053 0.052 h=0.01  0.046 0.047 0.046 0.050 0.050
h=0.05 0.035 0.032 0.041 0.057 0.057 h=0.05 0.032 0.035 0.035 0.050 0.055
h=0.10 0.025 0.029 0.033 0.064 0.077 h=0.10 0.022 0.029  0.030 0.058 0.070
h=0.20 0.011 0.031  0.042 0.078 0.133 h=0.20 0.014 0.038  0.042 0.082 0.141
h=0.30 0.007 0.054  0.069 0.096 0.239 h=0.30 0.009 0.089  0.083 0.101  0.253
h=0.40 0.007 0.108  0.147 0.121 0.371 h=0.40 0.009 0.159  0.163 0.128 0.404
h=0.50 0.009 0.216  0.269 0.138 0.559 h=0.50 0.020 0.283 0.291 0.155 0.609
h=0.60 0.021 0.359  0.448 0.146  0.720 h=0.60 0.051 0.465 0.472 0.183 0.769
h=0.70 0.053 0.527  0.591 0.149 0.842 h=0.70 0.131 0.644 0.659 0.199 0.876
h=0.80 0.120 0.670 0.736 0.150 0.917 h=0.80 0.244 0.789  0.801 0.213 0.943
h=0.90 0.221 0.794  0.852 0.148 0.966 h=0.90 0.414 0.883 0.893 0.221 0.984
h=1.00 0.383 0.882 0.910 0.145 0.992 h=1.00 0.608 0.937  0.944 0.225 0.996
n = 250 n = 500
AKL GQLRT BS RAO T2 pn AKL GQLRT BS RAO T2 p
h=0.00 0.050 0.050  0.050 0.050 0.050 h=0.00 0.050 0.050  0.050 0.050 0.050
h=0.01 0.044 0.049 0.050 0.051 0.048 h=0.01 0.048 0.049 0.049 0.052 0.051
h=0.05 0.036 0.049  0.046 0.052  0.057 h=0.05 0.038 0.044 0.043 0.067 0.059
h=0.10 0.028 0.048  0.050 0.058 0.075 h=0.10 0.032 0.050 0.050 0.082 0.075
h=0.20 0.015 0.076  0.078 0.114 0.143 h=0.20 0.030 0.084 0.080 0.134 0.133
h=0.30 0.022 0.153  0.157 0.168 0.255 h=0.30 0.050 0.175  0.175 0.202 0.250
h=0.40 0.049 0.304 0.304 0.222  0.452 h=0.40 0.138 0.329 0.323 0.279  0.449
h=0.50 0.118 0.486  0.496 0.280 0.654 h=0.50 0.274 0.555  0.552 0.363 0.673
h=0.60 0.253 0.703  0.704 0.339 0.822 h=0.60 0.493 0.751  0.747 0.454 0.828
h=0.70 0.436 0.847 0.851 0.389 0.921 h=0.70 0.704 0.869  0.869 0.522 0.934
h=0.80 0.666 0.928 0.931 0.419 0.969 h=0.80 0.847 0.957  0.957 0.584 0.983
h=0.90 0.821 0.973 0.976 0.462 0.991 h=0.90 0.936 0.987  0.987 0.630 0.996
h=1.00 0.911 0.992  0.993 0.485 1.000 h=1.00 0.982 0.997  0.997 0.678 0.998
n = 1000

AKL GQLRT BS RAO Tn

0.050 0.050  0.050 0.050 0.050

0.046 0.049 0.050 0.051 0.051

0.038 0.046  0.049 0.056 0.058

0.035 0.056  0.062 0.062 0.074

0.061 0.104 0.109 0.121 0.134

0.122 0.182 0.187 0.193 0.241

0.219 0.359 0.372 0.291 0.442

0.426 0.600 0.605 0.398 0.662

0.655 0.786  0.794 0.507 0.840

0.821 0.912 0.914 0.596 0.942

0.930 0.969 0.972 0.665 0.985

0.978 0.993 0.993 0.711  0.994

0.994 0.997  0.997 0.760 0.998

We only prove (6.12), because (6.11) follows by means of similar arguments. By applying the
Ito-Taylor formula (see Lemma 1, in [10]) to the function f,(y) = (y — z)® we obtain

Ey (X — Xi1)"] =

fxi,

(X

A2
+ JLOszfl( 1)

/ / / / E17 L fX (Xt?_1+u4)]du1du2dU3dU4.

By applying (6.2), we obtain

—1) + AnLOfo_l(X

,1)

fxz—l( 1)

/ / / / E{LS fxoy (Xer qug)]durdusdusdug = R(0, A, Xi—1).

Furthermore, by means of long and cumbersome calculations, we can show that f, ()
L(Q)fw(x) - 0 while L f:v( )

=5-3-31A3¢3 1 (Bo).

= Lsz(x) =
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TABLE 2. Empirical power function EPow(h), for different sample sizes n and
local alternatives h. The empirical power and theoretical power is 0.05. Data
generating model: the 1-dimensional CIR process.

n = 50 n = 100
AKL GQLRT BS RAO T n AKL GQLRT BS RAO T n
h=0.00 0.050 0.050 0.050  0.050 0.050 h=0.00 0.050 0.050 0.050 0.050 0.050
h=0.01 0.041 0.044 0.045 0.052 0.053 h=0.01 0.040 0.043 0.046 0.053 0.051
h=0.05 0.025 0.032 0.031  0.059 0.071 h=0.05 0.019 0.032 0.034 0.056 0.070
h=0.10 0.009 0.040 0.042 0.068 0.145 h=0.10 0.010 0.054 0.051 0.062 0.150
h=0.20 0.013 0.148 0.167 0.075 0.371 h=0.20 0.017 0.205 0.207 0.063 0.461
h=0.30 0.044 0.416 0.458 0.069 0.721 h=0.30 0.102 0.537 0.553 0.064 0.797
h=0.40 0.186 0.700 0.741  0.067 0.923 h=0.40 0.338 0.827 0.836 0.064 0.957
h=0.50 0.475 0.883 0.907 0.067 0.989 h=0.50 0.685 0.950 0.958 0.063 0.995
h=0.60 0.760 0.967 0.981 0.061 0.997 h=0.60 0.896 0.993 0.994 0.059 1.000
h=0.70 0.913 0.994 0.998 0.059 1.000 h=0.70 0.977 0.999 0.998 0.056 1.000
h=0.80 0.981 1.000 1.000 0.051 1.000 h=0.80 0.998 1.000 1.000 0.053 1.000
h=0.90 0.997 1.000 1.000 0.041 1.000 h=0.90 0.999 1.000 1.000 0.048 1.000
h=1.00 1.000 1.000 1.000 0.041 1.000 h=1.00 1.000 1.000 1.000 0.044 1.000
n = 250 n = 500
AKL GQLRT BS RAO T pn AKL GQLRT BS RAO T n
h=0.00 0.050 0.050 0.050 0.050 0.050 h=0.00 0.050 0.050 0.050 0.050 0.050
h=0.01 0.042 0.049 0.046 0.052 0.050 h=0.01 0.043 0.043 0.042 0.051 0.048
h=0.05 0.026 0.045 0.046 0.054 0.071 h=0.05 0.030 0.046 0.044 0.051 0.074
h=0.10 0.021 0.086 0.084 0.057 0.144 h=0.10 0.032 0.095 0.091 0.052 0.147
h=0.20 0.093 0.347 0.342 0.062  0.505 h=0.20 0.180 0.384 0.380 0.055 0.530
h=0.30 0.372 0.752 0.756 0.064 0.864 h=0.30 0.598 0.802 0.800 0.058 0.869
h=0.40 0.790 0.943 0.944 0.065 0.977 h=0.40 0.898 0.972 0.972 0.058 0.990
h=0.50 0.952 0.994 0.994 0.064 1.000 h=0.50 0.992 0.998 0.998 0.059 0.998
h=0.60 0.996 1.000 1.000 0.060 1.000 h=0.60 0.998 0.999 0.999 0.057 0.999
h=0.70 1.000 1.000 1.000 0.060 1.000 h=0.70 0.999 1.000 1.000 0.056  1.000
h=0.80 1.000 1.000 1.000 0.057 1.000 h=0.80 1.000 1.000 1.000 0.055 1.000
h=0.90 1.000 1.000 1.000 0.055 1.000 h=0.90 1.000 1.000 1.000 0.055 1.000
h=1.00 1.000 1.000 1.000 0.050 1.000 h=1.00 1.000 1.000 1.000 0.051  1.000
n = 1000

AKL GQLRT BS RAO Ty n

0.050 0.050 0.050 0.050 0.050

0.044 0.048 0.047 0.051 0.050

0.035 0.059 0.057 0.051  0.079

0.067 0.120 0.118 0.054 0.144

0.274 0.429 0.428 0.058 0.527

0.725 0.844 0.840 0.061 0.886

0.953 0.983 0.983 0.062 0.989

0.996 0.998 0.998 0.062 0.999

1.000 1.000 1.000 0.062 1.000

1.000 1.000 1.000 0.060 1.000

1.000 1.000 1.000 0.059 1.000

1.000 1.000 1.000 0.059 1.000

1.000 1.000 1.000 0.058 1.000

Analogously to what done, from (6.3) to (6.8), the equalities (6.9) and (6.10) hold, if we are
able to show that

(6.13) By M(Xi — Xio1)") = R(O, AL X, 4),
(6.14) Ey(X — X)) =7-5-3A%¢_1(Bo) + R(6,AD, Xi—1).

We only prove (6.14), because (6.13) follows by means of similar arguments. The application of
the Ito-Taylor formula to the function f,(y) = (y — x)® yields

. AQ
EXN(X = Xic1)¥ = fxo  (Xio1) + AnLofx, , (Xio1) + TRLngi,l(Xiq)

A A
+ ?Lgfxifl(Xifl) + TLéin—l(Xifl)

JANS Ul u2 u3 CZ
+ / / / / / Eg LY fx, (Xen | 4y dug dugdusdugdus
0 0 0 0 0



EMPIRICAL L2-DISTANCE TEST STATISTICS FOR ERGODIC DIFFUSIONS 15

By applying (6.2), we get

/ / / / / EZ 1 Lngl 1(Xtﬂ 1+u )]duldUQdU3dU4dU5 (07A2,Xi_1).

Furthermore, by means of long and cumbersome calculations, we can show that f,(z) = Lo f.(z) =
L3f.(x) = L3 f.(x) = 0 while L f.(z) =7-5-3 - 41A%cH(By, 2). O
Lemma 3 (Triangular arrays convegence). Let U™ and U be mndom variables, with U being

Gl'-measurable. The two following conditions imply Y ., U v

n—oo

n

ZE[Ui |Gi" 1] .U ZE[(Ui )?1G11] 20
i1

i=1
Proof. See the proof of Lemma 9 in [11]. O
Lemma 4. Let f: © x R — R be such that f(6,x) € C%’l(@ x R,R). Let us assume Ay — Ag, if
A,, — 0 and nA\,, — oo we have that

;;jg:tﬁ_i(e)aégz f(z,0)mo(dz)
=1

uniformly in 6.

Proof. See the proof of Lemma 8 in [23].
(|

Lemma 5. Let f: © x R — R be such that f(6,x) € C%’l((% x R, R). Let us assume Ay — Ag, if
A, = 0 and nA,, — oo, as n — oo, we have that

0, j=1,k=1,
n ff , L 607 )Wo(dx) .7 = 17k = 27
1 o .
A Zfi—l(e)(Xi — (A, Xi—1,00))" n—>ioo ff R(9,1,2)mo(dx), j=2,k=3,
n =1 — —
j=1k=4,

3ff 0 .’E ﬂo, )7T0(d1'), j: 2,]{5 = 4,
uniformly in 6.

Proof. The cases j = 1,k =1 and j = 1,k = 2 coincide with Lemma 9 and Lemma 10 in [23]
and then we use the same approach to show that remaining convergences hold true.
By setting

G 0) = —oy e (O = 1A, X 1,60))"

we prove that the convergence holds for all 6. By taking into account Lemma 2

E’ Her (o) Zfz 1(O)R(0,1,X;_1) Lo, /f (0,2)R(0,1,z)mo(dz),
B (GHO)) = n% S 05+ 364 (60) + 0.1 X)) 2 0.
=1

Therefore by Lemma 3 we can conclude that

¢ n_mo/f 0, 2)R(6,1, x)mo(dx),
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for all 4. For the uniformity of the convergence we use the same arguments adopted in the proof
of Lemma 8 in [23]. Hence, it is sufficient to prove the tightness of the sequence of random
elements
1 i Jic1(0)(Xi — ri(An, Xi1,60))?
= A2

taking values in the Banach space C(0) endowed with the sup-norm ||-||~. From the assumptions
of lemma follows that sup,, Eo[supgeg [09Y,(0)|] < oo which implies the tightness of Y,,(9) for
the criterion given by Theorem 16.5 in [19].

By setting

G0) 1= e Fi (O)(Xi — (B, Xi1,00)",

we prove that the convergence holds for all . By taking into account Lemma 2 and Lemma 5

By 0) Zfl (O3 1(80) + RO, An X)) 22 3 [ 106,003 5o, 2)mo(do),

B¢ (0)?) = ; ZW +5-3¢}_1(Bo) + R(6, A, Xi-1)] =5 0.

¢ n— o0
=1

Therefore by Lemma 3 we get the pointwise convergence. For the uniformity of the convergence
we proceed as done above. O

Before to proceed with the proofs of the main theorems of the paper, we introduce some useful
quantities coinciding with (4.2)—(4.8) appearing in [23]. We can write down

(6.15) 1,4(0) — 1,,:(00) = ©i,1(6,60) + i 2(0,00) + ¢i3(6,60) + i,4(0,00),
where
X (9 2] ) R (XZ — Tko (A’erifh 90))2 1 + 22?0:1 A%dj(97Xi—l) _ 1 + Z?il A%d]‘(emXi_l)
SD’L,I yUo) - 2An Ci_l(ﬂ) Ci_1(ﬁo) )
i 2(9 90) - (Xz — Tk (AmXi—h 00))(Tk0 (AmXi—l, 90) — Tk (An; Xi—lae))
" ’ . An%ﬂ(@)
ko
x 91+ Z Agldj (97 Xi—l) ;
j=1
. _ ) 2 ko
pi3(0,00) = (P (Bny Kot 80) = Ty By X1, ) 1+ZA£Ldj(93Xi—1) ;

20,ci-1(B) =

ko
peal8.00) = 31og (200 1 05 A6, Xi) — €0 X))
j=1

2 ci—1(5o)
Furthermore
(6.16) Danlpi(0) =1 (0) +nf'a(0), h=1,2,...,my,
where

{1402, 8040, X:)}
Anci—1(B) ,

771 1(9) (804; Tko (A’nv XZ 1 9))(Xl - rko(An7 Xi—17 9))
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SR Ad B, dj (0, Xio1)

h (Y — (Y. _ _ 2 £aj= : j _ .

771,2(9) ° (X’L rko (An?XZ*he)) QAnCi—l(ﬁ) + 2 ;Anaah,ej (97X271)7
and
(617) 6,Bklpﬂ(9) = ﬁl(e) + §ﬁ2(9) + §ﬁ3(9)7 k= 17 27 ceey M2,
where

Xi — iy (Ap, X1, 0 1o,
€k, () i= | 22(0 ) - {ZAH% (0, X1 }+2ZAzﬁﬁkej<o,Xi_1>,
n+-vr— le

ey (K= (B X 1,0)%05,618) |1 RS i o v )
io(0) == — 20,2, () {1+§Aﬁldj(0,xz_1) +m7
1+ 35 Addi(0, X
13(0) = —(9,7ko (A, X 179))(Xi7"ko(An,X¢—1,9)){ 2 i 1)}.
Ancifl(ﬁ)

From (6.15) it is possible to derive
(6.18) 02, 0 Lpi(0) i= 81 (0) + 615°(0) + 8.4°(0) + 615(0),  h,k=1,2,....,mu,

where

n ooy (X =7 (B, Xio1,600))? o _
5i,1 (6) T QCi—l(B) {(aahak ) 1(9) + R(aa A’n? lel)}7
(5?’?(6) :: (X; — T'kO(An7Xi—1790)){ . bia() + R0, An, Xi 1)},

’ Ciﬂ(ﬁ)

57}7;3316(0) 7A aozhakel(ainfl)7

0% b bi_ —b;_ Oy, biz Ou, bi—
51K () = An{ 2, o bi—1(a)(bi—1(a) 1(a0)) + 1(a) 1(@) +R(9>An7Xi—l)},
’ ci—1(B)
(6.19) 02, 5. 1p.i(0) == v/ (0) + V50 (0) + v (), hk=1,2,..,ms,
where
Xl' -7 An, Xi_ ,0 2 _
)= Em D Ko WP g o)1 (9) + RO A X)),
1
V:fék(e) = §(X’L — Tk (ATm Xi—17 00))R(93 17 Xi—l))v
1
I/Zh"ék(e) = 5(3§hﬂk log C)i—l(ﬂ) + R(G, An7Xi_1))’
and
(620) 6%& (9) = ,ui,l(H)—i—ui’g(G), h=1,2,...my,k=1,2,...,my
where

_ (X = e (A, Xio1,6p))?
N%,l(a) = A,

Xi—r o Ay, Xi-1,0
pi2(6) = ( : (A 1.6))

R(0, A, Xi-1),

R(0, A, Xio1) + R(0, A, Xi—1).
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Proof of Theorem 2. We observe that
4

Z(‘pi,k(aa 90))2

k=1

n

1
=

|

Dy (6, 60) = +23 )i (0, 00) 011 (0, 60)

j<k

} |

Under Hy, from Lemma 4 and Lemma 5, we derive

R(G,An,Xi_l)}T

+ OPO(l)

1 & 1 n | (X = 7hy (A, Xi1,00))% 1 1
" ;(%1(9 ,60))* = ﬁ; l IA2 {011(5) T 1By +

o l n (X,L — Tko(AnaXifl790))4 1 _ 1 2

n 1:21 l 4A3 {Ci—l(ﬂ) ci—1(Bo) }

Py 3 2

e R e B e
! = (pi2(0,00))* = lz i Tho (QA — 1’90)) [bi—1(cv0) —bil(a)]ﬂ +op, (1)
n— ni4 Ci— 1(50)

Po,

M: N

AN 1 [ A2 (a0) = bimi ()
g;(%,a(e,eo)) = 2. 12 (5) ] +op,(1)
n%oo
1 ~ 11 ci-1(8)\1?
P 1 c(B.2) \1*
% {1°g<c<ﬁo,x>>} mo(de)
1 1 - (Xi_rko<AmX11»90))2{ o 1 }
;‘Pz 1(0,00)9: 4(0,60) = n z:zl N &1(B)  ci—1(Bo)
(C(? 1150 >+ or(1)
P, 1 1 c(B, )
n_moz/ (Bo, x { ) C(ﬂo,x)}bg (c(ﬁo,z)>wo(dx)
%Z‘Piﬂ(eveo)%a(@,%) n%o 0, j=2,3,
=1
%2%,2(9790)%4(9,90) n%@ 0, j=34,
=1

— 0,

n—oo

1 n
- Z ©i.3(6,00)pi.4(0,00)

i=1

uniformly in 6. Thus the statement of the theorem immediately follows.
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Let
nA [ag,ak p,n(9,90)]h:1 ..... mi . [aihﬁk pn(e 90)]Z % ,,,,,
6.21 C n 9’9 — =1,..., miy =1,..., m2
620 Conl0) = | oot 10 s Tyl 00l
where

(622) 03,075 p,n((?,@o):Qi:{3ah1p,i(9)3ak1p,i(9)+[1p,z'(9) 15.i(00)102, 0, 1p.i (0)}
i=1

(623) 03,5, Lo (0:00) =2 Z {06,1.(0)95,15.4(0) + [15.4(0) — 15.:(00)103, 5, 1p.s(0) } ,

(6-24) thBk p, n(9 90 - 22 {aahlp % 6>8Bk P, 1(9) + [117,1'(9) p 1(90)]8ahﬂk z(‘g)} .

i=1

The following proposition concerning the asymptotic behavior of C,,,(6,6) plays a crucial
role in the proof of Theorem 3.

Proposition 1. Under Hy, assume Ay — Ag and A,, — 0,nA,, — 0o, as n — 0o, the following
convergences hold

(6.25) Cpn(00,00) =% 21(0))

and

(6.26) up 11Cypm (B0 + 6, 600) — Cyp (60, 60)]| % 0, &n—0.
0|1<en n—oo

Proof of Proposition 1. We study the uniform convergence in probability of C,, ,,(8, 6p). Thus we
prove that uniformly in 6

K(0,0 K5(0,6 0
(627)  Cpal0,60) > 2K(0,60) = ( 1 o)JOr 2(0,60) K3(9,90)+K4(0,90)>
where
Oy, b(r, )04, b, )
K1(6,60) ::/ T c(Bo, )mo(dx),
(B, z)
0,00 5= 3 [ Rrtate) |55 1] [3555 4w (7255) - 1] e
,T c(B,x c(Bo,x
7/ {33%% (o, x)(b(a,x)—b(ao,x))+3ahyb(a,x)8akb(a,m)}
2 (B, )
_6(5071') o o C(B’x) - T
<[ 1o ()| e
—0z, 0, 0(c, @)
+/ h&k
c(B,x)
SHEE )R )+ 5 (bl0) ~ ba, )| mo(d)
,_1 C(ﬂ )a ( ,@kc (B,z) 30(60’ )_ }aﬂhc(ﬂw/lj)aﬁkc(ﬁ?m) ao(de
wat0.00 = 5 [ | S(3.2) e R R e ST
K4(0,00) := i/c(ﬁo,x)ﬁghﬂk log c¢(8, x) [c(ﬁl,x) - C(/B(lJ,l‘)] mo(dz)
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" i /log <cc((ﬁﬂo’,a;))> ((Bﬁ();x)) 5. C (B, x)mo(d)
" i / log <cc((g/6;’,g;))> 03,5, log c(B, x)mo ().

Let us start with the analysis of the quantity — agm »n(0,60) given by (6.22) which can
be split in two terms. From (6.16) folllows that
IR 1«
Y 01, 1p,i(6)0a, 1pi(6) = Dl (0) + 1l (0) (f 1 (0) + 0 (6))
nA,, Py niA, =1

for each @ € ©. Since Oy, Tk (An, Xi—1,0) = A0, bi—1(a) + R(0,A%, X; 1), by taking into
account Lemma 5, we get

(6.28)

1
nA, Zaahlpz 0)0a, 1p,i (0

7711 +OP0(1)

1 Oy, bi—1 () Doy bi—1 () . | ,
nAn; 2 (B (X — (A, Xi21,0))" + 0p, (1)

i Kl(ea 90)

n—oo

uniformly in 6. Now, by resorting (6.15) and (6.18), we rewrite the second term appearing in
(6.22) as follows

nA Z PZ PZGO)]aahaklpz TLA Z[ZZ@”@@Q 5hk9):|.

i=1 | i=1 j=1

By applying Lemma 1 and Lemma 5, the following convergence results hold

IS ik A (Bo,x) [ 1 1
ﬂAn ;@11(9;90)51 n—>oo / ahak (ﬁ, ) |:C(ﬁ,l’) - C(ﬁo,x):| Wo(dl'),
1 - 0 a(tho(k I 1 1
A, Z%,l(@,ﬂo)csf,ék(@) n%o 2/ 573 (;)‘ ) [c(ﬁ,x) _ c(ﬁo,l‘)] R(0,1,7)mo(dx),
TLA 28011 9 90 z3 N 4/ anay® [CC((BﬁO;;)) - 1:| 7"-O(dx)a
1

X Z ©i,1(0,00)57(0)
" i=1

P, 1 c(Bo, ) 02, o, bl 2)(b(a, ) — b(g, ) + Do, ber, )0, b(cv, ) o (da
23/ L(m) 1} { (6,7) o{de),
nin > o 0) 2 [ G e, b)) — oo )l

T Y000 ,HM/ < (Bo.a ) 7 i 0.2)m(d),

n
i=1

nA 2%4 (0,60)d 13 e 4/ anar® <CC((§O’Z)>>7T()(C1I)7
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1
A 2%4 (6,00)5(0)
92 . bla,z)(b(a, ) — b(ag, 7)) + Oa, b, )0, b, )
/ log o ro(da),
n~>oo 2 ﬁo» C(B) I‘)
A Zm (8,60)5!(6) =% 0, j=1,3,4,
1 Py .
nA 2@1,3(0ﬂ00)5z}t’]k(0) njgo 03 J= 17273347
" oi=1
1< ok Po
A Z%,4(9,90)5i72 @) — 0,
" oi=1
uniformly in 6. Finally, since d;(0,z) = —e; (0, z), we get
1 i Py
(6'29) nA,, 4 Z Dyl 1y 90)]aahaklpyi(0) n:; KQ(ea 90)

uniformly in 6. Hence, by (6.28) and (6.29), we immediately derive

(6.30) nA —— 2, Ty.n(0,00) %2(K1(9,90)+K2(0,90))

uniformly in 6.
Now, we consider the elements of the matrix C, ,(6,6o) given by (6.23). First, we study the
convergence probability of

n

- Z 03, 154(0)03, 1p4(0) = — S (11 (6) + €la(6) + o (0)) (€51(6) + E5(0) + €4,(0))

i=1

Since 9, ko (A, Xi—1,0) = R(0, A%, X;_1), from Lemma 5 and Lemma 1 we derive

(631 305,160, 15.:(60) = Z& )+ or, (1)

i=1

_ 72 aﬁhC'L 1 aﬁkcifl(ﬂ) (X — Tk, (A X 1 0))4
i 0 ny<r1—D

4A%ci_1(B)
L1 Z 6&012& c@;jk(cﬂi)_l(ﬁ) (Xi — 71y (Ap, Xi1,0))?
I
—> K3(0790)

n— oo

uniformly in 6. Now, by resorting (6.15) and (6.17), we rewrite the second term appearing in
(6.23) as follows
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By taking into account again Lemma 1 and Lemma 5, the following results yield

1 _ 1
C(B7x) 0(607.7;)

mo(dx)

*Z% 1(0,00)vi3(0) — c(Bo, )83, 5, log (3, ) {

*)004

Po

ZZQOZ‘A(H,H())VZ‘J(Q) n%zc i/log (CC((BO”Z))> C((ﬁﬁo’ )) 2 5.c (ﬁ7 )Wo(dx)
72()014 9 90 1/13 9) /log (;((65071[2)

fch“ (6,600)vi.;(0) *) 0, j=1,2,

1
% 4 ) 8%}1,519 log C(ﬂ, x)’]TO(de')

7Z§01k900 Vi 0) —>0 k,j:1,2,3,

-~ Z pialf,60)vi2(0) ni 0,
=1

—00

uniformly in 6. Finally

P
(632) - Z D, z p 7 00)]8,3h,3k D, 1(0) njogo K4(93 00)
uniformly in §. Therefore, by (6.31) and (6.32), we get
1
(6.33) =3, T (0,00) n%; 2(K5(0,00) + K4(0,00))
uniformly in 6.

Recalling the expressions (6.16), (6.17), (6.20) and (6.15), by means of similar arguments
adopted above, it is not hard to prove that

n—oo

Po
ana;Llp7 aBk pZ( ) — 0
i=1

and

Z[lp,i( pl(eo)]aahﬁk (9) i) 0

n An — n—o00
uniformly in 6. This implies that
Po
(6.34) nf 02,5, Tp.n(0,60) = 0

uniformly in 6.
In conclusion the results (6.30), (6.33) and (6.34) lead to the convergence (6.27). Moreover,
immediately (6.27) implies (6.25) since K (6p,00) = I(6p). From the inequality

sSup HC;DJL(60 + 9790) - Cp,n(QOa 90)”

[10]|<en
< sup ||Cpn(Bo +6,600) — 2K (6o +6,60)|| + sup ||2K (8o +6,60) — 21(6o)]]
[10l1<en [16]|<en

+1121(00) — Cp.n (6o, 60)l|
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follows (6.26). Indeed, (6.25) leads to ||2I(6p) — Cpn(60,60)]| — 0,e, — 0, while the term
sup|jg||<e, [1Cpn(00+0,00) —2K (00+0, 00)|| 22, 0,e,, — 0, by the uniformity of the convergence
= n— oo

(i.e. by the result (6.27)). Furthermore, sup)jg <., [[K(60+0,60)—1(60)l| Lo, 0,e, — 0, because
- n— oo

the assumptions Az and As, imply that K (6, 6p) is a continuous function with respect to 6. O
Now, we are able to prove Theorem 3.

Proof of Theorem 3. We adopt classical arguments. By Taylor’s formula, we have that

(6.35) Ty (Bp.ny 00) = Tpn (60, 00) + 19Ty (80, 00) By — 60)
1 . 3 . B A
+ 5((971 - 90)‘?(”) 1/2)/Ap,n( D, 90))‘?(”) 1/2(917@ - 90)
1 - R .
= 5((911 - 90)@(”)_1/2)/Ap,n(9p,m 90)@(”)_1/2(671 - 90)

where in the last step we denoted by

1
Apn(Bp,n,00) = p(n)'/? / (1 = w) 3Ty, (8o + u(Bp.n — b0), bo)dup(n) "2
0

1
1
_ / (1= )(Cpn (B0 + u(Bpn — 00),00) = Copon (00, 00)du + 5Cpn(Bo, 60).
0
Proposition 1 implies
(6.36) Apon (0, 60) % 21(65).

By taking into account (6.35), (3.16) and (6.36), Slutsky’s theorem allows to conclude the proof.
O

Proof of Theorem 4. Under Hj , we have that (see Lemma 2 in [21])
(1) ™2 (B — (B + p(m)h)) 5 N(0,1(60) ).

n—oo

Therefore, under the hypothesis Hj j,
_ A _ A d _
o(n) 1/2(917,71 —to) = ¢(n) 1/2(917,71 —0)+h — N(h,I(6o) 1)

n—oo

and

Copm(Bymr00) =2 21(6) (under Hy ).

n—oo

Hence, from (6.35) we obtain the result (4.7). O
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