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Abstract

In this work, we study the existence of, low amplitude, phase-shift multibreat} :rs for small values of the linear coupling in Klein-
Gordon chains with interactions beyond the classical nearest-neighbor (NN) or »s. 7.1 the proper parameter regimes, the considered
lattices bear connections to models beyond one spatial dimension, namely thr so-called - .gzag lattice, as well as the two-dimensional
square lattice or coupled chains. We examine initially the necessary persistence ~onditions of the system derived by the so-called
Effective Hamiltonian Method, in order to seek for unperturbed solutior = whose ¢ ntinuation is feasible. Although this approach
provides useful insights, in the presence of degeneracy, it does not allow us “n d cermine if they constitute true solutions of our
system. In order to overcome this obstacle, we follow a different route. ., means of a Lyapunov-Schmidt decomposition, we are
able to establish that the bifurcation equation for our models can be -~~~ "' . in the small energy and small coupling regime, as
a perturbation of a corresponding, beyond nearest-neighbor, discrete .. nlinear Schrédinger equation. There, nonexistence results
of degenerate phase-shift discrete solitons can be demonstrated b=~ =n addit.onal Lyapunov-Schmidt decomposition, and translated
to our original problem on the Klein-Gordon system. In this we - a’ 10ug other results, we can prove nonexistence of four-sites
vortex-like waveforms in the zigzag Klein-Gordon model. Fin~lly, b. »fly considering a one-dimensional model bearing similarities
to the square lattice, we conclude that the above strategy is n “ficicat for the proof of the existence or nonexistence of vortices
due to the higher degeneracy of this configuration.

1. Introduction represent a focal point in our study.

It is worthwhile to stress here that, on a more mathematical
side, the proof of existence of these objects (discrete breathers
and their variants that we consider in the present paper) is
nowadays fairly standard in the limit of small coupling, pro-
vided a suitable nondegeneracy allows to apply the Implicit
Function Theorem [35]. A key feature of our work is the de-
velopment of a rather general technique to deal with degen-
erate situations, in order to prove existence or non-existence
of continuation of solutions from the zero-coupling limit, when
the standard approach does not work. Our technique will be
shown to be applicable to several systems. Among them, the
zigzag model is particularly relevant. This is because it repre-
sents a prototypical system for which a rather nontrivial form
of degeneracy appears.

More specifically, in this work, we are interested in KG mod-
els with range of interactions beyond nearest-neighbor, with

The study of nonlinear dynamical lattices of K :in-Gora m
(KG) and Fermi-Pasta-Ulam types has received cou. derz sle
attention over the past two decades. This csa ber parcally
attributed to the intense interest in waveforr s w! «ch 7 e ex-
ponentially localized in space and periodi in = me 8, 18].
Such discrete breather states have been rec "nized as vmerging
generically in systems that combine dis’ ceten. < and nonlin-
earity. Relevant experimental example- ~bound and involve,
e.g., Josephson junction arrays [6, 52, ele trical transmission
lines [16], micro-mechanical cantileve, ~vr s [48, 49], coupled
torsion pendula [12], coupled antifr .romag. “tic layers [50] and
granular crystals [7, 10].

Most of these studies concern .. ~ .ame .tal localized states.
Typically also, they are prede ‘nanti, o simpler, more con-
trollable one-dimensional m' dels [1c° However, optical [34],
atomic [25], solid-state [14] . nd othe settings suggest an in-

. . . . . Hamiltonian
terest in exploring highe» Yime.. "_aal systems. Here, there
may exist energy thresl lds for breather existence [17]. Addi- 1, r (zjin — x5)2
tionally, one can find nc vel discr :te vortex structures [11, 13]. H = Z |:(2yj + V(xj)) + Z €h%
These are also referred t. - phase-shift multibreathers. In Jjez h=1

fact, it may happer vua. * ~her charge vortices are more sta-
ble than their lower ‘t.rge counterparts under appropriate
conditions [27]. It has i “en argued that suitable adaptations

In the present paper we will actually restrict to the case of the
hard quartic potential, i.e.

of beyond-nearest-neighbor interactions [29] and the so-called 1

zigzag [15] chains share some of the intriguing features of V(s) = 532+ 1347 (1)
higher-dimensional settings. At the same time, such settings

remain effectively one-dimensional in their formulation. For although, in the limit of small enough amplitude, the results
this reason, lattices with beyond-nearest-neighbor interactions presented here hold true for generic symmetric potentials.
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Figure 1: The two-dimensional zigzag model: all the interactions
are nearest-neighbor ones with the same strength. The diagonal
(red) springs are those which give the nearest-neighbor interaction
in the corresponding one-dimensional version (see Figure 2), while
the (blue) horizontal ones correspond to the next-to-nearest (NNN)
neighbor interaction in that representation. The indexing indicates
the energy flow of the vortex solutions. Color online.

The Hamiltonian above describes an infinite chain of an-
harmonic oscillators with linear interactions between them up
to r neighbors and vanishing boundary conditions at infinity
limy— 400 Tn = limp 400 Yyn = 0, which are automatically sat-
isfied since we set £2(R) x £%(R) as the phase space of the
system. We will denote by E the energy of the system, i.e.
the (conserved along the dynamics) value of the Hamiltonian
H(z,y) =E.

In what follows we will limit our analysis to range of inter-
action r = 3. By considering ¢; = kje, with k1 = 1, the above
Hamiltonian becomes

H = + e
y?
A= (% Vi) e
JEL
1
M =5 Z (25 — wj41) + k() — @j02)” + ka(aj — wj40)"]
JEL

We are interested in the existence, in the small co .pling 1. it
(i.e., for values of the coupling close to the anti-. “ntinu m
limit [35] of ¢ — 0), of multibreather solutior . Thesc .on-
stitute a class of periodic orbits whose energ: is s atia'ly lo-
calized on few oscillators (or sites). More pre  ely, wve will
denote by S = {j1,j2,...,Jm} the set of t’ eir indicc . In the
case of the zigzag model, four adjacent or :ilic’ ~rs will be con-
sidered (namely with indices j € S = {1 2,3,4}; »_e Figures 1
and 2). If these four oscillators are gi- en \ 1e same energy for
e = 0, any orbit is periodic. This is ¢ = veg urdless of the phase
differences between them. In this -say, « ~mpletely resonant
four-dimensional torus is formed “or tl : zigzag system.

Our investigation can thus be ~ee . to all within the gen-
eral question of the perturbation ot .. - Jimensional invariant
resonant tori in Hamiltoniar dynam ‘<s: generically, only a fi-
nite number of periodic orb. s are ex »ected to survive to the
breaking of the resonant torus. ' ~= ¢ bounds for the minimal
number of such persisti- g solu’ions can be derived by means

S
NI e
DS

of geometric methods, such as in the so-called Moser-Weinstein
theory (see [54, 38], but also Chapter 1 of [5] for a simpler expo-
sition of main results in this direction). In the case of resonant
tori of maximal dimension, classi- al results of perturbation the-
ory due to Poincaré [46, 47] 2".ow "~ identify these orbits as
critical points of the averaged nerturba.ion on a torus, under
some suitable nondegenerac cor litions; degenerate cases, still
considering tori of maxim. dir ension, have been instead the
object of more recent pay ~vs, su.™ as in [37, 53] or in [44], where
normal form techniques ana “xed point arguments were com-
bined. One of the first :xu. nsions to low-dimensional tori can be
found in [51], still v «der suir.Dle nondegeneracy assumptions
(see also [55] for a co..” mporary extension to multiscale sys-
tems). However .o our kiwledge, none of the above results
provides a cons ructive nd applicable perturbation strategy.
Thus, the objecu of the present investigation will be the pro-
posal of suct . straivcgy for the continuation of periodic orbits
in the dege 1era* . a. 1 low-dimensional case.

When we __aside only nearest neighbors interactions in (2),
i.e., setting »» — w3 = 0, and consecutive oscillators, it is well
known that on, - multibreathers with standard phase-differences
(¢ = v ~r ) ! etween adjacent oscillators survive the break-
ing ¢ the .csonant torus [30]. If next-to-nearest (or longer
range) ne. hbor interactions are added, other solutions with
n. ~-standard phase differences may survive: these are called
phase-_“ift multibreathers (see e.g. [32, 43]). The emergence
ur . ~2-shift multibreathers in both one-dimensional KG and
i crete nonlinear Schrédinger (ANLS) models with interactions
be_-ond those of the nearest-neighbor interactions, have been in-
. >stigated in some recent works [9, 24, 29]. This issue partially
overlaps with the study of vortex structures in two-dimensional
lattices, like in [13, 28, 41]. Indeed, a suitable beyond nearest
neighbor interaction in a one-dimensional lattice allows to re-
produce the local interactions involved in a two-dimensional
vortex, for example in a hexagonal or square lattice, thus pro-
viding an emulation of the two-dimensional object by a one-
dimensional one at leading order in the coupling perturbation
parameter €; such an approximation clearly fails at higher or-
ders, due to the differences in terms of lattice shape and inter-
action among sites.

As an intermediate case between a one- and a two-
dimensional lattice we can consider the aforementioned zigzag
lattice [15]. This lattice can be seen to consist of just two oscil-
lator chains which are connected as shown in Figure 1. In this
case, we can easily see that vortex solutions of Figure 1 corre-
spond to four-site multibreathers in the one-dimensional system
of Figure 2. The zigzag system is described by a Hamiltonian

1o 15 14
%10 - Z [ (5?!] + 513]' + ZZ'J) +
e (3)
€

5 (o =2+ @aa = 2)7)]
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Figure 2: The corresponding one-dimensional zigzag model. The numbers indicate the correspondence to the two-dimensional zigzag model.
For the color meaning, please refer to the caption of Figure 1. Color online.



that corresponds to a Hamiltonian (2) with k2 = 1 and k3 = 0.
Indeed, the subscript of 77 refers to the values of the coupling
constants k (including k1 which is always 1 in our notation).

As we anticipated before, both in the one-dimensional and
in the two-dimensional case, the existence of multibreathers is
typically established via implicit function theorem arguments,
which rely on the non-degeneracy of some linearized equation.
This is the case, for example, of the classical result in [1], where
true multibreather solutions are obtained from approximate so-
lutions which correspond to critical points of an averaged (ef-
fective) Hamiltonian: in this context, an approximate solution
has to satisfy some persistence conditions (see e.g. [29]) which
select admissible candidates of phase-differences for a possi-
ble continuation. The same analytical tool, i.e., the implicit
function theorem, can be used also in a different scheme: ap-
proaching the original problem with a Lyapunov-Schmidt de-
composition (with the torus being resonant), it is used to solve
the Range equation, and then the use of some symmetry, like
time-reversibility, can remove the Kernel directions (see [43]).
However, in some degenerate cases, the candidate solutions we
get from the persistence conditions do not correspond to true
solutions of our systems. In such cases, a deeper analysis is
required which typically involves higher order terms of the bi-
furcation (kernel) equation.

In particular, by studying persistence conditions, one real-
izes that candidate solutions are not isolated in degenerate sys-
tems, but appear in families. In the following section it will
be illustrated how a simple form of degeneracy arises when in
the multibreather configuration there are holes between oscille.
tors which are large in comparison with the interaction range.
More subtle mechanisms are related to particular symm . -~
in the interactions beyond nearest neighbor ones even for co..
secutive sites configurations. A prototypical case is that of the
zigzag system (3), for which we realize that the canc uav. vor-
tex solutions of Figure 1 appear as two one-paramr .er fami, =s
intersecting in two highly symmetric configurations.

To get a complete description of the continue 1on we eaploit
the corresponding dNLS model

1= [ (1o + 2wt )+ @

jez
€ 2 o2 2
+§(|1/1j+1 — ;|7 A kaltbiie — 417+ kalirs — by )} ,

as a bridge to the KG system JZ. "adeed, . the framework of
resonant normal form theory, the .ornr :r can be shown to be a
good approximation of the latter . .nhe e .ergy regime F < 1
and for couplings € < VE (se , 2.g., |-, 42], or the proofs in
Section 3); this means that b a close o the identity symplectic
change of coordinates, the d. Ference oetween the two models
(2) and (4) is shown to be ~=ali .. 2\ E®+e>E+|¢|E*) in some
norm of analytic functic as. Mc ~over, although the system H
shares the same degene acy as - ae original KG model 57, it
is easier to derive the non. ' _nce of any phase-shift discrete
soliton of H followi. 4 v... ~heme of [45], by expanding its bi-
furcation equation to ‘e .ding order and verifying a sufficient
condition on it. Since s. <h a condition is robust under small
perturbations, we are then able to transfer the nonexistence re-
sult of H to the original system ., showing the nonexistence
of any vortex solution (symmetric or asymmetric) for the cor-
responding degenerate KG models, in the prescribed regime of
the two main parameters F and e.

We present here, among the possible statements, the one
concerning the four-sites multibreathers for the zigzag model.
We thus introduce the four-dimensional resonant torus filled by
periodic orbits, belonging to the vossible solutions of J# 1o for
e=0

i (7) = 0, jés
) )_{x(r+9j), je '’ )

with S = {1,2,3,4} and (. is a nonlinear oscillation of nor-
malized period 27w
V' 4z +a*=0, c(0)=p, (6)
where 7 := ~t is the rec aled time induced by the frequency =
associated to the (small) umplitude p of the oscillation; we also
introduce the nha. " .erences ¢;, between the above men-
tioned succ ssive  -illators, as

©j ::qu—ej\ JGS*:{1,273}. (7)
As was previc sly mentioned, in this case, the configura-
tions su. ~ble or continuation lie in two one-parameter fam-
ilies w. hin tne three-dimensional manifold of phase-differences
variahloe ) These two families intersect in what we call
sy.. metric vortex configuration, since it features the standard
vortex | hase differences ®©®V) = ¢ = +(r/2, 7, —7/2), where
© - 1,92, 93), according to (7). The reason that the ®©V)
« afiguration is the one with +(7/2,7m, —7/2) and not the
£\ /2,7/2,7/2) as one could have expected, is that, as we
cea see from Figure 1, the vortex-flowis 1 -2 -4 -3 — 1
while the phase differences are calculated using consecutive os-
cillators. On the other hand, we will call all the other solutions
of these two families, with ¢ # ®®V) as asymmetric vortices.
Let us note here that these families also include some of the
standard (¢; € {0,7}) multibreather solutions in addition to
the isolated standard solutions of the persistence conditions.
The next theorem claims that these standard multibreathers
are the only periodic orbits persisting under a small perturba-
tion effect, and thus no phase-shift multibreathers exist upon
continuation from the zero-coupling limit, in the small ampli-
tude regime.

Theorem 1.1. For € and p small enough (e # 0), the only
four-site unperturbed solutions (5) that can be continued, at
fized frequency v, to solutions uj(p,e,7) of (3), correspond to

wi € {Oa 7T}'

Moreover, in all the cases which appear to be non-degenerate,
the “dNLS approximation” strategy, allows to derive any exis-
tence result for (2) from the existence result for the correspond-
ing ANLS model (4). The implementation of this transfer-of-
results technology between the dNLS and the corresponding
KG lattices is one of the central contributions of the present
work. The price one has to pay for the use of this strategy lies
in the restrictions in the regime of parameters for which the
models (2) are well approximated by the corresponding aver-
aged normal forms (4).

It is important to remark that degeneracy may appear with
different “degrees” (see Definition 3.2). Indeed, within the
family (2), a very degenerate system is given by the Hamil-
tonian o1 (see (17)) which has k2 = 0 and ks = 1 and it
is used to offer insights towards vortex-like configurations in



two-dimensional square lattices (due to the absence of diagonal
interactions when considering 4 nodes as lying at the vertices
of a square). This system admits, at the level of the persis-
tence condition, three vortex families, having the symmetric
vortex configuration in their triple intersection, giving thus a
high degree of degeneracy. We stress that the corresponding
dNLS model is exactly the one studied in [45], but within the
scheme implemented in the present paper, the high degree of
degeneracy of J#i01 does not allow us to transfer the nonex-
istence result proved in [45] to the corresponding KG chain.
We are presently exploring a different normal form strategy
which works directly on the original KG model and interprets
the problem in the classical sense of breaking of a completely
resonant low-dimensional torus [44].

Due to the degeneracy, which manifests itself through the
presence of families of candidate solutions, and even more
through their intersection points, we attempt to complement
our analysis by performing a numerical investigation of the per-
sistence conditions of the full problem (2) in the neighborhood
of the parameter-values (k2,ks) = (1,0) and (k2,ks) = (0,1),
which correspond to the zigzag and 401 configurations. In this
study, we realize there exist families of solutions in the (k2, k3)-
space which are non-degenerate and consequently easily contin-
ued to real solutions. But, as the k-parameters converge to the
above mentioned set of values, the originally non-degenerate
families become degenerate and the persistence conditions can-
not provide a definite answer on the existence or not of the
corresponding multibreather configurations.

This paper is structured as follows. In Section 2 we di.
cuss the problem of degeneracy, reviewing the classical Ef-
fective Hamiltonian Method, and providing several exa .'-»
of degenerate and non-degenerate systems. The core of ti.
mathematical content of the paper is in Section 3, where after
some settings and a precise definition of degeneracy >cw Def-
inition 3.2), the abstract results (Theorems 3.1 2 .d 3.2) . re
formulated. The proofs, described by an extensive . ~adm .p,
and divided in three main steps, follow in a s osecueny sub-
section. In Section 4, by applying the previo s ge .eral state-
ments, existence and nonexistence results e L. ‘ved for the
various models presented in Section 2. T’ = numerical explo-
rations of the persistence conditions cle e to "he parametric
regions which correspond to the zigzag ~~d 401 systems are
reported in Section 5. Finally, Sectira 6 ncludes some con-
cluding remarks about possible futurc Yir- ctions on the topic.

2. The problem of degene. ~cy

In the present Section we discus® the main mathematical
issue, i.e. the presence of de eneracy, which motivates the de-
velopments discussed in the . ~sent paper. In particular, we
will define what we mea . py degeneracy presenting a classical
technique used to discus : the exis ‘ence of multibreathers (MB):
among the requested hyy ~thesis for the result to hold, we will
emphasize the “non “~eeneracy” one.

Then, after presen. ‘ug « suaple non-degenerate case, we will
show two different typ. of configurations which lead to degen-
eracies.

2.1. The Effective Hamiltonian Method

Here we review the Effective Hamiltonian Method for the
investigation of the existence of multibreather solutions intro-

duced in [3], extended in [1, 36], and revisited and applied in
several papers, like e.g. [29, 31, 32, 33].

We very briefly recall that the idea behind such a method
is to calculate the critical points of an “effective” Hamiltonian
s which are in a one-to-one .or.. mondence with the multi-
breather periodic orbits of the original . ystem.

First, we consider the m osc1 ‘ators (sometimes referred to
as “central”, a term we av ‘d I .re since it may generate con-
fusion in the case of non: ~onsec *ive configurations) which are
involved in the MB and enu. erate them according to the set
S ={j1,j2,---,jm}. 1er. we are adopting a general enumer-
ation of the “activr os.llaturcs in order to be able to con-
sider not only adjaceny :cillators, but also configurations with
“holes” between .uem in wuat follows. In the uncoupled limit
€ = 0 we consid¢ - them n Hving in periodic orbits with the same
frequency but ar. ‘trary aitial phase. Then, in order to better
detail the pr .cedure, we introduce action-angle variables (J, 0),
through th dis .ac ment equation of an individual central os-
cillator:

2(0,.)) =Y A no1(J)cos|(2n — 1)0] . (8)

w=1

The lac.. ~f the even terms As,, in the Fourier expansion stems
llllll .« oymmetry of the potential V. We thus get a Hamilto-
nian ¥ (zi,yi, Jj,0;,¢€), with j € S and ¢ € Z\ S. Now, with
-~ addnional linear canonical transformation we introduce a
ne v sev of action-angle variables

"9:9j17 A:Zij’
k=1
m (9)
o=0j,,—0;,, Ie=> J,, L(=1..m-1,
k=041

with ¢, representing the phase differences between “consecu-
tive” (within S, according to our enumeration) sites. The above
set of coordinates represents the natural introduction of m — 1
slow angles ¢; and a fast angle ¥, associated to the resonances
among the equally excited oscillators: indeed, since at € = 0 we
consider the oscillators J;, [ € S with the same action J* (in
order to have also the same frequency), they lie in the so-called
1: 1 resonance.

With the Hamiltonian in the form J2(9, A, pe, 1o, s, ys, €),
it is possible to introduce the effective Hamiltonian as

S = L ?{jfo (t)dt
T

where z is a periodic trajectory in the phase space obtained, as

illustrated in [1], by a continuation procedure, at constant A,

starting from the object defined in the € = 0 limit.

From a practical point of view, g being defined in terms of
an object (the closed path z) which is not known explicitly, the
relation between MB solutions and the critical points of g
seems useless. Here comes the role of (non)degeneracy. Indeed,
expanding everything in powers of €, at the leading order the
effective Hamiltonian can be calculated explicitly using zo, the
periodic orbit in the uncoupled limit. If the critical points
found in such a case are non-degenerate, they can be continued
to critical points of the full effective Hamiltonian, i.e. to true
MB solutions.

Since by construction J#g does not depend on 1, then A is
constant and will be omitted. Recalling the general structure of



(2) the leading order of the effective Hamiltonian is simply the
sum of the uncoupled Hamiltonian 4% (which depends solely
on the actions being the integrable part of the Hamiltonian)
plus the average (J4) of the coupling terms with respect to
the uncoupled periodic orbits:

Hog (0o, Io,€) = Ho(Io) + () (@e, 1) + O(€7)

fyfozo

Critical points of the effective Hamiltonian can now be found
as continuations, to nonzero €, of non-degenerate equilibria
(o7, I}") of its leading order, with respect to €, part. The val-
ues of the actions I} correspond to the unperturbed solution
Ji = J*, while the existence of {;} is given by the persistence
(necessary) condition

O(AA)
oo n=17

where

(F4) (e, Le)

Plp) := =03 (10)
the above condition provides critical points of (1) (¢, I]) on
the torus T™ ' of the slow angles. Solutions * of (10) such
that ¢; € {0, 7} will be referred to as standard configurations,
while in the ¢; ¢ {0,7} case they will be called phase-shift
configurations. The possibility of their continuation is given by
the following set of non degeneracy conditions at (o], I}")

0>y
’3101- 70, (ND-B
0*(A)
0, Nor
S (e
Q#ky, (NR)
where @ = V”(0) is the frequency of the small os .llations at

the elliptic equilibrium of the anharmonic oscillat. ~ anc -~y

is the frequency of the periodic orbit we are lc Jking fo., and

2.7
aJ;

are in the 1:1 resonance. Instead of using num. *s .o refer
to the above conditions, we use letters v . ‘~h remind to the
name of the condition itself. Indeed conc_tion (. M-K) is often
known in the KAM literature as Kolm . ~ov’s nondegeneracy
(see for example the classical works ., 26 ;, and encodes the
fact that the resonant torus is isolatea - Jhe space of actions;
condition (ND-P) is instead known as Poinc. € nondegeneracy,
since it appears already in well-k .owr resv'ts of continuations
of periodic orbits due to Poincaré |a. 47]; - ad condition (NR) is
a classical (first Melnikov) cc .u.cion 0. aonresonance, needed
to “remove” leading order 1teracti 1s between action-angle
variables (¢, I;) and the traw versal - ariables (x,y). With the
above conditions, MB sc’..ions cau be obtained via Implicit
Function Theorem.

coincides with all the ) , which are all >qus. sir ce we
J*

Remark 2.1. We stress .. = .hat in the class of models we
are dealing with, bc « . "*ons (ND-K) and (NR) are obvi-
ously satisfied given 1. 2 nonlineararity of the oscillators and
their small amplitude (. ‘nce for higher amplitudes we could
have resonances and (NR) wouldn’t hold). Thus, the actual
nondegeneracy condition reduces to (ND-P). Moreover, stan-
dard Multibreathers, corresponding to solutions ™ of (10) with
o € {0,7}, can be continued independently of the wvalidity
(ND-P), as proved in [43].

It is possible to exploit the introduction of action-angle
variables (8) to give a more explicit expression of (J#) and
its derivatives (see, e.g., [32] for a detailed derivation in the
nearest-neighbor case): we will ¢".ow it in the particular situa-
tions analyzed below.

In the following subsections we will t. st illustrate some typ-
ical examples of non-degen rate situations, and then we will
investigate in some interes. g ases the appearance of degen-
eracy through the two di™ereny . ~echanisms already mentioned
in the Introduction.

2.2. Non-degenerw. ~ s7 uations

Let us first sh” v ¢he aci.al implementation of the Effective
Hamiltonian M« chod in . »me non-degenerate cases.

In particular le " us rec Il that in the nearest-neighbor setting,
with consec’ wive sites S = {1,...,m}, it is shown in [30, 32]
that contir 1atic . 1 m the zero coupling limit is possible only
for standara configr rations, i.e. the so called in/out of phase
MB (see r. mre o tor an illustration of the possible configura-
tions in the 3 . 'tes case). In this case an explicit calculation
brings . » aver .ged Hamiltonian in the form

m—1

Z 2n— 1C0§ 271—1)%}7

j=1 n=1

it -, wuus clear that ¢ = 0,7 are critical points for (J); we
1 er again to the above quoted papers for the proof that these
are the only configuration that can be continued.

Another example is the triangular configuration of consec-
tive sites S = {1,2,3} in the zigzag model, i.e. with first
and second neighbor interactions. For this configuration, one
could also refer to the study of proper vortex solutions in
two-dimensional lattices, e.g. [28, 33], since the corresponding
effective Hamiltonian functions are equivalent at leading order
of approximation. In this case we have

(o) = —% Z A3,y [cos[(Zn — Dp1] + cos[(2n — 1) 2]+

n=1

cos[(2n — 1)(p1 + 902)]] ;

the persistence condition (10) is easily derived (see also Section
3 of [28]) and nondegeneracy (ND-P) is easily checked, showing

(0,0) (0,m)

(m,0)

Figure 3: An example of the four possible 3-sites MB, in the uncou-
pled case, with different choices of the phase shifts (1, ¢2).



that there exists an isolated phase shift MB with ¢ = 27/3, i.e.
a vortex solution.

As a last simple example of non degeneracy we might con-
sider again the zigzag model as above, but in a configuration
of non consecutive sites: S = {1,3} (see Table 1, bottom-left
panel). We stress that in this case we have a hole from the
point of view of the configuration, but due to the second neigh-
bor interaction (see the blue spring among sites 1 and 3, in
figure 1) actually there is no degeneracy at first order. Indeed,
recalling our notation with enumerated sites S = {j1, j2},

(JA) = —% Z A3, 1 cos[(2n — 1)¢1] ,

with ¢1 = 03 — 01 the only phase difference available.

2.8. Degeneracy from “holes”

In this part we will show that suitable combination of con-
figuration holes and interaction types may lead to “effective
holes” at first order; this will generate in an obvious way a
problem of degeneracy.

The first simple example is given by a chain with only
nearest-neighbor interaction, and a configuration with a hole
like S = {1, 3} (see Table 1, top-right panel). Let us recall that
in such a case the interaction part # contains only terms of
the form z;x;41, besides the quadratic terms x? which depend
only on the actions. Thus performing the average along zp we
have that § zoz1 = § 172 = § 223 = § w324 = 0 are all ze
because in each product one of the factors is identically zero,
since only x1 and x3 belong to the chosen configuration. The
only contributing terms are the averages of z7 and x3:

() = 1 fat+ o) 0 st = O

where J* are the fixed vales of the original actions " the .n-
perturbed orbit zp. Thus there is no dependenc : on the . 1ase
shifts ¢, and this brings a complete degenerac: Tt 'refe e it is
not possible to proceed with the standard t>chi. e ) check
whether some configuration (and in the ce e, which cnes) can
be continued to the interacting regime € - - 0.

Type of Presence of ar “eff' ctive hole”

interaction

no yes

- O
S AN

Vo
Table 1: Possible configurations of a 2-sites MB, in the uncoupled
case, with or without “holes”. Supposing a NN interaction in the first
row, and a NN+NNN interaction in the second one, the situations
with “effective holes” are only in the second column.

NN-+NNN .

A further example that, like the previous one, we will be
able to deal with, using the results presented in the present
paper, is given by a zigzag mode' (i.e. with first and second
neighbor interaction having the ,ame strength) and a double
hole configuration S = {1,4} (¢ e 1. "le 1, bottom-right panel).
Here the interaction part of the Hami..onian contains terms
(among those depending on ne } 1ases) of the form z;z; 41 and
Tjx;42, but again we will ~ave f:coccl = fmw:z = 55:1@3:04 =
$razs =0and fx_121 = $a, 2 = fxows = § zam6 = 0 for
the same reason as before.

2.4. Hidden deger. rac, in veyond-nearest-neighbor mod-
els: four-site voru. ~-like configurations

In the previo s subse. “ion we illustrated the appearance of
a degeneracy wh se sour e is very clear and somewhat elemen-
tary: the p~__:nce ¢. an “effective hole”, in the sense of both
configurati n ar . 1. teraction, leads to the lack of some terms
in the avera, « Har iltonian, thus trivially producing a degen-
eracy.

We here wa 't to show a more subtle form of degeneracy
which . mot dv : to “holes”, but is related to “internal symme-
tries ~ene...ed by beyond nearest-neighbor interactions and
their rela.~e strength. We will consider two examples, both
w “h a4 consecutive sites configuration S = {1,2,3,4}: the first
one w."" be again the zigzag model, while the second will be a
s T with first (NN) and third (next-to-next-nearest NNNN)
¢ ghbor interactions system.

“Ne recall that both the above mentioned models belong to
e family (2): the zigzag one is indeed given by #4109 as
in (3), and the second model will be accordingly denoted as
o1 (see (17) later). Since we want to study structures with
four central oscillators, only three phase differences ¢; between
them are defined as in (7). The average value of the coupling
term of the Hamiltonian (2) (#) is calculated along the un-
perturbed orbit and reads

=—— ZA (cos mep1) + cos(mps2) + cos(meps)+
+ k2 (cos(m(p1 + p2)) + cos(m(pz + ¢3)))

+ k3 cos(m(p1 + @2 + @3))) .

2.4.1. The Hi1o (zigzag) model.
The persistence conditions (10) for the case of the zigzag
system (3), i.e., with k2 = 1 and ks = 0, read

M(p1) + M(p1 +p2) =0

Prio(p) = M(p2) + M1+ @2) + M(p3 +92) =0 (11)
M(ps) + M(p2+p3) =0
with
)= i 2m — 1) A2m 1sin((2m — 1)) , (12)

with A; as in (8).

Taking under consideration the symmetries of M ()
M(m+¢) ==M(p), M(=p)=-M(p)=MQ2r—¢),
M(r—9) =+M(g),  M(0) = M(r) =0, (13)



Figure 4: The two-dimensional square model and the 4-site MB. All
the interactions are nearest neighbor ones with the same strength;
in color the interactions involving only the MB, in particular in red
those which correspond to nearest-neighbor in the one dimensional
version (see Figure 5), in blue the one corresponding to the third
neighbor; in grey the other interactions. The indexing indicates the
energy flow of the vortex solutions. Color online.

it is straightforward to check that the persistence conditions
for the zigzag-KG case, i.e., (11) and (12), admit two fan. es
of solutions
Frip=(pm—p), Fip=(pmm+ep), 4)
the members of which we call as asymmetric v rtices. "™n ad-
dition, there exist also four standard isolated < sluti ms Fiso =
p € {(0,0,0)7 (0,0,m), (m,0,0), (7r,0,7r)}. Ti. la cer f ur so-
lutions, being isolated, do not present diff culties -~ .cerning
the application of standard techniques fo “eir continuation.
The former solutions, given by (14), preseat a cle. - degeneracy,
i.e. (ND-P) is not satisfied, since they ' c.. 1g to a family and
thus are not isolated.

In principle, all combinations of 0’s . d n’s work trivially,
since all the terms in the persis’ ence conu.tion simply van-
ish. We have to note here that t" e re ¢ of he standard multi-
breather solutions are part of the r, ~nd r5 families.

It is important to stress .nat conditions (11) are neces-
sary but not sufficient for t e existe «ce of multibreather so-
lutions. Indeed, in order to ¢ ntinv to real solutions of (3),
the corresponding Jacob’ .n matrix D, (P110) needs to be non-

. O080800000000000000600000000080

o

degenerate, which is actually the (ND-P) condition. The ma-
trix Dy (P110) is given by

M)+ M o1+ ¢2) , MGpr- po) , 0
M (p1+¢2) M o)+ M (p1+ N+ M (pate3) M’ (pot+e3) s
0 M e M (p3)+ M’ (pot3)

where M'(¢) = >0v_ (2m - S2A3, o cos((2m — 1)p). By

using the symmetries of M (¢)
M'(2r—p)=M(p)=0"(~p,
M(m—¢)=M(r+ , =—m'lp),

, (3r

(15)
M =M 5/‘ _4

it is easy to check "7 it for ."e isolated solutions Fis, the matrix
D, (P110) is non degene: te so these solutions will be continued
for € # 0 to prov de mult breathers.

On the ot" - ha.., ror the F, F» families of asymmetric
vortices, D .(P1- , . degenerate possessing one zero eigenvalue,
reflecting ti.  reedc n of these solutions with respect to varia-
tions in ¢ So, . cannot know at this level of perturbation
theory if — o1 vhich of — these solutions can be continued to
true 1. 'tibreat ier solutions of the system.

I, »artic ".ur, for the configurations where the two families
cross eac. 2ther and correspond to the two symmetric vortices,
i =10 =4 (1/2, 7, —7/2), the matrix Dg(Pio1) reads

0 0 0
D (Pro1)lgew = |0 M'(m) 0] . (16)
0 0 0

‘L.is means that its degeneracy is even higher since the di-
mnension of its kernel is exactly two, i.e., given by the tangent
directions to the two independent families in the vortex solu-
tions. We will also attempt to numerically demonstrate this
degeneracy in Section 5.

2.4.2. The Hi01 model.

The second example we consider is the 701 model, i.e., the
model (2) with k2 = 0 and ks = 1 which is described by the
Hamiltonian

1 1 1
Ho1 = Z <§y? + 5363- + 5[6?)
sz (17)
t3 > @i —25)° + (e — 25)°]

JEL

Such a system represents a first order approximation of a
square NN lattice and a four-site multibreather solution of (17)
can be thought of as representing a one-dimensional analogue
of a four-site vortex for the two-dimensional square KG lattice
and as it will be shown it constitutes a more degenerate case
than the one of the J# 10 model (see Figures 4 and 5).

000000000000000000000000 m\\
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Figure 5: The one-dimensional model with first (red color) and third (blue color) neighbor interaction, whose 4-site MB corresponds at zero
order with the 4-site MB of the square model. The dark version of the color indicates the interactions internal to the MB (corresponding to
those of Figure 4). The numbers indicate the correspondence to the two-dimensional square model. Color online.



We consider again the persistence condition for this system,
which are given by

M(p1) + M (o1 +p2 4+ @3) =0
M(p2) + M (o1 + 2+ @3) =0 (18)
M(p3) + M(p1+ w2 +93) =0

Proi(p) =

where M () is given by (12). By using the symmetries of M (¢)
given in (13), it is easy to verify that Egs. (18) and (12) admit
three families of asymmetric vortex solutions

FII‘P:(%%W—W)y
FQI(,O:(L,O,W—QO,QO), (19)
F3:90:(L)077T_§077T_()0)7

in addition to the two isolated standard in/out-of phase solu-
tions Fiso 1 € {(0,0,0), (m,m,m)}.

Again, the rest of the standard configurations of this case are
part of the Fiy, Iy, F3 families. These families are degenerate
since the corresponding Jacobian D, (Pio1) possesses a zero
eigenvalue, while the symmetric vortex solutions

are fully degenerate, since D, (P1o1) equals the null matrix.
The latter can be seen both by a direct computation, or by
observing that in these solutions we have three independent
Kernel directions, one for each family passing through the so-
lution.  This degeneracy, which is higher of the one in ti
zigzag model, will be also numerically illustrated in Section 5.

2y =

2.4.3. Degeneracy in the corresponding dNLS models.

The same classification of degeneracies illustrated in the pre-
vious paragraphs naturally emerge also in the dNLS .iode. (4)
which can be derived from the corresponding KG r odel (2) »y
introducing complex variables 1; = %(:cj + iy;) anu eer ng
only terms resonant with respect to the period’ . flor ¢; = e't.
The Effective Hamiltonian Method clearly ap, *es also .o this
class of models; however, the persistence cor dition '€, always
leads to a set of trigonometric equations w .. M (p) given just
by

M(p) = sin(e) . (20)

For example, if we study continu’ ¢ion 0. liscrete soliton cor-

responding to the set S = {1,2,3 4} i* the zigzag-dNLS
3
Hiio = Z |7/1j|2 + 8 Z |'¢’j|4
J . J (21)
A 2
+ 52 (i1 = 51" = ljee —517]
J

we note that condition
given by (20).

(11) he ld but with the function M
Thus, the, “~~ _me

sin(1) +sin(p1 +4 ) =0
sin(yp2) + sin(p1 + 2, - sin(ps +¢2) =0 (22)
sin(ys) + sin(p2 +¢3) =0

due to the rotational symmetry of the model (and of its discrete

soliton solution); i.e. only the first mode of the Fourier expan-
sion (8) contributes. In this case, it is straightforward to check

that the persistence conditions (22) admit the two families of
solutions given in (14), and that, apart from the other isolated
and non-degenerate solutions, the<e are the only ones. Such a
uniqueness-type of result is true also for the zigzag-KG prob-
lem, i.e., (11) and (12), in the ! m1, ~f small enough action J*:
indeed, due to the exponentially fast accay of the coefficients
Azn—1(J") in the Fourier e pan ‘on (8), in such a regime the
higher harmonics in (8) a. a - ery small perturbation of the
first term cos(f), and ons <an ¢. ~erve that the solutions of the
persistence condition (10) i “he two models coincide. Indeed,
it is clear that famili s o. solutions of (22) are also solutions
of (11). On the ot! or h' ad, .nere are no other solutions for
J* small enough due v opological reasons: these families are
non-degenerate i vue trans versal directions, hence there exists
a neighborhood of them independent of the energy, where P
vanishes only on “he far dy itself. Outside this neighborhood,
the persister .c condiuion (22) is not satisfied, hence P # 0, and
the same hlds “or « small enough perturbation (11). In other
words, the sc.ation of (11) with M () given by (12) can be
obtained, .. the umit of small enough J*, solving the system
(22).

The . e ki .d of correspondence can be noted between the
KG 1.. el (1) and its corresponding dNLS system

N 3
o =D P+ S sl
J J

(23)
€
T3 D s+ — sl + lbys — 517
J

. eed, if we study continuation of discrete solitons correspond-
ing again to the set S = {1,2,3,4} in the above model (23),
we note that the conditions (18) hold but with M once again
given by (20), i.e.,

sin(p1) + sin(e1 + w2 + 3)
sin(p2) + sin(p1 + w2 + @3) =0 (24)
sin(yps) +sin(p1 + @2 + ¢3) =0,

which has been the subject of a detailed investigation per-
formed in [45]. Here again, in the limit of vanishing J*, the
families of solutions of (18) and (12) are independent on J*
and are the same for (24).

The exact correspondence of solutions between the persis-
tence condition in KG models and in dNLS models is even
more evident, if not obvious, in the other examples of degen-
eracies illustrated in the paragraph 2.3, being those cases to-
tally degenerate (the whole resonant torus T? is a solution of
the persistence condition (10), also with (20)).

3. Abstract (non)existence results

As remarked in the final part of the previous section, in the
regime of small energy and for some combination of excited
sites S and linear interactions k;, solutions of the persistence
condition (10) in the KG model, namely with M (y) given by
(12), coincide with those in the corresponding dNLS model,
where M(yp) is given by (20).

Thus, restricting to this class of degenerate scenarios, we
want to present two abstract statements allowing to rigorously
derive results on the continuation of Multibreathers in the KG
models from results on the continuation of discrete solitons in
the “corresponding” dNLS models.



3.1. Setting and formulation

Let us consider the KG Hamiltonian (2) and its equations of
motion

iy = —x; — x5+ e(Lz); , (25)
with the interaction terms encoded in

L:= A1+ k2Ag + k3As

(Amx)j = Xjom — 223]' + ZTjtm -

We look for a periodic orbit with frequency ~; hence by intro-
ducing the time scaled variable u;(7) := z;(t), where 7 := 7t,
we rewrite (25) as

Yu' +utud —eLu=0. (26)
By defining the operators
N(u) :=u®, (27)

Lo :=~%02+1, Le:=Lo—¢L,

and by restricting to the Sobolev spaces of periodic functions
X, := H"([0,27],¢%) (with H® = L?), the equation (26) for a
generic periodic orbit becomes

F(e,u) == Leu+ N(u) =0, (28)
with

F R x Xo — Xo s

where £2 = ¢*(Z,R) and X2 are endowed with the usual norms

el = D llus ()1 k=0,2.
J

In the unperturbed case ¢ = 0, we consider a pe i1odic o1 it
u(T, p) which lies on the m-dimensional complete., reson‘ at
torus (associated to S = {j1,...,dm})

— R 07
wlnp) = {x(T +0),

l¢gS
, xly) = 29
i = @)
We wish to understand which (7, p), of small envugh ampli-
tude p, can be continued to periodic ¢ .bit: for € # 0; thus we
look for those @(T, p) which fulfill the "llc ving definition

Definition 3.1. We say that a(7 p) ¢ n be continued to a so-
lution of (28) if there exists p* » 0 ¢.ch t.at, for any p < p*,
there exist € (p) and a function u(p,c, =) - X2 which solves for
le] <€ (p)

F(e,u(p,e,7)) =0, (0,0.- ) =u(r,p) , (30)

with 7y kept fized.

We introduce a special no. “* . for standard MBs, whose ex-
istence is guarantee u, |‘?! ndependently of the choice of S:

we denote by us; the 1 erturbed standard MBs

0, 1¢S

31
z(r+6), les, (31)

ust,l(Tv p) = { 9[ — 9]’1 S {Ovﬂ-} .

As already stressed at the beginning of this Section and in the
Introduction, the main goal of the present paper is to provide

either positive or negative answers to the existence of phase-
shift solutions of (30), namely solutions which at ¢ = 0 corre-
spond to 4 # Ust, by investigating the problem of continuation
of phase-shift discrete solitons ir che dNLS model (4).

In the ANLS context, wher loc. ‘ng for periodic solutions
of (4) with the form v;(t) = ¢;(e)e T+ we are led to
study the stationary equati n fc * the unknown spatial profile

¢(e) € £(Z;C)
F(g,€) = —wod —eLp+ 2)¢, "5 =0, (32)

where wp is the fre nenc; detuning depending on the ampli-
tude of the unperturbec =olution ¢(0). We introduce the un-
perturbed discre ¢ solit~n profile v := ¢(0) of unit amplitude,
which has the fc rm

() 2
, v:T™ = £5(Z;C) 33
p - o), @
where S = _“-....,jm} is the same set of active sites chosen for
the correspond. 1g unperturbed Multibreather solution @(r, p).
By its u. %nitic 1 (33), v has to solve (32) with e =0

. _/i;%;” wO) -0, (34)

~ o

1,
|Ut,:{07

We consider a solution v of the uncoupled problem and ask for
its continuation for € # 0; we thus look for a correction w(e)
around v, namely

w(v,€) = ¢pe) — v,

bes L =8, (35)
¢S 1

with  w(v,0) =0,

that is continuous in e and such that ¢(e) solves (32).
Inserting the above definition, and exploiting that v is a so-
lution for € = 0, equation (32) takes the form

F(v;w,e) =0, with F(v;0,0)=0. (36)

The usual strategy to solve (36) is to probe the applicabil-
ity of the implicit function theorem, by considering the linear
operator

A = (DwF) (v;0,0) . (37)

It is not difficult to check that A has a m-dimensional kernel
which inhibits the application of the implicit function theorem;
this justifies the need of a Lyapunov-Schmidt decomposition.
By following the same strategy of [45], we introduce the split-
ting w = k + h where

k€ K :=Ker(A)~R™,  he&H:=Range(A)~ K",

so that equation (36) is equivalent to the system

Fy(v;k+h,e) =0
Fr(v;k+h,e) =0

where the subscripts H and K denote the corresponding pro-
jections Iy and ITx over Range(A) and Ker(A), respectively.



The Range equation Fg = 0 can be solved locally by the im-
plicit function theorem and provides

b= h(skye) ; (35)
inserting (38) into Fx = 0 we get the bifurcation equation,
redefining Fx as

0= Fk(v;k,€) := Fx(v;k+ h(v,k,€),¢€) , (39)

where now
Fr:R™ xR —R™,

is defined once given the unperturbed reference solution v and
is analytic in e. We here recall that v € H and that
FK(v7k7O) :O )

Vv e H , Vk € K ;

indeed, geometrically speaking, for any tangential displacement
k there exists a unique transversal displacement h(k) such that
¢ = v+ w is a solution of the equation (32) with e = 0. As a
consequence, Fi is at least of order O(e), namely

Fic(vik,€) = eP(vikye) (10)
and (39) becomes
P(v;k,e) =0. (41)

For a given v € H, we are interested in a small correction
k(e) € K, continuous in € for small enough |¢|] < 1, such tha
P(v; k(e),e) = 0. We start with some definitions:

Definition 3.2. We denote by v* any solution of
P(v;0,0) =0,

and by p an integer such that

dim(Ker(Dy, P(v*;0,0))) =p+1.

Then
1. v* is said non-degenerate if p = 0;

2. a solution ¢ = v* + w(v*,€) of (32) is su.” to be non-
degenerate if v* is non-degeneratr

3. v* is said p-degenerate if 1 <p ~m - 1.

In more geometrical terms, nondes :ner-cy mcans that the only
kernel direction of Dy P(v*,0,0) = given b the velocity of the
unperturbed orbit, that in the case 0. 'isc ete solitons coincides
with the gauge vector field. _n the other hand, v* is said to
be degenerate if there exist at least ;wo independent Kernel
directions for Dy P(v*;0,0). . ~ in t' e examples illustrated in
the previous Section for «ne K3 model, degeneracy typically
arises when solutions of ‘42) app ar in d+ 1 families v*(0;, , ¢),
with

. <d<m-1

©="(p1,.-..,04) ,

being a local parametriz. “ion of the subtorus T C T™. In gen-
eral, we expect that a given v* on such a family is d-degenerate,
with the Kernel of Dy P(v*;0,0) being given by the tangent di-
rections Op;, v* and 9, v". However, families can intersect each
other, like in the four-sites examples of Section 2.4, where ei-
ther two (see (14)) or three families (see (19)) intersect in vortex

10

configurations: hence, transversal intersections are even more
degenerate and we can expect p-degeneracy withd < p < m—1.

Equation (42) selects those unperturbed solutions v* which
might survive to the breaking of .he resonant torus due to the
effect of the perturbation. By ati. 'ncing the resonant set of
angles (9), it turns out that v can be parcmetrized by m—1 slow
angles ¢; and one fast angl: 6;, namely v(0;,,¢1,..., Pm—1).
The next Lemma provides "he onnection between the persis-
tence condition (10) em -ging .~ the framework of averaging
theory, and equation (42), \."ich naturally arises as a neces-
sary condition to solv. th bifurcation equation.

Lemma 3.1. The ave - condition (42) is equivalent (in the
sense of coincidre .cc of sow.éions) to the persistence condition
(10) with M () given by (20).

Proof: We - . pose vwo different proofs. The most direct one,
is based o1 the c/xy'icit expression of P(v;0,0), since from a
straightforw..u calc ilation one gets

P(v;0,0) =L, Lv =0.

Onc - the " ~<7, of K is given, projections of Lv over vectors
belongi. to K are performed using the complex inner scalar
L vwavv w0 =37 R(a;b;), where a basis {e;}i=1,....m for K is
give. hy

.....

€1 = vy, ”*(‘91'1790) ) e = 8%”*(93'1750) :

Ex licit calculations show the equivalence between the two sys-
v ns of trigonometric equations, namely (10) and (42). As a
zecond proof, we recall that the equivalence of the two sys-
tems is a consequence of the variational Lyapunov-Schmidt de-
composition of (32) (see [5], Section 1.2), according to which
the bifurcation equation (41) can be obtained differentiat-
ing with respect to the kernel variables k£ the restriction to
¢ = v+ k+w(v;k,e) of the dNLS functional S(¢, @, €) associ-
ated to (32). Expanding S in powers of €, namely S = So+¢€S1,
it turns out that the system (42) is equivalent to finding critical
points of Si(v) (as already shown by Kapitula in [21]; see also
applications in [22, 24]). O

Now we can move to claim the two following statements. The
first one allows to derive, in a suitable regime of small energy
H(z,y) = E and coupling €, an existence and approximation
result for a solution u(p,€,7) of (26), from the existence of a
non-degenerate dNLS discrete soliton ¢(€) which is solution of
(32):

Theorem 3.1. Let ¢(¢) be a non-degenerate e-family of solu-
tions for

3
—wog — el + 7¢[°¢ =0
with ¢(0) given by (33), and let

vie,7):

L [e_”gi)(e) + c.c.]

’ (43)

be the corresponding real solution of amplitude p. Then, there
exist E* and €* such that, for 0 < E < E* and € < E €, there
exist a constant C1 and a unique non-degenerate two parameter
family u(p, €, 7), solutions of (28), which fulfills

ulp,e,) = vie,") + 0(p%) . (44)



A couple of remarks are in order:

e The true solution and its approximation are of order
O(p) ~ OKE), thus the correction, being of order
O(p®) = O(E*/?), is a small perturbation. We stress that
two different kind of remainders contribute to the O(p®)
correction. The first one is due to the fact that, in the
small amplitude regime, higher harmonics of the time-
Fourier decomposition of the periodic solution u(p, €, T)
are a perturbation of the first harmonic pe™*" (see Step
A of Section 3.3 for details). The second one is instead
due to the fact that ¢(e) represents only a leading order
approximation of the Fourier coefficient of e™*" (see Step
C of of Section 3.3 for details).

e since the expansion (44) holds even at € = 0, it means
that the nondegeneracy of an unperturbed discrete soliton
¢(0) guarantees, provided p small enough, the existence of
a “corresponding” unperturbed solution @(p, ), close to
p¢(0), which can be uniquely continued to u(p, €, 7).

The second statement, dealing with degenerate scenarios,
holds true under the following more restrictive assumption:

Assumption 3.1 (HO). There exists E* such that, for 0 <
E < E* degenerate solutions of (10) with (12) and with (20)
coincide.

We are going to provide a criterion to derive, for the KG model,
the nonexistence of degenerate phase-shift (i.e. those which are
not continuations of @s;) Multibreathers, on the base of th=
nonexistence of degenerate phase-shift discrete solitons of thc
dNLS; we have to first recall that (42) always admits standard
configurations

* P O 7
Ust,l *= o0
)

independently of their degeneracy.

1¢S

45
les, (45)

0, 70j1 € {077‘-} ’

Theorem 3.2. Assume that for any p-degene ater |, with any
1 < p <m—1 and different from the standar. mes Jy, the
following conditions hold true

(H1) rh(Di P(v*;0,0)) =m —p—1, (46)
(H2) 0.P(v*;0,0) £0 , (47)
(H3) 8.P(v";0,0) & Range(L, P(,";0,0)) . (48)

Then, in the limit of vanishing er 2rgy &, only s can be con-
tinued at € # 0 to Multibreathers ol ions u(T, p,€) of (26).
Here we have to stress son : facts:

e It follows by direct calc. lations - aat
0. P(v3;0,0) =0,

as expected from t. » fact * aat real discrete solitons ¢ €
03(Z,R) always exist 1 .uodels (32).

e Assumption (H ) i, equivalent to assuming the alge-
braic and geomett. * multiplicity of the zero eigenvalue of
Dy P(v*;0,0) to be equal, which provides

rk(D P(v*;0,0)) + dim(Ker(D P(v*;0,0))) = m .

This allows to perform a second Lyapunov-Schmidt de-
composition on the equation (41).
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e Theorem 3.2 does not exclude that phase-shift Multi-
breathers might appear for large enough €. It only claims
that there do not exist contintious (in €) branches starting
at € = 0 from degenerate sc ations @ # Uss.

In cases of complete degene.acy, v’ =n the persistence con-
dition (42) is trivially satisfir .
P(v;0,0) =0,

Yoo H o,
the above statement simnlific. Indeed, in this case, for any v
we have

Range(D,P(v;0,0)) = ‘!,
hence condition (H2) im, lies (H3) and we have the following

Corollary ?... Asswne that P(v;0,0) =0 for all v defined in
(33) and tF 1t fo ar v # vst the following condition is fulfilled

OeP(v; 0,0 #0, (49)

Then "= same 1s in Theorem 8.2 holds true.

&2 A~ Amap of the proof

W mecall that the problem (26) has been partially solved in
U1 hv restricting to time-reversible solutions u(—7) = u(7);
‘.e , by considering only standard phase-differences ¢; = {0, 7}
fc alll € S. Indeed, with this strategy the problem reduces to
~on-degenerate critical points where the implicit function theo-
rem can be applied, like in the averaging approach of [1, 31, 32].
1n the case of other phase-differences, namely phase-shift multi-
breathers we consider here, it is not possible to make such a
restriction, which ensures invertibility of the linearized operator
Z.(0,1) on the subspace of even periodic solutions. In other
words, in our case, the approximate solution @ is a degener-
ate critical point; thus a small perturbation may in principle
destroy the solution. In order to geometrically see that the lin-
earized operator %, (0, &) has a non-trivial Kernel, observe that
a small displacement on the m-dimensional torus from a given
unperturbed periodic solution, leads to a new unperturbed pe-
riodic solution with the same frequency.

First, notice that

Lo¢
LoG + 3@%(T)1G

_ LS,
Z.0.0)(] { o
The non-resonant condition jy # =1, which coincides with
(NR) of the Effective Hamiltonian Method, allows to invert
Lo on the space of 2m-periodic functions. On the other hand,
differentiating the nonlinear oscillation equation w.r.t. both 7
and the energy FE, one sees that

Ker(%(o, ﬁ)‘s) = Span{z'( + 6)), T%x’(T Lo}

as a consequence, the non-degeneracy condition of the fre-
quency % # 0, which in our case is equivalent to (ND-K)
of the Effective Hamiltonian Method, guarantees that only the
time derivatives z'(7 + 6;) are 2m-periodic solutions. Thus the
differential .%, (0, @) has a m-dimensional Kernel

Ker(#.(0,u)) = Span{fi(7) hies ,



generated by the velocities of the nonlinear oscillations

0,
fr= {m’('f‘—i—@l) ,

For the above reason an implicit function theorem cannot be
applied (unless, as in [43], we restrict to ¢; € {0,7}, which
allows to do without (ND-P)), and a Lyapunov-Schmidt de-
composition represents a natural approach to the problem.

The proofs start exactly with a first Lyapunov-Schmidt de-
composition, based on the time-Fourier expansion of the peri-
odic solution u of (26). This is a classical approach which al-
lows to decompose the solution into a leading order “monochro-
matic” wave, say v(7), and a smaller correction, say w(r) =
O(v®), given by all the higher harmonics. The coefficients of
the leading term v(7) can be collected into a complex variable
¢ € £*(Z;C) which has to satisfy a dNLS-type stationary equa-
tion; this equation for the unknown ¢ turns out to be a per-
turbation of order O(p?) (from here on the squared-amplitude
p> plays the role of a second small parameter) of the dNLS
equation (32). Thus, this first part of the proof, developed in
Step A, translates the problem of the existence of a periodic
orbit for (26) into the existence of of a discrete soliton ¢, sat-
isfying a perturbation of (32). The second parts of the proofs,
Step B, consist of studying the existence of phase-shift discrete
solitons in the perturbed dNLS stationary equation previously
obtained: this is done with a second Lyapunov-Schimidt de-
composition, which translates the original problem into the
study of a bifurcation equation which is a perturbation of orde
O(p?) of the ANLS bifurcation equation (41). In the third and
last part of the proofs, Step C, we exploit the smallness «+ .! ~
“energy” p?, and the smoothness with respect to this small p.
rameter of the various equations involved, in order to transfer
existence and nonexistence criteria more straightforv uru., for-
mulated and verified at the level of the standard dN'.S equat. »n
(32), to the perturbed bifurcation equation obtained .. Ster B,
hence producing the statements claimed in Th' orers 3., and
3.2.

lgs
les

3.3. Proofs

Step A: From the KG to the perturbed «NLS

We start by showing that the pro’ .em of searching time-
periodic solutions u of (26) with fixed ~equ :ncy v, is equivalent
to finding the profile ¢ of a discrete olito.. “olution for a dNLS-
like model.

Proposition 3.1. There existe a fui. i n %,
Rp(, 6,07, €) : £2(Z;C) xR <R — ¢ Z;C) ,
fulfilling

12(#: 6,67, €)l| 2 = O Al22)

and a constant w,, , ..

3

Wp = 1 + 0(02) > (50)
such that equation (26) is equivalent to

32 2 T2\
~wpd —eLp+ 1O b+ P RHp (0, 6,07, €) = 0. (51)
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Proof:
We consider (26) and we introduce the time-Fourier expan-

sion for the solution of the uncovipled anharmonic oscillator
z(7) in (6)

z(r) = Zak cos(kT) ,

k>1

(52)

where the average ap = 0 be. se of the symmetry of the po-
tential V. Then, from (2Y,, we ge.

al(Tv p) = {0

Zk>1 A2k -

I¢€S
les

)

os[(2k — 1)(7 + 61)]

thus, for any [ € S, we « 'n write

- 12k —1)6;] cos[(2k — 1)7]
— sin[(2k — 1)8;] sin[(2k — 1)71) .

/
“1:21@1” T-Ly

Let us now ~trouuce the Fourier base

(cos[(* k-1 k>0

n(r = R DT k>0 (53)
| —sm[(2k+1)7] k<0

w can decompose u € £(R) in its Fourier components

we =y uk(p)en(r) (54)

kezZ\{0}

=d introduce the Lyapunov-Schmidt decomposition' which
splits the first harmonics from the rest of the Fourier expansion

u=v+w, vi=u_i1e_1(7) +uiei(7) ; (55)
in other words v solves (83 + ]I)v = 0. We define
Vo = Span{er,e_1} =ker (2 4+1) , Wa:=Vy , (56)

so that v € Va. If we consider the unperturbed solution @ =
v+ w in (29), we have for any component [ € S

azk—1 COS[(Q.I{} — 1)91} k>0
ﬂlZZﬂz,kek(T), urk =40 k=0,
kez a2k+1 sin[(Zk + 1)91} k<0
thus we get
v = a1 cos(f)er(T) — a1 sin(f;)e—1(7) . (57)
We introduce the detuning w
wi=4"-1, (58)

so that we can rewrite 42 = 14 w. Indeed, as will be shown at
the end of the proof, in the small energy regime, the frequency
~ is close to one, and its displacement w is of order O(p?). The
equation (26) thus reads

Fe,v,w) = Lew —wv —eLv+ N(v+w) =0. (59)

IPlease notice the use of the sans serif font for the present decom-
position variables: v and w. Letters v and w, with the usual font,
have a different meaning.



When we project (59) on the Range Wo C Xo of 2 41, and
its complement Vp, we get?

(")
(K)
(60)

Iw.Z(e,v,w) = Lcew + Iw N(v+w) =0
Iy Z(e,v,w) = —wv — eLv + IIy N(v+w) =0

The Range equation (R), written as w = —L_ ' Tl N (v + w),
can be locally solved in terms of w(v, €) by Implicit Function
Theorem; moreover, the implicit solution w(v, €) can be explic-
itly approximated by w(v,€) = 0(\|v\|§(2),

(v, ) = —LMwNW) ,  w—lly, <CIM%, - (61)

We move now to the Kernel equation (K). Because of (61), we
Taylor-expand in v

v ((v + w(v, 6))3) = Iy (V%) + Z(v, €)
(v, €) =TIy ((v+ w(v, e))?’) — Iy (v°)
= O(Ivli%,)-

We compute explicitly the Kernel projection of the leading
term of the nonlinear part. First we have, by definition

(62)

My (V) = (% /027r V(7) cos(T)dT) ert

n (% /OZW (r) sin(T)dT)@A ,

and since, omitting the 7 dependence, we have

3 33 2 2 3 3 2 2
v® =uje] +3uju—_ieje—1 +u’e’; +3uiuere’

trigonometric formulas give immediately

Oy (v?) = % (v} +u?y)uscos(r) + (uf +u?,) —1sin(r))
= %(u? + uil)v .
(63)
By using (62) and the above, the Kerr . quation reads
fwvfeLer%(u%Jruz,l)er%(v,e) G (64)

The Kernel equation, due to ts
dimensional vector of sequences), is

~umer sion (v is a two-
~iiv ulent to the system

—wuy — eLuy + §(u% - u%l)ul b Z(v,e)-e1 =0
4 . (65)

—wu_1 —eLu_1 + %(u2 + u%l\ufl + Z(v,e)-e_1 =0

Multiplying the seconc ~f th above by the imaginary part
¢ and summing witl '~ first, equation (64) takes the compact
form in terms of the . i Llex variable ¢

7w¢*eL¢+§¢|¢|2+%(% 9?)7 E) =0 ’ ¢ = ’LL1+7:U71 ’ (66)

2For an easier notation we drop the zero subscript in the projec-
tors Iy, = Ily;, and Iy = Iy, .
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where we used again the letter % to denote the corresponding
term of (64)

_ 1 27 ) )
K 9,6) = %/ [(v+w(v,e ¥ - VJ] cos(T)dr+
0
- 27
+ i . [(v4+w ', )P =V sin(r)dr ; (67)
1 —iT
V:§(¢>€ +ec ).
It turns out that in t' . mall ¢ .ergy regime (i.e., for p small

enough) the term Z# $,€) .u . aation (66) can be treated as a
perturbation of order ' p?) of the dNLS stationary problem

3
—wp —eLp+ 7 ld)> = . (68)
Indeed, intro-”--cing ' _ following p-scaling
b =:pd, F=ip w =: p2w,,, (69)

and immeq. *ely uropping the tildes, equation (66) corresponds
to (51). In orc r to show the order of magnitude, recall that
from tu. defini 1on of # in (62) and from the definition of v in
(55) v~ have

vl = O(V,) = Ollz)

‘hich provides a prefactor p? in front of %, (after dividing
by p°) and the estimate on %,. The additional dependence
0. %, on p? is a consequence of the scaling in the amplitude
~oplied to the cubic nonlinearity, which is preserved along the
Lyapunov-Schmidt decomposition.

The dependence of w, on p? is also a consequence of the
same scaling, which can be revealed with a standard (Poincaré-
Lindtsedt) perturbation scheme on the Duffing Oscillator (6).
For example, one can rescale (1) by p to get

v a4+ p*® =0, (70)

and then Taylor-expand in p? both the solution
T = x0 + p2x2 + h.o.t.
and the squared frequency
72 =1+ p’wo + O(p") .
At order O(p?) one gets the forced harmonic oscillator
xg + x2 = —xg —wowg 5

in order to avoid secular terms in the solution z2, we need
wo = %, from which the asymptotic behaviour of w,. O

Remark 3.1. Notice that at p = 0, the constant w, turns out
to be the quantity wo in the stationary equation (32)
3

= — =wo -

w
P
p=0 4

Remark 3.2. In Equation (51), and in the rest of the present
Section, € won’t be anymore the original KG coupling (remem-
ber we are dropping the tildes of the scaling (69)), but it will
represent the coupling of the (perturbed) dNLS equation (51)
associated to the original KG equation (26). Due to the scal-
ing introduced in (69), it turns out to be the original coupling
e divided by the squared amplitude p*.



Proposition 3.2. Equation (51) is invariant under the gauge-
action and under conjugation. Moreover, there exists a Hamil-
tonian function S,(¢, d, p*, €) such that

VS = —wp — Lo+ 2|06+ 0P Hp(6,6,5%0)

Proof: We here exploited the sketched procedure of the varia-
tional Lyapunov-Schmidt decomposition in [5]. Periodic orbits
with fixed period are critical points of the action

S(u) = %/0 Cuyu)dt | (71)

where £ is the Lagrangian giving the evolution equations (26)
for u. The Kernel equation (66) preserves the variational nature
of the problem (71), hence it is the differential of the reduced
action

—wv — eLv + Iy (v + w(v, €))® = DyS(v + w(v,¢)) .

If we pass to complex variables ¢ introduced in (66), this means
that

—wp — eLp + %¢|¢|2 +%Z(p, 9, €) = D35(¢, ) ,

where

27 /
S(qb,a) = %/0 ﬁ((%(ée_” —I—c.c)7 (%qﬁe_” + c.c.) )d‘r .

(7

The Hamiltonian S, is obtained scaling the above S with the
scale transformation (69). The gauge invariance of S, 15 "'n-
derstood observing that the gauge action is the periodic flow
defining the Kernel space. A direct computation shows this
explicitly on S

Se’p,e 9) = S(¢,9) .

The invariance under conjugation can be obta’ ied * 1 the same
way, exploiting also the even parity w.r.t. the v.' city /. O

Step B: Existence and nonexiste .ce ~f degenerate
discrete solitons in the perturbed dNLS mc lel

At e = 0, we denote by v, the unpe’ .urt d solution of (51),
corresponding to the Kernel projectic ~ v i . (57) scaled by p

0,

Up,t = ai —i6;
a1 0 ,
P

the unperturbed solution v, ! as amy litude a1/p = O(1) and is
linked to w, by the relation

1¢S

73
leS; (73)

3 Ry(vy, ",
wp:1|vp\2+p2L; )

It is clear that, as p = 0, . "~ ¥ us

Vp — U, Wp >0y .

Once we focus on a pai icular solution v, of the unperturbed
problem, we ask for its continuation for e # 0; we thus intro-
duce a small displacement w from v,, so that ¢ in (51) can be
decomposed in

¢:Up+w7

and we look for a correction w = w,(v,,€) of v,, that is con-
tinuous in €, namely

wP(Uﬂa 6) = ¢P(E) —Vp, with wP(UINO) =0 ’

so that ¢ = ¢,(€) solves (51). .nserv. “o the above decomposi-
tion of ¢, the Kernel equatior ‘~1) takes the form

Flopiw, o) =0, (74)

where the explicit depenac. ~e on p? is due to w, and to the
remainder p>%, (v, +7 ,, % €). .’ie usual strategy to solve (74)
is to proceed with a artb .« . -apunov-Schmidt decomposition
(for the same reasons ~volained in Section 3.1), at the level of
the displacement

w=k,+h,, % €Ke A,), h,cRange(A,),
where
Ay = (Dywo™ 0,30, 2,0) . (75)

The equatio.. ‘85) then becomes
Fra(vp, "4 p,p%,€) =0
./T'.K(‘L/F Lk, + hp,pQ, e) =0

wi. ve the subscripts H and K denote the corresponding pro-
jection. over Range(A,) and Ker(A,), respectively. The Range
eqi av..0 Fg = 0 can be solved locally by the implicit function
.* corem and provides

= hp(vp; kpv ,027 E) 5 (76)

nserting (76) into Fx = 0 we get the bifurcation equation,
redefining Fx as

‘FK(UP;kP7P276) = ]:K(vp;kp + hP(UﬂakP7p276)3p2ae) ’ (77)
where now
Fr :R"xRxR—R™,

is defined once given the unperturbed reference solution v,. An
important characterization of Fx is that it vanishes with e: this
is true because equation Fx (vp; kp,p2,0) = 0 corresponds to
the existence of the “coordinates” (k,, h,) describing the torus
T™ around the chosen v,. So that it is possible to introduce
P, as

Frc(vos ko, 0%, €) = €P, (v ki p° €) (78)
and consequently (77) becomes
Py(vp; kp, p*,€) =0 . (79)

For a given v,, we are interested in finding a small correction
ko(e) € U(0) C R™, continuous in € for small enough |e| < 1,
such that P,(vp, kpy(€), p*, €) = 0. We now extend the notion of
degeneracy already introduced in Definition 3.2

Definition 3.3. We denote by v, any solution of
Pp(vp30,p%,0) =0, (80)
and by p an integer such that

dim(Ker(Dy, Py(v,; O,pQ,O))) =p+1.

Then



1. v, is non-degenerate if p = 0;

a solution ¢, = v, + wy(v,,€) of (51) is non-degenerate
if v, is non-degenerate;

3. vy, is p-degenerate if 1 <p <m — 1.

Here again, thanks to the Lyapunov-Schmidt decomposition
performed in the proof of Proposition 3.1, where higher har-
monics included in w were implicitly defined as functions of
the first harmonics in v, it is possible to show the following

Lemma 3.2. The above equation (80) is equivalent (in the
sense of coincidence of solutions) to the persistence condi-
tion (10) of the Effective Hamiltonian Method in the KG case,
namely with M (p) given by (12).

Proof: In this case a direct method, as the one illustrated
initially in the proof of Lemma 3.1, does not work and the
variational Lyapunov-Schmidt approach is the route to under-
stand the equivalence. First notice that, by the first Lyapunov-
Schmidt decomposition, the system (10) is equivalent to ap-
plying the Effective Hamiltonian Method to the functional S,
defined in Proposition 3.2, namely to finding critical points of
the average w.r.t. the periodic flow e~ of the O(¢) term of the
Sp. Indeed, necessary conditions for the existence of periodic
solutions of (26) must be recast into necessary conditions for
the existence of corresponding periodic solutions of the equiv-
alent equation (51). Then, the equivalence between this sec-
ond system and (80) is a consequence of the second variations!
Lyapunov-Schmidt decomposition, using the same argument.
already exploited in the proof of Lemma 3.1. O

The first Proposition of this Section shows that the nc e
generacy of v, implies existence and uniqueness of a solutiow
¢p(v},€) of (51) for € small enough.

Proposition 3.3. Let v, be a non-degenerate so” ‘tion of e
persistence condition (80). Then, there exists €*(}) s. b t.at,
for |e| < €* there exists ko(€), continuous in €, < .hick solves the
bifurcation equation (77).

Proof: We consider the linearization arov . the origin of (80)

€0cPy(v; 0, p°, 0) + Dy, Po(vp;0,p%,0)[F.] =0 . (81)
Since by Proposition 3.2 the original « "2 1on (51) is equivari-
ant under the gauge action, the sa .ae hoiu also for the bifur-
cation equation P,(v};kp,p°,€) = 0. 7 nis involves the preser-
vation of a symmetry under the . 2" unor -Schmidt reduction:
indeed if the Kernel and Rang- “rojec.’ ns commute with the
symmetry, then also (77) is equiva. ant and it is enough to
restrict to the orthogonal c. mpleme it (see [20]). The non-
degeneracy of v}, can be tr=nsla. ' _ato the condition that the
Kernel of the m-dimensi mal sqi ~red matrix Dy, P,(v}; 0, 0%,0)
is given only by the g: 1ge dire tion, being invertible in the
m — 1-dimensional orthog. ~' omplement, where the implicit
function theorem aj ».c. O

In the case of a dey ~r :rate vj,, next Proposition provides a
direct criterion to show “he nonexistence of the continuation,
hence the nonexistence of a solution ¢, (v}, €) of (51), continu-
ous in €, such that ¢,(v;,0) = v},.

Proposition 3.4. Let v, be a p-degenerate solution of the per-
sistence condition (80), such that the following conditions hold
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true
rk(Dy, Pp(v};0,p>,0)) =m —p—1, (h1)
0ePy(vy50,p%,0) £ 0 . (h2)

Then, a necessary condition for the con. wation of v, fore # 0
is that

deP,(v};0,p%,0) € Range(Dy,  ~(v},;0, p270)) . (h3)
Proof:

The main idea is aat, . ® P,(v;;0, p?,0) # 0 and at the
same time the lineai. ~d equation (81) cannot be solved with
respect to k,, ther in a o ~all neighborhood of the origin the
whole nonlinear equati n does not admit solutions, namely
P,(vy; kp, P2, €) * 0, bec: use higher order corrections are neg-
ligible.

In more deta’’ we follow Lemma 4.4 and Remark 4.4
of [45]: on « .a im>lement a further Lyapunov-Schmidt de-
composi. ™n, by -plitting again the (m dimensional) space
into the subs, ~ce Ker(Dg,P,(v5;0,p°,0)), and the remaining
Rang. Dy, P, (1 :0,p%,0)). This is possible thanks to con-
diti » (h.’  in terms of variables, one simply introduces
kx ana "=, the set of coordinates of Ker(Dx,P,(v;;0, p°,0))

< u(Mlg,v;\kaPp(U;;O,p2,0)), respectively, such that k, =
ki - »#. After Taylor-expanding and projecting the equation
D (0 kx, ke, p?,€) = 0 onto the Range, one immediately re-
ali .es that kez = O(e). Thus, at leading order in the Kernel
€. 1ation one has

Li,c [85Pp(1];§ 07p27 O)] =0

which, if (h2) holds true, is equivalent to (h3). O

As already stressed concluding Section 3.1, in the totally
degenerate case, when all v, are solutions of (80), condition
(h2) implies (h3), hence the last one is enough in order to show
nonexistence of phase-shift solutions. This can be summarized
in the following

Corollary 3.2. Assume that P,(v,;0, p*,0) = 0 for all v, and
that for any v, # vs¢ the following condition is fulfilled

9ePy(v,30,p%,0) £ 0 , (82)

Then the same as in Proposition 3.4 holds true.

Remark 3.3. For an additional reading on the relationship be-
tween the linearized bifurcation equation (81) and the nonlinear
equation (80), we refer the interested reader to the more gen-
eral statement of Proposition 2.10 of [41] (remark that, using
the notation of the quoted paper, assumption (h2) would read

g0 #0).

Step C: within the (generalized) dNLS family

A direct application of Propositions 3.3 and 3.4 requires an
explicit knowledge of the remainder %, in (51), which is implic-
itly defined in its part w(v,€) in (67). In this Section we show
the validity of these Propositions on the basis of the analysis of
its leading part (32). As a result of this analysis, Theorems 3.1
and 3.2 will be proved.

The main equation, which provides all the information about
our problem of continuation, is given by (79). The next Propo-
sition allows us to treat the bifurcation equation (79) as a
smooth perturbation of order O(p?) of equation (41):



Proposition 3.5. The function P,(v,;k,, p°,€) is smooth in
p? and fulfills

Py(vpikp,p%6)| = P(vik,e) .

- (83)

Proof: Equation (74) is plainly smooth in all its variables
due to Proposition 3.1; when evaluated at p = 0, it becomes
exactly equation (36), and reduces to the dNLS model analyzed
in Section 3.1

F(vp;w, p%,€)|p=0 = F(v;w,€) . (84)
Thus, equation (74) may be expanded as
Flupsw,p%,€) = F(v;w,€) + O(p?) . (35)

Observe also that the projections on Ker(A,) and Range(A,)
are smooth in p?, which implies the same regularity for the func-
tion Fg and for the implicitly defined solutions h,(v,; k,, p°, €)
of Fir = 0. This provides the smoothness of Fr (v; kp, p, €)
and eventually of P,

GPP = .7:}{ .
As for F, also for P, it holds
PP(UP;k7p276) :P('U;k‘,6) ’
p=0

which concludes the proof.

3.3.1. Proof of Theorem 3.1

The proof of Theorem 3.1 mainly follows from the fact thay
non-degenerate solutions v™ can be continued to a familv, in
the parameter p, of non-degenerate solutions v,:

Lemma 3.3. Let v* be a non-degenerate solution of (42).
Then, there exists p* such that, for |p| < p* ther. s a
unique (modulo gauge transformation) and non-de enerate 3,
solution of (80) which is smooth with respect to 0* w. 7 fulf s

Ew.

vy =" +0(p?) .

Proof:
The proof can be obtained applying t' implicit function
theorem to (80), since from the previous ’ropo. *ion one has

Py (v,;0,p°,0)

= P(v;0,0) .

The nondegeneracy of the approxi aated . "ition v* provides
the existence (modulo Gauge trar sforr ation) of v;. Its nonde-
generacy is given by the smoothne -~ Of tb  Lyapunov-Schmidt
decomposition with respect t~ "he su. '. parameter p, which
provides the invertibility of ne diffc ential Dy, P,(v};0, 0%,0)
on the subspace orthogonal i » the G: uge, for p small enough.
The p?-expansion of v, is » ~onsc , _uce of its smoothness with
respect to p?. g

The above Lemma a. ows to pply Proposition 3.3 of Step
B, in the limit of p small . - _n, thus ensuring the existence
of a solution ¢,(¢) - <*(p), with p < p*. In order to
conclude the proof ot ™ corem 3.1, we still have to show that
(44) holds true. Let now wj(v,;€) be the solution of

wo,

F(vpsw, pye) =0,
and, in a similar way, let w”(v*;€) be the solution of

Fv";w,e) =0 .
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Lemma 3.4. There exists p* and €”
and € < p*€e* one has

such that, for |p| < p*

w(v50) = w (") + Op?) . (86)
Proof: From the smoothness of the su ation h, of the Range
equation Fy = 0 one gets

ho(0)i ko %,6) = h(v™sk ) + (0%) . (87)
In a similar way, the . "ition ~
the implicit functior ther .c.

o(vps€) of Fx = 0 given by
also satisfies the leading order

approximation
ko5 €) = k(v" &) + O?) (88)
hence the estimayv. ~asi’, follows recalling that
U):(Up, )_ k ( P7€) +h (vpv s P )
k(' + h(v 5k e) + O(p%) =
=w §€)+O(p )
g

Going .. <k to (55), let v¥*(p,€,7) and v*(0, ¢, 7) be the scaled
1c ! solutions (belonging to the Kernel V2) built respectively

with ¢ €) = v, +w,(vy;€) and ¢ (e) = v* + w” (v™;€), where
¢ (€)= 6" (€) + O(6°) | (9)
~na let

(pe,m) =V (p, 6, 7) + WV (p€,7) €) (90)

be the reconstructed real solution of the original perturbed
problem (30): from the previous leading order approximation
(89) and from w = O(||v||*) = O(p?) one gets (44).

8.8.2. Proof of Theorem 3.2

The proof of Theorem 3.2 is based on a necessary condition
for the solvability of the bifurcation equation which is shown
to be violated at v,, as stated in Proposition 3.4. Given the
difficulty to verify the assumptions in Proposition 3.4 directly
on the equation (79), the strategy is to derive their validity
from the hypothesis (H1)-(H3) of Theorem 3.2. However, dif-
ferently from the non-degenerate case, where solutions v* and
v, can be easily connected in the limit of small p, degener-
ate solutions of (79) might differ from those of (41), even for
an arbitrarily small perturbation. Indeed, a degenerate v* can
decrease its class of degeneracy due to an arbitrarily small per-
turbation, if it removes at least one of the Kernel direction; and
moreover, nondegeneracy in the remaining directions cannot be
lost. From here, stems the choice to restrict the treatment to
those cases fulfilling the main Assumption (H0). This addi-
tional requirement states that degenerate solutions v* and v,
differ only for the amplitude, and not for the phases {6;}es.

Proposition 3.6. Given (H0), assume that any p-degenerate
v* # vy, is such that

0. P(v*;0,0) £0
rk(Dy P(v™;0,0))
0. P(v*;0,0) € Range(DyP(v";0,0)) ,

:m_p_la



then for any degenerate v, # v} ,; there exists p*(v*) such that,
for |p| < p* one has

DePy(v;,0,p%,0) £ 0,
rk(kaPp(U*;O,pQ,O)) =m-p—1,
66PP(U;707 p27 0) € Range(kaPP(U;7 07 p2a O)) .

Proof:

Because of Assumption (HO), given any degenerate v, by
continuity in the limit of p — 0 it converges to the corre-
sponding degenerate v*, having the same phases 0, and am-
plitude equal to 1. Whatever is the degree of degeneracy of
the limit solution v*, the same type of degeneracy holds also
for v;, at least for p small enough. Hence DyP(v*;0,0) and
Dy, Pp(v*;O,pQ,O) have the same spectral properties and the
hypothesis on the rk(kaPp('U*;O,pQ,O)) is true. The other
two properties concerning 9. P, (v}, 0, 02, 0) are simply a conse-
quence of the smoothness with respect to p. O

Now, in order to conclude the proof of the Theorem 3.2,
let us assume that there exists a degenerate v, # v}, and
then a corresponding @ # s, which can be continued: then,
as a necessary condition for the continuation, assumption (h3)
of Proposition 3.4 has to hold, and using Proposition 3.6 one
realizes that assumption (H3) of Proposition 3.4 is violated.

Remark 3.4. It is natural to ask how to reconcile the nonez-
istence of the continuation for phase-shift solutions v, with the
ezistence of the continuation for standard solutions vy, given
that they may belong to the same family. The point is tha,
as it could be shown combining the above Proposition 3.6 with
Proposition 3.4, the nonexistence result is “local” in amp.. "uc
up to a certain threshold p*(v*) which depends on v*. As w
will be more clear in the next applications, where 9 P(v™;0,0)
is explicitly computed, the threshold p*(v*) has to vanis. as
v* — vy, indeed we have already recalled that st ~dard so u-
tions always exist (both in the KG and in the -orre., n/ .ng
dNLS model) and hence the proposed criterioc has to fail at

v = vk,

4. Applications

In Section 2 we have shown three ¢ der. 1t examples where
the Effective Hamiltonian Method ¢ ld .ot be applied, due
to degeneracies in the persistence ¢ nditi. ** as a consequence,
despite the differences of the mech .nisr leading to the degener-
acy, in all the cases it was not pos. "hle ¢o es ablish the existence
of phase-shift Multibreathers.

In the present Section we ,how h w to apply Theorem 3.2,
and Corollary 3.1, in order t. prove t at in all the above men-
tioned examples only standard . “1t*"_reathers can be continued
at € # 0, in the limit of ¢ aall en ~ugh energy. This is performed
by showing the validity of the : ssumptions (H1)-(H3) in the
dNLS equation (32), sin. - the validity of (HO) has been al-
ready discussed in ¢ = "~ 2 itself. In particular, with the last
application of this Sc 'tir o we are going to prove Theorem 1,
which is stated in the Ir. roduction, about the four-site vortex-
like solutions in the zigzay KG model.

Let us rewrite explicitly the specific ANLS equation (32) we
consider here, i.e.,

andy = =5 [(A1+ rada)g] + o516l (92)
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where k2 can be either 0 or 1, depending on the models consid-
ered in the application, and the unperturbed solutions v read

e les,
v =
0,

¢S,
where S = {j1,...,Jm} will @ _~nd on the example.
The statements of Theorr .n 3. and Corollary 3.1 require the
computation of 9. P(v*;0,0, w ich explicitly reads

0. P(v";0,0) = —IIxg LA™ 1. Lv" |

(93)

(94)

and possibly also its » coje *+on on the Kernel of Dy P(v*;0,0);
indeed, since Di P(x -0, is self-adjoint, the condition (H3) is
equivalent to

0. P(v";0,0) Y T.er(Dysr 0*;0,0)) .

Once introduc. ' phas -shift variables ¢; as in (7) in the def-
inition of v _iven by (33), equation (80) turns out to be inde-
pendent of the ".ast angle” 0;,: hence solutions v* are always
given by loops on t 1e torus T™ and are uniquely represented
by a value . “ «© on the torus T™ ! := T™/T.

In oractice, orojections over vectors belonging to K are
perforn.. 1 usi- g the complex inner scalar product a - b =
PIFE -b;), where a basis {e;}i=1,...,m for K is given by

- vy v (‘91'17‘10) 5 {61}122 = awv*(ejlvcp) .

1 Sunpler examples: degeneracy from holes

‘he two cases included in this Subsection represent examples
o. complete degeneracy, where P(v;0,0) = 0 for any v € T™.
™ both the examples, the complete degeneracy comes out from
the interplay between the presence of a hole in the configuration
5 and the minimal dimension of the torus m = 2. In these
cases, application of Theorem 3.2 reduces to Corollary 3.1: thus
it is enough to check that

0. P(v";0,0) £ 0, Yo© £ vk .

4.1.1. S ={-1,1} in the standard KG model
In this case

vt (01, 9) = [...,o,e‘“’l,o,e"'<91+‘f’>,0,...} .

The Kernel’s basis computed on a generic element of the family,
setting 61 = 0, reads

elZi[...,071,0,e_i"’,07...} ,
ezZi[...,O,O,O,e_W,O,...] .

A straightforward computation gives the restriction of
LA™ Iz Lv* to the components corresponding to the set of
sites S, which are the only ones relevant for the projection on

K
1 )
—(LA71HHLU*) = 7[1,67“'0} ;

S 20.)()
in the above calculation, the projection Iy on the range has
been simplified
LA 'y Lv* = LA ' Lv*

due to the fact that IIx Lv* = 0 by definition. This allows to
get

LA MIg Lot - en = - S(®) ,
wo

—LA Mg Ly" - e

0,

hence 9. P(v*;0,0) # 0 for all ¢ & {0, 7}.



4.1.2. S ={1,4} in the zigzag KG model

In this case
" (01, p) = [ ..,0,e7%1. 0,0, 1) o, .. } .

The Kernel’s basis computed on a generic element of the family,
setting 01 = 0, reads

el:z‘[...,0,1,0,076*"*’,0,...} ,
e2:z‘[...7070,0,076*"*9,0,...} :

A straightforward computation gives the restriction

= —% [e_w 51— Be_i“’] ,

— (LA ' Hu L) o

which allows to get

LA MIg Lot - ep — —SP)

—LA 'y Lv* - e1 =0,
4UJO

hence 9. P(v*;0,0) # 0 for all ¢ & {0,7}.

4.2. Subtler example: degeneracy due to symmetry;
S =1{1,2,3,4} in the zigzag model

In this case, we consider the zigzag model given by ko = 1
and the vortex-like configurations described by the set S =
{1,2,3,4}. As already commented in Section 2, this reprr
sents a prototype example of a more complex type of degen-
eracy, which is indeed related to “internal” symmetries of the
configurations.

Differently from the previous easier examples, where the
degeneracy was total and the application of Corollary 3.1
was enough, now we have to check the pre,ection of
OeP(v*,0,0) given by (94) onto the Kernel of th linear ¢ p-
erator Dy P(v*,0,0), with v* belonging to the fr milies ™ .nd
F>. We deal explicitly with one family only, n .mel- F; : ¢ =
(¢, 7, —¢); by setting 61 = 0, we have @ = 0. o, 7w- p,m),
which gives the following representation of -+  in co. v ex vari-
ables

/U*(QO) = ['“70711671.@7_671.%7_1707.. I

The Kernel’s basis computed on a gene.. ~ :lement of the family
Fi(yp) reads®

0,.. .

e1 = z[ | |

ez = z[ ..,0[0,e7 ¥, —e" "%, -1

0.,

1

63:’L.|:...7O 1

0,0, —e ", - 1!0,..
e4:i[...,0’0,0,0,—1‘ } .
Tv*, precisely

An easy computati « ,° °°

[...,0,1,1+e*“"

3We will use the notation [...|-,-,-,-|...] to denote values along
the chain: in particular, the two vertical bars enclose the sites be-
longing to S, when indexes j; are consecutive.

_4, ae*i*",5e*i*",4( —(14e7),-1,0,.. } :

since
Ah— —2woh , ]ES7
woh, j&8
then —A~'IIy Lo* takes the fo.m
i _1 _ —ip | y § —ip E —ip —ip
wo[..,,O, 1,—(14+e ") -2 3¢ 1€ ,2[(14+e "), 1,0,...

Given that our last op —ation is a projection onto the
Kernel, we limit the ~xt . mputation on the restriction

—(LATML Lo, hick w15

1 _ip 23
g et 22
(N

23 —i
)—1,—36 “+1,-6+e¢ ‘P].
wo 2

A direct comput. “ion st yws that

—LA71HHL1)*-82,4 = ZEM .

—LA 'y % 13 =0,
wo

Upon verw. ng u.at the four-dimensional matrix representing
the linear ope. tor Dy P(v*,0,0)[k] has rank 2, we know for
free tn. Kerne' generators, since the gauge direction and the
direc. ~n taugent to the family for sure belong to it; these are
respective, -

O,v n) =e2 —eq 8916i011}*((p) =e; .

tu . wvious scalar projections of —LA™'IIzLv” on the basis
" t}i=1,....a show that

C OPW,0,00=0, 907 (¢)0P0",0,0) = %Osin(cp) 7
which is different from zero, apart from the cases ¢ € {0,7}.
Thus, we can conclude that the projection of 9.P(v*(¢);0,0)
onto the Kernel of D,pP(v*;0,0) is different from zero on
any phase-shift discrete soliton considered in the family F.
Since the same holds true also for the second family Fb, this
represents a sufficient condition for nonexistence of the con-
tinuation of any phase-shift Multibreather corresponding to
S ={1,2,3,4}.

4.3. A note on an even more degenerate model

As already observed in the final part of the Introduction,
the technique developed in this Section is not sufficient to deal
with the more degenerate model considered in Section 2.4.2,
ie., o1 in (17). Actually this kind of degeneracy in a dNLS
model was already examined systematically in [45], where we
were able to prove the nonexistence of any four-sites phase-
shift discrete soliton for e small enough. The crucial point
is that the higher non-degeneracy required in that paper the
analysis of higher order expansions of the Bifurcation Equa-
tion: this is exactly the reason that prevents the application
of the techniques used here. Indeed the small perturbation
due to the energy, which “measures” the distance between the
KG model (17) and its dNLS-type normal form (23), could be
enough to introduce small linear terms in the bifurcation equa-
tion allowing for non-trivial solutions, which otherwise would
not exist. This, however, depends on the magnitude of the
linear term in e introduced by the perturbation. Since the ob-
struction to nonexistence comes out from the €2 term in the
Kernel equation, the corrections of order p? would be relevant
in the regime ¢ < p* here considered.
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Figure 6: The bifurcation diagrams of the persistence condition (95), in ‘.1e k-parameter region corresponding to the zigzag (J19) model
and in the ¢-region of &(V) | The rows of the figure correspond to . .. = dis. nct values of k3, i.e. k3 = 0.01,0.001,0.0001, where the diagrams
for an interval of k2 in the specific region are shown. The three colun ns ¢ rrespond to the values of the three ¢; which constitute the various
solution-families. The distinct branches are characterized by er-ircled 1. '‘mbers, while their exact combination for each family can be found in

Table 2. The family Fj

1 = (p, T, —¢p) is degenerate (possesse. ~ne u c.genvalue) and it is represented by a dotted line at ko = 1. Negative

values of k3 are not considered since for k3 < 0, there exist no releve. + phase-shift solution families.

5. Numerical study

In this section we will perform a numerical st".dy of the per-
sistence conditions which correspond to the ¢ /ster. (2) in an
attempt to showcase the degeneracy of the config. »tior s of the
S0 (zigzag) and the JAo1 (inspired by t - 2d squas ¢ lattice)
models which have been already discusse . in . *~tion 2. These
conditions are given by

M(p1) + kaM (o1 +@2)+ ~M( o1+ 92+ ¢3)=0
M(p2) + kaM(p1 + @2) - kabiy,~ +¢2)
+k M(o14+ @2+ 93) =0
M(p3) + koM (p2 +@3) -+ sM o1+ 2+ p3) =0
(95)

P(p)

with M as in (12). Note that since w : consider low amplitude
solutions, the results for '~ Kic.. ~ordon and dNLS variants
of the system are equive ent bot qualitatively as well as quan-
titatively, since the dift rences i the solutions are negligible.
Thus, we could have used \°"" .nstead.

We will focus ma. wy . “he parametric regions correspond-
ing to the above ment, v .d systems, namely k2 = 1, k3 = 0 and
ko = 0,ks = 1 for the 7z o and J# 1 systems respectively.

The illustration of the degeneracy will occur by showing the
convergence of various solution families as the ka2, k3s- parame-
ters tend to the ones corresponding to the cases under exami-
nation. Hopefully, by this procedure we will also be able to un-
derline the difference in the degeneracy “magnitude” between
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the two systems since in the zigzag model only two solution
families converge, while in the 7401 model there exist three
converging families.

5.1. Study near ko = 1,k3 =0

First we examine the parametric region corresponding to the
zigzag system (namely near ko = 1,ks = 0). In this study, a
crucial role is played by the two families F} and F> of asym-
metric vortices solutions of (11) which are given by (14).

The proper representation of the solutions of (95) would re-
quire a three-dimensional plot for every phase-difference ¢; as
a function of both k2 and k3. Since this surface is difficult to be
properly illustrated, we prefer to present some sections, first for
fixed ks, varying ko, and then by reversing the roles between
kg and k‘3.

The results of the study for this parameter-region are found
in Figs. 6 and 7. Let’s examine first Figure 6. The first thing
one can observe is the existence of the Fi : ¢ = (¢, 7, —¢)
family of solutions which is depicted as a vertical line at ko = 1,
in the diagrams for the 1 and @3 slow variables. Note that,
F satisfies the persistence conditions (95) for every value of
ks and ke = 1 as it is easy to verify by substituting the values
of ¢ which correspond to Fi into (95). On the other hand,
for ks > 0 we observe that there exist two phase-shift families,
which bifurcated from the symmetric vortex configuration ¢ =
®CY) = (7/2, 7, —m/2). Each depicted family is determined by



its values of @;’s and it is detailed in Table 2 (e.g., family 1
consists of the p1 = D, w2 = @), p3 = Q in Figure 6, etc.).

f of Branch description
Family
¥1 P2 ®3
1 o @ @
2 @ O O
3 ®@ ©® @
4 @ @ O

Table 2: The solution families depicted in Figure 6.

We can see that the bifurcation points of the phase-shift
families under consideration approach ®®V) and the families
themselves tend to coincide with the F» family (14) as ks —
0. For ks 0 the families coincide with F» which visually
coincides also with Fi. The F} and F> families really cross each
other at ®¥). The not so illustrative bifurcation diagrams for
ks = 0 would be just a vertical line at k2 = 1 in the 1 and ¢3
diagrams and a horizontal line at ¢» = 7. Note that, there are
no bifurcation diagrams for k3 < 0 since for these values there
exist no relevant solution families.

The degeneracy of the system is revealed by the fact that all
the phase-shift families merge to the F} and F> ones and the
fact the the matrix (16) has the specific form at ®*¥) is due
to the family crossing at this point revealing the two kernc
directions of the persistence condition.

The same behavior is also suggested in Figure 7, wher. ...

monoparametric variations over k3 are now given for a set ¢

values of ko progressively approaching k2 = 1. More specifi-
cally, k2 has been chosen close to, but less than, 1 <.ad . left
free to vary around 0. The two families which r e depici :d
in Figure 7 are the ones shown in Table 3. W~ ca.. ~bse ve
in a more clear way the difference between tr: k2 < 0 case
and the ks > 0 case, in terms of phase-shift ~lut'ons. When
ks > 0 there are branches connecting (apr srenv. ) t, 0 and
m: although the situation very close to k3 - 0 is not perfectly
shown, it is anyway evident that the bran .hes 1.. “he upper and
lower parts of the frames get closer and 'nser as k2 — 1, like
converging to a curve which emerges ron ®CY). At exactly
ko = 1, one should observe a full bana . = .he phase differences
¢1,3. In this representation the F amily 1. ~ot shown since it
exists only for ko = 1. The pictr e is comnletely symmetrical
to the one of Figure 7 in the k2 > = ase.

f of 1 ranch « scription
Family
1 P2 3
1 o o O
2 > O O

Table 3: The solu ‘on families depicted in Figure 7.

The overall picture emerging from the above numerical ex-
ploration is the following. Whenever ko # 1, solutions appear
to be isolated, thus non-degenerate and suitable to be contin-
ued. Nonetheless, as k2 — 1, their non-degeneracy gets weaker
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and weaker, so that the domain of continuation in the coupling
parameter € is expected to vanish, according to the standard
estimate given by the implicit furction theorem. The degen-
erate scenario which appears at <2 = 1, due to the existence
of a one-parameter family of sc.ut.. ~s Fy for generic values of
ks, becomes richer at k3 = 0. since a sccond family F> arises
which intersects the alread” ex1 ting Fy at ®EY) . The possi-
bility to continue such deg er: ce solutions requires the more
accurate mathematical a- alysis, “hat we developed in Section 3
and applied in this model i ~~ction 4.

5.2. Study near k- =0 x3 =1

The next numerical su 1v we are going to perform is the one
of the solutions ¢ (95) close to the k2 = 0, ks = 1 parametric
area which corr: sponds t ) the J# 91 model. The results of this
study appear in 1 "~s. 8 J and 10.

First, in #igur~ 8 we present the bifurcation diagrams of
(95) for s.me valus of ks < 1 (in particular for ks =
0.9,0.99 ~nd V.999" and an interval of k3 around k2 = 0. In the
top row the -~lues of the angles @1 and @3 are shown while the
botte™ row dej icts the values of p2. Although, the @1 and @3
ang'les a.  der cted in the same diagram, this does not mean
that ¢, = @3 for every value of k3. The four families which
Gl a Figure 8 are labeled with encircled numbers and
are mmarized in Table 4 below (e.g., family 1 is defined as
1 = (u of the upper row of the figure, p2 = @ of the lower
rov and @3 = @ of the upper row panels). We see in these
¢ agrams how these families converge to the k2 = 0 asymptote.
In _articular, families 1 and 4 converge to F3, while families 2
ard 3 converge to Fi (19). The different line symbols denote
lifferent linear stability of the families. In particular a solid
line corresponds to a family with one unstable eigenvalue while
the dashed line corresponds to two unstable eigenvalues. As the
families converge one of their stability eigenvalue converges to
zero and it changes sign when k2 crosses zero. Since the stabil-
ity discussion lies outside the scope of the present manuscript
we will not refer further to the relevant details. We only men-
tion this for the bifurcation theory inclined numerical reader
who may appreciate some of the associated bifurcations, such
as the pitchforks in Figure 9.

f of Branch description
Family o1 oo .
1 o O ©
2 @ O O
3 ®@ © O
4 @ @ 6

Table 4: The solution families depicted in Figure 8

Next, we consider the bifurcation-diagrams for k3 > 1 (In
particular ks = 1.1, 1.01 and 1.001) which are depicted in Fig-
ure 9. We can clearly observe that families 1 and 4 of Table 5
below converge into F3 as ks — 1 while families 2 and 3 con-
verge to Fi. The main difference of this diagrams, with respect
to the ones of the ks < 1 case, is that in this case there exist
also the two new phase-shift solution families 5 and 6, where
the families 1-4 bifurcate from through pitchfork bifurcations.
These families also have the characteristic that they are the
only ones that exist for k2 = 0 and for all ks > 0.
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Figure 7: The bifurcation diagrams of the persistence condition (95), 1. t' e k-parameter region corresponding to the zigzag (#110) model
and in the ¢p-region of &(V) | The rows of the figure correspond to “ree di ‘inct values of k2, i.e. kg = 0.99,0.999,0.9999, where the diagrams
for an interval of k3 in the specific region are shown. The three colu .. ~or1:spond to the values of the three ¢; which constitute the various
solution-families. The distinct branches are characterized by encirclec nun.bers, while their exact combination for each family can be found
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in Table 3. Note that for k3 < 0 there exist no relevant phase

f of Branch description
Family

$1 P2 ®3
1 o o
2 @ O
3 ®@ @ ¥
4 @ @ O
5 ® @ O
6 ® @ ©®

Table 5: The solution famili 5 der cted in Figure 9.

For k3 = 1, the Jacobian i, highly degenerate and hence we
show no frame for this value f k3. N vertheless, it is straight-
forward to see that the thr~= fa.. " , Fi, F» and F3 coincide at
this value of ks.

In order to demonstre ‘e this f' ct better, as well as to better
show the role of the fami.. - 7 and 6 of the k3 > 1 case, we
consider the role of “ou.. © ~nd k3 variations between Figs. 9
and 10. In the latter ¢. s we consider specific values of k2 close
to ko = 0 (i.e., ko - 1.001,-0.0001,0.0001,0.001) and an
interval of values around k3 = 1 and examine the bifurcation
diagrams of (95). First of all we can see the family F : ¢ =
(¢, ™=, ¢) which exists for ks = 1 and every value of k2. Since
this family is degenerate it is depicted as a dotted line. The
rest of the families depicted there are shown in Table 6 below.

~Tay
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on families.

We can see that families 1 and 4 tend to F; while families 2
and 3 tend to F3 as ko — 0. Geometrically this is manifested
by both families converging to the k3 = 1 asymptote. On the
other hand, there exist families 5 and 6 which correspond to the
families 5 and 6 of Figure 9. We see that they exist only for k3 >
1 being a product of a saddle-node bifurcation occurring at
ks = 1. Although these are ks, ks-parameter solution families
for (95), they constitute an isolated solution of Egs. (18).

f of Branch description
Family o1 02 03
1 o O @
2 @ o O
3 ®@ o O
4 @ o O
5 ® © O
6 ® @ ©

Table 6: The solution families depicted in Figure 10.

A special note must be made for the special case ko = 0. For
this value of k2 the only families that exist for k3 # 0 are the
families 5 and 6 of Figure 10 as it can be shown also in Figure 9.
In this particular case it is also true that 1 = @2 = 3.

The fact that for this choice of k2 and for k3 = 1 we get the
symmetric vortex solution <I>(S")101 both as a member of the
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The exact combination of branches for each family can be found in Ta. 'e +. We can observe how the various solution families converge to
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Figure 9: The bifurcation liagrams >f the persistence condition (95), in the k-parameter region corresponding to the 7401 model and in the
@-region of (V). The colu. s o the figure correspond to three distinct values of ks, i.e. k3 = 1.1,1.01,1.001, where the diagrams for an
interval of ko in the s= ~*f~ region are shown. The upper row correspond to the values of ¢1 and @3 of the solution-families while the bottom
row depicts ¢2. Althou -h t' e wagrams for ¢; and @3 coincide geometrically, they do not have the same values in the corresponding families.
The exact branches whic correspond to the different families are shown in Table 5. Note that, as k3 —, the families converge to the vortex
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vertical families and as a member of the “parabolic” family,
numerically poses the question of the existence of the symmet-
ric vortex solution in the real system. This question is also
triggered by the fact that the two-dimensional analogue of ot
system in the dNLS limit it has been shown that vortices persist
up to the (high) orders considered in [41].

We summarize the results of the previous numerical inves.’
gation, by saying that the persistence condition provide three

by mc ns of averaging methods due to the degeneracy of the
pio "™, was obtained in an efficient way by exploiting the
o ational symmetry of the model and the density current con-
se. 7ation along the spatial profile of any candidate soliton. The
. nsence of these ingredients in Klein-Gordon models represents
an additional layer of difficulty to the degeneracy that one has
to face in the continuation problem that we here address.
Keeping in mind the connections among these two classes

one-parameter families of candidate MBs, instead ¢” .. - two of Hamiltonian models (KG and dNLS), a natural (although
families for the J#i0 case. Each family carries two st. n- indirect) way to proceed is to transfer the results which are
dard in-phase/out-of-phase solutions (whose existen. = is gv .- accessible in the dNLS context to similar results which are ex-

anteed via other approaches, [43]) and the thr -e intersc ¢ in
two highly symmetric objects, having ¢ = <I>(qv1) 7 ad e aulat-
ing two-dimensional vortices. The same kird o. ~ens.io and
consequent degeneracy is shared by the cor asponding beyond-
nearest-neighbor discrete NLS approxime ,1on

3
Hio1 = Z|wi|2+ §Z|¢j|4
J J

; , , (96)
+ o2 s —wil® + s — 7]
J

examined systematically in [47]. It is . 1s natural to attempt
transferring the nonexistencc results here obtained previously
by means of an accurate mat ematic | analysis. However, the
techniques developed in ¢ _ion o i the present paper are tai-
lored for less degenerat model as it is also discussed in Sec-
tion 4.

6. Conclusions - 1“7 ,ure Directions

The present paper represents a natural follow up of [45],
where we studied the related problem of the nonexistence of
degenerate phase-shift discrete solitons in a beyond-nearest-
neighbor dNLS lattice. We recall that in [45] the nonexistence
of phase-shift discrete solitons, which was not easily achievable

23

pected to be valid in the KG context, keeping track of the
relevant correction terms. In this work we examined mainly
KG systems with interactions beyond nearest neighbor interac-
tions inspired, in part, by connections with higher dimensional
lattices), with special emphasis on the zigzag model. In these
models, by means of Lyapunov-Schmidt techniques, we showed
that this approach actually works provided some smallness as-
sumptions are made on the main physical parameters of the
models: the energy E and the coupling strength e.

However, the strategy presented here, is based on a first or-
der normal form approximation of the KG model, and thus
it has some limitations in cases where higher order degenera-
cies occur. In order to showcase this fact we shortly exam-
ine a model that exhibits next-to-next nearest neighbors in-
teractions, namely the 701 model. Although the previously
described methodology cannot be applied there, the numeri-
cal exploration performed in the Section 5.2 shows elements
which strongly overlap with those that one can obtain in the
corresponding dNLS normal form Hio1, for which a rigorous
answer has been given already in [45]. This naturally leads us
to conjecture that a corresponding nonexistence statement of
phase-shift four-site multibreathers holds true also for 4.

In order to prove such a conjecture, one could still follow
this indirect approach, but attempt to increase the accuracy
of the normal form approximation by adding further neighbor
linear and nonlinear terms to the dNLS Hio1, in the spirit of a



more general dNLS approximation (see [39, 40, 42]). Alterna-
tively, one can use a more direct approach and perform a local
normal form technique around the low-dimensional resonant
torus, with the advantage of working directly in the original
KG model without passing from the dNLS approximation (see
[44] for the maximal tori case). With this scheme we expect
to derive a normal form which naturally extends the effective
Hamiltonian method introduced in [1]. In any case, and what-
ever the perturbation method one prefers to apply may be, it
appears natural that the accuracy required in the approxima-
tion is directly related to the order of the degeneracy of the
problem: hence, for highly degenerate problems the help of a
computer assisted manipulation may be unavoidable and the
choice of the method can become extremely relevant.

A related comment is that in the present work we have
limited our considerations to one-dimensional settings with
long-range interactions. Extending relevant ideas to genuinely
higher-dimensional KG settings, where again the understand-
ing built on the basis of the dNLS [23, 41] may be useful, is
another natural avenue for future work. Indeed, in the two
dimensional case significant degeneracies arise even in the ho-
mogeneous case, without the need to explore beyond nearest-
neighbor interactions. Hence the problem of interest lies al-
ready at the level of the homogeneous 2d lattice. There, on the
basis of the dNLS problem we expect degeneracies and hope to
address the existence of solutions first in the easier dNLS case.
Current numerical observations suggest the existence (even as
robustly as to be experimentally observed) of discrete vortical
structures. On the other hand, as already stressed in para
graph 4.3 about the H101 model, we suspect that the methods
proposed herein may not be sufficient to tackle the tran
between the dNLS and the KG case in all possible situation.
hence further tools may need to be developed for the latter,
depending on the geometry of the lattice and on thr aeg. = of
degeneracy of the solutions of the bifurcation eqr itions. . n
additional auxiliary set of models may be that of a..’~otrc yic
coupling, starting with the so-called “railroad aod~l” in.olv-
ing two “tracks” initially very weakly coupled - ad ¢ mtir .ously
varied until the equal coupling limit (which oulu ~e 2 ain ex-
plored numerically). These are some of thr relevant uirections
examining further.
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PROPOSED HIGHLIGHTS:

— Klein-Gordon lattices with interactions beyond nearest -neighbor
are
examined.

- Existence and nonexistence conditions for degenera.~ phase-shift
multibreathers are discussed.

— The correspondence between solutions in the KG anr LS models is
analyzed.

— Nonexistence of four-sites vortex-like stru tures in the zigzag
Klein-Gordon lattice is established.




