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Abstract

The impact of congenital heart disease on brain aging has not been extensively investi-

gated. We evaluated cerebral microbleeds and white matter hyperintensities on brain mag-

netic resonance imaging in adult patients with tetralogy of Fallot (ToF). Ten ToF patients (6

women, 4 men; aged 21–58 years; New York Heart Association [NYHA] class 1–2) were

prospectively enrolled and underwent a T1-weighted, a T2-weighted dark fluid, and a T2*-

weighted scans. Ten age- and sex-matched controls were prospectively recruited and sub-

jected to the same acquisition protocol. Cerebral microbleeds (CMBs) were manually

counted while white matter hyperintensities (WMHs) were segmented using ITK-Snap. Wil-

coxon signed-rank test, Spearman correlation, and Bland-Altman statistics were used. The

median (interquartile range [IQR]) age was 45.0 (30.5–49.5) years in ToF patients and 46.0

(30.5–49.8) years in controls. The median (IQR) of the number of CMBs was 6.0 (4.0–7.8)

in ToF patients and 0 (0.0–0.0) in controls (p = 0.002). The WMHs burden was 2,506

(1,557–2,900) mm3 for ToF patients and 2,212 (1,860–2,586) mm3 for controls (p = 0.160).

Moreover, a positive significant correlation was found between the WMHs burden and

the NYHA class (ρ = 0.80, p = 0.005). Inter-operator concordance rate for the presence/

absence of CMBs was 90%; the reproducibility for the WMHs burden was 77%. In conclu-

sion, we found more cerebral microbleeds and a higher WMHs burden in adult ToF patients

than in controls. This preliminary comparison supports the hypothesis of an early brain

aging in ToF patients. Larger studies are warranted.

Introduction

Thanks to modern advancements in cardiac surgery, the adult population living with complex

congenital heart disease (CHD) has increased over the last decades. In particular, the survival

of those affected by the most common cyanotic CHD, namely Tetralogy of Fallot (ToF), has

been documented up to the 7th or 8th decade of life [1].
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Clinicians are facing the challenge of an aged ToF population, including the possibility of

adverse outcomes even many years after cardiac surgery [1]. In this scenario, monitoring both

the cardiovascular and the central nervous system of adult ToF patients has become a major

issue. Even though prevalence for traditional cardiovascular risk factors and outcomes were

already investigated in adult ToF population [2], at present no reports have ever investigated

the impact of complex CHD on brain aging.

The aging process entails several brain changes over time. Cerebral microbleeds (CMBs)

and white matter hyperintensities (WMHs) are neuroimaging biomarkers of cerebral small

vessels disease (cSVD), typically investigated through magnetic resonance imaging (MRI) [3].

CMBs, presenting as small black dots on T2�-weighted gradient-echo images, have a preva-

lence of about 25% in the elderly and tend to increase with age [4]. In addition to being imag-

ing markers of cSVD and biological aging [5], CMBs were found to be independent predictor

of increased risk of stroke, dementia, and all-cause mortality [6]. Together with CMBs,

WMHs, seen on MRI using T2-weighted dark-fluid images, are considered a valid biomarker

of brain aging, also in asymptomatic subjects [7]. They are associated with an increased risk of

stroke, cerebral atrophy, cognitive impairment, and transition to disability [8–10].

We hypothesized that ToF patients could exhibit signs of brain aging, construed as an

increased cSVD burden, earlier than healthy peers. This hypothesis was driven by the consid-

eration of an earlier onset of cardiovascular risk factors for brain injuries such as, among oth-

ers, hypertension, metabolism disorders and dysrhythmias, impacting the brain and

contributing to a precocious neurocognitive decline in these patients [11].

In support of this argument, an increased CMBs count was observed in pediatric CHD

patients after cardiac surgery [12], while a high prevalence of WMHs, qualitatively [13,14] and

semi-quantitatively [15] assessed on MRI images, has been reported in adult patients with

unrepaired CHDs.

The investigation of the general linkage between cardiovascular and brain health is gaining

importance in order to develop tailored strategies to prevent or delay cognitive impairment in

patients affected with cardiovascular disease [11,16]. Thus, brain MRI studies in adult CHD

patients can offer insights into this key relation. In this light, this proof-of-concept study

focused on the assessment of CMBs and WMHs, herein used as hallmarks of age-related brain

changes, in adult ToF patients versus a control group.

Patients and methods

Dataset

We recruited 10 patients: 8 subjects affected by ToF and 2 patients with similar clinical condi-

tions (pulmonary valve atresia combined with interventricular septal defect) who came to our

institution to undergo a scheduled cardiac MRI from June 2017 to May 2018. In parallel, 10

age- and sex-matched control subjects were asked to participate to this study. The ethical com-

mittee of the San Raffaele Research Hospital approved this study on 8th June 2017 (protocol

name: LEUCO) and written informed consent was obtained from all patients. All subjects

underwent brain MRI at our institution from June 2017 to May 2018.

Exclusion criteria for both patients and controls were: age< 18 years; inflammatory, infec-

tious, demyelinating or dysmyelinating diseases of the central nervous system; ischemic, hae-

morrhagic, or traumatic brain events with possible gliotic, malacic, or lacunar sequelae;

mendelian or mitochondrial genetic diseases of the central nervous system, including cerebral

autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; cerebral

amyloid angiopathy; cerebral arteriovenous malformations; primary or metastatic brain
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neoplasms; previous cranial/brain surgery; patent oval foramen; pregnancy; migraine with

aura [17].

Controls were matched to patients for age and sex. One year age absolute difference

between ToF and controls was deemed acceptable

In addition to imaging data, we collected information about patients’ clinical condition and

surgical history, such as: number of surgical interventions with extracorporeal circulation

(ECC), age at corrective surgery (expressed in months) and New York Heart Association

(NYHA) class.

MRI protocol

The MRI protocol included the following sequences: a three-dimensional T1-weighted scan; a

three-dimensional T2-weighted dark-fluid scan; and a two-dimensional axial T2�-weighted

scan (Fig 1).

Examinations were performed using a 1.5-T scanner (Magnetom Aera, Siemens Healthi-

neers, Erlangen, Germany). Sagittal three-dimensional T1-weighted images were obtained

using a magnetization-prepared rapid gradient-echo sequence with the following technical

parameters: inversion time [TI] 900 ms; echo time [TE]: 2.26 ms; repetition time [TR]:2,200

ms; flip angle [FA]: 8˚; resolution 0.98×0.98×1.00 mm3). Sagittal three-dimensional dark-fluid

T2-weighted images were obtained using a “sampling perfection with application optimized

contrasts using different flip angle evolution” (SPACE) sequence (TI 1,800 ms; TE 335 ms;

TR 5,000 ms; FA 120˚; resolution 1.02×1.02×1.00 mm3). Axial T2�-weighted images were

obtained using a spoiled gradient-echo sequence (TE 25 ms; TR 965 ms; FA 20˚; resolution

0.45×0.45×4.00 mm3;). brain MRI scans were acquired in controls using a second 1.5 T scan-

ner (Magnetom Symphony Tim, Siemens Healthineers, Erlangen, Germany) using a similar

sequence protocol: T1-weighted scan (TI 900 ms; TE 2.8 ms; TR 2,200 ms; FA 8˚; resolution

0.98×0.98×1.00 mm3); dark-fluid T2-weighted scan (TI 2,200 ms; TE: 358 ms; TR: 6,000 ms;

FA 120˚; resolution 1.02×1.02×1.00 mm3): 2D T2�-weighted scan (TE 26 ms; TR 822 ms; FA

20˚; resolution 0.45×0.45×4.00 mm3)

Fig 1. Examples of images obtained from the MRI protocol. A) Three-dimensional T1-weighted image; B) Three-dimensional dark-fluid

T2-weighted image; C) two-dimensional axial T2�-weighted image.

https://doi.org/10.1371/journal.pone.0202496.g001
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Image interpretation and biomarker quantification

The image reading was performed by a PhD student specifically trained by a neuroradiologist

with 6 years of clinical experience. CMBs were counted on T2�-weighted images. To quantify

the WMHs burden, a semi-automated segmentation method based on local intensity thresh-

olds was used and then manually refined. ITK-Snap software was used to this aim [18]. Finally,

the total burden of the WMHs was expressed as their volume extent in mm3.

To assess and inter-operator agreement, the segmentation was performed by a second

reader, a medical student previously trained by a neuroradiologist with 6 years of clinical expe-

rience in a subsample of subjects (5 randomly selected patients and their respective controls).

As for WMH, to evaluate inter-operator agreement CMBs were counted by two operators in

the same subsample of subjects.

Statistical analysis

Kolmogorov–Smirnov test was applied to check normality of data distribution. The Wilcoxon

signed-rank test was then applied to compare the two groups. Moreover, the non-parametric

Spearman’s correlation coefficient (ρ) was used to quantify the association between MRI bio-

markers (i.e. WMHs burden and CMBs count) and demographics or clinical/surgical data.

Finally, we investigated and inter-observer variability using the Bland-Altman analysis for the

WMHs burden and the percentage of concordance between operators in CMBs counting. Sta-

tistical significance level was set at p-value� 0.05. Statistical analysis was performed using

Matlab r2016a (MathWorks, Natick, MA, USA).

Results

The patient group consisted of 10 subjects (6 males and 4 females), with a median age of 45.0

years (interquartile range [IQR] 30.5–49.5 years; range 22–64 years). The control group was

composed of age-and sex-matched prospectively selected controls, with a median age of 46.0

years (IQR 30.5–49.8 years; overall range 22–63 years). Table 1 summarizes clinical and surgi-

cal history data of our patient sample.

WMHs were identified in 100% of our samples, while CMBs were identified in 100% of

ToF subjects and in one control only. Due to the non-normal distribution of WMHs volume

and CMBs count in both patient and controls (p<0.001), nonparametric tests were used.

Table 1. Summary of patients’ clinical and surgical history. Age, sex, number and type of undergone cardiac surgical procedures in the analysed sample.

Age [years] Sex NYHA class Age at corrective surgery [months] Cardiac surgery using ECC PPVI Total procedures

Patient 1 52 M 2 48 4 - 3

Patient 2 30 F 2 16 1 2 3

Patient 3 32 M 1 6 2 1 3

Patient 4 48 M 2 108 1 1 2

Patient 5 47 F 2 228 1 - 1

Patient 6 22 M 2 11 2 1 3

Patient 7 28 M 1 12 2 - 2

Patient 8 50 F 1 96 1 - 1

Patient 9 64 M 2 48 2 - 2

Patient 10 43 F 2 36 2 1 3

Age, sex (M = male, F = female), number and type of undergone cardiac surgical procedures in the analysed sample. NYHA = New York Heart Association;

ECC = extracorporeal circulation; PPVI = percutaneous pulmonary valve implantation; CMBs = cerebral microbleeds; WMHs = white matter hyperintensities.

https://doi.org/10.1371/journal.pone.0202496.t001
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Median and IQR value of CMBs count were 6.0 (4.0–7.8) in ToF patients and 0.0 (0.0–0.0) in

controls (p = 0.002). Fig 2 shows several examples of CMBs visible on T2�-weighted MRI of

three ToF patients.

Median (IQR) of the WMHs burden was 2,506 (1,557–2,900) mm3 in ToF patients and

2,184 (1,774.5–2542.8) mm3 in controls (p = 0.160). Fig 3 shows the distribution of WMHs

burden and CMBs count in patient and controls.

A positive, albeit not significant, correlation between WMHs burden and age was found in

both controls (ρ = 0.49; p = 0.154) and patients (ρ = 0.190; p = 0.608). The same trend was

observed when assessing the association between CMBs and age in both patient (ρ = 0.12;

p = 0.737) and controls (ρ = 0.41; p = 0.244). Spearman’s rank correlations among MRI bio-

markers of cSVD are reported in Table 2. The only significant association was that between

NYHA class and WMHs burden in patients (p = 0.006). Fig 4 shows the distribution of WMHs

burden in subject belonging to different NYHA classes. Fig 5 shows the volumetric representa-

tion of segmented WMHs in two patients of comparable age graded with different NYHA

scores (I and II).

Inter-operator Bland-Altman analysis for reproducibility in quantifying WMHs burden

showed a bias of 196.7 mm3, a coefficient of repeatability of 530.1 mm3, an average measure-

ment of 2,226.4 mm3, resulting in a reproducibility equal to 77%. On the other hand, inter-

operator concordance rate among readers in CMBs count resulted equal to 60%. When

expressed on a dichotomous scale (present/absent) the concordance rate in CMBs detection

was equal to 90%. Detailed information on the database used in this study are listed in S1 File.

Discussion

To proof the concept of a possible earlier brain aging in CHD patients, we compared the cSVD

burden in a small group of adult ToF patients with that in a sample of age- and sex-matched

controls. We worked under the well-established assumption that CMBs on T2�-weighted

images and WMHs on dark-fluid T2-weighted images represent a biomarker of brain aging

[3], herein investigated in the most common cyanotic CHD [1].

It is acknowledged that CHD newborns show signs of white matter vulnerability, possibly

due to abnormal brain development in utero [19] and perform lower scores in cognitive and

muscle function scales than normative means as they reach childhood [20]. Nevertheless, the

fact that impaired neurodevelopment becomes early brain aging and neurocognitive decline in

adult CHD patients has not yet been proven [11].

Fig 2. Cerebral microbleeds. White arrows highlight cerebral microbleeds (CMBs) on T2�-weighted scans depicted

according to brain location in three patients affected by Tetralogy of Fallot. (A) Two cerebellar CMBs in a 50-year-old

female. (B) Right thalamic CMB in a 22-year-old male. (C) Left frontal CMB in a 43-year-old female.

https://doi.org/10.1371/journal.pone.0202496.g002
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In this study, CMBs were found to be significantly higher in patients, with controls basically

not displaying any of them (p = 0.002). The detection of CMBs on GRE images represents a

challenge. Radiologists may slightly disagree when estimating their size or burden, like in our

case (concordance rate of 60%). However, when CMBs were dichotomically described only as

present or absent, the concordance rate between the two readers became excellent (90%). In

this scenario, due to the overwhelming absence of CMBs in control sample, readers’ discor-

dance can be considered as a marginal issue.

The presence of CMBs could be related to disease severity, number and type of therapeutic

procedures, the precocious occurrence of traditional cardiovascular risk factors and their

interplays. In fact, the outcome in terms of brain aging could be ostensibly secondary to a

mutually self-sustaining circle among the above mentioned contributory causes.

Fig 3. Box-plot data depiction. Box-plot of the estimated white matter hyperintensities (WMHs) burden and cerebral

microbleeds (CMBs) count in patients with Tetralogy of Fallot and in control subjects.

https://doi.org/10.1371/journal.pone.0202496.g003
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Table 2. MRI biomarkers and clinical data. Spearman’s rank correlations between MRI biomarker of cerebral small

vessel disease and clinical/surgical data.

MRI biomarkers Clinical data ρ p-value

WMHs NYHA class 0.798 0.006

Age at corrective surgery 0.128 0.725

Surgical interventions with ECC 0.281 0.431

Total procedures 0.178 0.623

CMBs NYHA class -0.268 0.455

Age at corrective surgery -0.107 0.769

Surgical interventions with ECC 0.384 0.273

Total procedures 0.106 0.771

M = male; F = female; NYHA = New York Heart Association; ECC = extracorporeal circulation;

PPVI = percutaneous pulmonary valve implantation; CMBs = cerebral microbleeds; WMHs = white matter

hyperintensities.

https://doi.org/10.1371/journal.pone.0202496.t002

Fig 4. White matter hyperintensities (WMHs) burden and cardiac function. Boxplot representation of WMHs volume in ToF subjects

graded I or II class of the New York Heart Association (NYHA) scale.

https://doi.org/10.1371/journal.pone.0202496.g004
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Cardiac surgery may harm the brain through cerebral micro- o macro-embolism and hypo-

perfusion, the latter being worsened by the inflammatory events resulting from cardiopulmo-

nary bypass and ischemia/reperfusion injury [21]. Moreover, percutaneous valve-replacement

manoeuvres that call for valve manipulation, balloon expansion, and big vessels mechanical

stress could generate small cerebral embolic infarcts [22]. Even though post-operative lesions

represent acute injures rather than a long-term outcome from small vessel diseases under con-

sideration, still their chronic MRI correlates may be alike.

Differently form CMBs, WMHs burden in ToF patients was not significantly higher than in

controls (p = 0.160). We did not resort to visual rating scale due to their well-established lack

of reliability in comparison to volumetric assessments, particularly in low-burden WMHs,

which represent the vast majority of cases [23]. In this study, we quantified WMHs burden

with a semi-automatic method improved with manual contouring, which showed an accept-

able intra-operator reproducibility. Considerable variability was encountered in patients,

whose WMHs volumetric burden was even very low or very high, with controls displaying a

more homogeneous trend. It is reasonable to expect that this not significant difference would

become more pronounced in further studies endowed with larger samples.

Interestingly, among the associations we analysed, the one between NYHA class and

WMHs burden was the only significant, coherently with previously reported results in cardiac

Fig 5. Volumetric rendering of total brain volume in two subjects with Tetralogy of Fallot. A) NYHA I, 50 years-old female. B) NYHA II, 52 years-old male.

White matter hyperintensities are labeled in blue.

https://doi.org/10.1371/journal.pone.0202496.g005
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failure patients [24]. The difference between ToFs and control subjects was remarkable (see

Fig 4), thus supporting the concept of a strong association among cardiac function, brain sta-

tus, and daily living physical activities. How cardiac function may affect white matter integrity

can be visually rendered by the examples shown in Fig 5. We hypothesize that the inclusion of

subject belonging the third and fourth NYHA classes will strength this association, thus

spotlighting the need to further investigate the link between cardiac function and brain status

in ToF subjects.

We found a trend for a positive correlation between all imaging biomarkers of cSVD and

age in both groups, probably not significant due to the small sample size of this preliminary

study. While varying degrees of cSVD were found in young individuals of both groups, a defi-

nite upward trend was found in the elderly. These findings are consistent with the well-known

phenomenon of cSVD increase with aging of general population [3–5, 25].

Besides, the use of CMBs and WMHs as a neuroimaging biomarker of brain aging deserve

a general comment. The underlining pathology for WMHs is an open issue. Arteriolosclerosis,

subependymal gliosis, axonal damage, and demyelination at different stages were previously

reported on brain autopsy studies [26, 27]. Thus, WMHs lack pathological specificity and are

associated with a variety of both vascular and inflammatory conditions. Conversely, among

MRI findings related to cSVD, CMBs are more specific. They represent a direct effect of micro-

vascular leakiness, which causes blood breakdown products to extravasate through a damaged

blood-brain barrier (BBB) and be engulfed by brain macrophages and microglia. Thus, the fail-

ure of the BBB as a prominent pathophysiological mechanism for CMBs occurrence may also

play a role for other manifestations of cSVD that acknowledge a common ischemic genesis

and are indeed strongly associated with CMBs, WMHs at first [28]. Hence, it is supposed that

a disrupted BBB and an extravasation of cells and plasma components may lead to demyelin-

ation and gliosis, contributing to WMHs initiation or progression [29] as well as hemosiderin

deposits occurrence, i.e. CMBs.

In our study, we hypothesize that the increased burden of cSVD in CHD patients, whose

cardiovascular risk propensity is undoubtedly high, may be mediated by vascular damage, pre-

sumably via cyanosis prior to surgical repair, surgical brain damage and cardiac failure, even-

tually leading to BBB disruption and subsequent MRI-detectable changes. However, it is

uncertain whether age at first corrective surgery may impact cSVD neuroimaging findings in

adults, since postoperative lesions in children have been shown to regress short after surgery

[30]. Indeed, our results did not show a significant correlation between age at repair surgery,

namely time of cyanosis prior to surgical correction, and either WMHs burden (p = 0.725) or

CMBs count (p = 0.769).

Occurrence of CMBs right after cardiac surgery has been previously reported, both in chil-

dren with CHD [12] and in adults undergoing on-pump coronary artery bypass grafting [31].

It is however unclear whether those micro-haemorrhages observed on brain MRI may persist

long after surgical repair [5]. That is to say, we cannot establish if the strikingly high CMBs

burden we encountered was brought about by chronic microvascular damage or heart surgery.

We believe they both may play a role in harming cerebral vessels so to contribute to brain

aging and vulnerability. In support of this argument, we did not find any correlation between

number of surgeries performed with ECC or number of total cardiac procedures and cSVD, so

that cardiac surgery on its own cannot account for the CMBs burden we observed.

In the specific case of our sample, the joint presence of four CMBs in a 64-year-old patient,

with a record of three cardiac surgeries (two of them requiring ECC), and a four-fold CMBs

count in a 50-years-old patient who underwent a single surgical procedure (with ECC) high-

lights the weakness of the possible association between surgical history and number of CMBs.
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Stated the above, residual issues concern the assessment of the imaging biomarkers under

consideration. Spoiled GRE and other paramagnetic-sensitive MRI sequences allow to detect

CMBs [6], although it may be difficult to tell them apart from their mimics, particularly when

phase images are not employed [5]. To improve the current MRI protocol to overcome CMBs

detection issues, we will introduce sequences for susceptibility-weighted imaging (SWI) aimed

at visualizing them with the highest in vivo sensitivity [28].

Dark-fluid T2-weighted images can help to distinguish WMHs from silent brain infarcts

that appear as CSF-filled cavities or lacunes. However, they can overestimate WMHs burden:

almost a third of lacunar infarctions do not develop lacunes and so are indistinguishable from

WMHs [32]. Importantly, WMHs represent only radiological finding, not a clinical finding. A

blurred border exists between the “incomplete infarction” [33] at the bottom of white matter

rarefaction and those silent strokes that withstand cavitation. Therefore, it is reasonable to

consider WMHs and not-cavitating silent brain infarcts as a continuous entity for the purposes

of this study.

This preliminary study has some limitations. First, the small sample size, which did

not prevented us to obtain a statistical significance for the difference in CMBs occurrence

in patients and controls. Conversely, the lack of statistical power limited the assessment of

correlation between cSVD burden and age in both patients and controls, to be investigated

in future larger studies. Second, in respect of our primary aim, median age and interquartile

range of 45.0 (29.5–50.5) years for the patients’ group are lower than desirable. A confirmation

and a strengthening of the observed results for elder individuals is thus needed.

Third, we did not investigate the possible clinical correlate of the increased cSVD burden in

patients. The latter will be a necessary aim of larger transversal and longitudinal studies that

shall be provided with neuropsychological assessments.

We will further investigate thoroughly on the topic of cSVD and brain aging on CHD

patients. We will first implement our MRI protocol with new SWI sequences to evaluate non-

heme iron deposition on basal ganglia, which have been proven to be a promising biomarker

of neural and cognitive declines in normal aging [34].

We will also administer a questionnaire on lifestyle and psycho-social status specifically

designed for adult CHD patients. Further clinical data such as blood pressure and pulse oxime-

try will be collected to assess vascular health. Finally, to link neuroimaging findings to cogni-

tive functioning, enrolled CHD patients will undergo a neuropsychological test battery to

investigate attention, executive functions, memory, visuospatial and sensorimotor domains

which are typically altered in this population [11].

To summarize, we found a significantly higher burden of CMBs in adult ToF patients than

in controls. WMHs volumetric burden was instead not significantly higher in patients, albeit a

noteworthy association with NYHA class was observed. This proof-of-concept study is a pilot

investigation inspirational for future researches, since the relationship between CHDs and

cerebral aging has never been thoroughly investigated via neuroimaging tools. If confirmed,

this finding could play a role for predicting and preventing transition to disability in patients

with CHD such as ToF, who are currently able to reach older and older ages due to modern

standard of care.
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