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Abstract

In this work, we study the existence of, low amplitude, phase-shift multibreathers for small values of the linear coupling in Klein-
Gordon chains with interactions beyond the classical nearest-neighbor (NN) ones. In the proper parameter regimes, the considered
lattices bear connections to models beyond one spatial dimension, namely the so-called zigzag lattice, as well as the two-dimensional
square lattice or coupled chains. We examine initially the necessary persistence conditions of the system derived by the so-called
Effective Hamiltonian Method, in order to seek for unperturbed solutions whose continuation is feasible. Although this approach
provides useful insights, in the presence of degeneracy, it does not allow us to determine if they constitute true solutions of our
system. In order to overcome this obstacle, we follow a different route. By means of a Lyapunov-Schmidt decomposition, we are
able to establish that the bifurcation equation for our models can be considered, in the small energy and small coupling regime, as
a perturbation of a corresponding, beyond nearest-neighbor, discrete nonlinear Schrödinger equation. There, nonexistence results
of degenerate phase-shift discrete solitons can be demonstrated by an additional Lyapunov-Schmidt decomposition, and translated
to our original problem on the Klein-Gordon system. In this way, among other results, we can prove nonexistence of four-sites
vortex-like waveforms in the zigzag Klein-Gordon model. Finally, briefly considering a one-dimensional model bearing similarities
to the square lattice, we conclude that the above strategy is not efficient for the proof of the existence or nonexistence of vortices
due to the higher degeneracy of this configuration.

1. Introduction

The study of nonlinear dynamical lattices of Klein-Gordon
(KG) and Fermi-Pasta-Ulam types has received considerable
attention over the past two decades. This can be partially
attributed to the intense interest in waveforms which are ex-
ponentially localized in space and periodic in time [8, 18].
Such discrete breather states have been recognized as emerging
generically in systems that combine discreteness and nonlin-
earity. Relevant experimental examples abound and involve,
e.g., Josephson junction arrays [6, 52], electrical transmission
lines [16], micro-mechanical cantilever arrays [48, 49], coupled
torsion pendula [12], coupled antiferromagnetic layers [50] and
granular crystals [7, 10].

Most of these studies concern fundamental localized states.
Typically also, they are predominantly in simpler, more con-
trollable one-dimensional models [18]. However, optical [34],
atomic [25], solid-state [14] and other settings suggest an in-
terest in exploring higher-dimensional systems. Here, there
may exist energy thresholds for breather existence [17]. Addi-
tionally, one can find novel discrete vortex structures [11, 13].
These are also referred to as phase-shift multibreathers. In
fact, it may happen that higher charge vortices are more sta-
ble than their lower charge counterparts under appropriate
conditions [27]. It has been argued that suitable adaptations
of beyond-nearest-neighbor interactions [29] and the so-called
zigzag [15] chains share some of the intriguing features of
higher-dimensional settings. At the same time, such settings
remain effectively one-dimensional in their formulation. For
this reason, lattices with beyond-nearest-neighbor interactions

represent a focal point in our study.

It is worthwhile to stress here that, on a more mathematical
side, the proof of existence of these objects (discrete breathers
and their variants that we consider in the present paper) is
nowadays fairly standard in the limit of small coupling, pro-
vided a suitable nondegeneracy allows to apply the Implicit
Function Theorem [35]. A key feature of our work is the de-
velopment of a rather general technique to deal with degen-
erate situations, in order to prove existence or non-existence
of continuation of solutions from the zero-coupling limit, when
the standard approach does not work. Our technique will be
shown to be applicable to several systems. Among them, the
zigzag model is particularly relevant. This is because it repre-
sents a prototypical system for which a rather nontrivial form
of degeneracy appears.

More specifically, in this work, we are interested in KG mod-
els with range of interactions beyond nearest-neighbor, with
Hamiltonian

H =
∑

j∈Z

[(
1

2
y2
j + V (xj)

)
+

r∑

h=1

εh
(xj+h − xj)2

2

]
.

In the present paper we will actually restrict to the case of the
hard quartic potential, i.e.

V (s) =
1

2
s2 +

1

4
s4 , (1)

although, in the limit of small enough amplitude, the results
presented here hold true for generic symmetric potentials.
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Figure 1: The two-dimensional zigzag model: all the interactions
are nearest-neighbor ones with the same strength. The diagonal
(red) springs are those which give the nearest-neighbor interaction
in the corresponding one-dimensional version (see Figure 2), while
the (blue) horizontal ones correspond to the next-to-nearest (NNN)
neighbor interaction in that representation. The indexing indicates
the energy flow of the vortex solutions. Color online.

The Hamiltonian above describes an infinite chain of an-
harmonic oscillators with linear interactions between them up
to r neighbors and vanishing boundary conditions at infinity
limn→±∞ xn = limn→±∞ yn = 0, which are automatically sat-
isfied since we set `2(R) × `2(R) as the phase space of the
system. We will denote by E the energy of the system, i.e.
the (conserved along the dynamics) value of the Hamiltonian
H (x, y) = E.

In what follows we will limit our analysis to range of inter-
action r = 3. By considering εj = kjε, with k1 = 1, the above
Hamiltonian becomes

H =H0 + εH1

H0 =
∑

j∈Z

(
y2
j

2
+ V (xj)

)
(2)

H1 =
1

2

∑

j∈Z

[
(xj − xj+1)2 + k2(xj − xj+2)2 + k3(xj − xj+3)2] .

We are interested in the existence, in the small coupling limit
(i.e., for values of the coupling close to the anti-continuum
limit [35] of ε → 0), of multibreather solutions. These con-
stitute a class of periodic orbits whose energy is spatially lo-
calized on few oscillators (or sites). More precisely, we will
denote by S = {j1, j2, . . . , jm} the set of their indices. In the
case of the zigzag model, four adjacent oscillators will be con-
sidered (namely with indices j ∈ S = {1, 2, 3, 4}; see Figures 1
and 2). If these four oscillators are given the same energy for
ε = 0, any orbit is periodic. This is so regardless of the phase
differences between them. In this way, a completely resonant
four-dimensional torus is formed for the zigzag system.

Our investigation can thus be seen to fall within the gen-
eral question of the perturbation of low-dimensional invariant
resonant tori in Hamiltonian dynamics: generically, only a fi-
nite number of periodic orbits are expected to survive to the
breaking of the resonant torus. Lower bounds for the minimal
number of such persisting solutions can be derived by means

of geometric methods, such as in the so-called Moser-Weinstein
theory (see [54, 38], but also Chapter 1 of [5] for a simpler expo-
sition of main results in this direction). In the case of resonant
tori of maximal dimension, classical results of perturbation the-
ory due to Poincaré [46, 47] allow to identify these orbits as
critical points of the averaged perturbation on a torus, under
some suitable nondegeneracy conditions; degenerate cases, still
considering tori of maximal dimension, have been instead the
object of more recent papers, such as in [37, 53] or in [44], where
normal form techniques and fixed point arguments were com-
bined. One of the first extensions to low-dimensional tori can be
found in [51], still under suitable nondegeneracy assumptions
(see also [55] for a contemporary extension to multiscale sys-
tems). However, to our knowledge, none of the above results
provides a constructive and applicable perturbation strategy.
Thus, the object of the present investigation will be the pro-
posal of such a strategy for the continuation of periodic orbits
in the degenerate and low-dimensional case.

When we consider only nearest neighbors interactions in (2),
i.e., setting k2 = k3 = 0, and consecutive oscillators, it is well
known that only multibreathers with standard phase-differences
(ϕ = 0 or π) between adjacent oscillators survive the break-
ing of the resonant torus [30]. If next-to-nearest (or longer
range) neighbor interactions are added, other solutions with
non-standard phase differences may survive: these are called
phase-shift multibreathers (see e.g. [32, 43]). The emergence
of phase-shift multibreathers in both one-dimensional KG and
discrete nonlinear Schrödinger (dNLS) models with interactions
beyond those of the nearest-neighbor interactions, have been in-
vestigated in some recent works [9, 24, 29]. This issue partially
overlaps with the study of vortex structures in two-dimensional
lattices, like in [13, 28, 41]. Indeed, a suitable beyond nearest
neighbor interaction in a one-dimensional lattice allows to re-
produce the local interactions involved in a two-dimensional
vortex, for example in a hexagonal or square lattice, thus pro-
viding an emulation of the two-dimensional object by a one-
dimensional one at leading order in the coupling perturbation
parameter ε; such an approximation clearly fails at higher or-
ders, due to the differences in terms of lattice shape and inter-
action among sites.

As an intermediate case between a one- and a two-
dimensional lattice we can consider the aforementioned zigzag
lattice [15]. This lattice can be seen to consist of just two oscil-
lator chains which are connected as shown in Figure 1. In this
case, we can easily see that vortex solutions of Figure 1 corre-
spond to four-site multibreathers in the one-dimensional system
of Figure 2. The zigzag system is described by a Hamiltonian

H110 =
∑

j∈Z

[(
1

2
y2
j +

1

2
x2
j +

1

4
x4
j

)
+

+
ε

2

(
(xj+1 − xj)2 + (xj+2 − xj)2

)]
,

(3)
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Figure 2: The corresponding one-dimensional zigzag model. The numbers indicate the correspondence to the two-dimensional zigzag model.
For the color meaning, please refer to the caption of Figure 1. Color online.
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that corresponds to a Hamiltonian (2) with k2 = 1 and k3 = 0.
Indeed, the subscript of H refers to the values of the coupling
constants k (including k1 which is always 1 in our notation).

As we anticipated before, both in the one-dimensional and
in the two-dimensional case, the existence of multibreathers is
typically established via implicit function theorem arguments,
which rely on the non-degeneracy of some linearized equation.
This is the case, for example, of the classical result in [1], where
true multibreather solutions are obtained from approximate so-
lutions which correspond to critical points of an averaged (ef-
fective) Hamiltonian: in this context, an approximate solution
has to satisfy some persistence conditions (see e.g. [29]) which
select admissible candidates of phase-differences for a possi-
ble continuation. The same analytical tool, i.e., the implicit
function theorem, can be used also in a different scheme: ap-
proaching the original problem with a Lyapunov-Schmidt de-
composition (with the torus being resonant), it is used to solve
the Range equation, and then the use of some symmetry, like
time-reversibility, can remove the Kernel directions (see [43]).
However, in some degenerate cases, the candidate solutions we
get from the persistence conditions do not correspond to true
solutions of our systems. In such cases, a deeper analysis is
required which typically involves higher order terms of the bi-
furcation (kernel) equation.

In particular, by studying persistence conditions, one real-
izes that candidate solutions are not isolated in degenerate sys-
tems, but appear in families. In the following section it will
be illustrated how a simple form of degeneracy arises when in
the multibreather configuration there are holes between oscilla-
tors which are large in comparison with the interaction range.
More subtle mechanisms are related to particular symmetries
in the interactions beyond nearest neighbor ones even for con-
secutive sites configurations. A prototypical case is that of the
zigzag system (3), for which we realize that the candidate vor-
tex solutions of Figure 1 appear as two one-parameter families
intersecting in two highly symmetric configurations.

To get a complete description of the continuation we exploit
the corresponding dNLS model

H =
∑

j∈Z

[(
|ψj |2 +

3

8
|ψj |4

)
+ (4)

+
ε

2

(
|ψj+1 − ψj |2 + k2|ψj+2 − ψj |2 + k3|ψj+3 − ψj |2

)]
,

as a bridge to the KG system H . Indeed, in the framework of
resonant normal form theory, the former can be shown to be a
good approximation of the latter in the energy regime E � 1
and for couplings ε �

√
E (see, e.g., [39, 42], or the proofs in

Section 3); this means that by a close to the identity symplectic
change of coordinates, the difference between the two models
(2) and (4) is shown to be small as O(E6 +ε2E+ |ε|E4) in some
norm of analytic functions. Moreover, although the system H
shares the same degeneracy as the original KG model H , it
is easier to derive the nonexistence of any phase-shift discrete
soliton of H following the scheme of [45], by expanding its bi-
furcation equation to leading order and verifying a sufficient
condition on it. Since such a condition is robust under small
perturbations, we are then able to transfer the nonexistence re-
sult of H to the original system H , showing the nonexistence
of any vortex solution (symmetric or asymmetric) for the cor-
responding degenerate KG models, in the prescribed regime of
the two main parameters E and ε.

We present here, among the possible statements, the one
concerning the four-sites multibreathers for the zigzag model.
We thus introduce the four-dimensional resonant torus filled by
periodic orbits, belonging to the possible solutions of H110 for
ε = 0

ūj(τ) =

{
0 , j 6∈ S
x(τ + θj) , j ∈ S , (5)

with S = {1, 2, 3, 4} and x(τ) is a nonlinear oscillation of nor-
malized period 2π

γ2x′′ + x+ x3 = 0 , x(0) = ρ , (6)

where τ := γt is the rescaled time induced by the frequency γ
associated to the (small) amplitude ρ of the oscillation; we also
introduce the phase differences ϕj , between the above men-
tioned successive oscillators, as

ϕj := θj+1 − θj , j ∈ S∗ = {1, 2, 3}. (7)

As was previously mentioned, in this case, the configura-
tions suitable for continuation lie in two one-parameter fam-
ilies within the three-dimensional manifold of phase-differences
variables (7). These two families intersect in what we call
symmetric vortex configuration, since it features the standard
vortex phase differences Φ(sv) ≡ ϕϕϕ = ±(π/2, π,−π/2), where
ϕϕϕ ≡ (ϕ1, ϕ2, ϕ3), according to (7). The reason that the Φ(sv)

configuration is the one with ±(π/2, π,−π/2) and not the
±(π/2, π/2, π/2) as one could have expected, is that, as we
can see from Figure 1, the vortex-flow is 1 → 2 → 4 → 3 → 1
while the phase differences are calculated using consecutive os-
cillators. On the other hand, we will call all the other solutions
of these two families, with ϕϕϕ 6= Φ(sv) as asymmetric vortices.
Let us note here that these families also include some of the
standard (ϕi ∈ {0, π}) multibreather solutions in addition to
the isolated standard solutions of the persistence conditions.
The next theorem claims that these standard multibreathers
are the only periodic orbits persisting under a small perturba-
tion effect, and thus no phase-shift multibreathers exist upon
continuation from the zero-coupling limit, in the small ampli-
tude regime.

Theorem 1.1. For ε and ρ small enough (ε 6= 0), the only
four-site unperturbed solutions (5) that can be continued, at
fixed frequency γ, to solutions uj(ρ, ε, τ) of (3), correspond to
ϕj ∈ {0, π}.

Moreover, in all the cases which appear to be non-degenerate,
the “dNLS approximation” strategy, allows to derive any exis-
tence result for (2) from the existence result for the correspond-
ing dNLS model (4). The implementation of this transfer-of-
results technology between the dNLS and the corresponding
KG lattices is one of the central contributions of the present
work. The price one has to pay for the use of this strategy lies
in the restrictions in the regime of parameters for which the
models (2) are well approximated by the corresponding aver-
aged normal forms (4).

It is important to remark that degeneracy may appear with
different “degrees” (see Definition 3.2). Indeed, within the
family (2), a very degenerate system is given by the Hamil-
tonian H101 (see (17)) which has k2 = 0 and k3 = 1 and it
is used to offer insights towards vortex-like configurations in
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two-dimensional square lattices (due to the absence of diagonal
interactions when considering 4 nodes as lying at the vertices
of a square). This system admits, at the level of the persis-
tence condition, three vortex families, having the symmetric
vortex configuration in their triple intersection, giving thus a
high degree of degeneracy. We stress that the corresponding
dNLS model is exactly the one studied in [45], but within the
scheme implemented in the present paper, the high degree of
degeneracy of H101 does not allow us to transfer the nonex-
istence result proved in [45] to the corresponding KG chain.
We are presently exploring a different normal form strategy
which works directly on the original KG model and interprets
the problem in the classical sense of breaking of a completely
resonant low-dimensional torus [44].

Due to the degeneracy, which manifests itself through the
presence of families of candidate solutions, and even more
through their intersection points, we attempt to complement
our analysis by performing a numerical investigation of the per-
sistence conditions of the full problem (2) in the neighborhood
of the parameter-values (k2, k3) = (1, 0) and (k2, k3) = (0, 1),
which correspond to the zigzag and H101 configurations. In this
study, we realize there exist families of solutions in the (k2, k3)-
space which are non-degenerate and consequently easily contin-
ued to real solutions. But, as the k-parameters converge to the
above mentioned set of values, the originally non-degenerate
families become degenerate and the persistence conditions can-
not provide a definite answer on the existence or not of the
corresponding multibreather configurations.

This paper is structured as follows. In Section 2 we dis-
cuss the problem of degeneracy, reviewing the classical Ef-
fective Hamiltonian Method, and providing several examples
of degenerate and non-degenerate systems. The core of the
mathematical content of the paper is in Section 3, where after
some settings and a precise definition of degeneracy (see Def-
inition 3.2), the abstract results (Theorems 3.1 and 3.2) are
formulated. The proofs, described by an extensive roadmap,
and divided in three main steps, follow in a subsequent sub-
section. In Section 4, by applying the previous general state-
ments, existence and nonexistence results are proved for the
various models presented in Section 2. The numerical explo-
rations of the persistence conditions close to the parametric
regions which correspond to the zigzag and H101 systems are
reported in Section 5. Finally, Section 6 includes some con-
cluding remarks about possible future directions on the topic.

2. The problem of degeneracy

In the present Section we discuss the main mathematical
issue, i.e. the presence of degeneracy, which motivates the de-
velopments discussed in the present paper. In particular, we
will define what we mean by degeneracy presenting a classical
technique used to discuss the existence of multibreathers (MB):
among the requested hypothesis for the result to hold, we will
emphasize the “non-degeneracy” one.

Then, after presenting a simple non-degenerate case, we will
show two different type of configurations which lead to degen-
eracies.

2.1. The Effective Hamiltonian Method

Here we review the Effective Hamiltonian Method for the
investigation of the existence of multibreather solutions intro-

duced in [3], extended in [1, 36], and revisited and applied in
several papers, like e.g. [29, 31, 32, 33].

We very briefly recall that the idea behind such a method
is to calculate the critical points of an “effective” Hamiltonian
Heff which are in a one-to-one correspondence with the multi-
breather periodic orbits of the original system.

First, we consider the m oscillators (sometimes referred to
as “central”, a term we avoid here since it may generate con-
fusion in the case of non-consecutive configurations) which are
involved in the MB and enumerate them according to the set
S = {j1, j2, . . . , jm}. Here we are adopting a general enumer-
ation of the “active” oscillators in order to be able to con-
sider not only adjacent oscillators, but also configurations with
“holes” between them in what follows. In the uncoupled limit
ε = 0 we consider them moving in periodic orbits with the same
frequency but arbitrary initial phase. Then, in order to better
detail the procedure, we introduce action-angle variables (J, θ),
through the displacement equation of an individual central os-
cillator:

x(θ, J) =
∞∑

n=1

A2n−1(J) cos[(2n− 1)θ] . (8)

The lack of the even terms A2n in the Fourier expansion stems
from the symmetry of the potential V . We thus get a Hamilto-
nian H (xi, yi, Jj , θj , ε), with j ∈ S and i ∈ Z \ S. Now, with
an additional linear canonical transformation we introduce a
new set of action-angle variables

ϑ = θj1 , A =
m∑

k=1

Jjk ,

ϕ` = θj`+1 − θj` , I` =
m∑

k=`+1

Jjk , ` = 1, . . . ,m− 1 ,

(9)

with ϕ` representing the phase differences between “consecu-
tive” (within S, according to our enumeration) sites. The above
set of coordinates represents the natural introduction of m− 1
slow angles ϕl and a fast angle ϑ, associated to the resonances
among the equally excited oscillators: indeed, since at ε = 0 we
consider the oscillators Jl, l ∈ S with the same action J∗ (in
order to have also the same frequency), they lie in the so-called
1 : 1 resonance.

With the Hamiltonian in the form H (ϑ,A, ϕ`, I`, xi, yi, ε),
it is possible to introduce the effective Hamiltonian as

Heff :=
1

T

∮
H ◦ z(t)dt ,

where z is a periodic trajectory in the phase space obtained, as
illustrated in [1], by a continuation procedure, at constant A,
starting from the object defined in the ε = 0 limit.

From a practical point of view, Heff being defined in terms of
an object (the closed path z) which is not known explicitly, the
relation between MB solutions and the critical points of Heff

seems useless. Here comes the role of (non)degeneracy. Indeed,
expanding everything in powers of ε, at the leading order the
effective Hamiltonian can be calculated explicitly using z0, the
periodic orbit in the uncoupled limit. If the critical points
found in such a case are non-degenerate, they can be continued
to critical points of the full effective Hamiltonian, i.e. to true
MB solutions.

Since by construction Heff does not depend on ϑ, then A is
constant and will be omitted. Recalling the general structure of
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(2) the leading order of the effective Hamiltonian is simply the
sum of the uncoupled Hamiltonian H0 (which depends solely
on the actions being the integrable part of the Hamiltonian)
plus the average 〈H1〉 of the coupling terms with respect to
the uncoupled periodic orbits:

Heff(ϕ`, I`, ε) = H0(I`) + ε〈H1〉(ϕ`, I`) +O(ε2) ,

where

〈H1〉(ϕ`, I`) :=
1

T

∮
H ◦ z0(t)dt .

Critical points of the effective Hamiltonian can now be found
as continuations, to nonzero ε, of non-degenerate equilibria
(ϕ∗l , I

∗
l ) of its leading order, with respect to ε, part. The val-

ues of the actions I∗l correspond to the unperturbed solution
Jl = J∗, while the existence of {ϕ∗l } is given by the persistence
(necessary) condition

P(ϕ) :=
∂〈H1〉
∂ϕl

∣∣∣
Il=I

∗
l

= 0 ; (10)

the above condition provides critical points of 〈H1〉(ϕl, I∗l ) on
the torus Tm−1 of the slow angles. Solutions ϕ∗ of (10) such
that ϕl ∈ {0, π} will be referred to as standard configurations,
while in the ϕl /∈ {0, π} case they will be called phase-shift
configurations. The possibility of their continuation is given by
the following set of non degeneracy conditions at (ϕ∗l , I

∗
l )

∣∣∣∣
∂2H0

∂Ij∂Ii

∣∣∣∣ 6= 0 , (ND-K)

∣∣∣∣
∂2〈H1〉
∂ϕj∂ϕi

∣∣∣∣ 6= 0 , (ND-P)

Ω 6= kγ , (NR)

where Ω = V ′′(0) is the frequency of the small oscillations at
the elliptic equilibrium of the anharmonic oscillators, and γ
is the frequency of the periodic orbit we are looking for, and

coincides with all the ∂H0
∂Jj

∣∣∣
J∗

, which are all equal since we

are in the 1:1 resonance. Instead of using numbers to refer
to the above conditions, we use letters which remind to the
name of the condition itself. Indeed condition (ND-K) is often
known in the KAM literature as Kolmogorov’s nondegeneracy
(see for example the classical works [2, 26]), and encodes the
fact that the resonant torus is isolated in the space of actions;
condition (ND-P) is instead known as Poincaré nondegeneracy,
since it appears already in well-known results of continuations
of periodic orbits due to Poincaré [46, 47]; and condition (NR) is
a classical (first Melnikov) condition of nonresonance, needed
to “remove” leading order interactions between action-angle
variables (ϕl, Il) and the transversal variables (x, y). With the
above conditions, MB solutions can be obtained via Implicit
Function Theorem.

Remark 2.1. We stress here that in the class of models we
are dealing with, both conditions (ND-K) and (NR) are obvi-
ously satisfied given the nonlineararity of the oscillators and
their small amplitude (since for higher amplitudes we could
have resonances and (NR) wouldn’t hold). Thus, the actual
nondegeneracy condition reduces to (ND-P). Moreover, stan-
dard Multibreathers, corresponding to solutions ϕ∗ of (10) with
ϕ∗l ∈ {0, π}, can be continued independently of the validity
(ND-P), as proved in [43].

It is possible to exploit the introduction of action-angle
variables (8) to give a more explicit expression of 〈H1〉 and
its derivatives (see, e.g., [32] for a detailed derivation in the
nearest-neighbor case): we will show it in the particular situa-
tions analyzed below.

In the following subsections we will first illustrate some typ-
ical examples of non-degenerate situations, and then we will
investigate in some interesting cases the appearance of degen-
eracy through the two different mechanisms already mentioned
in the Introduction.

2.2. Non-degenerate situations

Let us first show the actual implementation of the Effective
Hamiltonian Method in some non-degenerate cases.

In particular let us recall that in the nearest-neighbor setting,
with consecutive sites S = {1, . . . ,m}, it is shown in [30, 32]
that continuation from the zero coupling limit is possible only
for standard configurations, i.e. the so called in/out of phase
MB (see Figure 3 for an illustration of the possible configura-
tions in the 3 sites case). In this case an explicit calculation
brings the averaged Hamiltonian in the form

〈H1〉 = −1

2

m−1∑

j=1

∞∑

n=1

A2
2n−1 cos[(2n− 1)ϕj ] ;

it is thus clear that ϕ = 0, π are critical points for 〈H1〉; we
refer again to the above quoted papers for the proof that these
are the only configuration that can be continued.

Another example is the triangular configuration of consec-
utive sites S = {1, 2, 3} in the zigzag model, i.e. with first
and second neighbor interactions. For this configuration, one
could also refer to the study of proper vortex solutions in
two-dimensional lattices, e.g. [28, 33], since the corresponding
effective Hamiltonian functions are equivalent at leading order
of approximation. In this case we have

〈H1〉 = −1

2

∞∑

n=1

A2
2n−1

[
cos[(2n− 1)ϕ1] + cos[(2n− 1)ϕ2]+

cos[(2n− 1)(ϕ1 + ϕ2)]
]

;

the persistence condition (10) is easily derived (see also Section
3 of [28]) and nondegeneracy (ND-P) is easily checked, showing

(0, 0) (0, π)

(π, 0)(π, π)

Figure 3: An example of the four possible 3-sites MB, in the uncou-
pled case, with different choices of the phase shifts (ϕ1, ϕ2).
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that there exists an isolated phase shift MB with ϕ = 2π/3, i.e.
a vortex solution.

As a last simple example of non degeneracy we might con-
sider again the zigzag model as above, but in a configuration
of non consecutive sites: S = {1, 3} (see Table 1, bottom-left
panel). We stress that in this case we have a hole from the
point of view of the configuration, but due to the second neigh-
bor interaction (see the blue spring among sites 1 and 3, in
figure 1) actually there is no degeneracy at first order. Indeed,
recalling our notation with enumerated sites S = {j1, j2},

〈H1〉 = −1

2

∞∑

n=1

A2
2n−1 cos[(2n− 1)ϕ1] ,

with ϕ1 = θ3 − θ1 the only phase difference available.

2.3. Degeneracy from “holes”

In this part we will show that suitable combination of con-
figuration holes and interaction types may lead to “effective
holes” at first order; this will generate in an obvious way a
problem of degeneracy.

The first simple example is given by a chain with only
nearest-neighbor interaction, and a configuration with a hole
like S = {1, 3} (see Table 1, top-right panel). Let us recall that
in such a case the interaction part H1 contains only terms of
the form xjxj+1, besides the quadratic terms x2

j which depend
only on the actions. Thus performing the average along z0 we
have that

∮
x0x1 =

∮
x1x2 =

∮
x2x3 =

∮
x3x4 = 0 are all zero

because in each product one of the factors is identically zero,
since only x1 and x3 belong to the chosen configuration. The
only contributing terms are the averages of x2

1 and x2
3:

〈H1〉 =
1

T

∮
(x2

1 + x2
3) ◦ z0(t)dt = C(J∗) ,

where J∗ are the fixed vales of the original actions of the un-
perturbed orbit z0. Thus there is no dependence on the phase
shifts ϕ, and this brings a complete degeneracy. Therefore it is
not possible to proceed with the standard technique to check
whether some configuration (and in the case, which ones) can
be continued to the interacting regime ε 6= 0.

Type of
interaction

Presence of an “effective hole”

no yes

NN

NN+NNN

Table 1: Possible configurations of a 2-sites MB, in the uncoupled
case, with or without “holes”. Supposing a NN interaction in the first
row, and a NN+NNN interaction in the second one, the situations
with “effective holes” are only in the second column.

A further example that, like the previous one, we will be
able to deal with, using the results presented in the present
paper, is given by a zigzag model (i.e. with first and second
neighbor interaction having the same strength) and a double
hole configuration S = {1, 4} (see Table 1, bottom-right panel).
Here the interaction part of the Hamiltonian contains terms
(among those depending on the phases) of the form xjxj+1 and
xjxj+2, but again we will have

∮
x0x1 =

∮
x1x2 =

∮
x3x4 =∮

x4x5 = 0 and
∮
x−1x1 =

∮
x1x3 =

∮
x2x4 =

∮
x4x6 = 0 for

the same reason as before.

2.4. Hidden degeneracy in beyond-nearest-neighbor mod-
els: four-site vortex-like configurations

In the previous subsection we illustrated the appearance of
a degeneracy whose source is very clear and somewhat elemen-
tary: the presence of an “effective hole”, in the sense of both
configuration and interaction, leads to the lack of some terms
in the averaged Hamiltonian, thus trivially producing a degen-
eracy.

We here want to show a more subtle form of degeneracy
which is not due to “holes”, but is related to “internal symme-
tries” generated by beyond nearest-neighbor interactions and
their relative strength. We will consider two examples, both
with a 4 consecutive sites configuration S = {1, 2, 3, 4}: the first
one will be again the zigzag model, while the second will be a
model with first (NN) and third (next-to-next-nearest NNNN)
neighbor interactions system.

We recall that both the above mentioned models belong to
the family (2): the zigzag one is indeed given by H110 as
in (3), and the second model will be accordingly denoted as
H101 (see (17) later). Since we want to study structures with
four central oscillators, only three phase differences ϕi between
them are defined as in (7). The average value of the coupling
term of the Hamiltonian (2) 〈H1〉 is calculated along the un-
perturbed orbit and reads

〈H1〉 = −1

2

∞∑

m=1

A2
m

(
cos(mϕ1) + cos(mϕ2) + cos(mϕ3)+

+ k2

(
cos(m(ϕ1 + ϕ2)) + cos(m(ϕ2 + ϕ3))

)

+ k3 cos(m(ϕ1 + ϕ2 + ϕ3))
)
.

2.4.1. The H110 (zigzag) model.
The persistence conditions (10) for the case of the zigzag

system (3), i.e., with k2 = 1 and k3 = 0, read

P110(ϕ) ≡





M(ϕ1) +M(ϕ1 + ϕ2) = 0

M(ϕ2) +M(ϕ1 + ϕ2) +M(ϕ3 + ϕ2) = 0

M(ϕ3) +M(ϕ2 + ϕ3) = 0

(11)

with

M(ϕ) ≡
∞∑

m=1

(2m− 1)A2
2m−1 sin((2m− 1)ϕ) , (12)

with Ai as in (8).
Taking under consideration the symmetries of M(ϕ)

M(π + ϕ) = −M(ϕ) , M(−ϕ) = −M(ϕ) = M(2π − ϕ) ,

M(π − ϕ) = +M(ϕ) , M(0) = M(π) = 0 , (13)
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1 2

34

Figure 4: The two-dimensional square model and the 4-site MB. All
the interactions are nearest neighbor ones with the same strength;
in color the interactions involving only the MB, in particular in red
those which correspond to nearest-neighbor in the one dimensional
version (see Figure 5), in blue the one corresponding to the third
neighbor; in grey the other interactions. The indexing indicates the
energy flow of the vortex solutions. Color online.

it is straightforward to check that the persistence conditions
for the zigzag-KG case, i.e., (11) and (12), admit two families
of solutions

F1 : ϕϕϕ = (ϕ, π,−ϕ) , F2 : ϕϕϕ = (ϕ, π, π + ϕ) , (14)

the members of which we call as asymmetric vortices. In ad-
dition, there exist also four standard isolated solutions Fiso =
ϕϕϕ ∈

{
(0, 0, 0), (0, 0, π), (π, 0, 0), (π, 0, π)

}
. The latter four so-

lutions, being isolated, do not present difficulties concerning
the application of standard techniques for their continuation.
The former solutions, given by (14), present a clear degeneracy,
i.e. (ND-P) is not satisfied, since they belong to a family and
thus are not isolated.

In principle, all combinations of 0’s and π’s work trivially,
since all the terms in the persistence condition simply van-
ish. We have to note here that the rest of the standard multi-
breather solutions are part of the F1 and F2 families.

It is important to stress that conditions (11) are neces-
sary but not sufficient for the existence of multibreather so-
lutions. Indeed, in order to continue to real solutions of (3),
the corresponding Jacobian matrix Dϕ(P110) needs to be non-

degenerate, which is actually the (ND-P) condition. The ma-
trix Dϕ(P110) is given by

(
M′(ϕ1)+M

′(ϕ1+ϕ2) M′(ϕ1+ϕ2) 0

M′(ϕ1+ϕ2) M′(ϕ2)+M
′(ϕ1+ϕ2)+M

′(ϕ2+ϕ3) M′(ϕ2+ϕ3)

0 M′(ϕ2+ϕ3) M′(ϕ3)+M
′(ϕ2+ϕ3)

)
,

where M ′(ϕ) ≡ ∑∞
m=1(2m − 1)2A2

2m−1 cos((2m − 1)ϕ). By
using the symmetries of M ′(ϕ)

M ′(2π − ϕ) = M ′(ϕ) = M ′(−ϕ) ,

M ′(π − ϕ) = M ′(π + ϕ) = −M ′(ϕ) ,

M ′
(

3π

2

)
= M ′

(π
2

)
= 0 ,

(15)

it is easy to check that for the isolated solutions Fiso the matrix
Dϕ(P110) is non-degenerate so these solutions will be continued
for ε 6= 0 to provide multibreathers.

On the other hand, for the F1, F2 families of asymmetric
vortices, Dϕ(P110) is degenerate possessing one zero eigenvalue,
reflecting the freedom of these solutions with respect to varia-
tions in ϕ. So, we cannot know at this level of perturbation
theory if – or which of – these solutions can be continued to
true multibreather solutions of the system.

In particular, for the configurations where the two families
cross each other and correspond to the two symmetric vortices,
i.e., ϕϕϕ = ±Φ(sv) ≡± (π/2, π,−π/2), the matrix Dφ(P101) reads

Dϕ(P101)|Φ(sv) =




0 0 0
0 M ′(π) 0
0 0 0


 . (16)

This means that its degeneracy is even higher since the di-
mension of its kernel is exactly two, i.e., given by the tangent
directions to the two independent families in the vortex solu-
tions. We will also attempt to numerically demonstrate this
degeneracy in Section 5.

2.4.2. The H101 model.
The second example we consider is the H101 model, i.e., the

model (2) with k2 = 0 and k3 = 1 which is described by the
Hamiltonian

H101 =
∑

j∈Z

(
1

2
y2
j +

1

2
x2
j +

1

2
x4
j

)

+
ε

2

∑

j∈Z

[
(xj+1 − xj)2 + (xj+3 − xj)2] .

(17)

Such a system represents a first order approximation of a
square NN lattice and a four-site multibreather solution of (17)
can be thought of as representing a one-dimensional analogue
of a four-site vortex for the two-dimensional square KG lattice
and as it will be shown it constitutes a more degenerate case
than the one of the H110 model (see Figures 4 and 5).

0 1 2 3 4 5

Figure 5: The one-dimensional model with first (red color) and third (blue color) neighbor interaction, whose 4-site MB corresponds at zero
order with the 4-site MB of the square model. The dark version of the color indicates the interactions internal to the MB (corresponding to
those of Figure 4). The numbers indicate the correspondence to the two-dimensional square model. Color online.

7



We consider again the persistence condition for this system,
which are given by

P101(ϕϕϕ) ≡





M(ϕ1) +M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ2) +M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ3) +M(ϕ1 + ϕ2 + ϕ3) = 0

(18)

where M(ϕ) is given by (12). By using the symmetries of M(ϕ)
given in (13), it is easy to verify that Eqs. (18) and (12) admit
three families of asymmetric vortex solutions

F1 : ϕϕϕ = (ϕ,ϕ, π − ϕ) ,

F2 : ϕϕϕ = (ϕ, π − ϕ,ϕ) ,

F3 : ϕϕϕ = (ϕ, π − ϕ, π − ϕ) ,

(19)

in addition to the two isolated standard in/out-of phase solu-
tions Fiso :ϕϕϕ ∈

{
(0, 0, 0), (π, π, π)

}
.

Again, the rest of the standard configurations of this case are
part of the F1, F2, F3 families. These families are degenerate
since the corresponding Jacobian Dϕ(P101) possesses a zero
eigenvalue, while the symmetric vortex solutions

Φ
(sv)
101 ≡ϕϕϕ = ±

(π
2
,
π

2
,
π

2

)

are fully degenerate, since Dϕ(P101) equals the null matrix.
The latter can be seen both by a direct computation, or by

observing that in these solutions we have three independent
Kernel directions, one for each family passing through the so-
lution. This degeneracy, which is higher of the one in the
zigzag model, will be also numerically illustrated in Section 5.

2.4.3. Degeneracy in the corresponding dNLS models.
The same classification of degeneracies illustrated in the pre-

vious paragraphs naturally emerge also in the dNLS models (4)
which can be derived from the corresponding KG model (2) by
introducing complex variables ψj = 1√

2
(xj + iyj) and keeping

only terms resonant with respect to the periodic flow ψj = eit.
The Effective Hamiltonian Method clearly applies also to this
class of models; however, the persistence condition (10) always
leads to a set of trigonometric equations with M(ϕ) given just
by

M(ϕ) ≡ sin(ϕ) . (20)

For example, if we study continuation of discrete soliton cor-
responding to the set S = {1, 2, 3, 4} in the zigzag-dNLS

H110 =
∑

j

|ψj |2 +
3

8

∑

j

|ψj |4

+
ε

2

∑

j

[
|ψj+1 − ψj |2 + |ψj+2 − ψj |2

]
,

(21)

we note that conditions (11) hold but with the function M
given by (20). Thus, they become





sin(ϕ1) + sin(ϕ1 + ϕ2) = 0

sin(ϕ2) + sin(ϕ1 + ϕ2) + sin(ϕ3 + ϕ2) = 0

sin(ϕ3) + sin(ϕ2 + ϕ3) = 0

(22)

due to the rotational symmetry of the model (and of its discrete
soliton solution); i.e. only the first mode of the Fourier expan-
sion (8) contributes. In this case, it is straightforward to check

that the persistence conditions (22) admit the two families of
solutions given in (14), and that, apart from the other isolated
and non-degenerate solutions, these are the only ones. Such a
uniqueness-type of result is true also for the zigzag-KG prob-
lem, i.e., (11) and (12), in the limit of small enough action J∗:
indeed, due to the exponentially fast decay of the coefficients
A2n−1(J∗) in the Fourier expansion (8), in such a regime the
higher harmonics in (8) are a very small perturbation of the
first term cos(θ), and one can observe that the solutions of the
persistence condition (10) in the two models coincide. Indeed,
it is clear that families of solutions of (22) are also solutions
of (11). On the other hand, there are no other solutions for
J∗ small enough due to topological reasons: these families are
non-degenerate in the transversal directions, hence there exists
a neighborhood of them, independent of the energy, where P
vanishes only on the family itself. Outside this neighborhood,
the persistence condition (22) is not satisfied, hence P 6≡ 0, and
the same holds for a small enough perturbation (11). In other
words, the solutions of (11) with M(ϕ) given by (12) can be
obtained, in the limit of small enough J∗, solving the system
(22).

The same kind of correspondence can be noted between the
KG model (17) and its corresponding dNLS system

H101 =
∑

j

|ψj |2 +
3

8

∑

j

|ψj |4

+
ε

2

∑

j

[
|ψj+1 − ψj |2 + |ψj+3 − ψj |2

]
;

(23)

indeed, if we study continuation of discrete solitons correspond-
ing again to the set S = {1, 2, 3, 4} in the above model (23),
we note that the conditions (18) hold but with M once again
given by (20), i.e.,





sin(ϕ1) + sin(ϕ1 + ϕ2 + ϕ3) = 0

sin(ϕ2) + sin(ϕ1 + ϕ2 + ϕ3) = 0

sin(ϕ3) + sin(ϕ1 + ϕ2 + ϕ3) = 0,

(24)

which has been the subject of a detailed investigation per-
formed in [45]. Here again, in the limit of vanishing J∗, the
families of solutions of (18) and (12) are independent on J∗

and are the same for (24).
The exact correspondence of solutions between the persis-

tence condition in KG models and in dNLS models is even
more evident, if not obvious, in the other examples of degen-
eracies illustrated in the paragraph 2.3, being those cases to-
tally degenerate (the whole resonant torus T2 is a solution of
the persistence condition (10), also with (20)).

3. Abstract (non)existence results

As remarked in the final part of the previous section, in the
regime of small energy and for some combination of excited
sites S and linear interactions κi, solutions of the persistence
condition (10) in the KG model, namely with M(ϕ) given by
(12), coincide with those in the corresponding dNLS model,
where M(ϕ) is given by (20).

Thus, restricting to this class of degenerate scenarios, we
want to present two abstract statements allowing to rigorously
derive results on the continuation of Multibreathers in the KG
models from results on the continuation of discrete solitons in
the “corresponding” dNLS models.
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3.1. Setting and formulation

Let us consider the KG Hamiltonian (2) and its equations of
motion

ẍj = −xj − x3
j + ε(Lx)j , (25)

with the interaction terms encoded in

L := ∆1 + k2∆2 + k3∆3 ,

(∆mx)j := xj−m − 2xj + xj+m .

We look for a periodic orbit with frequency γ; hence by intro-
ducing the time scaled variable uj(τ) := xj(t), where τ := γt,
we rewrite (25) as

γ2u′′ + u+ u3 − εLu = 0 . (26)

By defining the operators

L0 := γ2∂2
τ + I , Lε := L0 − εL , N(u) := u3 , (27)

and by restricting to the Sobolev spaces of periodic functions
Xn := Hn

(
[0, 2π], `2

)
(with H0 = L2), the equation (26) for a

generic periodic orbit becomes

F (ε, u) := Lεu+N(u) = 0 , (28)

with

F : R×X2 → X0 ,

where `2 = `2(Z,R) and X0,2 are endowed with the usual norms

‖u‖2Xk :=
∑

j

‖uj(t)‖2Hk , k = 0, 2 .

In the unperturbed case ε = 0, we consider a periodic orbit
ū(τ, ρ) which lies on the m-dimensional completely resonant
torus (associated to S = {j1, . . . , jm})

ūl(τ, ρ) :=

{
0 , l 6∈ S
x(τ + θl) , l ∈ S , x(0) = ρ . (29)

We wish to understand which ū(τ, ρ), of small enough ampli-
tude ρ, can be continued to periodic orbits for ε 6= 0; thus we
look for those ū(τ, ρ) which fulfill the following definition

Definition 3.1. We say that ū(τ, ρ) can be continued to a so-
lution of (28) if there exists ρ∗ > 0 such that, for any ρ < ρ∗,
there exist ε∗(ρ) and a function u(ρ, ε, τ) ∈ X2 which solves for
|ε| < ε∗(ρ)

F (ε, u(ρ, ε, τ)) = 0 , u(ρ, 0, τ) = ū(τ, ρ) , (30)

with γ kept fixed.

We introduce a special notation for standard MBs, whose ex-
istence is guaranteed by [43] independently of the choice of S:
we denote by ūst the unperturbed standard MBs

ūst,l(τ, ρ) :=

{
0 , l 6∈ S
x(τ + θl) , l ∈ S , θl − θj1 ∈ {0, π}

. (31)

As already stressed at the beginning of this Section and in the
Introduction, the main goal of the present paper is to provide

either positive or negative answers to the existence of phase-
shift solutions of (30), namely solutions which at ε = 0 corre-
spond to ū 6= ūst, by investigating the problem of continuation
of phase-shift discrete solitons in the dNLS model (4).

In the dNLS context, when looking for periodic solutions
of (4) with the form ψj(t) = φj(ε)e

−i(1+ω0)t, we are led to
study the stationary equation for the unknown spatial profile
φ(ε) ∈ `2(Z;C)

F (φ, ε) := −ω0φ− εLφ+
3

4
|φ|2φ = 0 , (32)

where ω0 is the frequency detuning depending on the ampli-
tude of the unperturbed solution φ(0). We introduce the un-
perturbed discrete soliton profile v := φ(0) of unit amplitude,
which has the form

vl =

{
0 , l 6∈ S
e−iθl , l ∈ S , v : Tm → `2(Z;C) , (33)

where S = {j1, . . . , jm} is the same set of active sites chosen for
the corresponding unperturbed Multibreather solution ū(τ, ρ).
By its definition (33), v has to solve (32) with ε = 0

vl

(
3

4
|vl|2 − ω0

)
= 0 , (34)

hence

|vl| =
{

1 , l ∈ S
0 , l 6∈ S , ⇒ ω0 :=

3

4
. (35)

We consider a solution v of the uncoupled problem and ask for
its continuation for ε 6= 0; we thus look for a correction w(ε)
around v, namely

w(v, ε) := φ(ε)− v , with w(v, 0) = 0 ,

that is continuous in ε and such that φ(ε) solves (32).
Inserting the above definition, and exploiting that v is a so-

lution for ε = 0, equation (32) takes the form

F (v;w, ε) = 0 , with F (v; 0, 0) = 0 . (36)

The usual strategy to solve (36) is to probe the applicabil-
ity of the implicit function theorem, by considering the linear
operator

Λ := (DwF ) (v; 0, 0) . (37)

It is not difficult to check that Λ has a m-dimensional kernel
which inhibits the application of the implicit function theorem;
this justifies the need of a Lyapunov-Schmidt decomposition.
By following the same strategy of [45], we introduce the split-
ting w = k + h where

k ∈ K := Ker(Λ) ' Rm , h ∈ H := Range(Λ) ' K⊥ ,

so that equation (36) is equivalent to the system

{
FH(v; k + h, ε) = 0

FK(v; k + h, ε) = 0
,

where the subscripts H and K denote the corresponding pro-
jections ΠH and ΠK over Range(Λ) and Ker(Λ), respectively.
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The Range equation FH = 0 can be solved locally by the im-
plicit function theorem and provides

h = h(v; k, ε) ; (38)

inserting (38) into FK = 0 we get the bifurcation equation,
redefining FK as

0 = FK(v; k, ε) := FK(v; k + h(v, k, ε), ε) , (39)

where now

FK : Rm × R→ Rm ,

is defined once given the unperturbed reference solution v and
is analytic in ε. We here recall that v ∈ H and that

FK(v; k, 0) = 0 , ∀v ∈ H , ∀k ∈ K ;

indeed, geometrically speaking, for any tangential displacement
k there exists a unique transversal displacement h(k) such that
φ = v + w is a solution of the equation (32) with ε = 0. As a
consequence, FK is at least of order O(ε), namely

FK(v; k, ε) = εP (v; k, ε) , (40)

and (39) becomes

P (v; k, ε) = 0 . (41)

For a given v ∈ H, we are interested in a small correction
k(ε) ∈ K, continuous in ε for small enough |ε| � 1, such that
P (v; k(ε), ε) = 0. We start with some definitions:

Definition 3.2. We denote by v∗ any solution of

P (v; 0, 0) = 0 , (42)

and by p an integer such that

dim(Ker(DkP (v∗; 0, 0))) = p+ 1 .

Then

1. v∗ is said non-degenerate if p = 0;

2. a solution φ = v∗ + w(v∗, ε) of (32) is said to be non-
degenerate if v∗ is non-degenerate;

3. v∗ is said p-degenerate if 1 6 p 6 m− 1.

In more geometrical terms, nondegeneracy means that the only
kernel direction of DkP (v∗, 0, 0) is given by the velocity of the
unperturbed orbit, that in the case of discrete solitons coincides
with the gauge vector field. On the other hand, v∗ is said to
be degenerate if there exist at least two independent Kernel
directions for DkP (v∗; 0, 0). As in the examples illustrated in
the previous Section for the KG model, degeneracy typically
arises when solutions of (42) appear in d+1 families v∗(θj1 , ϕ),
with

ϕ = (ϕ1, . . . , ϕd) , 1 6 d 6 m− 1

being a local parametrization of the subtorus Td ⊂ Tm. In gen-
eral, we expect that a given v∗ on such a family is d-degenerate,
with the Kernel of DkP (v∗; 0, 0) being given by the tangent di-
rections ∂θj1 v

∗ and ∂ϕlv
∗. However, families can intersect each

other, like in the four-sites examples of Section 2.4, where ei-
ther two (see (14)) or three families (see (19)) intersect in vortex

configurations: hence, transversal intersections are even more
degenerate and we can expect p-degeneracy with d < p 6 m−1.

Equation (42) selects those unperturbed solutions v∗ which
might survive to the breaking of the resonant torus due to the
effect of the perturbation. By introducing the resonant set of
angles (9), it turns out that v can be parametrized by m−1 slow
angles ϕl and one fast angle θj1 , namely v(θj1 , ϕ1, . . . , ϕm−1).
The next Lemma provides the connection between the persis-
tence condition (10) emerging in the framework of averaging
theory, and equation (42), which naturally arises as a neces-
sary condition to solve the bifurcation equation.

Lemma 3.1. The above condition (42) is equivalent (in the
sense of coincidence of solutions) to the persistence condition
(10) with M(ϕ) given by (20).

Proof: We propose two different proofs. The most direct one,
is based on the explicit expression of P (v; 0, 0), since from a
straightforward calculation one gets

P (v; 0, 0) = ΠKLv = 0 .

Once the basis of K is given, projections of Lv over vectors
belonging to K are performed using the complex inner scalar
product a · b =

∑
j <(aj b̄j), where a basis {el}l=1,...,m for K is

given by

e1 = ∂θj1 v
∗(θj1 , ϕ) , el = ∂ϕlv

∗(θj1 , ϕ) .

Explicit calculations show the equivalence between the two sys-
tems of trigonometric equations, namely (10) and (42). As a
second proof, we recall that the equivalence of the two sys-
tems is a consequence of the variational Lyapunov-Schmidt de-
composition of (32) (see [5], Section 1.2), according to which
the bifurcation equation (41) can be obtained differentiat-
ing with respect to the kernel variables k the restriction to
φ = v + k + w(v; k, ε) of the dNLS functional S(φ, φ̄, ε) associ-
ated to (32). Expanding S in powers of ε, namely S = S0 +εS1,
it turns out that the system (42) is equivalent to finding critical
points of S1(v) (as already shown by Kapitula in [21]; see also
applications in [22, 24]). �

Now we can move to claim the two following statements. The
first one allows to derive, in a suitable regime of small energy
H(x, y) = E and coupling ε, an existence and approximation
result for a solution u(ρ, ε, τ) of (26), from the existence of a
non-degenerate dNLS discrete soliton φ(ε) which is solution of
(32):

Theorem 3.1. Let φ(ε) be a non-degenerate ε-family of solu-
tions for

−ω0φ− εLφ+
3

4
|φ|2φ = 0

with φ(0) given by (33), and let

v(ε, τ) :=
ρ

2

[
e−iτφ(ε) + c.c.

]
(43)

be the corresponding real solution of amplitude ρ. Then, there
exist E∗ and ε∗ such that, for 0 < E < E∗ and ε < E ε∗, there
exist a constant C1 and a unique non-degenerate two parameter
family u(ρ, ε, τ), solutions of (28), which fulfills

u(ρ, ε, ·) = v(ε, ·) +O(ρ3) . (44)

10



A couple of remarks are in order:

• The true solution and its approximation are of order
O(ρ) ∼ O(

√
E), thus the correction, being of order

O(ρ3) = O(E3/2), is a small perturbation. We stress that
two different kind of remainders contribute to the O(ρ3)
correction. The first one is due to the fact that, in the
small amplitude regime, higher harmonics of the time-
Fourier decomposition of the periodic solution u(ρ, ε, τ)
are a perturbation of the first harmonic ρe−iτ (see Step
A of Section 3.3 for details). The second one is instead
due to the fact that φ(ε) represents only a leading order
approximation of the Fourier coefficient of e−iτ (see Step
C of of Section 3.3 for details).

• since the expansion (44) holds even at ε = 0, it means
that the nondegeneracy of an unperturbed discrete soliton
φ(0) guarantees, provided ρ small enough, the existence of
a “corresponding” unperturbed solution ū(ρ, τ), close to
ρφ(0), which can be uniquely continued to u(ρ, ε, τ).

The second statement, dealing with degenerate scenarios,
holds true under the following more restrictive assumption:

Assumption 3.1 (H0). There exists E∗ such that, for 0 <
E < E∗ degenerate solutions of (10) with (12) and with (20)
coincide.

We are going to provide a criterion to derive, for the KG model,
the nonexistence of degenerate phase-shift (i.e. those which are
not continuations of ūst) Multibreathers, on the base of the
nonexistence of degenerate phase-shift discrete solitons of the
dNLS; we have to first recall that (42) always admits standard
configurations

v∗st,l :=

{
0 , l 6∈ S
e−iθl , l ∈ S , θl − θj1 ∈ {0, π}

, (45)

independently of their degeneracy.

Theorem 3.2. Assume that for any p-degenerate v∗, with any
1 6 p 6 m − 1 and different from the standard ones v∗st, the
following conditions hold true

(H1) rk(DkP (v∗; 0, 0)) = m− p− 1 , (46)

(H2) ∂εP (v∗; 0, 0) 6≡ 0 , (47)

(H3) ∂εP (v∗; 0, 0) 6∈ Range(DkP (v∗; 0, 0)) . (48)

Then, in the limit of vanishing energy E, only ūst can be con-
tinued at ε 6= 0 to Multibreathers solutions u(τ, ρ, ε) of (26).

Here we have to stress some facts:

• It follows by direct calculations that

∂εP (v∗st; 0, 0) ≡ 0 ,

as expected from the fact that real discrete solitons φ ∈
`2(Z,R) always exist in models (32).

• Assumption (H1) is equivalent to assuming the alge-
braic and geometric multiplicity of the zero eigenvalue of
DkP (v∗; 0, 0) to be equal, which provides

rk(DkP (v∗; 0, 0)) + dim(Ker(DkP (v∗; 0, 0))) = m .

This allows to perform a second Lyapunov-Schmidt de-
composition on the equation (41).

• Theorem 3.2 does not exclude that phase-shift Multi-
breathers might appear for large enough ε. It only claims
that there do not exist continuous (in ε) branches starting
at ε = 0 from degenerate solutions ū 6= ūst.

In cases of complete degeneracy, when the persistence con-
dition (42) is trivially satisfied

P (v; 0, 0) ≡ 0 , ∀v ∈ H ,

the above statement simplifies. Indeed, in this case, for any v
we have

Range(DkP (v; 0, 0)) = {0} ,

hence condition (H2) implies (H3) and we have the following

Corollary 3.1. Assume that P (v; 0, 0) ≡ 0 for all v defined in
(33) and that for any v 6= vst the following condition is fulfilled

∂εP (v; 0, 0) 6≡ 0 , (49)

Then the same as in Theorem 3.2 holds true.

3.2. A roadmap of the proof

We recall that the problem (26) has been partially solved in
[43] by restricting to time-reversible solutions u(−τ) = u(τ);
i.e., by considering only standard phase-differences ϕl = {0, π}
for all l ∈ S. Indeed, with this strategy the problem reduces to
non-degenerate critical points where the implicit function theo-
rem can be applied, like in the averaging approach of [1, 31, 32].
In the case of other phase-differences, namely phase-shift multi-
breathers we consider here, it is not possible to make such a
restriction, which ensures invertibility of the linearized operator
Fu(0, ū) on the subspace of even periodic solutions. In other
words, in our case, the approximate solution ū is a degener-
ate critical point; thus a small perturbation may in principle
destroy the solution. In order to geometrically see that the lin-
earized operator Fu(0, ū) has a non-trivial Kernel, observe that
a small displacement on the m-dimensional torus from a given
unperturbed periodic solution, leads to a new unperturbed pe-
riodic solution with the same frequency.

First, notice that

Fu(0, ū)[ζ] =

{
L0ζl l 6∈ S ,

L0ζl + 3ū2(τ)lζl l ∈ S .

The non-resonant condition jγ 6= ±1, which coincides with
(NR) of the Effective Hamiltonian Method, allows to invert
L0 on the space of 2π-periodic functions. On the other hand,
differentiating the nonlinear oscillation equation w.r.t. both τ
and the energy E, one sees that

Ker
(
Fu(0, ū)

∣∣∣
S

)
= Span{x′(τ + θl), τ

∂γ

∂E
x′(τ + θl)};

as a consequence, the non-degeneracy condition of the fre-
quency ∂γ

∂E
6= 0, which in our case is equivalent to (ND-K)

of the Effective Hamiltonian Method, guarantees that only the
time derivatives x′(τ + θl) are 2π-periodic solutions. Thus the
differential Fu(0, ū) has a m-dimensional Kernel

Ker(Fu(0, ū)) = Span{fl(τ)}l∈S ,
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generated by the velocities of the nonlinear oscillations

fl =

{
0 , l 6∈ S
x′(τ + θl) , l ∈ S .

For the above reason an implicit function theorem cannot be
applied (unless, as in [43], we restrict to ϕl ∈ {0, π}, which
allows to do without (ND-P)), and a Lyapunov-Schmidt de-
composition represents a natural approach to the problem.

The proofs start exactly with a first Lyapunov-Schmidt de-
composition, based on the time-Fourier expansion of the peri-
odic solution u of (26). This is a classical approach which al-
lows to decompose the solution into a leading order “monochro-
matic” wave, say v(τ), and a smaller correction, say w(τ) =
O(v3), given by all the higher harmonics. The coefficients of
the leading term v(τ) can be collected into a complex variable
φ ∈ `2(Z;C) which has to satisfy a dNLS-type stationary equa-
tion; this equation for the unknown φ turns out to be a per-
turbation of order O(ρ2) (from here on the squared-amplitude
ρ2 plays the role of a second small parameter) of the dNLS
equation (32). Thus, this first part of the proof, developed in
Step A, translates the problem of the existence of a periodic
orbit for (26) into the existence of of a discrete soliton φ, sat-
isfying a perturbation of (32). The second parts of the proofs,
Step B, consist of studying the existence of phase-shift discrete
solitons in the perturbed dNLS stationary equation previously
obtained: this is done with a second Lyapunov-Schimidt de-
composition, which translates the original problem into the
study of a bifurcation equation which is a perturbation of order
O(ρ2) of the dNLS bifurcation equation (41). In the third and
last part of the proofs, Step C, we exploit the smallness of the
“energy” ρ2, and the smoothness with respect to this small pa-
rameter of the various equations involved, in order to transfer
existence and nonexistence criteria more straightforwardly for-
mulated and verified at the level of the standard dNLS equation
(32), to the perturbed bifurcation equation obtained in Step B,
hence producing the statements claimed in Theorems 3.1 and
3.2.

3.3. Proofs

Step A: From the KG to the perturbed dNLS
We start by showing that the problem of searching time-

periodic solutions u of (26) with fixed frequency γ, is equivalent
to finding the profile φ of a discrete soliton solution for a dNLS-
like model.

Proposition 3.1. There exists a function Rρ

Rρ(φ, φ̄, ρ
2, ε) : `2(Z;C)× R× R→ `2(Z;C) ,

fulfilling

∥∥Rρ(φ, φ̄, ρ
2, ε)

∥∥
`2

= O(‖φ‖5`2) ,

and a constant ωρ, fulfilling

ωρ =
3

4
+O(ρ2) , (50)

such that equation (26) is equivalent to

−ωρφ− εLφ+
3

4
|φ|2φ+ ρ2Rρ(φ, φ̄, ρ

2, ε) = 0 . (51)

Proof:
We consider (26) and we introduce the time-Fourier expan-

sion for the solution of the uncoupled anharmonic oscillator
x(τ) in (6)

x(τ) =
∑

k>1

ak cos(kτ) , (52)

where the average a0 = 0 because of the symmetry of the po-
tential V . Then, from (29), we get

ūl(τ, ρ) =

{
0 l 6∈ S∑
k>1 a2k−1 cos[(2k − 1)(τ + θl)] l ∈ S ,

thus, for any l ∈ S, we can write

ūl =
∑
k>1 a2k−1

(
cos[(2k − 1)θl] cos[(2k − 1)τ ]

− sin[(2k − 1)θl] sin[(2k − 1)τ ]
)
.

Let us now introduce the Fourier base

ek(τ) =

{
cos[(2k − 1)τ ] k > 0

− sin[(2k + 1)τ ] k < 0
; (53)

we can decompose u ∈ `2(R) in its Fourier components

u(τ, ρ) =
∑

k∈Z\{0}
uk(ρ)ek(τ) , (54)

and introduce the Lyapunov-Schmidt decomposition1 which
splits the first harmonics from the rest of the Fourier expansion

u = v + w , v := u−1e−1(τ) + u1e1(τ) ; (55)

in other words v solves
(
∂2
τ + I

)
v = 0. We define

V2 := Span{e1, e−1} = ker
(
∂2
τ + I

)
, W2 := V {

2 , (56)

so that v ∈ V2. If we consider the unperturbed solution ū =
v̄ + w̄ in (29), we have for any component l ∈ S

ūl =
∑

k∈Z
ūl,kek(τ) , ūl,k =





a2k−1 cos[(2k − 1)θl] k > 0

0 k = 0

a2k+1 sin[(2k + 1)θl] k < 0

,

thus we get

v̄l = a1 cos(θl)e1(τ)− a1 sin(θl)e−1(τ) . (57)

We introduce the detuning ω

ω := γ2 − 1 , (58)

so that we can rewrite γ2 = 1 +ω . Indeed, as will be shown at
the end of the proof, in the small energy regime, the frequency
γ is close to one, and its displacement ω is of order O(ρ2). The
equation (26) thus reads

F (ε, v,w) = Lεw− ωv− εLv +N(v + w) = 0 . (59)

1Please notice the use of the sans serif font for the present decom-
position variables: v and w. Letters v and w, with the usual font,
have a different meaning.
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When we project (59) on the Range W0 ⊂ X0 of ∂2
τ + I, and

its complement V0, we get2

{
ΠWF (ε, v,w) = Lεw + ΠWN(v + w) = 0 (R)

ΠV F (ε, v,w) = −ωv− εLv + ΠVN(v + w) = 0 (K)
.

(60)

The Range equation (R), written as w = −L−1
ε ΠWN(v + w),

can be locally solved in terms of w(v, ε) by Implicit Function
Theorem; moreover, the implicit solution w(v, ε) can be explic-
itly approximated by w̃(v, ε) = O(‖v‖3X2

),

w̃(v, ε) := −L−1
ε ΠWN(v) , ‖w− w̃‖X2

6 C ‖v‖5X2
. (61)

We move now to the Kernel equation (K). Because of (61), we
Taylor-expand in v

ΠV

(
(v + w(v, ε))3) = ΠV (v3) + R(v, ε)

R(v, ε) := ΠV

(
(v + w(v, ε))3)−ΠV (v3) =

= O(‖v‖5X2
).

(62)

We compute explicitly the Kernel projection of the leading
term of the nonlinear part. First we have, by definition

ΠV (v3) =

(
1

2π

∫ 2π

0

v3(τ) cos(τ)dτ

)
e1+

+

(
1

2π

∫ 2π

0

v3(τ) sin(τ)dτ

)
e−1 ,

and since, omitting the τ dependence, we have

v3 = u3
1e

3
1 + 3u2

1u−1e
2
1e−1 + u3

−1e
3
−1 + 3u1u

2
−1e1e

2
−1 ,

trigonometric formulas give immediately

ΠV (v3) =
3

4

((
u2

1 + u2
−1

)
u1 cos(τ) +

(
u2

1 + u2
−1

)
u−1 sin(τ)

)

=
3

4

(
u2

1 + u2
−1

)
v .

(63)

By using (62) and the above, the Kernel equation reads

−ωv− εLv +
3

4

(
u2

1 + u2
−1

)
v + R(v, ε) = 0 . (64)

The Kernel equation, due to its dimension (v is a two-
dimensional vector of sequences), is equivalent to the system

−ωu1 − εLu1 +
3

4

(
u2

1 + u2
−1

)
u1 + R(v, ε) · e1 = 0

−ωu−1 − εLu−1 +
3

4

(
u2

1 + u2
−1

)
u−1 + R(v, ε) · e−1 = 0

. (65)

Multiplying the second of the above by the imaginary part
i and summing with the first, equation (64) takes the compact
form in terms of the complex variable φ

−ωφ−εLφ+
3

4
φ|φ|2 +R(φ, φ̄, ε) = 0 , φ := u1 +iu−1 , (66)

2For an easier notation we drop the zero subscript in the projec-
tors ΠV ≡ ΠV0

and ΠW ≡ ΠW0
.

where we used again the letter R to denote the corresponding
term of (64)

R(φ, φ̄, ε) =
1

2π

∫ 2π

0

[
(v + w(v, ε))3 − v3] cos(τ)dτ+

+
i

2π

∫ 2π

0

[
(v + w(v, ε))3 − v3] sin(τ)dτ ;

v =
1

2

(
φe−iτ + c.c.

)
.

(67)

It turns out that in the small energy regime (i.e., for ρ small
enough) the term R(φ, ε) in equation (66) can be treated as a
perturbation of order O(ρ2) of the dNLS stationary problem

−ωφ− εLφ+
3

4
φ|φ|2 = 0 . (68)

Indeed, introducing the following ρ-scaling

φ =: ρφ̃ , ε =: ρ2ε̃ , ω =: ρ2ωρ , (69)

and immediately dropping the tildes, equation (66) corresponds
to (51). In order to show the order of magnitude, recall that
from the definition of R in (62) and from the definition of v in
(55) we have

‖R(v)‖ = O(‖v‖5X2
) = O(‖φ‖5`2) ,

which provides a prefactor ρ2 in front of Rρ (after dividing
by ρ3) and the estimate on Rρ. The additional dependence
of Rρ on ρ2 is a consequence of the scaling in the amplitude
applied to the cubic nonlinearity, which is preserved along the
Lyapunov-Schmidt decomposition.

The dependence of ωρ on ρ2 is also a consequence of the
same scaling, which can be revealed with a standard (Poincaré-
Lindtsedt) perturbation scheme on the Duffing Oscillator (6).
For example, one can rescale x(τ) by ρ to get

γ2x′′ + x+ ρ2x3 = 0 , (70)

and then Taylor-expand in ρ2 both the solution

x = x0 + ρ2x2 + h.o.t.

and the squared frequency

γ2 = 1 + ρ2ω0 +O(ρ4) .

At order O(ρ2) one gets the forced harmonic oscillator

x′′2 + x2 = −x3
0 − ω0x

′′
0 ;

in order to avoid secular terms in the solution x2, we need
ω0 = 3

4
, from which the asymptotic behaviour of ωρ. �

Remark 3.1. Notice that at ρ = 0, the constant ωρ turns out
to be the quantity ω0 in the stationary equation (32)

ωρ

∣∣∣
ρ=0

=
3

4
= ω0 .

Remark 3.2. In Equation (51), and in the rest of the present
Section, ε won’t be anymore the original KG coupling (remem-
ber we are dropping the tildes of the scaling (69)), but it will
represent the coupling of the (perturbed) dNLS equation (51)
associated to the original KG equation (26). Due to the scal-
ing introduced in (69), it turns out to be the original coupling
ε divided by the squared amplitude ρ2.
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Proposition 3.2. Equation (51) is invariant under the gauge-
action and under conjugation. Moreover, there exists a Hamil-
tonian function Sρ(φ, φ̄, ρ

2, ε) such that

∇φ̄Sρ = −ωρφ− εLφ+
3

4
|φ|2φ+ ρ2Rρ(φ, φ̄, ρ

2, ε)

Proof: We here exploited the sketched procedure of the varia-
tional Lyapunov-Schmidt decomposition in [5]. Periodic orbits
with fixed period are critical points of the action

S(u) :=
1

T

∫ T

0

L
(
u, u′

)
dt , (71)

where L is the Lagrangian giving the evolution equations (26)
for u. The Kernel equation (66) preserves the variational nature
of the problem (71), hence it is the differential of the reduced
action

−ωv− εLv + ΠV (v + w(v, ε))3 = DvS(v + w(v, ε)) .

If we pass to complex variables φ introduced in (66), this means
that

−ωφ− εLφ+
3

4
φ|φ|2 + R(φ, φ, ε) = DφS(φ, φ) ,

where

S(φ, φ) =
1

2π

∫ 2π

0

L
((

1

2
φe−iτ + c.c

)
,

(
1

2
φe−iτ + c.c.

)′)
dτ .

(72)

The Hamiltonian Sρ is obtained scaling the above S with the
scale transformation (69). The gauge invariance of Sρ is un-
derstood observing that the gauge action is the periodic flow
defining the Kernel space. A direct computation shows this
explicitly on S

S(eiθφ, e−iθφ) = S(φ, φ) .

The invariance under conjugation can be obtained in the same
way, exploiting also the even parity w.r.t. the velocity u′. �

Step B: Existence and nonexistence of degenerate
discrete solitons in the perturbed dNLS model

At ε = 0, we denote by vρ the unperturbed solution of (51),
corresponding to the Kernel projection v̄ in (57) scaled by ρ

vρ,l =

{
0 , l 6∈ S
a1
ρ
e−iθl , l ∈ S ;

(73)

the unperturbed solution vρ has amplitude a1/ρ = O(1) and is
linked to ωρ by the relation

ωρ =
3

4
|vρ|2 + ρ2 Rρ(vρ, ρ

2, 0)

vρ
.

It is clear that, as ρ→ 0, one has

vρ → v , ωρ → ω0 .

Once we focus on a particular solution vρ of the unperturbed
problem, we ask for its continuation for ε 6= 0; we thus intro-
duce a small displacement w from vρ, so that φ in (51) can be
decomposed in

φ = vρ + w ,

and we look for a correction w = wρ(vρ, ε) of vρ, that is con-
tinuous in ε, namely

wρ(vρ, ε) := φρ(ε)− vρ , with wρ(vρ, 0) = 0 ,

so that φ = φρ(ε) solves (51). Inserting the above decomposi-
tion of φ, the Kernel equation (51) takes the form

F(vρ;w, ρ
2, ε) = 0 , (74)

where the explicit dependence on ρ2 is due to ωρ and to the
remainder ρ2Rρ(vρ+w, ρ2, ε). The usual strategy to solve (74)
is to proceed with a further Lyapunov-Schmidt decomposition
(for the same reasons explained in Section 3.1), at the level of
the displacement w

w = kρ + hρ , kρ ∈ Ker(Λρ) , hρ ∈ Range(Λρ) ,

where

Λρ := (DwF) (vρ; 0, ρ2, 0) . (75)

The equation (85) then becomes
{
FH(vρ; kρ + hρ, ρ

2, ε) = 0

FK(vρ; kρ + hρ, ρ
2, ε) = 0

,

where the subscripts H and K denote the corresponding pro-
jections over Range(Λρ) and Ker(Λρ), respectively. The Range
equation FH = 0 can be solved locally by the implicit function
theorem and provides

hρ = hρ(vρ; kρ, ρ
2, ε) ; (76)

inserting (76) into FK = 0 we get the bifurcation equation,
redefining FK as

FK(vρ; kρ, ρ
2, ε) := FK(vρ; kρ + hρ(vρ, kρ, ρ

2, ε), ρ2, ε) , (77)

where now

FK : Rm × R× R→ Rm ,

is defined once given the unperturbed reference solution vρ. An
important characterization of FK is that it vanishes with ε: this
is true because equation FK(vρ; kρ, ρ

2, 0) = 0 corresponds to
the existence of the “coordinates” (kρ, hρ) describing the torus
Tm around the chosen vρ. So that it is possible to introduce
Pρ as

FK(vρ; kρ, ρ
2, ε) =: εPρ(vρ; kρ, ρ

2, ε) , (78)

and consequently (77) becomes

Pρ(vρ; kρ, ρ
2, ε) = 0 . (79)

For a given vρ, we are interested in finding a small correction
kρ(ε) ∈ U(0) ⊂ Rm, continuous in ε for small enough |ε| � 1,
such that Pρ(vρ, kρ(ε), ρ

2, ε) = 0. We now extend the notion of
degeneracy already introduced in Definition 3.2

Definition 3.3. We denote by v∗ρ any solution of

Pρ(vρ; 0, ρ2, 0) = 0 , (80)

and by p an integer such that

dim
(
Ker

(
DkρPρ(v

∗
ρ ; 0, ρ2, 0)

))
= p+ 1 .

Then
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1. v∗ρ is non-degenerate if p = 0;

2. a solution φρ = v∗ρ + wρ(v
∗
ρ , ε) of (51) is non-degenerate

if v∗ρ is non-degenerate;

3. v∗ρ is p-degenerate if 1 6 p 6 m− 1.

Here again, thanks to the Lyapunov-Schmidt decomposition
performed in the proof of Proposition 3.1, where higher har-
monics included in w were implicitly defined as functions of
the first harmonics in v, it is possible to show the following

Lemma 3.2. The above equation (80) is equivalent (in the
sense of coincidence of solutions) to the persistence condi-
tion (10) of the Effective Hamiltonian Method in the KG case,
namely with M(ϕ) given by (12).

Proof: In this case a direct method, as the one illustrated
initially in the proof of Lemma 3.1, does not work and the
variational Lyapunov-Schmidt approach is the route to under-
stand the equivalence. First notice that, by the first Lyapunov-
Schmidt decomposition, the system (10) is equivalent to ap-
plying the Effective Hamiltonian Method to the functional Sρ
defined in Proposition 3.2, namely to finding critical points of
the average w.r.t. the periodic flow e−iτ of the O(ε) term of the
Sρ. Indeed, necessary conditions for the existence of periodic
solutions of (26) must be recast into necessary conditions for
the existence of corresponding periodic solutions of the equiv-
alent equation (51). Then, the equivalence between this sec-
ond system and (80) is a consequence of the second variational
Lyapunov-Schmidt decomposition, using the same arguments
already exploited in the proof of Lemma 3.1. �

The first Proposition of this Section shows that the nonde-
generacy of v∗ρ implies existence and uniqueness of a solution
φρ(v

∗
ρ , ε) of (51) for ε small enough.

Proposition 3.3. Let v∗ρ be a non-degenerate solution of the
persistence condition (80). Then, there exists ε∗(v∗ρ) such that,
for |ε| < ε∗ there exists kρ(ε), continuous in ε, which solves the
bifurcation equation (77).

Proof: We consider the linearization around the origin of (80)

ε∂εPρ(v
∗
ρ ; 0, ρ2, 0) +DkρPρ(v

∗
ρ ; 0, ρ2, 0)[kρ] = 0 . (81)

Since by Proposition 3.2 the original equation (51) is equivari-
ant under the gauge action, the same holds also for the bifur-
cation equation Pρ(v

∗
ρ ; kρ, ρ

2, ε) = 0. This involves the preser-
vation of a symmetry under the Lyapunov-Schmidt reduction:
indeed if the Kernel and Range projections commute with the
symmetry, then also (77) is equivariant and it is enough to
restrict to the orthogonal complement (see [20]). The non-
degeneracy of v∗ρ can be translated into the condition that the
Kernel of the m-dimensional squared matrix DkρPρ(v

∗
ρ ; 0, ρ2, 0)

is given only by the gauge direction, being invertible in the
m− 1-dimensional orthogonal complement, where the implicit
function theorem applies. �

In the case of a degenerate v∗ρ , next Proposition provides a
direct criterion to show the nonexistence of the continuation,
hence the nonexistence of a solution φρ(v

∗
ρ , ε) of (51), continu-

ous in ε, such that φρ(v
∗
ρ , 0) = v∗ρ .

Proposition 3.4. Let v∗ρ be a p-degenerate solution of the per-
sistence condition (80), such that the following conditions hold

true

rk
(
DkρPρ(v

∗
ρ ; 0, ρ2, 0)

)
= m− p− 1 , (h1)

∂εPρ(v
∗
ρ ; 0, ρ2, 0) 6≡ 0 . (h2)

Then, a necessary condition for the continuation of v∗ρ for ε 6= 0
is that

∂εPρ(v
∗
ρ ; 0, ρ2, 0) ∈ Range

(
DkρPρ(v

∗
ρ ; 0, ρ2, 0)

)
. (h3)

Proof:
The main idea is that, if ∂εPρ(v

∗
ρ ; 0, ρ2, 0) 6= 0 and at the

same time the linearized equation (81) cannot be solved with
respect to kρ, then in a small neighborhood of the origin the
whole nonlinear equation does not admit solutions, namely
Pρ(v

∗
ρ ; kρ, ρ

2, ε) 6= 0, because higher order corrections are neg-
ligible.

In more details, we follow Lemma 4.4 and Remark 4.4
of [45]: one can implement a further Lyapunov-Schmidt de-
composition, by splitting again the (m dimensional) space
into the subspace Ker(DkρPρ(v

∗
ρ ; 0, ρ2, 0)), and the remaining

Range(DkρPρ(v
∗
ρ ; 0, ρ2, 0)). This is possible thanks to con-

dition (h1). In terms of variables, one simply introduces
kK and kR, the set of coordinates of Ker(DkρPρ(v

∗
ρ ; 0, ρ2, 0))

and Range(DkρPρ(v
∗
ρ ; 0, ρ2, 0)), respectively, such that kρ =

kK + kR. After Taylor-expanding and projecting the equation
Pρ(v

∗
ρ ; kK, kR, ρ

2, ε) = 0 onto the Range, one immediately re-
alizes that kR = O(ε). Thus, at leading order in the Kernel
equation one has

ΠK
[
∂εPρ(v

∗
ρ ; 0, ρ2, 0)

]
= 0

which, if (h2) holds true, is equivalent to (h3). �
As already stressed concluding Section 3.1, in the totally

degenerate case, when all vρ are solutions of (80), condition
(h2) implies (h3), hence the last one is enough in order to show
nonexistence of phase-shift solutions. This can be summarized
in the following

Corollary 3.2. Assume that Pρ(vρ; 0, ρ2, 0) ≡ 0 for all vρ and
that for any vρ 6= vst the following condition is fulfilled

∂εPρ(vρ; 0, ρ2, 0) 6≡ 0 , (82)

Then the same as in Proposition 3.4 holds true.

Remark 3.3. For an additional reading on the relationship be-
tween the linearized bifurcation equation (81) and the nonlinear
equation (80), we refer the interested reader to the more gen-
eral statement of Proposition 2.10 of [41] (remark that, using
the notation of the quoted paper, assumption (h2) would read
g(2)(θ∗) 6= 0).

Step C: within the (generalized) dNLS family
A direct application of Propositions 3.3 and 3.4 requires an

explicit knowledge of the remainder Rρ in (51), which is implic-
itly defined in its part w(v, ε) in (67). In this Section we show
the validity of these Propositions on the basis of the analysis of
its leading part (32). As a result of this analysis, Theorems 3.1
and 3.2 will be proved.

The main equation, which provides all the information about
our problem of continuation, is given by (79). The next Propo-
sition allows us to treat the bifurcation equation (79) as a
smooth perturbation of order O(ρ2) of equation (41):
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Proposition 3.5. The function Pρ(vρ; kρ, ρ
2, ε) is smooth in

ρ2 and fulfills

Pρ(vρ; kρ, ρ
2, ε)

∣∣∣
ρ=0

= P (v; k, ε) . (83)

Proof: Equation (74) is plainly smooth in all its variables
due to Proposition 3.1; when evaluated at ρ = 0, it becomes
exactly equation (36), and reduces to the dNLS model analyzed
in Section 3.1

F(vρ;w, ρ
2, ε)|ρ=0 ≡ F (v;w, ε) . (84)

Thus, equation (74) may be expanded as

F(vρ;w, ρ
2, ε) := F (v;w, ε) +O(ρ2) . (85)

Observe also that the projections on Ker(Λρ) and Range(Λρ)
are smooth in ρ2, which implies the same regularity for the func-
tion FH and for the implicitly defined solutions hρ(vρ; kρ, ρ

2, ε)
of FH = 0. This provides the smoothness of FK(vρ; kρ, ρ

2, ε)
and eventually of Pρ

εPρ = FK .

As for F , also for Pρ it holds

Pρ(vρ; k, ρ
2, ε)

∣∣∣
ρ=0

= P (v; k, ε) ,

which concludes the proof. �

3.3.1. Proof of Theorem 3.1
The proof of Theorem 3.1 mainly follows from the fact that

non-degenerate solutions v∗ can be continued to a family, in
the parameter ρ, of non-degenerate solutions v∗ρ :

Lemma 3.3. Let v∗ be a non-degenerate solution of (42).
Then, there exists ρ∗ such that, for |ρ| < ρ∗ there exists a
unique (modulo gauge transformation) and non-degenerate v∗ρ,
solution of (80) which is smooth with respect to ρ2 and fulfills

v∗ρ = v∗ +O(ρ2) .

Proof:
The proof can be obtained applying the implicit function

theorem to (80), since from the previous Proposition one has

Pρ(vρ; 0, ρ2, 0)
∣∣∣
ρ=0

= P (v; 0, 0) .

The nondegeneracy of the approximated solution v∗ provides
the existence (modulo Gauge transformation) of v∗ρ . Its nonde-
generacy is given by the smoothness of the Lyapunov-Schmidt
decomposition with respect to the small parameter ρ, which
provides the invertibility of the differential DkρPρ(v

∗
ρ ; 0, ρ2, 0)

on the subspace orthogonal to the Gauge, for ρ small enough.
The ρ2-expansion of v∗ρ is a consequence of its smoothness with
respect to ρ2. �

The above Lemma allows to apply Proposition 3.3 of Step
B, in the limit of ρ small enough, thus ensuring the existence
of a solution φρ(ε) for |ε| < ε∗(ρ), with ρ < ρ∗. In order to
conclude the proof of Theorem 3.1, we still have to show that
(44) holds true. Let now w∗ρ(v∗ρ ; ε) be the solution of

F(v∗ρ ;w, ρ, ε) = 0 ,

and, in a similar way, let w∗(v∗; ε) be the solution of

F (v∗;w, ε) = 0 .

Lemma 3.4. There exists ρ∗ and ε∗ such that, for |ρ| < ρ∗

and ε < ρ2ε∗ one has

w∗ρ(v∗ρ ; ε) = w∗(v∗; ε) +O(ρ2) . (86)

Proof: From the smoothness of the solution hρ of the Range
equation FH = 0 one gets

hρ(v
∗
ρ ; kρ, ρ

2, ε) = h(v∗; k, ε) +O(ρ2) . (87)

In a similar way, the solution kρ(v
∗
ρ ; ε) of FK = 0 given by

the implicit function theorem also satisfies the leading order
approximation

kρ(v
∗
ρ ; ε) = k(v∗; ε) +O(ρ2) , (88)

hence the estimate easily follows recalling that

w∗ρ(v∗ρ ; ε) = kρ(v
∗
ρ ; ε) + hρ(v

∗
ρ ; kρ, ρ

2, ε) =

= k(v∗; ε) + h(v∗; k, ε) +O(ρ2) =

= w∗(v∗; ε) +O(ρ2) .

�
Going back to (55), let v∗(ρ, ε, τ) and v∗(0, ε, τ) be the scaled

real solutions (belonging to the Kernel V2) built respectively
with φ∗ρ(ε) = v∗ρ + w∗ρ(v∗ρ ; ε) and φ∗(ε) = v∗ + w∗(v∗; ε), where

ρφ∗ρ(ε) = ρφ∗(ε) +O(ρ3) , (89)

and let

u∗(ρ, ε, τ) = v∗(ρ, ε, τ) + w(v∗(ρ, ε, τ), ε) , (90)

be the reconstructed real solution of the original perturbed
problem (30): from the previous leading order approximation
(89) and from w = O(‖v‖3) = O(ρ3) one gets (44).

3.3.2. Proof of Theorem 3.2
The proof of Theorem 3.2 is based on a necessary condition

for the solvability of the bifurcation equation which is shown
to be violated at v∗ρ , as stated in Proposition 3.4. Given the
difficulty to verify the assumptions in Proposition 3.4 directly
on the equation (79), the strategy is to derive their validity
from the hypothesis (H1)-(H3) of Theorem 3.2. However, dif-
ferently from the non-degenerate case, where solutions v∗ and
v∗ρ can be easily connected in the limit of small ρ, degener-
ate solutions of (79) might differ from those of (41), even for
an arbitrarily small perturbation. Indeed, a degenerate v∗ can
decrease its class of degeneracy due to an arbitrarily small per-
turbation, if it removes at least one of the Kernel direction; and
moreover, nondegeneracy in the remaining directions cannot be
lost. From here, stems the choice to restrict the treatment to
those cases fulfilling the main Assumption (H0). This addi-
tional requirement states that degenerate solutions v∗ and v∗ρ
differ only for the amplitude, and not for the phases {θl}l∈S .

Proposition 3.6. Given (H0), assume that any p-degenerate
v∗ 6= v∗st is such that

∂εP (v∗; 0, 0) 6≡ 0 ,

rk(DkP (v∗; 0, 0)) = m− p− 1 ,

∂εP (v∗; 0, 0) 6∈ Range(DkP (v∗; 0, 0)) ,

(91)
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then for any degenerate v∗ρ 6= v∗ρ,st there exists ρ∗(v∗) such that,
for |ρ| < ρ∗ one has

∂εPρ(v
∗
ρ , 0, ρ

2, 0) 6≡ 0 ,

rk
(
DkρPρ(v

∗; 0, ρ2, 0)
)

= m− p− 1 ,

∂εPρ(v
∗
ρ , 0, ρ

2, 0) 6∈ Range
(
DkρPρ(v

∗
ρ , 0, ρ

2, 0)
)
.

Proof:
Because of Assumption (H0), given any degenerate v∗ρ , by

continuity in the limit of ρ → 0 it converges to the corre-
sponding degenerate v∗, having the same phases θl and am-
plitude equal to 1. Whatever is the degree of degeneracy of
the limit solution v∗, the same type of degeneracy holds also
for v∗ρ , at least for ρ small enough. Hence DkP (v∗; 0, 0) and
DkρPρ(v

∗; 0, ρ2, 0) have the same spectral properties and the
hypothesis on the rk

(
DkρPρ(v

∗; 0, ρ2, 0)
)

is true. The other
two properties concerning ∂εPρ(v

∗
ρ , 0, ρ

2, 0) are simply a conse-
quence of the smoothness with respect to ρ2. �

Now, in order to conclude the proof of the Theorem 3.2,
let us assume that there exists a degenerate v∗ρ 6= v∗ρ,st, and
then a corresponding ū 6= ūst, which can be continued: then,
as a necessary condition for the continuation, assumption (h3)
of Proposition 3.4 has to hold, and using Proposition 3.6 one
realizes that assumption (H3) of Proposition 3.4 is violated.

Remark 3.4. It is natural to ask how to reconcile the nonex-
istence of the continuation for phase-shift solutions v∗ρ with the
existence of the continuation for standard solutions v∗st, given
that they may belong to the same family. The point is that,
as it could be shown combining the above Proposition 3.6 with
Proposition 3.4, the nonexistence result is “local” in amplitude
up to a certain threshold ρ∗(v∗) which depends on v∗. As it
will be more clear in the next applications, where ∂εP (v∗; 0, 0)
is explicitly computed, the threshold ρ∗(v∗) has to vanish as
v∗ → v∗st; indeed we have already recalled that standard solu-
tions always exist (both in the KG and in the corresponding
dNLS model) and hence the proposed criterion has to fail at
v∗ = v∗st.

4. Applications

In Section 2 we have shown three different examples where
the Effective Hamiltonian Method could not be applied, due
to degeneracies in the persistence condition; as a consequence,
despite the differences of the mechanism leading to the degener-
acy, in all the cases it was not possible to establish the existence
of phase-shift Multibreathers.

In the present Section we show how to apply Theorem 3.2,
and Corollary 3.1, in order to prove that in all the above men-
tioned examples only standard Multibreathers can be continued
at ε 6= 0, in the limit of small enough energy. This is performed
by showing the validity of the assumptions (H1)-(H3) in the
dNLS equation (32), since the validity of (H0) has been al-
ready discussed in Section 2 itself. In particular, with the last
application of this Section we are going to prove Theorem 1,
which is stated in the Introduction, about the four-site vortex-
like solutions in the zigzag KG model.

Let us rewrite explicitly the specific dNLS equation (32) we
consider here, i.e.,

ω0φj = − ε
2

[
(∆1 + κ2∆2)φ

]
j

+
3

4
φj |φj |2 , (92)

where κ2 can be either 0 or 1, depending on the models consid-
ered in the application, and the unperturbed solutions v read

vl =

{
e−iθl , l ∈ S ,

0 , l 6∈ S ,
(93)

where S = {j1, . . . , jm} will depend on the example.
The statements of Theorem 3.2 and Corollary 3.1 require the

computation of ∂εP (v∗; 0, 0), which explicitly reads

∂εP (v∗; 0, 0) = −ΠKLΛ−1ΠHLv
∗ , (94)

and possibly also its projection on the Kernel of DkP (v∗; 0, 0);
indeed, since DkP (v∗; 0, 0) is self-adjoint, the condition (H3) is
equivalent to

∂εP (v∗; 0, 0) 6⊥ Ker(DkP (v∗; 0, 0)) .

Once introduced phase-shift variables ϕl as in (7) in the def-
inition of v given by (33), equation (80) turns out to be inde-
pendent of the “fast angle” θj1 : hence solutions v∗ are always
given by loops on the torus Tm and are uniquely represented
by a value of ϕ on the torus Tm−1 := Tm/T.

In practice, projections over vectors belonging to K are
performed using the complex inner scalar product a · b =∑
j <(aj b̄j), where a basis {el}l=1,...,m for K is given by

e1 = ∂θj1 v
∗(θj1 ,ϕ) , {el}l>2 = ∂ϕlv

∗(θj1 ,ϕ) .

4.1. Simpler examples: degeneracy from holes
The two cases included in this Subsection represent examples

of complete degeneracy, where P (v; 0, 0) = 0 for any v ∈ Tm.
In both the examples, the complete degeneracy comes out from
the interplay between the presence of a hole in the configuration
S and the minimal dimension of the torus m = 2. In these
cases, application of Theorem 3.2 reduces to Corollary 3.1: thus
it is enough to check that

∂εP (v∗; 0, 0) 6= 0 , ∀v∗ 6= v∗st .

4.1.1. S = {−1, 1} in the standard KG model
In this case

v∗(θ1, ϕ) =
[
. . . , 0, e−iθ1 , 0, e−i(θ1+ϕ), 0, . . .

]
.

The Kernel’s basis computed on a generic element of the family,
setting θ1 = 0, reads

e1 = i
[
. . . , 0, 1, 0, e−iϕ, 0, . . .

]
,

e2 = i
[
. . . , 0, 0, 0, e−iϕ, 0, . . .

]
.

A straightforward computation gives the restriction of
LΛ−1ΠHLv

∗ to the components corresponding to the set of
sites S, which are the only ones relevant for the projection on
K

−
(
LΛ−1ΠHLv

∗)∣∣∣
S

=
1

2ω0

[
1, e−iϕ

]
;

in the above calculation, the projection ΠH on the range has
been simplified

LΛ−1ΠHLv
∗ = LΛ−1Lv∗ ,

due to the fact that ΠKLv
∗ = 0 by definition. This allows to

get

−LΛ−1ΠHLv
∗ · e1 = 0 , −LΛ−1ΠHLv

∗ · e2 = − sin(ϕ)

ω0
,

hence ∂εP (v∗; 0, 0) 6= 0 for all ϕ 6∈ {0, π}.
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4.1.2. S = {1, 4} in the zigzag KG model
In this case

v∗(θ1, ϕ) =
[
. . . , 0, e−iθ1 , 0, 0, e−i(θ1+ϕ), 0, . . .

]
.

The Kernel’s basis computed on a generic element of the family,
setting θ1 = 0, reads

e1 = i
[
. . . , 0, 1, 0, 0, e−iϕ, 0, . . .

]
,

e2 = i
[
. . . , 0, 0, 0, 0, e−iϕ, 0, . . .

]
.

A straightforward computation gives the restriction

−
(
LΛ−1ΠHLv

∗)∣∣∣
S

= − 1

4ω0

[
e−iϕ − 5, 1− 5e−iϕ

]
,

which allows to get

−LΛ−1ΠHLv
∗ · e1 = 0 , −LΛ−1ΠHLv

∗ · e2 = − sin(ϕ)

4ω0
,

hence ∂εP (v∗; 0, 0) 6= 0 for all ϕ 6∈ {0, π}.

4.2. Subtler example: degeneracy due to symmetry;
S = {1, 2, 3, 4} in the zigzag model

In this case, we consider the zigzag model given by κ2 = 1
and the vortex-like configurations described by the set S =
{1, 2, 3, 4}. As already commented in Section 2, this repre-
sents a prototype example of a more complex type of degen-
eracy, which is indeed related to “internal” symmetries of the
configurations.

Differently from the previous easier examples, where the
degeneracy was total and the application of Corollary 3.1
was enough, now we have to check the projection of
∂εP (v∗, 0, 0) given by (94) onto the Kernel of the linear op-
erator DkP (v∗, 0, 0), with v∗ belonging to the families F1 and
F2. We deal explicitly with one family only, namely F1 : ϕ =
(ϕ, π,−ϕ); by setting θ1 = 0, we have θ = (0, ϕ, π + ϕ, π),
which gives the following representation of v∗ in complex vari-
ables

v∗(ϕ) =
[
. . . , 0, 1, e−iϕ,−e−iϕ,−1, 0, . . .

]
.

The Kernel’s basis computed on a generic element of the family
F1(ϕ) reads3

e1 = i
[
. . . , 0

∣∣∣1, e−iϕ,−e−iϕ,−1
∣∣∣0, . . .

]
,

e2 = i
[
. . . , 0

∣∣∣0, e−iϕ,−e−iϕ,−1
∣∣∣0, . . .

]
,

e3 = i
[
. . . , 0

∣∣∣0, 0,−e−iϕ,−1
∣∣∣0, . . .

]
,

e4 = i
[
. . . , 0

∣∣∣0, 0, 0,−1
∣∣∣0, . . .

]
.

An easy computation gives Lv∗, precisely

[
. . . , 0, 1, 1 + e−iϕ

∣∣∣− 4,−5e−iϕ, 5e−iϕ, 4
∣∣∣− (1 + e−iϕ),−1, 0, . . .

]
;

3We will use the notation [. . . |·, ·, ·, ·| . . .] to denote values along
the chain: in particular, the two vertical bars enclose the sites be-
longing to S, when indexes ji are consecutive.

since

Λh =

{
−2ω0h , j ∈ S
ω0h , j 6∈ S ,

then −Λ−1ΠHLv
∗ takes the form

1

ω0

[
. . . , 0,−1,−(1 + e−iϕ)

∣∣∣− 2,−5

2
e−iϕ,

5

2
e−iϕ, 2

∣∣∣(1 + e−iϕ), 1, 0, . . .

]
.

Given that our last operation is a projection onto the
Kernel, we limit the next computation on the restriction

−
(
LΛ−1ΠHLv

∗)∣∣∣
S

, which reads

1

ω0

[
6− e−iϕ, 23

2
e−iϕ − 1,−23

2
e−iϕ + 1,−6 + e−iϕ

]
.

A direct computation shows that

−LΛ−1ΠHLv
∗ ·e1,3 = 0 , −LΛ−1ΠHLv

∗ ·e2,4 = ± sin(ϕ)

ω0
.

Upon verifying that the four-dimensional matrix representing
the linear operator DkP (v∗, 0, 0)[k] has rank 2, we know for
free the Kernel generators, since the gauge direction and the
direction tangent to the family for sure belong to it; these are
respectively

∂ϕv
∗(ϕ) = e2 − e4 , ∂θ1e

iθ1v∗(ϕ) = e1 .

The previous scalar projections of −LΛ−1ΠHLv
∗ on the basis

{el}l=1,...,4 show that

e1 · ∂εP (v∗, 0, 0) = 0 , ∂ϕv
∗(ϕ) · ∂εP (v∗, 0, 0) =

2

ω0
sin(ϕ) ,

which is different from zero, apart from the cases ϕ ∈ {0, π}.
Thus, we can conclude that the projection of ∂εP (v∗(ϕ); 0, 0)
onto the Kernel of DkP (v∗; 0, 0) is different from zero on
any phase-shift discrete soliton considered in the family F1.
Since the same holds true also for the second family F2, this
represents a sufficient condition for nonexistence of the con-
tinuation of any phase-shift Multibreather corresponding to
S = {1, 2, 3, 4}.

4.3. A note on an even more degenerate model
As already observed in the final part of the Introduction,

the technique developed in this Section is not sufficient to deal
with the more degenerate model considered in Section 2.4.2,
i.e., H101 in (17). Actually this kind of degeneracy in a dNLS
model was already examined systematically in [45], where we
were able to prove the nonexistence of any four-sites phase-
shift discrete soliton for ε small enough. The crucial point
is that the higher non-degeneracy required in that paper the
analysis of higher order expansions of the Bifurcation Equa-
tion: this is exactly the reason that prevents the application
of the techniques used here. Indeed the small perturbation
due to the energy, which “measures” the distance between the
KG model (17) and its dNLS-type normal form (23), could be
enough to introduce small linear terms in the bifurcation equa-
tion allowing for non-trivial solutions, which otherwise would
not exist. This, however, depends on the magnitude of the
linear term in ε introduced by the perturbation. Since the ob-
struction to nonexistence comes out from the ε2 term in the
Kernel equation, the corrections of order ρ2 would be relevant
in the regime ε . ρ2 here considered.
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Figure 6: The bifurcation diagrams of the persistence condition (95), in the k-parameter region corresponding to the zigzag (H110) model
and in the ϕϕϕ-region of Φ(sv). The rows of the figure correspond to three distinct values of k3, i.e. k3 = 0.01, 0.001, 0.0001, where the diagrams
for an interval of k2 in the specific region are shown. The three columns correspond to the values of the three ϕi which constitute the various
solution-families. The distinct branches are characterized by encircled numbers, while their exact combination for each family can be found in
Table 2. The family F1 : ϕϕϕ = (ϕ, π,−ϕ) is degenerate (possesses one 0 eigenvalue) and it is represented by a dotted line at k2 = 1. Negative
values of k3 are not considered since for k3 < 0, there exist no relevant phase-shift solution families.

5. Numerical study

In this section we will perform a numerical study of the per-
sistence conditions which correspond to the system (2) in an
attempt to showcase the degeneracy of the configurations of the
H110 (zigzag) and the H101 (inspired by the 2d square lattice)
models which have been already discussed in Section 2. These
conditions are given by

P(ϕϕϕ) ≡





M(ϕ1) + k2M(ϕ1 + ϕ2) + k3M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ2) + k2M(ϕ1 + ϕ2) + k2M(ϕ3 + ϕ2)

+k3M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ3) + k2M(ϕ2 + ϕ3) + k3M(ϕ1 + ϕ2 + ϕ3) = 0

(95)

with M as in (12). Note that, since we consider low amplitude
solutions, the results for the Klein-Gordon and dNLS variants
of the system are equivalent both qualitatively as well as quan-
titatively, since the differences in the solutions are negligible.
Thus, we could have used (20) instead.

We will focus mainly on the parametric regions correspond-
ing to the above mentioned systems, namely k2 = 1, k3 = 0 and
k2 = 0, k3 = 1 for the H110 and H101 systems respectively.

The illustration of the degeneracy will occur by showing the
convergence of various solution families as the k2, k3- parame-
ters tend to the ones corresponding to the cases under exami-
nation. Hopefully, by this procedure we will also be able to un-
derline the difference in the degeneracy “magnitude” between

the two systems since in the zigzag model only two solution
families converge, while in the H101 model there exist three
converging families.

5.1. Study near k2 = 1, k3 = 0

First we examine the parametric region corresponding to the
zigzag system (namely near k2 = 1, k3 = 0). In this study, a
crucial role is played by the two families F1 and F2 of asym-
metric vortices solutions of (11) which are given by (14).

The proper representation of the solutions of (95) would re-
quire a three-dimensional plot for every phase-difference ϕi as
a function of both k2 and k3. Since this surface is difficult to be
properly illustrated, we prefer to present some sections, first for
fixed k3, varying k2, and then by reversing the roles between
k2 and k3.

The results of the study for this parameter-region are found
in Figs. 6 and 7. Let’s examine first Figure 6. The first thing
one can observe is the existence of the F1 : ϕϕϕ = (ϕ, π,−ϕ)
family of solutions which is depicted as a vertical line at k2 = 1,
in the diagrams for the ϕ1 and ϕ3 slow variables. Note that,
F1 satisfies the persistence conditions (95) for every value of
k3 and k2 = 1 as it is easy to verify by substituting the values
of ϕϕϕ which correspond to F1 into (95). On the other hand,
for k3 > 0 we observe that there exist two phase-shift families,
which bifurcated from the symmetric vortex configuration ϕϕϕ =
Φ(sv) = (π/2, π,−π/2). Each depicted family is determined by
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its values of ϕi’s and it is detailed in Table 2 (e.g., family 1
consists of the ϕ1 = 1©, ϕ2 = 2©, ϕ3 = 2© in Figure 6, etc.).

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 2© 2©
2 2© 1© 1©
3 3© 3© 4©
4 4© 4© 3©

Table 2: The solution families depicted in Figure 6.

We can see that the bifurcation points of the phase-shift
families under consideration approach Φ(sv) and the families
themselves tend to coincide with the F2 family (14) as k3 →
0. For k3 = 0 the families coincide with F2 which visually
coincides also with F1. The F1 and F2 families really cross each
other at Φ(sv). The not so illustrative bifurcation diagrams for
k3 = 0 would be just a vertical line at k2 = 1 in the ϕ1 and ϕ3

diagrams and a horizontal line at φ2 = π. Note that, there are
no bifurcation diagrams for k3 < 0 since for these values there
exist no relevant solution families.

The degeneracy of the system is revealed by the fact that all
the phase-shift families merge to the F1 and F2 ones and the
fact the the matrix (16) has the specific form at Φ(sv) is due
to the family crossing at this point revealing the two kernel
directions of the persistence condition.

The same behavior is also suggested in Figure 7, where now
monoparametric variations over k3 are now given for a set of
values of k2 progressively approaching k2 = 1. More specifi-
cally, k2 has been chosen close to, but less than, 1 and k3 left
free to vary around 0. The two families which are depicted
in Figure 7 are the ones shown in Table 3. We can observe
in a more clear way the difference between the k3 6 0 case
and the k3 > 0 case, in terms of phase-shift solutions. When
k3 > 0 there are branches connecting (apparently) to 0 and
π: although the situation very close to k3 = 0 is not perfectly
shown, it is anyway evident that the branches in the upper and
lower parts of the frames get closer and closer as k2 → 1, like
converging to a curve which emerges from Φ(sv). At exactly
k2 = 1, one should observe a full band for the phase differences
ϕ1,3. In this representation the F1 family is not shown since it
exists only for k2 = 1. The picture is completely symmetrical
to the one of Figure 7 in the k2 > 1 case.

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 2© 1©
2 2© 1© 2©

Table 3: The solution families depicted in Figure 7.

The overall picture emerging from the above numerical ex-
ploration is the following. Whenever k2 6= 1, solutions appear
to be isolated, thus non-degenerate and suitable to be contin-
ued. Nonetheless, as k2 → 1, their non-degeneracy gets weaker

and weaker, so that the domain of continuation in the coupling
parameter ε is expected to vanish, according to the standard
estimate given by the implicit function theorem. The degen-
erate scenario which appears at k2 = 1, due to the existence
of a one-parameter family of solutions F1 for generic values of
k3, becomes richer at k3 = 0, since a second family F2 arises
which intersects the already existing F1 at Φ(sv). The possi-
bility to continue such degenerate solutions requires the more
accurate mathematical analysis, that we developed in Section 3
and applied in this model in Section 4.

5.2. Study near k2 = 0, k3 = 1

The next numerical study we are going to perform is the one
of the solutions of (95), close to the k2 = 0, k3 = 1 parametric
area which corresponds to the H101 model. The results of this
study appear in Figs. 8, 9 and 10.

First, in Figure 8 we present the bifurcation diagrams of
(95) for some values of k3 < 1 (in particular for k3 =
0.9, 0.99 and 0.999) and an interval of k2 around k2 = 0. In the
top row the values of the angles ϕ1 and ϕ3 are shown while the
bottom row depicts the values of ϕ2. Although, the ϕ1 and ϕ3

angles are depicted in the same diagram, this does not mean
that ϕ1 = ϕ3 for every value of k2. The four families which
are shown in Figure 8 are labeled with encircled numbers and
are summarized in Table 4 below (e.g., family 1 is defined as
ϕ1 = 1© of the upper row of the figure, ϕ2 = 1© of the lower
row and ϕ3 = 2© of the upper row panels). We see in these
diagrams how these families converge to the k2 = 0 asymptote.
In particular, families 1 and 4 converge to F3, while families 2
and 3 converge to F1 (19). The different line symbols denote
different linear stability of the families. In particular a solid
line corresponds to a family with one unstable eigenvalue while
the dashed line corresponds to two unstable eigenvalues. As the
families converge one of their stability eigenvalue converges to
zero and it changes sign when k2 crosses zero. Since the stabil-
ity discussion lies outside the scope of the present manuscript
we will not refer further to the relevant details. We only men-
tion this for the bifurcation theory inclined numerical reader
who may appreciate some of the associated bifurcations, such
as the pitchforks in Figure 9.

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 1© 2©
2 2© 1© 1©
3 3© 2© 4©
4 4© 2© 3©

Table 4: The solution families depicted in Figure 8

Next, we consider the bifurcation-diagrams for k3 > 1 (In
particular k3 = 1.1, 1.01 and 1.001) which are depicted in Fig-
ure 9. We can clearly observe that families 1 and 4 of Table 5
below converge into F3 as k3 → 1 while families 2 and 3 con-
verge to F1. The main difference of this diagrams, with respect
to the ones of the k3 < 1 case, is that in this case there exist
also the two new phase-shift solution families 5 and 6, where
the families 1-4 bifurcate from through pitchfork bifurcations.
These families also have the characteristic that they are the
only ones that exist for k2 = 0 and for all k3 > 0.
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Figure 7: The bifurcation diagrams of the persistence condition (95), in the k-parameter region corresponding to the zigzag (H110) model
and in the ϕϕϕ-region of Φ(sv). The rows of the figure correspond to three distinct values of k2, i.e. k2 = 0.99, 0.999, 0.9999, where the diagrams
for an interval of k3 in the specific region are shown. The three columns correspond to the values of the three ϕi which constitute the various
solution-families. The distinct branches are characterized by encircled numbers, while their exact combination for each family can be found
in Table 3. Note that for k3 < 0 there exist no relevant phase-shift solution families.

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 1© 2©
2 2© 1© 1©
3 3© 2© 4©
4 4© 2© 3©
5 5© 3© 5©
6 6© 4© 6©

Table 5: The solution families depicted in Figure 9.

For k3 = 1, the Jacobian is highly degenerate and hence we
show no frame for this value of k3. Nevertheless, it is straight-
forward to see that the three families F1, F2 and F3 coincide at
this value of k3.

In order to demonstrate this fact better, as well as to better
show the role of the families 5 and 6 of the k3 > 1 case, we
consider the role of both k2 and k3 variations between Figs. 9
and 10. In the latter case we consider specific values of k2 close
to k2 = 0 (i.e., k2 = −0.001,−0.0001, 0.0001, 0.001) and an
interval of values around k3 = 1 and examine the bifurcation
diagrams of (95). First of all we can see the family F2 : ϕϕϕ =
(ϕ, π−ϕ,ϕ) which exists for k3 = 1 and every value of k2. Since
this family is degenerate it is depicted as a dotted line. The
rest of the families depicted there are shown in Table 6 below.

We can see that families 1 and 4 tend to F1 while families 2
and 3 tend to F3 as k2 → 0. Geometrically this is manifested
by both families converging to the k3 = 1 asymptote. On the
other hand, there exist families 5 and 6 which correspond to the
families 5 and 6 of Figure 9. We see that they exist only for k3 >
1 being a product of a saddle-node bifurcation occurring at
k3 = 1. Although these are k2, k3-parameter solution families
for (95), they constitute an isolated solution of Eqs. (18).

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 1© 2©
2 2© 1© 1©
3 3© 2© 4©
4 4© 2© 3©
5 5© 3© 5©
6 6© 4© 6©

Table 6: The solution families depicted in Figure 10.

A special note must be made for the special case k2 = 0. For
this value of k2 the only families that exist for k3 6= 0 are the
families 5 and 6 of Figure 10 as it can be shown also in Figure 9.
In this particular case it is also true that ϕ1 = ϕ2 = ϕ3.

The fact that for this choice of k2 and for k3 = 1 we get the
symmetric vortex solution Φ(sv)

101 both as a member of the
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Figure 8: The bifurcation diagrams of the persistence condition (95), in the k-parameter region corresponding to the H101 model and in the
ϕϕϕ-region of Φ(sv). The columns of the figure correspond to three distinct values of k3, i.e. k3 = 0.9, 0.99, 0.999, where the diagrams for an
interval of k2 in the specific region are shown. The upper row corresponds to the values of ϕ1 and ϕ3 of the solution-families while the bottom
row depicts φ2. Although the diagrams for ϕ1 and ϕ3 coincide geometrically, they do not have the same values in the corresponding families.
The exact combination of branches for each family can be found in Table 4. We can observe how the various solution families converge to
the k2 = 0 asymptote, as k3 → 1.
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Figure 9: The bifurcation diagrams of the persistence condition (95), in the k-parameter region corresponding to the H101 model and in the
ϕϕϕ-region of Φ(sv). The columns of the figure correspond to three distinct values of k3, i.e. k3 = 1.1, 1.01, 1.001, where the diagrams for an
interval of k2 in the specific region are shown. The upper row correspond to the values of ϕ1 and ϕ3 of the solution-families while the bottom
row depicts φ2. Although the diagrams for ϕ1 and ϕ3 coincide geometrically, they do not have the same values in the corresponding families.
The exact branches which correspond to the different families are shown in Table 5. Note that, as k3 →, the families converge to the vortex
families.
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Figure 10: The bifurcation diagrams of the persistence condition (95), in the k-parameter region corresponding to the H101 model and in
the ϕϕϕ-region of Φ(sv). The columns of the figure correspond to distinct values of k2, while we have considered an interval of k3 in the specific
region. The upper row correspond to the values of ϕ1 and ϕ3 of the solution-families while ϕ1 and ϕ3 are coincide geometrically, they do not
have the same values in the corresponding family. The exact branch combinations of ϕis is shown in Table 6. The family F2 : (ϕ, π−ϕ,ϕ) is
degenerate and it is represented by a dotted line at k3 = 1. Note how all the families, except of the “parabolic” one, converge to the k3 = 1
asymptote, as k2 → 0.

vertical families and as a member of the “parabolic” family,
numerically poses the question of the existence of the symmet-
ric vortex solution in the real system. This question is also
triggered by the fact that the two-dimensional analogue of our
system in the dNLS limit it has been shown that vortices persist
up to the (high) orders considered in [41].

We summarize the results of the previous numerical investi-
gation, by saying that the persistence condition provide three
one-parameter families of candidate MBs, instead of the two
families for the H110 case. Each family carries two stan-
dard in-phase/out-of-phase solutions (whose existence is guar-
anteed via other approaches, [43]) and the three intersect in

two highly symmetric objects, having ϕϕϕ = Φ
(sv)
101 and emulat-

ing two-dimensional vortices. The same kind of scenario and
consequent degeneracy is shared by the corresponding beyond-
nearest-neighbor discrete NLS approximation

H101 =
∑

j

|ψj |2 +
3

8

∑

j

|ψj |4

+
ε

2

∑

j

[
|ψj+1 − ψj |2 + |ψj+3 − ψj |2

]
,

(96)

examined systematically in [45]. It is thus natural to attempt
transferring the nonexistence results there obtained previously
by means of an accurate mathematical analysis. However, the
techniques developed in Section 3 of the present paper are tai-
lored for less degenerate models as it is also discussed in Sec-
tion 4.

6. Conclusions - Future Directions

The present paper represents a natural follow up of [45],
where we studied the related problem of the nonexistence of
degenerate phase-shift discrete solitons in a beyond-nearest-
neighbor dNLS lattice. We recall that in [45] the nonexistence
of phase-shift discrete solitons, which was not easily achievable

by means of averaging methods due to the degeneracy of the
problem, was obtained in an efficient way by exploiting the
rotational symmetry of the model and the density current con-
servation along the spatial profile of any candidate soliton. The
absence of these ingredients in Klein-Gordon models represents
an additional layer of difficulty to the degeneracy that one has
to face in the continuation problem that we here address.

Keeping in mind the connections among these two classes
of Hamiltonian models (KG and dNLS), a natural (although
indirect) way to proceed is to transfer the results which are
accessible in the dNLS context to similar results which are ex-
pected to be valid in the KG context, keeping track of the
relevant correction terms. In this work we examined mainly
KG systems with interactions beyond nearest neighbor interac-
tions inspired, in part, by connections with higher dimensional
lattices), with special emphasis on the zigzag model. In these
models, by means of Lyapunov-Schmidt techniques, we showed
that this approach actually works provided some smallness as-
sumptions are made on the main physical parameters of the
models: the energy E and the coupling strength ε.

However, the strategy presented here, is based on a first or-
der normal form approximation of the KG model, and thus
it has some limitations in cases where higher order degenera-
cies occur. In order to showcase this fact we shortly exam-
ine a model that exhibits next-to-next nearest neighbors in-
teractions, namely the H101 model. Although the previously
described methodology cannot be applied there, the numeri-
cal exploration performed in the Section 5.2 shows elements
which strongly overlap with those that one can obtain in the
corresponding dNLS normal form H101, for which a rigorous
answer has been given already in [45]. This naturally leads us
to conjecture that a corresponding nonexistence statement of
phase-shift four-site multibreathers holds true also for H101.

In order to prove such a conjecture, one could still follow
this indirect approach, but attempt to increase the accuracy
of the normal form approximation by adding further neighbor
linear and nonlinear terms to the dNLS H101, in the spirit of a
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more general dNLS approximation (see [39, 40, 42]). Alterna-
tively, one can use a more direct approach and perform a local
normal form technique around the low-dimensional resonant
torus, with the advantage of working directly in the original
KG model without passing from the dNLS approximation (see
[44] for the maximal tori case). With this scheme we expect
to derive a normal form which naturally extends the effective
Hamiltonian method introduced in [1]. In any case, and what-
ever the perturbation method one prefers to apply may be, it
appears natural that the accuracy required in the approxima-
tion is directly related to the order of the degeneracy of the
problem: hence, for highly degenerate problems the help of a
computer assisted manipulation may be unavoidable and the
choice of the method can become extremely relevant.

A related comment is that in the present work we have
limited our considerations to one-dimensional settings with
long-range interactions. Extending relevant ideas to genuinely
higher-dimensional KG settings, where again the understand-
ing built on the basis of the dNLS [23, 41] may be useful, is
another natural avenue for future work. Indeed, in the two
dimensional case significant degeneracies arise even in the ho-
mogeneous case, without the need to explore beyond nearest-
neighbor interactions. Hence the problem of interest lies al-
ready at the level of the homogeneous 2d lattice. There, on the
basis of the dNLS problem we expect degeneracies and hope to
address the existence of solutions first in the easier dNLS case.
Current numerical observations suggest the existence (even as
robustly as to be experimentally observed) of discrete vortical
structures. On the other hand, as already stressed in para-
graph 4.3 about the H101 model, we suspect that the methods
proposed herein may not be sufficient to tackle the transition
between the dNLS and the KG case in all possible situations;
hence further tools may need to be developed for the latter,
depending on the geometry of the lattice and on the degree of
degeneracy of the solutions of the bifurcation equations. An
additional auxiliary set of models may be that of anisotropic
coupling, starting with the so-called “railroad model” involv-
ing two “tracks” initially very weakly coupled and continuously
varied until the equal coupling limit (which could be again ex-
plored numerically). These are some of the relevant directions
examining further.
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Principes de mécanique analytique. Problème des trois corps.
[Rotating fluid masses. Principles of analytic mechanics. Three-
body problem], With a preface by Jacques Lévy, Reprint of the
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PROPOSED HIGHLIGHTS:

- Klein-Gordon lattices with interactions beyond nearest-neighbor 
are
  examined.

- Existence and nonexistence conditions for degenerate phase-shift
  multibreathers are discussed.

- The correspondence between solutions in the KG and dNLS models is
  analyzed.

- Nonexistence of four-sites vortex-like structures in the zigzag
  Klein-Gordon lattice is established.


