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Abstract

In the brain, Oxidative Stress (OS) contribute to structural and functional changes associated with vascular aging,
such as endothelial dysfunction, extracellular matrix degradation, resulting in age-related reduced vasodilatation in
response to agonists. For this reason, OS is considered a key factor in Alzheimer’s Disease (AD) development and
recent evidence correlated oxidative stress with vascular lesion in the pathogenesis of AD, but the mechanism still
need to be fully clarified.
The etiology of AD is still not completely understood and is influenced by several factors including Apolipoprotein
E (ApoE) genotype. In particular, the Apo ε4 isoform is considered a risk factor for AD development.
This study was aimed to evaluate the possible relationship between three plasmatic OS marker and Apo ε4 carrier
status. Plasmatic soluble receptor for advanced glycation end products (sRAGE) levels, plasma antioxidant total
defenses (by lag-time method) and plasmatic Reactive Oxygen species (ROS) levels were evaluated in 25 AD
patients and in 30 matched controls. ROS were significantly higher while plasma antioxidant total defenses and
sRAGE levels were significantly lower in AD patients compared to controls. In AD patients lag-time values show a
significant positive linear correlation with sRAGE levels and a (even not significant) negative correlation with ROS
levels. Lag-time is significantly lower in ε4 carrier (N = 13) than in ε4 non-carrier (N = 12). Our result confirms the
substantial OS in AD. Lag-time levels showed a significant positive correlation with sRAGE levels and a significant
association with ε4 carrier status suggesting that plasmatic lag-time evaluation can be considered as a potential
useful OS risk marker in AD.
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Introduction
Alzheimer disease (AD) accounts for the largest propor-
tion of dementia diseases in the older population [1].
Recent evidences indicated that vascular dysfunction
and damage are linked to cerebrovascular disorders in
the elderly and increase significantly AD incidence [2].
The vascular endothelium is a major target of oxidative
stress (OS) caused by Reactive Oxygen species (ROS),
which play a critical role in the pathophysiology of
vascular disease. ROS are important regulators of the

inflammatory response: on one hand, at low concentra-
tion they act as regulators of cell growth and activity in
the inflammatory process, on the other hand, at high
concentration they have deleterious effects on cells and
tissues [3]. The oxidative stress results from an imbalance
between ROS and antioxidant molecules, resulting in an
excess of ROS leading to cell injury and death and it is
commonly associated with ageing process and age-related
degenerative disorders [4]. Compared to other organs, the
brain is more vulnerable to oxidative stress due to its high
rate of oxygen consumption [4]. In the brain, OS also con-
tribute to structural and functional changes associated
with vascular aging, such as endothelial dysfunction,
extracellular matrix degradation, resulting in age-related
reduced vasodilatation in response to agonists [5]. For this
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reason OS is considered a key factor in AD development
since asymptomatic stages [6–8]. Recent evidences corre-
lated oxidative stress with vascular lesions in the patho-
genesis of AD, but the mechanism still need to be fully
clarified.
The etiology of AD is still not completely understood

and is influenced by several factors including Apo lipo-
protein E (ApoE) genotype [9], considered an important
risk factor for AD. In particular, ApoE exists in three iso-
form (ApoE2, ApoE3 and ApoE4) but the risk for AD
development strongly increases only in the ApoE4 (ε4)
carriers [10]. The aim of this study is to measure plas-
matic OS markers in AD patients to evaluate the pos-
sible role of OS biomarkers as noninvasive blood-based
tool to evaluate AD diagnostic and monitoring. In
addition, plasmatic OS markers will be evaluated in
ApoE4 (ε4) carrier and not carrier AD patients, in order
to identify a possible correlation with ApoE4 (ε4) status
and define a potential profile of risk factors for AD
development.

Material and methods
Subjects
Twenty-five patients with Alzheimer’s Disease (AD), aged
74.0 ± 6.34; including 13 ε4 carrier and 12 ε4 non-carrier,
were recruited from UOSD Neurologia-Malattie Neurode-
generative, Fondazione IRCCS Ca′ Granda Ospedale
Maggiore Policlinico, Milan, Italy. The control group was
composed by 30 adult volunteer blood donors, aged 75.36
± 10.71, from the Italian Association of Blood Volunteers
(AVIS) in Milan, Italy. The study was carried out in ac-
cordance with recommendation of ethical committee of
Fondazione IRCCS Ca′ Granda Ospedale Maggiore Poli-
clinico (approval number: 441/2016) All subjects gave
written informed consent in accordance with the Declar-
ation of Helsinki.

Materials
Commercial chemicals were of the highest available
grade. The water routinely used was freshly redistilled in
a glass apparatus. Copper (II) sulphate (CuSO4), was
purchased from Sigma Chemical Co. (St. Louis, MO,
USA). All other reagents were purchased from Merck
(Darmstad, Germany). D-ROMs kit test was purchased
from Diacron International (Grosseto, Italy).

Blood samples and serum/plasma preparation
Plasma was prepared from heparinized venous blood.
After collection, blood samples were immediately centri-
fuged for 15 min at 3000×g and plasma immediately
withdrawn and stored at − 20 °C until ELISA assay and
evaluation of plasmatic oxidative status.

Evaluation of plasma oxidative status
Plasma lipid hydroperoxide levels (ROS) were deter-
mined colorimetrically according to Trotti et al. [11] and
expressed as H2O2 equivalents.
The kinetics of plasma oxidation, induced by addition

of CuSO4 0.5M, were determined at 37 °C by monitor-
ing the development of fluorescence at 430 nm, setting
the excitation at 355 nm as described by Cervato et al. [12]
by Multilabel Counter Wallac 1420 from PerkinElmer.
This method allows the evaluation of the peroxidation kin-
etics monitored following the formation of fluorescent ad-
ducts originating from the reaction of aldehydes (derived
from lipid peroxidation promoted by Cu++ bound to apoli-
poproteins) with amino groups of plasma proteins and/or
phospholipids. The kinetic is expressed by a sigmoid curve
that can be divided into an initial latency phase, followed
by a second propagation phase. The initial latency phase
(lag time, expressed in minutes and calculated as the inter-
cept of the linear regression of the propagation phase with
that of the latency phase) is an index of lipoprotein resist-
ance to peroxidation.

sRAGE ELISA assay
Levels of soluble RAGE (Receptor of Activated Glycoslation
Endproducts) in plasma were determined by ELISA com-
mercial assays, according to the manufacturers’ instructions
(sRAGE: R&D Systems, Minneapolis, Minnesota, USA).
For the sRAGE assay, the sensitivity was 4.44 pg/mL, and
intra- and inter-assay coefficients of variation were 2.4 and
4.7%, respectively.

Statistical analysis
The Shapiro–Wilk test showed no significative differ-
ence from normal distribution. Therefore, parametric
techniques were used. Means were compared by Student
t-test. The Pearson correlation coefficient (r2) was calcu-
lated to determine the correlation between values mea-
sured by different assays. Distribution and correlation
analysis were performed using the SPSS STATISTIC 25
package (SPSS Inc., Chicago, IL, USA).

Results
Plasma peroxidation parameters.
ROS were significantly higher (P < 0,01) in AD patients

compared to controls, while plasma antioxidant total de-
fenses (measured by lag time) and sRAGE levels were
significantly lower (P < 0,001) in AD patients compared
to controls (Fig. 1).
In AD patients lag-time values show a significant

(P < 0,05) positive linear correlation with sRAGE levels
and a negative correlation, even though not significant,
with ROS levels (Fig. 2).
Evaluation of OS according to ApoE4 ε4 carrier status.
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Lag-time is significantly lower (P < 0,05) in ε4 carrier
than in ε4 non-carrier (Fig. 3).

Discussion
The brain is the most metabolically active organ in the
human body and requires around the 20% of the
whole organism’s energy. There are increasing evi-
dences that a failure in the ability to maintain a
well-balanced ROS level causes cerebrovascular dys-
function, which promotes an increase in blood-brain-
barrier (BBB) leakage interfering with brain energy
supply and homeostasis and increasing amyloid β (Aβ)
peptide deposition in vascular walls [13]. Alterations
in BBB features are associated with oxidative stress
and inflammatory processes, leading to neurodegener-
ative conditions resulting in a decline of cerebrovas-
cular function, typical of age-associated diseases, such
as AD [8, 13, 14].
It was demonstrated that the risk for AD is strongly

increased in the ApoE4 (ε4) carriers [10] and that the
occurrence of OS in neurological disorders as mild cog-
nitive impairment (MCI) could be related to ε4 carrier
status [15].

In our study we have evaluated in AD patients,
both in ApoE4 (ε4) carriers and non-carriers, three
plasmatic OS markers (Plasmatic soluble receptor for
advanced glycation end products – sRAGE - levels,
plasma antioxidant total defenses, by lag-time method,
and plasmatic ROS levels in order to evaluate a
possible association between these OS markers and
ApoE4 (ε4) carrier status.
To evaluate the antioxidant defenses in vivo we evalu-

ated the total “oxidation resistance” of plasma lipopro-
teins using the fluorescent kinetics method of Lag-time
[12, 16] that provides a comprehensive picture of plasma
susceptibility to peroxidation in comparison with the con-
ventional measurements of antioxidant and pro-oxidant
ratios, including the antioxidant enzyme activities [17].
Several studies in literature reports showed an increase

of OS markers in AD patients, confirming the strong re-
lation between OS and AD [5, 18–20]. In addition, the
presence of oxidative stress markers such as advanced
glycation End Product (AGE) has been detected in AD
patients [4, 21, 22]. Consistently, we observed a signifi-
cative increase of ROS in AD patients, associated with a
significative decrease in antioxidant defense, measured

Fig. 1 Plasma peroxidation parameters. The following parameters was measured in AD jj patients and controls: Soluble RAGe (sRAGE, pg/mL), Lag
Time (min) and ROS (Hydroperoxides). Hydroperoxides are expressed as equivalent of H2O2 mg/dL of plasma. Results are expressed ad mean ± SD. ∗∗
P < 0.01 ∗∗∗ P < 0.001 controls versus AD subjects

Fig. 2 Correlation analysis between lag time and others oxidative parameters in AD patients. Lag-time values show a significant (p < 0,05) positive
linear correlation (r2 = 0,347) with sRAGE levels (ng/mL) and a (even not significant) negative correlation (r2 = − 0,101) with ROS (mg/dL) levels
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by lag time and significative decrease of the soluble AGE
receptor sRAGE. sRAGE have been extensively studied as
protective factor against AGE induced cell damage [23–26].
Indeed, soluble receptor for AGE (sRAGE) counteracts the
adverse effects of AGE-RAGE interaction by competing
with RAGE for binding with AGE and low levels of serum
sRAGE have been proposed as a biomarker for diseases, in-
cluding AD [25]. In our study, sRAGE also showed a signif-
icative correlation with the other two biomarkers of
oxidative stress, lag time and ROS, confirming that in AD
patient’s sRAGE can be considered a useful tool to evaluate
OS status, along with ROS and lag time. Many end-prod-
ucts of peroxidation have been identified in the brain tissue
and in blood circulation of AD patients suggesting that OS
biomarkers could represent useful tools for noninvasive
blood-based AD diagnostic and monitoring. Considering
that the ideal biomarker should be not only rapid, reprodu-
cible, easy to perform but also less invasive as possible, in
particular in the elderly, the plasmatic OS determination in
AD clinical practice is getting an increasing importance
[27, 28]. A first correlation between carrier and OS bio-
markers in neurodegenerative disease was suggested in
mild cognitive impairment (MCI) where a positive correl-
ation was observed between superoxide dismutase activity
and MCI [29], and in the neurodegenerative aspects of AD
[30, 31]. Previous evidences showed a specific pattern, char-
acterized by higher tHcy and lower TAC levels, was ob-
served in AD, indicating that oxidative imbalance seems to
play a role in the pathogenesis of AD [32]. In addition,
Miyata and Smith [33] showed that ApoE has allele-specific
beneficial effect against free radicals reducing neuronal
death due to hydrogen peroxide and beta-amyloid through
antioxidant activity. This protective effect is detectable with
the E2 isoform but tends to vanish with E3 isoform and

almost disappear with E4 isoform, indicating that the
ApoE4 (ε4) isoform lack the antioxidant protective activity
and is more prone to OS damage [34, 35].
According to all these evidences our data showed a

consistent OS condition in the AD patients with an in-
triguing result regarding plasma antioxidant total de-
fenses (lag-time).
Lag-time method allows a complete evaluation of the

total plasmatic antioxidant defenses in vivo in compari-
son with the conventional measurements of pro-oxidant
markers. Indeed, despite a practically equivalent OS
levels in e4 carrier and not carrier (as pointed out from
ROSs and sRage values), lag-time results to be signifi-
cantly lower in the e4 carrier subject. Indeed, this par-
ameter resulted significantly lower in the ApoE4 (ε4)
carriers in comparison to the not carrier suggesting a
significant decrease of antioxidant defenses in these sub-
jects, consistently with a previous work in a murine
model by Myata and Smith showing, in a murine model,
the decrease of the antioxidants activities due to the
presence of the allele ApoE4 [33] (ε4).
Taken together these results indicated that Lag-time

levels, as measure of antioxidant defenses, shown a signifi-
cant decrease in APOε4 carrier and a positive correlation
with the decrease of the protective factor sRAGE levels.

Conclusion
Our results confirm the substantial OS in AD. Lag-time
levels, as measure of antioxidant defenses, showed a posi-
tive correlation with ApoE4 (ε4) carrier status and sRAGE,
suggesting that plasmatic lag-time evaluation can be con-
sidered as a useful OS marker for monitoring AD patients
and as a further potential risk marker for AD development.
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