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The local intrinsic curvature of wavefronts
allows to detect optical vortices
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Abstract: We describe a method for effectively distinguishing the radiation endowed with
optical angular momentum, also known as optical vortex, from ordinary light. We show that
by detecting the inversion of the transverse intrinsic curvature sign (ITICS) an optical vortex
can be locally recognized. The method is effective under conditions of huge importance for the
exploitation of optical vortices, such as the far field of the source and access to a small fraction of
the wavefront only. The validity of the method has been verified with table-top experiments with
visible light, and the results show that a measurement performed over a transverse distance smaller
than 4% of the beam diameter distinguishes a vortex from a Gaussian beam with a significance
of 93.4%. New perspectives are considered for the characterization of vortices, with potential
impact on the detection of extra-terrestrial radiation as well as on broadcast communication
techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Radiation carrying orbital angular momentum (OAM, or vortex) is a form of exotic radiation
discovered at the end of the twentieth century as described by Allen et al. [1]. It differs from
"ordinary" light since the quantized orbital angular momentum L, = /7% per photon, where [
is an integer. This introduces an additional degree of freedom that opens new perspectives in
different fields of applied and fundamental science such as singular and quantum optics [2, 3],
astronomy and astrophysics [4-7], quantum information and computing [8, 9] as well as
telecommunications [10-12].

From a classical point of view, the radiation wavefront of a vortex is an helicoid with winding
number /. It is characterized by a phase singularity with zero intensity and by an azimuthal
phase dependence ¢/ of the associated scalar field around the singularity. The integral
I = % 5£r Vo - ds is the topological charge of the vortex, where I' is a closed curve around the
singularity.

Vortices can be easily produced in the laboratory by exploiting refractive optics or holographic
methods. By contrast, a dowel is today missing concerning the existence of vortices from natural
sources, including the case of extra-terrestrial sources. A possible reason for this comes from
the relative difficulty in detecting and characterizing a vortex far from the source. Moreover,
deep propagation of vortices has not yet been explored at any wavelength. To our knowledge,
the maximum experimental distance covered by a vortex in free propagation is in the kilometric
range, as for example achieved by Tamburini et al. [13] in 2012 and Krenn et al. [14] in 2014.
Finally, up to now no experiment out of laboratory exists to clarify whether and how topological
properties of vortices degrade through the Earth’s atmosphere, nor the interstellar medium.

Several methods have been proposed in the past to measure vortex properties in the laboratory
by using interference, diffraction [15-20] and refraction [21-23]. These techniques are generally
intended to provide topological and phase properties by accessing a substantial portion of the
vortex field around the phase singularity. An effective sorter of orbital angular momentum states
has been proposed by Berkout et al. [24]. They converted the helically phased light beam into a
beam with a transverse phase gradient by using two optical elements, illuminated by the entire
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Fig. 1. Schematic representation of the experimental setup. Vortices are generated by
diffraction from a holographic pattern imposed through a digital micromirror device (DMD).
Intrinsic curvature is measured with the scanning interferometric technique detailed in [25]
which uses an array of double-slits and a Charge Coupled Device (CCD) to perform
measurements along linear profiles.

cross section of the incident beams.

In this work we propose and experimentally demonstrate an effective approach to measure
vortices by accessing a small portion of the wavefront only. The method is based on the detection
of the Inversion of the Transverse Intrinsic Curvature Sign (ITICS). Since the intrinsic curvature
is a local differential property of the wavefront, this approach can really be strictly local, being
ultimately related to the topological properties of the helicoidal surface.

To our knowledge this is the first experimentally proven method to recognize a vortex in a
strictly local manner which is of utmost importance for working at large distances from the
source, a definite need in many cases of interest.

2. Invertion of the transverse intrinsic curvature sign (ITICS)

Helicoidal wavefronts are ultimately different from ordinary light beams. By describing a
wavefront as a differentiable regular surface, we introduce the first fundamental form E du® +
2Fdudv + Gdv?* and second fundamental form e(du)? + 2 fdudv + g(dv?), where E, F, G, e, f, g
are 2-dimensional real functions defined for each point (i, v) of the surface. They are related to

eg—f? _ eG-2fF+gE
ro-r2 and Hy = SEam0s,

the intrinsic Gaussian and mean curvatures as K, = respectively.

In the case of an helicoid E = 1,e=g=F =0,G = ci +pfz, f= —ch/,/c}zl +p]21. Therefore

Kp = —c}/(c; + p})* < 0 and H, = 0, where py, is the radial coordinate, ¢, = 1/k is the helicoid
slant and k is the wavenumber.
We base our method on a fundamental property of helicoids that is to be minimal surfaces,

Hp, = 0. Thus the principal curvatures, deduced by K, and Hy, as K12 = Hp + /Hi - K =

+cp/ (c,zl + pfl), have opposite signs at any point of the surface, K; = —Kj5. This is not true for
wavefronts of ordinary light (i.e. no minimal surfaces) in divergent free propagation which are
generally characterized by principal curvatures of the same positive sign. Moreover, due to the
conservation of the gaussian curvature under isometric transformations and because K, < 0,
the inversion of the curvature sign, sign(K;) = —sign(K>), is a local intrinsic property of the
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Fig. 2. Left: Sketch of the helicoidal wavefront of OAM radiation and projection of
the normal curvature (red line) on the detection plane. The local frame is given by the
independent vectors (Py, Py). On the detection plane the reference system has coordinates
(x,y). Right: Representation of the scan path (red) across the vortex cross-section and the
subintervals (green and blue) used for the local analysis.

curvature of OAM radiation. Therefore, we exploit the measurement of the ITICS to distinguish
vortex radiation from ordinary light without any need to access the entire wavefront.

3. ITICS measurement with scanning interferometry

The technique we use to prove the ITICS is based on scanning interferometry of a double-slits
array [26-31] however, other techniques able to measure the local curvature of the wavefront
can be adopted to this aim, such as Hartmann-type wavefront sensors. The optical layout is
schematically shown in Fig. 1. Two beams with charge / = 1 and / = 0, are generated from
digital holograms produced by a DPL6500 Digital Micromirror Device (DMD) illuminated by a
He-Ne spatially filtered laser beam. The beam impinges onto an array of double slits in order to
measure the shear displacement Apg as described in [25]. The method is realized by translating
the double-slits along the horizontal axis in the detection plane with a step resolution of 40 um. A
cooled low-noise Charge Coupled Device (CCD) continuously tracks the slits in the observation
plane at a distance of 45 cm from the detection plane and the interference pattern, produced at
each scan step, is acquired for the analysis. The analysis occurs by selecting from the interference
pattern a limited square region around each point of interest. The shear displacement is the
horizontal distance between the central maximum of the interference pattern and the double slit
center, measured in the limited region, as a function of the scan variable x. In the limit case of
small scan step and slit separation, Ax — 0, D — 0 we write

Ap¢=/¢”%dx+l( (H

where 7’ is the distance between the double-slit array and the detection plane, ¢’ is the second
derivative of the phase function ¢, i.e. the radiation phase measured along the scanned profile,
and K an additive constant. The shear displacement is easily related to the local curvature by
means of

¢N 1 dAp¢
C=—=— .
k 7/ dx

The detection plane is maintained perpendicular to the optical axis z and the scan is performed

@)
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Fig. 3. Experimental data (squares) of the shear displacements Apy, of the [ = 1 (top) and
[ = 0 (bottom) beams measured with horizontal scans across the extended region. Dashed
lines are the best fits to data. Solid lines are the difference between the fitted lines and the
linear drifts due to the beam divergence. The green and blue regions in the plots evidence
data used in the local analysis. Notice that the magnitude of Apg of [ = 1 and I = 0 are not
at the same level since the curvatures due to the beam divergence are different.
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Fig. 4. Curvatures obtained from the fits shown in Fig. 3 for/ = 1 and / = 0. The solid
line is the difference between the curvature of the / = 1 beam and the curvature due to the
beam divergence (0.26 m~1). The inversion of the beam curvature is evident at x = 0 mm.
The dashed line is the difference between the curvature of the / = 0 beam and the curvature
due to the beam divergence (0.18 m~!) which provides the curvature C = 0 of a collimated
beam.

along a horizontal axis at a minimum distance of 0.4 mm below the singularity as shown in
Fig. 2 (right). We first prove the correctness of the behavior of the shear displacement and the
corresponding measuring method by reporting the results obtained by scanning a large region
(2320 pm across, i.e. 46% of the beam diameter). Then we show that the analysis maintains its
reliability by limiting the measurement to about 4% of the light beam diameter (+160 um), thus
providing the effectivness of the local measurement.

4. Extended measurement

The results are represented in terms of the shear displacement Ap, which is the quantity directly
measured during the scan. The shear displacement in Eq. (10) has been derived theoretically in
the appendix in order to fit the data and to check the consistency of the measurements with the
theory. Equation (10) has been obtained considering the projections of the normal curvatures of
the helicoid on the detection plane, as depicted in Fig. 2 (left). The projection gives a negligible
relative discrepancy with respect to the curvature calculated in the tangent space Tp,S of the
helicoid. The results of the extended measurement for a vortex (I = 1) and of a Gaussian beam
(I = 0) are shown in Fig. 3. The reported shear displacements have been obtained by averaging
the measurements from six scans with double slits 50 um wide and spacing of 160 yum, 200 ym,
240 pm, 280 um, 320 um, 360 ym.

The divergence of the beam introduces a linear drift overlapped to the shear displacement
caused by the intrinsic curvature of the helicoid. This effect is evident in both data and theory. In
Fig. 3 the linear drifts have been subtracted from the theoretical fits (dashed lines) to obtain the
shear displacements of collimated / = 1 and / = 0 beams (solid lines). The linear drift has been
evaluated separately by fitting the shear displacement measured at y = —2.7 mm. Far from the
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Fig. 5. Experimental data of the shear displacements Apy of the [ = 1 beam measured with
horizontal scans across the extended region. The shear displacement has been evaluated at
different vertical distances from the singularity.

singularity the variations of Apy due to the intrinsic curvature are negligible with respect to the
linear drift (due to the beam divergence) and r4 in Eq. (10) can be estimated more accurately.

The wavefront curvature across the sampled region has been estimated for both/ = 1 and [ = 0
from the shear displacements of Fig. 3 (solid lines) by using Eq. (2). Results are shown in Fig. 4
for both [ = 1 and [/ = 0. The normal curvatures reverse their signs for / = 1 at x = O mm as
shown by the solid line.

The method has been verified by performing the analysis at different distances from the
singularity: y = —0.55 mm, y = —0.84 mm and y = +0.41 mm as shown in Fig. 5. By increasing
the distance the peak of inversion becomes less visible since the Gaussian curvature of the
helicoid decreases by increasing the radial coordinate, as predicted by Eq. (10). Furthermore,
the shear displacement at y = +0.41 mm (solid black squares) shows a maximum instead of the
minima observed for points with y<0. This is in agreement with the azimuthal symmetry of the
helicoid.

When the scan direction is along the x axis the curvature changes from negative to positive in
the negative half-plane y < 0, while it is reversed in the positive half-plane y > 0, the amplitude
A in Eq. (10) is positive for y > 0 and negative for y < 0. Notice that the x position of the
maximum is remarkably displaced on the right. A possible reason is a small misalignment
(inclination) of the double-slit with respect to the y axis

5. Local measurement

The local measurement is a subinterval of the extended range obtained with the horizontal scan.
It is strictly local since it corresponds to a limited scan range along the horizontal direction
—160 < x < 160 um. In the vertical direction the locality of the measurement is given by limiting
the analysis of the interference pattern within the range +74 um (+5 pixel) around the point of
interest.
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Fig. 6. a) Representation of the spatial regions (red dashed lines) used in the experiment for
the local analysis at different distances from the singularity. Each region has a horizontal
range of £160 um and vertical range +74 ym. b) Representation of other possible scan
orientations. The ITICS is detected when the scan direction is orthogonal to the radial
direction as in A and B. The scan along the radial direction as in C cannot be used to detect

the ITICS.
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Fig. 7. Local analysis of the ITICS around x = =143 ym, y = —0.40 mm as in Fig. 3. p*
are the probabilities that random fluctuations give correlation coefficients |r| > [r*].
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Fig. 8. Local analysis of the ITICS around the point at y = —0.55 mm and y = 0.41 mm
as in Fig. 5. p* are the probabilities that random fluctuations give correlation coeflicients
Ir] > |r*].

In Figure 6(a) we show the scan regions used in the experiment. The red dashed lines represent
the regions of the local measurement around any point at different vertical distances from the
singularity, while the black arrow shows the scan direction, always orthogonal to the radial
direction.

In general, different conditions of detection could be adopted as shown in Fig. 6(b). The
ITICS can be detected at any position (except the singularity), but it cannot be detected at any
orientation. A convenient orientation is given by the orthogonality between the scan direction
and the radial direction (see the points A and B in Fig. 6(b)) where the second derivative of the
phase function and hence the curvature exhibits the change of sign. On the contrary, a scan along
the radial direction, as in the case of the point C sketched in Fig. 6(b), does not produce any
inversion, being constant the phase function (for the collimated beam). When the position of the
singularity is unknown, several scans are necessary, until the orthogonality between the scan
direction and the radial direction is obtained. Moreover the slit length can be certainty shorter
than the vortex size, for example a double pinhole can be also used for measurements of the shear
displacement.

We now prove the capability of ITICS to provide local measurements within the green and
blue regions shown in Fig. 2 (right). Each region corresponds to less than 4% of the vortex
ring diameter, defined as two times the distance between the maximum of intensity of the
ring and the singularity. Notice that in the local analysis the divergence does not need to be
separately determined from additional measurements. The ITICS is detectable from Ap also
with the linear drift due to the beam divergence. The linear fits of Apy in the two regions
are shown in Fig. 7. The probability that the inversion is not due to a random fluctuation is
[T =p*(r] = IF DI = p~(Ir] = Ir~])] = 0.934, where r* = 0.89 and r~ = —0.93 are the
correlation coefficients of the data from the green and blue regions respectively and
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where I is the gamma function and n = 5 is the number of points used to estimate p*. Conversely,
the local analysis of the / = 0 beam does not show any inversion in the region of interest since the
correlation coefficients are both positive in the green (r, = 0.97) and blue (r;, = 0.96) regions.
Furthermore the probability that the missing inversion is due to random fluctuations is 1.4%.
Local analysis has been performed for the points positioned at y = —0.55 mm and y = +0.41
mm and the results are shown in Fig. 8. The probabilities that the inversion is not due to
random fluctuations are 87.5% and 96.7%, respectively. The lower probability at y = —55 mm is
motivated by the lower visibility of the peak, which decreases the signal-to-noise-ratio.

pE(Irl = Irol) =

6. Conclusions

Our choice for the scan extension is dictated by the instrumental apparatus, having 40 um
resolution and 10 um measurement accuracy. By improving the instrumentation in resolution
and accuracy, the scan extension can be in principle arbitrarily reduced. As an example, with a
few micrometers in both resolution and accuracy the scan extension can be down to 0.4% of the
entire wavefront.

We stress that in our measurements we compared two regions (green and blue in Fig. 2) just
for practical reasons. Actually, the ITICS method can be adopted by performing measurements
with different orientations around the same point (green or blue) by rotating the scan directions
transversely to the propagation axis.

When the geometry is unknown, several scans with different orientations (transversely to the
propagation axis) around the same point are necessary to detect the ITICS but with the huge
advantage of being able to distinguish OAM radiation at any arbitary point of the wavefront.

In principle, false positives can be also detected with the proposed method, since helicoids are
not the only known minimal surfaces, but other kinds of radiation wavefronts which are minimal
surfaces (i.e. the ITICS occurs at any point of the wavefront) are today unknown, except the case
of radiation carrying orbital angular momentum.

In conclusion, we have shown that by characterizing the ITICS an helicoidal wavefront can
be recognized from a Gaussian beam in divergent free propagation. We prove that over a scan
extension smaller than 4% of the beam diameter we can distinguish the vortex beam with a
significance larger than 93%. This limit can be reduced by improving the resolution and accuracy
of the measurements, thus making the method capable of a reliable local detection of a vortex
over a very small fraction of the wavefront.

The combination of working in the far field of the source and the local character of the
measurement opens the way to characterize vortices in a completely new set of conditions, from
extra-terrestrial sources to signal transmission at large distances.

Appendix: derivation of the projected curvature and fit function

Let Tp,S be the tangent space of the helicoidal wavefront S at the point Py and the detection
plane Dp orthogonal to the axis of propagation as sketched in Fig. 2.
Let’s define the phase function ¢(s) along a linear path L in Tp,S as the actual phase of the
radiation field along the straight line L parametrized by s and passing through Py in Tp,S.
Let’s define the projection of the phase function ¢(s) along z the new function

¢p(s) = ¢(s) + D(s)k, “

where D is the distance of light propagation between Py and the corresponding projection P in
Dp. ¢p(s) is the phase observed in P according to Fermat’s Principle of light propagation in an
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homogeneous medium.

We need the phase function ¢ p to be described in the reference frame (x, y) rather than the
local one. We then introduce the independent variable ¢ defined in the frame (x, y) which is
related to s by means of the linear transformation

s = agq, &)

where a depends on the reciprocal orientation of the plane Dp with respect to Tp,S. @ = 1 when
Dp and Tp,S are parallel. As shown in [25] and in Eq. (2) the curvature of radiation along a
linear path is locally given by the second derivative of the phase function. By using Eqs. (4) and
(5) we have

s =970 (L) +kp (L) ©
r\q) = dq dq) -
Because the distance D(s) is a linear application we obtain the projection as
$p(q) = 9" (s)a” ©)
and hence
C = Cna?, ®)

where Cy is the curvature in Py along the direction of the linear path in the tangent space
and C is the projected curvature measured in the detection plane described in the (x, y) frame.
For an helicoidal wavefront with pitch 2rc, = 633 nm detected at a distance p; = 0.4 mm
from the singularity at the angle 6 = —x/2 (with respect to the horizontal axis) we obtain
a? = cos*(c,/ pr)- The relative discrepancy of C with respect to Cyy is 1 — a? ~ 6.3 - 1078 and
can be neglected for our aims. The first derivative of the phase function ¢’(g) of the helicoid

along the horizontal axis in the detection plane is

2

q

1- 2.2
q-+py,

P'(q) = ———. 9)
N

Because Apg o« ¢’ (see Eq. (1) and Eq. (2)) the theoretical function to fit the experimental
data (as a function of the x coordinate) takes the form

1— (x—x0)?
(x—x0)>+p}

App(x) =A————+rgx+K (10)
(x = x0)* + p},

where xg, A, pp, are the fit parameters, r is the shear ratio due to the beam divergence and finally
K is an additive constant so that min{Apgs(x) — rax} = 0.
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