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Abstract

The reliability of risk measures for financial portfolios crucially rests on
the availability of sound representations of the involved random variables.
The trade-off between adherence to reality and specification parsimony
can find a fitting balance in a technique that ”adjust” the moments of a
density function by making use of its associated orthogonal polynomials.
This approach rests on the Gram-Charlier expansion of a Gaussian law
which, allowing for leptokurtosis to an appreciable extent, makes the re-
sulting random variable a tail-sensitive density function.
In this paper we determine the density of sums of leptokurtic normal vari-
ables duly adjusted for excess kurtosis by means of their Gram-Charlier
expansions based on Hermite polynomials. The resultant density can be
effectively used to represent a portfolio return and as such proves suitable
for computing some risk measures such as Value at Risk and expected
short fall. An application to a portfolio of financial returns is used to
provide evidence of the effectiveness of the proposed approach.
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1 Introduction
In the last decades, both the convergence of the financial and insurance markets
and the evolution of financial engineering, in purely financial and financial-linked
insurance contracts, have brought to the fore the importance of an accurate eval-
uation of financial risk. This has highlighted that the choice of the appropriate
distribution function underlying the measure of financial risks is a key problem
for operators and analysts.
Commonly used statistical models as well as several applications rest on the
assumption that asset returns are by and large normally distributed. Empirical
evidence, as highlighted by many authors like Mittnik et al. (2000) and Alles
and Murray (2010), provides sound arguments against this hypothesis. As a
matter of fact, it is well known that financial time series exhibit tails heavier
than those of the normal distribution. This feature turns out to be of promi-
nent importance in modeling volatility (Shuangzhe, 2006; Curto et al., 2009)
and more generally in the evaluation of the portfolio risk (Szegö, 2004). This
has led, on the one hand, to the use of alternative distributions like the Stu-
dent t, the Pearson type VII, inverse Gaussian and several stable distributions
(see e.g., Mills and Markellos (2008); Rachev et al. (2010)). On the other hand
approaches have been developed aiming at transforming the Gaussian law to
meet the desired features (see Gallant and Tauchen (1989, 1993); Jondeau and
Rockinger (2001); Zoia (2010)). This latter approach, which has the advantage
of allowing for greater flexibility in fitting empirical distributions, is the one
we have followed in this paper. Recently, Zoia (2010); Bagnato et al. (2015))
have proposed a method to account for excess kurtosis of a density based on
its polynomial transformation through its associated orthogonal polynomials.
In the Gaussian case, these polynomials are the Hermite ones and the polyno-
mially modified density is known as Gram-Charlier expansion. This approach
is particularly interesting because it can be tailored on the specific features of
the empirical distribution at hand and can be extended to other distributions
besides the normal one (see Faliva et al. (2016)).
This paper develops the approach further so as to obtain the densities of sums
of leptokurtic normal random variables with same or different kurtosis. After
adjusting the parent normal laws via Hermite polynomials, the density function
of the sum of the resulting Gram-Charlier expansions is obtained. The resulting
density proves to be more tail-sensitive than the Gaussian and as such suitable
for representing a portfolio return which can be used to measure the well known
Value at Risk. Further, since information on the magnitude of high risks is
extremely important, they are also applied to evaluate a coherent risk measure,
namely the Expected Shortfall.
An application to a portfolio of international financial indexes with a data-
set window covering the period from January 2009 to December 2014 provides
evidence of the effective performance of these Gram-Charlier expansions. In
accordance with the regulatory framework, the risk measures are evaluated at
97.5% and 99% levels to guarantee a prudent approach.
The structure of the paper is as follows. In section 2 we look at some standard
risk-measures, typically used in financial-insurance market. Section 3 explains
how to obtain distributions of sums of Gram-Charlier expansions. Section 4
provides closed-form expressions of the expected short-fall based on these dis-
tributions. Section 5 shows an application of these densities to a portfolio of
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financial returns which provides evidences of the effectiveness of the proposed
approach. Section 6 draws some conclusions. An Appendix completes the pa-
per stating the essentials notions about sums of densities of normal random
variables and Gram-Charlier expansions.

2 A glance at risk measures
As it is well known, different approaches are available to measure financial
and/or insurance risks (see, for all, Albrecht (2004) and Dowd and Blake (2006),
and the reference quoted therein). Descriptive measures based on the moments
of a probability distribution give only a partial representation of the risk. To
overcome this problem, a combination of these measures is often used, as hap-
pens for example with the mean and standard deviation in Markowitz portfolio
theory or the skewness and kurtosis when symmetry and probability concentra-
tion in tails are of interest. Unfortunately, the estimation of the moments of
a probability distribution may be quite sensitive to the sample and, when the
moments are infinite, even impossible.
The standard theory for decision under risks, based on the expected utility ap-
proach, may be difficult to implement and sensitive to individual risk tolerance,
due to the critical choice of the functional form of the utility function and the
complex evaluation of the risk attitude parameter.
Risk measures based on quantiles became very popular at the end of the 1980s,
because of their implementation in determining the regulatory capital require-
ments of the US commercial banks. Value at risk based models were introduced
in the Basel II agreement and later used for the calibration of the Solvency
Capital Requirement, in the Solvency II agreement.
The Value at Risk (V aR) represents the minimum loss within a certain period
of time for a given probability. By denoting with FX(x) the distribution func-
tion of a variable X representing the loss and with vq = inf{x : FX(x) ≥ q},
q ∈ (0, 1), the quantile function, then the V aR can be defined as

V aRX(q) = inf{x : FX(x) ≥ q} = F−1
X (q)

Since V aR is simply the threshold at a given probability q, that is

V aRX(q) = vq (1)

it does not provide information about the size of any losses beyond this point
of the distribution, although knowledge of the default size is crucial for share-
holders, management and regulators. In addition, V aR is not a coherent risk
measure (see Artzner P. (1999)) because it is not subadditive. Sub-additivity
is very important in several financial applications such as portfolio optimiza-
tion, where V aR can discourage diversification. In addition, V aR estimates
give incorrect results when losses/returns are not normally distributed and this
shortcoming turns out to be very critical in the presence of fat tails. Further-
more, V aR-models based on typical scenarios for discrete data series, can exhibit
multiple local extrema (see Uryasev (2000)).
The interest of financial and insurance managers in tail risks clearly justifies
the introduction of risk measures offering information on the magnitude of high
risks. The Tail Conditional Expectation (TCE) is defined as

TCEX(q) = E[X|X ≥ vq] (2)
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and provides the possible worst average loss. The TCE is not generally a co-
herent measure of risk, because it can be not sub-additive. This drawback is
evident when dealing with discontinuous distributions (for example with port-
folios containing derivatives) when the measure becomes very sensitive to small
changes in the confidence level.
A risk measure that respects the axioms of coherence is the Expected Shortfall
(ES)

ESX(q) = 1
q

(
E[X1{X≥vq}] + vq(P[X ≥ vq])− (1− q)

)
(3)

which is in general continuous with respect to the confidence level.
For real-valued random variables with continuous and strictly increasing dis-
tribution function and finite mean, the following proves true (see Acerbi and
Tasche (2002))

TCEX(q) = ESX(q) (4)

3 On the distribution of the sum of polynomially-
modified Gaussian variables

In this section we tackle the issue of specifying the density function of the
sum of polynomially-modified (namely Gram-Charlier expansions of) Gaussian
variables assuming independence.

Theorem 1. Consider n identically and independently distributed random vari-
ables X1, . . . , Xn having as common density a Gram-Charlier expansion defined
as follows(see Definition 2 in Appendix)

fX(x;β) =
(

1 + β

4!p4(x)
)

1√
2π
e−

x2
2 (5)

where β is a positive parameter subject to fX(x;β) being non-negative definite,
and

p4j(x) =

4j
2∑
i=0

(−1)i
(

4j
2i

)
x4j−2i. (6)

is the 4j − th degree Hermite polynomial.
Then, the density function of the sum Y = X1 + · · ·+Xn is given by

fY (x1 + · · ·+ xn;β) =
n∑
j=0

(
n

j

)(
β

4!

)j 1√
2nπ

(
1√
n

)4j
e−

y2
2n p4j

(
y√
n

)
. (7)

Proof. Bearing in mind the following property of Fourier transforms,

dnf(x)
dxn

↔ (iω)nF (ω) (8)

together with the noteworthy property of the Gaussian law,

dn 1√
2π e

−x2
2

dxn
= (−1)n 1√

2π
e−

x2
2 pn(x) (9)
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the following proves true (see formula (46) in Appendix)

(−1)n 1√
2π
e−

x2
2 pn(x)↔ (iω)ne−ω

2
2 (10)

This entails that the characteristic function associated to (5) is

FX(ω;β) =
(

1 + β

4!ω
4
)
e−

ω2
2 . (11)

By following the same argument, put forward in Lemma 1 in Appendix, the
characteristic function of the sum of n Gram-Charlier expansions turns out to
be

FY (ω;β) =
(

1 + β

4!ω
4
)n

e−
nω2

2 =
n∑
j=0

(
n

j

)(
β

4!

)j
ω4je−

nω2
2 (12)

Now, thanks to the following property of Fourier transforms

|a|f(ay)↔ F
(ω
a

)
, (13)

formula (8) can be conveniently generalized as follows

dn|a|fX(ax)
dxn

↔
(
i
ω

a

)n
F
(ω
a

)
(14)

and this, in light of (10), entails the following

(−1)n |a|√
2π
e−

(ax)2
2 pn(ax)↔

(
i
ω

a

)n
e−

1
2 (ωa )2

. (15)

Then, setting a = 1√
n

and n = 4j in formula (15), yields(
1√
n

)4j 1√
2nπ

e−
y2
2n p4j

(
y√
n

)
↔ ω4je−

nω2
2 (16)

which, taking into account (12), eventually leads to the density in formula (7).

The density of the sum variable Y = X1,+ · · ·+Xn given in (7) depends on
the parameter β which plays the role of common excess kurtosis (with respect
to the standard Gaussina law) of each variable Xi. In Zoia (2010) it is shown
that the Gram-Charlier expansion (5) has positive density if 0 ≤ β ≤ 4 and is
unimodal if 0 ≤ β ≤ 2, 4. These constraints also hold in the case of the sum of
n i.i.d variables, according to the Theorem 1.6 in Dharmadhikari (1988).
The graphs in Figure 1 depict the density functions of the sums of Gram-Charlier
expansions for different values of n (n = 1, n = 2 and n = 3) and β. In each
graph β has been set equal to 0 (its minimum value), equal to 2,4 (the max-
imum value which guarantees the unimodality of the Gram-Charlier density),
and equal to 1 (an intermediate value in its range of variation).

As a further extension of the Theorem 1, we prove the following corollary
which covers the case of Gram-Charlier expansions of sums of variables charac-
terized by different excess kurtosis β′s.
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Figure 1: Densities of sums of Gram-Charlier expansions for n = 1, 2, 3, and
β = 0, 1, 2.4.

Corollary 1. Let us consider n independent Gram-Charlier expansions of the
random variables X1, . . . , Xn, characterized by excess kurtosis β1 . . . , βn, respec-
tively. Then, the density function of the sum Y = X1 + · · ·+Xn, denoted with
fY (x1 + · · ·+ xn;β1, . . . , βn), is

fY (x1 + · · ·+ xn;β1, . . . , βn) =
n∑
j=0

(
bn,j
(4!)j

)
1√
2nπ

(
1√
n

)4j

e−
y2
2n p4j

(
y√
n

)
(17)

where bn,j is the sum of the combinations of the n parameters βj taken j at a
time without repetition.

Proof. Following the same arguments put forward in Theorem 1, the charac-
teristic function, FY=X1+···+Xn(ω;β1, . . . , βn), of the sum of n Gram-Charlier
expansions with different excess kurtosis βj , j = 1, ...n is

FY=X1+···+Xn(ω;β1, . . . , βn) = e−ω
2 ∏n

j=1

(
1 + βj

4! ω
4
)

=

e−ω
2
(

1 + β1+···+βn
4! ω4 + β1β2+···+βn−1βn

(4!)2 ω8 + · · ·+
∏n

j=1
βj

(4!)n ωn4
)

=∑n
j=0

bnj
(4!)j ω

4je−ω
2
.

(18)

Then, taking into account formulas (12) and (16) simple computations lead to
(17).

This approach can be extended to other densities, besides the normal. How-
ever, when other distributions are considered, the density of the sum may be
more conveniently obtained by making the convolution of the densities of the
variables involved in the sum.
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4 Expected Shortfall for sum of Gram- Charlier
expansions

Gram-Charlier expansions (GC) are able to capture the excess of kurtosis and
asymmetry of a random variable (rv) better than the usual normal density. This
property is true also for densities which are sums of Gram-Charlier expansions,
GCS hereafter, with respect to densities of sums of simple Gaussian laws.
Hence, the next step is to use GCS to measure risks related to insurance or
financial assets portfolios.
In this section, following the analysis of Landsman and Valdez (2003)on TCE
for sums of elliptic distributions and bearing in mind the studies of Acerbi and
Tasche (2002), we show how to compute the expected short fall, ES henceforth,
to evaluate the right-tail risk of a sum of GC expansions. First we will consider
the case of rvs with same excess kurtosis, then with different excess kurtosis.
Assuming that the loss is likely to exceed a certain value υq (referred to as the
q-th-quantile), the ES is defined as follows

ESY (υq) = E(Y |Y > υq) =

∫∞
υq
yf(y)dy∫∞

υq
f(y)dy

(19)

where, for our purpose, f(y) = f(x1 + x2 + ...+ xn).
The following theorem shows how the integrals in (19) can be evaluated by mak-
ing use of the definition and properties of the error function and of the Hermite
polynomials

Theorem 2. Let us consider the sum of n i.i.d Gram-Charlier expansions Y =
X1 + · · ·+Xn. Then, the ESY (υq) has the following form

ESY (υq) =

√
n

2π e
−
υ2
q

2n

[
1 +
∑n

j=1

(
1√
n

)4j (
n
j

) (
β
4!

)j (
p4j

(
υq√
n

)
+ 4jp4j−2

(
υq√
n

))]
1
2 erfc

(
υq√
2n

)
+ 1√

2π
e−

υ2
q

2n

[∑n

j=1

(
1√
n

)4j (
n
j

) (
β
4!

)j
p4j−1

(
υq√
n

)]
(20)

Proof. Let us proceed by considering separately the numerator and the denom-
inator of formula (20) which, in the following, will be denoted by A and B,
respectively.
By replacing in the numerator A the density function f(y, β) defined as in (7)
we obtain

A =
n∑
j=0

(
1√
n

)4j (
n

j

)(
β

4!

)j 1√
2π

∫ ∞
υq

y√
n
e−

y2
2n p4j

(
y√
n

)
dy =

= 1√
2π

∫ ∞
υq

y√
n
e−

y2
2n dy︸ ︷︷ ︸

A1

+
n∑
j=1

(
1√
n

)4j (
n

j

)(
β

4!

)j 1√
2π

∫ ∞
υq

y√
n
e−

y2
2n p4j

(
y√
n

)
dy︸ ︷︷ ︸

A2

(21)

As far as A1 is concerned, setting y√
n

= t in this integral and bearing in mind
that p1(t) = t, we get
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A1 =
√

n

2π

∫ ∞
υq√
n

te−
t2
2 dt =

√
n

2π

∫ ∞
υq√
n

p1(t)e− t
2
2 dt. (22)

Now, in light of (9), the following

d

dy

[
dn

dyn
e−

y2
2

]
= dn+1

dyn+1 e
− y

2
2 = (−1)n+1e−

y2
2 pn+1(y) (23)

holds true.
This entails that∫

(−1)n+1e−
y2
2 pn+1(y)dy =

∫
dn+1

dyn+1 e
− y

2
2 =

= dn

dyn
e−

y2
2 =

= (−1)ne−
y2
2 pn(y)

(24)

By using this result and bearing in mind that p0(t) = 1, formula (22) becomes

A1 =−
√

n

2π e
− y

2
2

∣∣∣∣∞υq√
n

=
√

n

2π e
−
υ2
q

2n

(25)

As far as A2 is concerned, setting t = y√
n

in this integral we get

A2 = K

∫ ∞
υq√
n

te−
t2
2 p4j(t)dt. (26)

where K =
√

n
2π
∑n
j=1

(
n
j

) ( 1√
n

)4j (
β
4!

)j
.

Now, in light of the following property of Hermite polynomials

pn+1(t) = tpn(y)− npn−1(t) (27)

the integral (26) can be rewritten as:

A2 = K

∫ ∞
υq√
n

[
e−

t2
2 p4j+1(t) + 4je− t

2
2 p4j−1(t)

]
dt. (28)

which, in light of (24), becomes

A2 =K
[
4je− t

2
2 p4j−2(t) + e−

t2
2 p4j(t)

]∣∣∣∞υq√
n

=

=
√

n

2π

n∑
j=1

(
n

j

)(
1√
n

)4j (
β

4!

)j
e−

υ2
q

2n

(
p4j

(
υq√
n

)
− 4jp4j−2

(
υq√
n

))
.

(29)
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Accordingly the integral A turns out to be

A =
√

n

2π e
−
υ2
q

2n+
√

n

2π e
−
υ2
q

2n

n∑
j=1

(
1√
n

)4j (
n

j

)(
β

4!

)j (
p4j

(
υq√
n

)
+ 4jp4j−2

(
υq√
n

))
(30)

Similarly, after replacing f(y, β), defined as in (7), in the denominator of (19),
we get

B =
n∑
j=0

(
1√
n

)4j (
n

j

)(
β

4!

)j 1√
2π

∫ ∞
υq

1√
n
e−

y2
2n p4j

(
y√
n

)
dy =

= 1√
2π

∫ ∞
υq

1√
n
e−

y2
2n︸ ︷︷ ︸

B1

dy +
n∑
j=1

(
1√
n

)4j (
n

j

)(
β

4!

)j 1√
2π

∫ ∞
υq

1√
n
e−

y2
2n p4j

(
y√
n

)
dy︸ ︷︷ ︸

B2

.

(31)

As far as B1 is concerned, setting t = y√
2n in the integral we get

B1 = 1√
π

∫ ∞
υq√

2n

e−t
2
dt = 1

2erfc
(

υq√
2n

)
. (32)

where erfc is the complementary error function (see formula 7.1.2 in Abramowitz
and Stegun (1964)).
Similarly, setting t = y√

n
in the integral B2 yields

B2 = K̃

∫ ∞
υq√
n

e−
t2
2 p4j(t)dt. (33)

where K̃ =
∑n
j=1

(
1√
n

)4j (
n
j

) (
β
4!

)j
1√
2π .

Then, by using result (24), B2 becomes

B2 =K̃
[
e−

t2
2 p4j−1(t)

]∣∣∣∞υq√
n

=
n∑
j=1

(
1√
n

)4j (
n

j

)(
β

4!

)j
p4j−1

(
υq√
n

)
1√
2π
e−

υ2
q

2n .

(34)

Accordingly, the integral B turns out to be

B = 1
2erfc

(
υq√
2n

)
+ 1√

2π
e−

υ2
q

2n

 n∑
j=1

(
1√
n

)4j (
n

j

)(
β

4!

)j
p4j−1

(
υq√
n

) (35)

Finally, formula (20) is obtained by substituting the numerator and the denom-
inator of formula (19) with A and B given in (30) and (35), respectively.

The same procedure can be simply generalized to the case of n random vari-
ables with different extra-kurtosis parameters βi.
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Corollary 2. Let us consider n independent Gram-Charlier expansions of the
random variables X1, . . . , Xn, characterized by extra-kurtosis β1 . . . , βn, respec-
tively. Then, the expected shortfall of the sum Y = X1 + · · · + Xn, ESY (υq),
has the following form

ESY (υq) =

√
n

2π e
−
υ2
q

2n

[
1 +
∑n

j=1

(
1√
n

)4j (
n
j

)( bn,j
(4!)j

)(
p4j

(
υq√
n

)
+ 4jp4j−2

(
υq√
n

))]
1
2 erfc

(
υq√
2n

)
+ 1√

2π
e−

υ2
q

2n

[∑n

j=1

(
1√
n

)4j (
bn,j
(4!)j

)
p4j−1

(
υq√
n

)]
(36)

Proof. Observe that the density of the sum of n Gram-Charlier expansions with
different parameters, given by (17), differs from that of n Gram-Charlier ex-
pansions with equal parameters, given by (7), only for the coefficients of the
Hermite polynomials p4j

(
y√
n

)
. Hence, replacing in (20) the coefficients of the

density (17) with those of the density (7), yields (36).

5 An application to financial asset indexes
In this section the effective performance of GC expansions of sums of r.v. in
dealing with financial asset indexes is proved. To this end, we have considered a
set of 4 european (UK, Germany, Italy, France) and 2 asian (China, Japan) stock
exchange indexes and 2 arbitrary indexes of the pharmaceutical and alimentary
industries.The preliminary statistics for these data are reported in Tables 1 and
2.
Table 1 shows the mean (µ), the standard deviation (sd), the skewness (sk),
the kurtosis index (k) . Since the analysis carried out in the previous section is
valid for independent rvs, we use seven couples of indexes characterized by low
correlation as reported in Table 2.

Table 1: Summary statistics of losses
ˆFTSE ˆGDAXI FTSEMIB.MI ˆFCHI ˆHSI ˆN225 SXDP.Z KO

µ -0,0260 -0,0493 0,0046 -0,0170 -0,0300 -0,0478 -0,0537 -0,0590
sd 1,1252 1,4278 1,8222 1,4813 1,4350 1,5138 0,8937 1,1148
sk 0,0781 0,0476 0,2106 -0,0242 -0,1662 0,5063 0,3305 -0,1975
k 6,4554 5,7822 5,7534 6,3576 7,0437 6,8020 4,9275 8,1970

The table reports for each loss the mean (µ), the standard deviation (sd), the skewness index
(sk), the kurtosis index (k) .

Table 2: Correlation coefficient of the losses

ρ ˆFTSE ˆGDAXI FTSEMIB.MI ˆFCHI ˆHSI SXDP.Z KO
ˆN225 0.3036 0.2921 0.2490 0.2917 0.5729 0.1776 0.0954

Since we are interested in measuring losses, the returns from data have been
computed as minus the logarithm of the ratio between the prices at time t and
t− 1.
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The sample size has been divided into two periods. The data of the first period
(from 01/01/2009 to 09/17/2013) have been used to estimate the Gram-Charlier
(GC) densities and compute the corresponding risk functions. The data of the
second period (from 09/18/2013 to 12/31/2014) have been used to evaluate the
goodness of the risk measure forecasts.
The GC densities of the sum of each couple of indexes are given by

fY (x1 + x2;β1, β2) =
(

1 + 1
4

(
β1 + β2

4!

)
p4

(
y√
2

)
+ 1

16
β1β2

(4!)2 p8

(
y√
2

))
1√
4π
e−

y2
4 .

(37)
where p4(x) and p8(x) are defined as follows

p4(x) = x4 −
(

4
2

)
x4−2 + 3

(
4
4

)
x4−4 = x4 − 6x2 + 3 (38)

p8(x) = x8 −
(

8
2

)
x6 + 3

(
8
4

)
x4 − 15

(
8
6

)
x2 + 105

(
8
8

)
x. (39)

Table 3 reports the estimates of the extra-kurtosis β̂ for each couple of series
under consideration.
In order to assess the goodness of fit of GCS to data, the Hellinger’s entropy
distance (Granger et al., 2004; Maasoumi and Racine, 2002) between the em-
pirical and the estimated distributions have been computed. Low values of this
index denote a good fit of GCS to data. The last column of Table 3 shows the
values of this index for the GCS densities.

Table 3: Parameter estimates of the GCS distribution on the first 1000 days
with the relative Hellinger’s entropy distance Sρ.

Index 1 Index 2 β̂1 β̂2 Sρ
ˆN225 ˆFTSE 3.9666 2.9189 0.0203
ˆN225 ˆGDAXI 3.9666 2.9189 0.0213
ˆN225 FTSEMIB.MI 3.9666 2.4250 0.0200
ˆN225 ˆFCHI 3.9666 2.8433 0.0185
ˆN225 ˆHSI 3.9666 3.5847 0.0215
ˆN225 SXDP.Z 3.9666 1.6780 0.0232
ˆN225 KO 3.9666 4.000 0.0173

Figure 2 shows the tails of the estimated GCS densities superimposed on
those of the corresponding empirical distributions. Both the values of the
Hellinger’s entropy index and the graphs highlight the good fit of GCS to data,
especially in the tail areas which are the loci involved in the risk measure esti-
mates.
Table 4 and Figure 3 compare the V aR estimated via GCS in the first period
of the sample at the 97, 5% and 99% levels with the corresponding empirical
quantile. As all the VaR estimates exceed the corresponding empirical values,
it can easily be concluded that the GCS provide precautionary VaR estimates
against potential losses. In the same table, a comparison between the empirical
quantiles and the VaR estimates obtained by using the normal density without
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Figure 2: Histograms of the portfolio losses with the estimate GCS densities.

polynomial expansion is made. As in this case, Var estimates at both α = 0.025
and α = 0.001 underestimate the risk measures, we conclude that results pro-
vided by this latter density are dangerous for risk managment and in stark
contrast to the regulatory philosophy.

To evaluate the out-of-sample performance of the GCS densities, we have com-
puted the V aR for α = 0.025 and α = 0.01 on the second part of sample (the
last 374 days) which has not been used in the estimation process of the GCS
densities.
Further, some punctual measures of losses in this period have been computed.
These are the ABLF (average binary loss function), the AQLF (average quadratic
loss function) and the UL (unexpected loss).
The values of these indexes as well as V aR values are displayed in Table 4. As
happens in the sample (first 1000 days), the V aR values for GC distributions
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Figure 3: Empirical vs theoretical V aR of the portfolio losses. Triangles denote
empirical V aR at 1 − α = 0, 975, 1 − α = 0, 99 while circles denote estimated
V aR with GCS at the same levels.

give quite precautionary results with respect to the simple Normal. In fact all
the proposed loss measures confirm that the GC distributions offer the best out
of sample performance.

The forecast performance of V aR values estimates via GCS, at a chosen
significance level, has been evaluated by implementing two tests: the likelihood-
ratio test and the binomial two-sided test, whose results are shown in Table
5. The null hypothesis of both tests assumes that the percentage of forecast
losses is coherent with the effective one against the bi-lateral alternative which
assumes that the V aR values overestimate or underestimate this percentage. A
p-value lower or equal to 0.01 can be interpreted as evidence against the null
(for more details see (Kupiec, 1995; Christoffersen et al., 1998)).
According to the likelihood ratio test 11 out of 14 GCS engender forecasts which
are coherent at the chosen α level. Looking at Figure 3, we see that rejection
happens for those GCS densities whose V aR estimates are most distant from
the corresponding empirical quantiles. These results are in accordance with the
results of the binomial tests.
Furthermore, a reading of the likelihood-ratio test of the V aRα=0.01, inspired by
the ”traffic light” approach suggested by the Basel Committee, seems to place
the GCS results in the ”green zone”.

Also the less debatable expected shortfall (ES) has been computed as risk
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Table 4: Descriptive analysis of V aR.

GC Normal
Index 1 Index 2 1− α V aRemp V aR ABLF AQLF UL V ar ABLF AQLF UL
ˆN225 ˆFTSE 0,975 2,1199 3,1628 0,0053 0,0093 0,0042 1,96 0,0213 0,05 0,019
ˆN225 ˆFTSE 0,990 2,7415 3,8004 0,0027 0,0033 0,0014 2,3263 0,016 0,0331 0,0127
ˆN225 ˆGDAXI 0,975 2,0362 3,1269 0,0080 0,0130 0,0059 1,96 0,0186 0,0487 0,017
ˆN225 ˆGDAXI 0,990 2,8491 3,7856 0,0053 0,0057 0,0014 2,3263 0,008 0,0276 0,0123
ˆN225 FTSEMIB.MI 0,975 2,1155 3,1437 0,0080 0,0120 0,0044 1,96 0,0186 0,0443 0,0148
ˆN225 FTSEMIB.MI 0,990 2,6624 3,7924 0,0027 0,0033 0,0013 2,3263 0,008 0,0245 0,0109
ˆN225 ˆFCHI 0,975 2,0755 3,1575 0,0053 0,0076 0,0032 1,96 0,0213 0,0424 0,0147
ˆN225 ˆFCHI 0,990 2,7897 3,7982 0,0027 0,0028 0,0006 2,3263 0,0106 0,023 0,0095
ˆN225 ˆHSI 0,975 2,1437 3,2068 0,0080 0,0101 0,0038 1,96 0,016 0,0401 0,0149
ˆN225 ˆHSI 0,990 2,8635 3,8186 0,0027 0,0027 0,0001 2,3263 0,008 0,0229 0,0108
ˆN225 SXDP.Z 0,975 2,1910 3,0666 0,0053 0,0141 0,0066 1,96 0,0426 0,083 0,0289
ˆN225 SXDP.Z 0,990 2,8253 3,7606 0,0053 0,0075 0,0029 2,3263 0,0293 0,0532 0,0167
ˆN225 KO 0,975 2,2667 3,2319 0,0106 0,0206 0,0088 1,96 0,0319 0,0908 0,0327
ˆN225 KO 0,990 2,7333 3,8290 0,0080 0,0107 0,0037 2,3263 0,0213 0,0597 0,0237

For each couple of indexes (first two columns) at level α (third column) the table displays the
empirical V aR evaluated on the first part of the sample (fourth column), the V aR estimated
via GCS (fifth column) and via Normal distribution (ninth column), as well as the indexes
ABLF, AQLF and UL for both the GCS (sixth-eighth columns) and the Normal distribution
(tenth-twelfth columns).

measure. The formula of the ES of the GCS is
ESY (υq) =

=
1√
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e
−
υ2
q
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The ES has been computed in the first period of the sample (the first 1000
days) by using the V aR estimated via GCS as quantile. This procedure has been
carried out for different α levels and more precisely for α = 0.05, α = 0.025 and
α = 0.01. The estimates of the expected shortfall for these α values, ESα from
now on, are shown in Table 6.
In order to evaluate the out-of sample performance of this risk measure, the
ES have been computed also in the second part of the sample (last 374 days).
These values, denoted with ESemp and reported in Table 6, have been obtained
by using V aR computed from GCS estimated in the first sample period for dif-
ferent α values ( α = 0.05, α = 0.025 and α = 0.01) as quantiles.
The goodness of ESα estimates has been evaluated by implementing two tests
based on bootstrap procedure. Both of them consider the performance of the
GCS density under examination inadequate if the ESα systematically underes-
timates the effective losses mean (ESemp), thus implying great damage.
The first test proposed by McNeil and Frey (2000) is based on the following
statistic

Z1 = 1
N

N∑
t=1

(
XtIXt>V aRα

ESα
− 1
)

(41)

where N is the number of losses Xt in the second part of the sample (the last 274
days) lying over the V aRα, IXt>V aRα is an indicative variable which assumes
values equal to 1 if Xt > V aRα and 0 otherwise. ESα is the expected shortfall
estimated by using the GCS density. Under the null hypothesis, assuming the
correctness of the GCS densities or equivalently the goodness of the ESα esti-
mates, Z1 takes low values.
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Table 5: Analysis of V aR: test.

Index 1 Index 2 1− α p-val(LUrc) p-val(VaR)
ˆN225 ˆFTSE 0,975 0,0031 0,0076
ˆN225 ˆFTSE 0,99 0,0890 0,1958
ˆN225 ˆGDAXI 0,975 0,0138 0,0301
ˆN225 ˆGDAXI 0,99 0,3165 0,5981
ˆN225 FTSEMIB.MI 0,975 0,0138 0,0301
ˆN225 FTSEMIB.MI 0,99 0,0890 0,1958
ˆN225 ˆFCHI 0,975 0,0031 0,0076
ˆN225 ˆFCHI 0,99 0,0890 0,1958
ˆN225 ˆHSI 0,975 0,0138 0,0301
ˆN225 ˆHSI 0,99 0,0890 0,1958
ˆN225 SXDP.Z 0,975 0,0031 0,0076
ˆN225 SXDP.Z 0,99 0,3165 0,5981
ˆN225 KO 0,975 0,0443 0,0947
ˆN225 KO 0,99 0,6831 1,0000

For each couple of indexes (first two columns) at level α (third column) the table displays the
p-values of both the likelihood ratio test (fourth column) and the binomial test (fifth column).
p-values leading to acceptance of the null hypothesis at 1% are highlighted in bold.

The second test, proposed by Acerbi and Szekely (2014), is quite similar to the
previous one. The statistic test is

Z2 = 1
T

T∑
t=1

XtIXt>V aRα
αESα

− 1 (42)

where T denotes the sample size (274 in the case under exam). The null hy-
pothesis of this test is the same as Z1 test and, similarly to this latter, the Z2
statistic assumes low values under the null hypothesis.
Both tests have been performed by implementing a bootstrap simulation. In
both cases, 999 bootstrap samples have been selected from the out-of-sample
data-set without making any assumption on the the underlying data distribution
and the statistics Z1 and Z2 have been computed by using these 999 bootstrap
samples. The p-values of both tests have been computed as percentages of the
Z1 and Z2 statistics obtained from bootstrap samples exceeding the correspond-
ing statistics Z1 and Z2, respectively, computed on the second part of the data
(last 274 days). Looking at these p-values, reported in Table 6, we can conclude
that the out of the sample performance of the GCS densities is quite good in
most of the cases.
All the analyses have been carried out by using software R (R Core Team, 2015).
In particular, basic financial operations have been worked out by using tseries
(Trapletti and Hornik, 2015) package, computations involving Hermite polyno-
mials with EQL (Thorn Thaler, 2009) package and tests for the evaluation of
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goodness of fitting have been implemented by using np (Hayfield and Racine,
2008) package.

Table 6: Out-of-sample ES performance

Index 1 Index 2 α VaR ESemp ESα Z1 pval(Z1) Z2 pval(Z2)
ˆN225 ˆFTSE 0,950 2,4725 3,2659 3,3266 -0,0182 0,5165 -0,9863 0,4675
ˆN225 ˆFTSE 0,975 3,1628 3,9579 3,8500 0,0280 0,3443 -0,9944 0,5395
ˆN225 ˆFTSE 0,990 3,8004 4,3089 4,4539 -0,0326 0,3744 -0,9974 0,6647
ˆN225 ˆGDAXI 0,950 2,4342 3,8722 3,2944 0,1754 0,4494 -0,9901 0,4975
ˆN225 ˆGDAXI 0,975 3,1269 3,8722 3,8269 0,0118 0,4675 -0,9917 0,4535
ˆN225 ˆGDAXI 0,990 3,7856 4,0568 4,4359 -0,0855 0,4935 -0,9951 0,5355
ˆN225 FTSEMIB.MI 0,950 2,4513 3,6975 3,3092 0,1173 0,4184 -0,9906 0,4905
ˆN225 FTSEMIB.MI 0,975 3,1437 3,6975 3,8376 -0,0365 0,5005 -0,9921 0,4745
ˆN225 FTSEMIB.MI 0,990 3,7924 4,2733 4,4442 -0,0384 0,3744 -0,9974 0,6386
ˆN225 ˆFCHI 0,950 2,4664 3,4896 3,3217 0,0505 0,4695 -0,9912 0,5125
ˆN225 ˆFCHI 0,975 3,1575 3,7596 3,8466 -0,0226 0,5005 -0,9947 0,5355
ˆN225 ˆFCHI 0,990 3,7982 4,0289 4,4512 -0,0949 0,3764 -0,9976 0,6276
ˆN225 ˆHSI 0,950 2,5277 3,6804 3,3680 0,0928 0,4825 -0,9908 0,4935
ˆN225 ˆHSI 0,975 3,2068 3,6804 3,8788 -0,0512 0,5275 -0,9922 0,5115
ˆN225 ˆHSI 0,990 3,8186 3,8710 4,4776 -0,1355 0,3534 -0,9977 0,6547
ˆN225 SXDP.Z 0,950 2,3817 2,9504 3,2435 -0,0904 0,4695 -0,9745 0,4835
ˆN225 SXDP.Z 0,975 3,0666 4,3077 3,7887 0,1370 0,3413 -0,9938 0,5065
ˆN225 SXDP.Z 0,990 3,7606 4,3077 4,4080 -0,0228 0,4675 -0,9947 0,5375
ˆN225 KO 0,950 2,5635 3,5989 3,3926 0,0608 0,5035 -0,9792 0,4765
ˆN225 KO 0,975 3,2319 4,0578 3,8957 0,0416 0,4855 -0,9886 0,5105
ˆN225 KO 0,990 3,8290 4,2954 4,4921 -0,0438 0,4785 -0,9923 0,4885

For each couple of indexes (first two columns) at each level α (third column) there are dis-
played the theoretical V aR for GC distributions (fourth column), the empirical ES evaluated
on the first sample (fifth column), the theoretical ES for GC distributions (sixth column),
the statistic tests Z1 and Z2 (seventh and ninth columns) and the associated p-values for the
GC distributions (eight and tenth columns). The significance level is fixed at 1%.

6 Conclusion
In this paper, we devise a method to specify the distribution of the sums of
leptokurtic Gaussian variables. The approach we have adopted rests on the
polynomial transformation of Gaussian variables by means of their associated
Hermite polynomials resulting in Gram-Charlier expansions. The sum of Gram
Charlier expansions (GCS) turns out to be a tail sensitive density and as such
can be effectively used to represent a portfolio return. Thus, it can be con-
veniently used to compute risk measures such as the Value at Risk and the
expected shortfall. Its application to a portfolio of a set of financial asset in-
dexes provides evidence of the effectiveness of the proposed technique. This is
confirmed by the GCS effective performance in both V aR and expected shortfall
estimation in and out of the sample period.

Appendix
In the following we run through the classic procedure to obtain the density of
sum of independent standard-normal random variables. The same procedure
applies to sums of Gram-Charlier expansions with due computations as shown
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in Section 3, (see also e.g. Johnson and Kotz (1970); Stuart and Ord (2004) ).
In this connection let us first state the following

Lemma 1. Let Y = X1 +X2, be the sum of two i.i.d. normal random variables.
Then the density of Y is

fy(y) = (4π)−1/2e−
y2
4 (43)

Proof. As it is well known, the density of Y is

fY (y) = fX(x1) ∗ fX(x2) (44)

where the symbol ∗ denotes convolution. Further, the characteristic function
FY (ω) of Y is the product of the characteristic functions of the X1 and X2, that
is

FY (ω) = FX1(ω)FX2(ω) = F 2
X(ω) (45)

Now, bearing in mind the Fourier-transform pair√
a

π
e−at

2
↔ e−

ω2
4a (46)

and setting a = 1
2 , yields

FX(ω) = e−
ω2
2 . (47)

which is the characteristic function of the standard normal variable.
According to (45), the characteristic function of the sum of two i.i.d. standard
normal is

FY (ω) = e−ω
2
. (48)

In turn, by setting a = 1/4 in (46), the density function of the sum fY (y) proves
to be as in (43)

The same procedure applies to obtain the density function of the sum of two
Gram-Charlier expansions as in Theorem 1 of Section 3.
In this connection let us introduce the following.

Definition 1. Orthogonal polynomials.
Given a density f(x) with finite moments mj, we can determine a system of
polynomials pn(x) =

∑
j δjx

j such that∫ ∞
−∞

pn(x)pm(x)f(x)dx ==
{
γn for m = n
0 for m 6= n

(49)

the condition (49) determines pn(x) up to a constant factor and the coefficients
δj turn out to be algebraic function of the moments mj

mj =
∫ +∞

−∞
xjf(x)dx (50)

(see Faliva et al. (2016) for details).

17



When the density f(x) is even, pn(x) is either even or odd depending on n
being even or odd, respectively.
Should f(x) be the Gaussian law, then {pn(x)} would correspond to the well
known Hermite polynomials, that is

pj(x) = (−1)je x
2

2
∂j

∂xj
e−

x2
2 . (51)

Orthogonal polynomials can be used to modify the moments of the parent den-
sity via Gram-Charlier expansions. In this connection we have the following

Definition 2. Let
q(x, β) = 1 + β

γj
pj(x) (52)

where pj(x) is the orthogonal polynomial of degree j associated with f(x), β is
a positive parameter and γj the squared norm of pj(x). Then,

ϕ(x, β) = q(x, β)f(x) (53)

subject to q(x, β) being non-negative definite, is a density whose lower-order
moments, µj, are related to whose of f(x), mj, as follows

µj =
{
mi for i = 1, 2, 3, ...j − 1
mi + β for i = j

(54)

Higher moments of ϕ(x, β) turn out to be algebraic functions of the moments of
f(x). For the proof see Faliva et al. (2016).
When f(x) is a Gaussian law, the density (53) is the classical Gram-Charlier
expansion.

18



References
Abramowitz, M. and Stegun, I. A. (1964). Handbook of mathematical func-

tions: with formulas, graphs, and mathematical tables, volume 55. Courier
Corporation.

Acerbi, C. and Szekely, B. (2014). Back-testing expected shortfall. Risk, 27(11).

Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall.
Journal of Banking & Finance, 26(7), 1487–1503.

Albrecht, P. (2004). Risk measures. In T. Jozef and B. Sundt, editors, Ency-
clopedia of Actuarial Science, pages 1493–1501. Wiley, N.Y.

Alles, L. and Murray, L. (2010). Non-normality and risk in devoloping asian
markets. Review of Pacific Basin Financial Markets and Policies, 13(4),
583–605.

Artzner P., Delbaen F., E. J. (1999). Coherent measures of risk. Mathematical
Finance, 9(3), 203–228.

Bagnato, L., Pot̀ı, V., and Zoia, M. G. (2015). The role of orthogonal poly-
nomials in adjusting hyperpolic secant and logistic distributions to analyse
financial asset returns. Statistical Papers, 56(4), 1205–1234.

Christoffersen, P., Diebold, F. X., and Schuermann, T. (1998). Horizon problems
and extreme events in financial risk management. Economic Policy Review,
4(3), 98–16.

Curto, J. D., Pinto, J. C., and Tavares, G. N. (2009). Modeling stock markets’
volatility using garch models with normal, student’st and stable paretian dis-
tributions. Statistical Papers, 50(2), 311–321.

Dharmadhikari, S. W. (1988). Unimodality, convexity, and applications, vol-
ume 27. Academic Press, N.Y.

Dowd, K. and Blake, D. (2006). After var: the theory, estimation, and insurance
applications of quantile-based risk measures. Journal of Risk and Insurance,
73(2), 193–229.

Faliva, M., Pot̀ı, V., and Zoia, M. G. (2016). Orthogonal polynomials for tay-
loring density functions to excess kutosis, asymmetry, and dependence. Com-
munications in Statistics-Theory and Methods, 45(1), 49–62.

Gallant, A. R. and Tauchen, G. (1989). Seminonparametric estimation of con-
ditionally constrained heterogeneous processes: Asset pricing applications.
Econometrica: Journal of the Econometric Society, pages 1091–1120.

Gallant, A. R. and Tauchen, G. (1993). A nonparametric approach to nonlinear
time series analysis: estimation and simulation. in Brillinger, D., P. Caines,
J. Geweke, E. Parzen, M. Rosenblatt, and M. S. Taqqu eds., New Directions
in Time Series Analysis, Part II, pages 71–92.

Granger, C., Maasoumi, E., and Racine, J. (2004). A dependence metric for
possibly nonlinear processes. Journal of Time Series Analysis, 25(5), 649–
669.

19



Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np
package. Journal of Statistical Software, 27(5).

Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions, vol-
ume 2. Wiley, N.Y., New York.

Jondeau, E. and Rockinger, M. (2001). Gram–charlier densities. Journal of
Economic Dynamics and Control, 25(10), 1457–1483.

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement
models. THE J. OF DERIVATIVES, 3(2).

Landsman, Z. M. and Valdez, E. A. (2003). Tail conditional expectations for
elliptical distributions. North American Actuarial Journal, 7(4), 55–71.

Maasoumi, E. and Racine, J. (2002). Entropy and predictability of stock market
returns. Journal of Econometrics, 107(1), 291–312.

McNeil, A. J. and Frey, R. (2000). Estimation of tail-related risk measures for
heteroscedastic financial time series: an extreme value approach. Journal of
empirical finance, 7(3), 271–300.

Mills, T. C. and Markellos, R. N. (2008). The econometric modelling of financial
time series. Cambridge University Press.

Mittnik, S., Paolella, M., and Rachev, S. (2000). Diagnosis and treating the fat
tails in financial returns data. Journal of Empirical Finance, 7(3–4), 389–416.

R Core Team (2015). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria.

Rachev, S. T., Hoechstoetter, M., Fabozzi, F. J., Focardi, S. M., et al. (2010).
Probability and statistics for finance, volume 176. Wiley. com.

Shuangzhe, Liu Chris, H. (2006). On estimation in conditional heteroskedastic
time series models under non-normal distributions. Statistical Papers, 49(3),
455–469.

Stuart, A. and Ord, J. (2004). Kendall’s advanced theory of statistics (distri-
bution theory, vol. 1). Griffin, London.
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