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Abstract. Exploration is a task in which autonomous mobile robots
incrementally discover features of interest in initially unknown environ-
ments. Usually, robots follow exploration strategies to select the next
best locations to reach in partially explored environments. Most of the
current exploration strategies ignore prior knowledge about the environ-
ments to explore that, in some practical cases, could be available. In this
paper, we present a method that includes a priori knowledge in an explo-
ration strategy for a mobile robot. In particular, our exploration strategy
selects the next best locations the robot should reach by exploiting the
knowledge of the floor plan of the indoor environment that is being ex-
plored. Although the floor plan can be inaccurate (e.g., it typically does
not include furniture and could represent a topology that does not fully
match with that of the actual environment), we experimentally show,
both in simulation and with real robots, that knowing the floor plan
improves the exploration performance under a wide range of conditions.
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1 Introduction

Exploration is an important task for autonomous mobile robots. It is employed
when robots have to incrementally discover features of interest by moving in
initially unknown (or partially known) environments [6,10]. For example, explo-
ration can discover the presence of occupied and free space, discover the concen-
tration of substances in air or water, or discover thermal information in search
and rescue operations [15]. In this paper, we consider the problem of exploring
for map building [17], in which the goal of a robot is to move in an initially
unknown environment in order to build a map representing the locations of ob-
stacles and of free space. The robot follows an exploration strategy to select the
next best locations to reach in the partially explored environment [3,8]. Most of
the current exploration strategies ignore prior knowledge about the environment
to explore that, in some cases, could be available. One of the few exceptions
is [11], which exploits the knowledge of a topo-metric map of the environment

? This paper is the full version of an extended abstract accepted at the Robotics Track
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in which the robot is operating in order to plan an exploration path. While [11]
shows that using accurate a priori knowledge has a positive impact on explo-
ration performance, the question of whether also inaccurate a priori knowledge
can improve exploration performance is still largely open.

In this paper, we address the above question by presenting a method that
includes a priori knowledge in an on-line exploration strategy for a mobile robot.
In particular, our exploration strategy incrementally selects the next best loca-
tions the robot should reach by exploiting the knowledge of the floor plan of the
indoor environment that is being explored. A floor plan represents the static el-
ements of an indoor environment, like walls and doorways, ignoring the dynamic
elements, like furniture. A floor plan is a form of abstract prior knowledge that
is usually easy to obtain from documents, blueprints, or evacuation plans. We
show that knowing a floor plan that is inaccurate (e.g., that shows an incorrect
topology) can nevertheless improve the exploration performance. Extensive ex-
perimental evaluation shows that our proposed exploration strategy outperforms
exploration strategies that do not consider any a priori knowledge.

The original contributions of this paper are thus: (i) an on-line exploration
strategy that originally exploits the knowledge of the floor plans of the environ-
ments being explored to select the most promising next locations for the robot
and (ii) its extensive experimental evaluation, both in simulation and with real
robots, under several conditions and several degrees of accuracy of the prior
knowledge.

The method presented in this paper can be practically applied to speed up
the creation of maps of large environments exploiting (possibly inaccurate) prior
knowledge, like in search and rescue, where the floor plan can be acquired from
an evacuation map or from a blueprint of the building, and in maintenance
or cleaning tasks, that are repeated not very frequently, like once a week or a
month, such that the environment is subject to some changes between different
executions of the task (objects and furniture can change, while walls remain
static). In this case, prior knowledge could be the map built in the previous
execution of the task.

This paper is structured as follows. The next section reviews related work
and places the contributions of this paper against that background. Section 3
describes the proposed method, which is experimentally evaluated in Section 4.
Finally, Section 5 concludes the paper.

2 Related Work

Exploration is the incremental process with which a robot (or a multirobot
system) covers with its sensors an initially unknown environment. Two main
families of approaches have been developed for exploration: frontier-based ap-
proaches, which move the robots to the geometrical boundaries between known
and unknown portions of environments [21], and information-based approaches,
which move the robots to the most informative locations, according to some in-
formation measure (e.g., [7, 13, 16]). In this paper, we focus on the first family
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of approaches, since they more naturally address the discovery of space for the
problem of map building we consider.

Different exploration strategies have been proposed to select the next best
frontier, all of them being greedy [19], due to the inherently on-line nature of the
exploration problem. Usually, exploration strategies choose the next best frontier
by evaluating candidate locations according to different criteria, but ignoring the
prior knowledge about the environment that could be available. Although a com-
plete survey is out of the scope of this paper (the reader can refer, e.g., to [10]),
some examples of these exploration strategies follow. For instance, [8] evaluates
each candidate location taking into account its distance from the robot’s current
position and the expected information gain (in terms of the maximum unex-
plored area that could be viewed from it). The two criteria are combined in an
exponential utility function. In [20], the same two criteria are combined in a
fractional utility function, where the information gain is the numerator and the
distance is the denominator. Also [18] combines criteria related to distance and
information gain in a complex utility function. In [2] and [3], more principled
ways to aggregate criteria, based on multi-objective optimization, are proposed.
In all the above cases, the combined criteria (related to distance and to infor-
mation gain) are calculated only on the basis of the portion of the map that is
already known.

Recently, some forms of prior knowledge have been exploited with the aim
of improving the performance of exploration. In [14], predictions of the possible
aspect of the unexplored parts of the environment are made by exploiting a
database of previously mapped environments, in order to complete the partial
maps obtained by the robot. A similar approach, but extended to multirobot
settings, is that of [12], in which the performance of multirobot exploration
is improved by using structural inference that completes the partially-explored
portions of the environment by matching (parts of) maps contained in a library
of previously explored structures. In both [14] and [12], differently from this
paper, prior knowledge is relative to environments different from the one where
the knowledge is used to inform robot’s operations. In other words, they do not
consider knowledge specific to the environment that is being explored.

The authors of [11] propose an exploration approach that, knowing a repre-
sentation of the environment in terms of a topo-metric graph, finds an explo-
ration path. The global exploration path is calculated solving a TSP (Travelling
Salesperson Problem3) on the topo-metric graph and is completed locally by
performing on-line explorations when the path is actually followed by the robot.
Similarly to ours, this method exploits the knowledge of the same environment
in which the robot operates. However, a difference between the two approaches
is the nature of prior knowledge. In our case, it is a floor plan, which can be
obtained from various sources, including blueprints and evacuation plans. In the
case of [11], the prior knowledge is a topo-metric graph, whose nodes are lo-

3 In a TSP, given a set of locations and a metric to calculate the distance between pairs
of locations, the goal is to find the shortest tour that visits each location exactly
once.
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cations and edges are direct connections that roughly reflect the true metric
distances between locations, that is manually built by the user.

3 Our Method

3.1 Overview of the Exploration Process

We consider a single robot, equipped with a laser range scanner with given field of
view and range, that explores an initially unknown planar indoor environment E,
for which a floor plan EFP is available. We do not assume that EFP accurately
represents E. The exploration process we consider is a typical frontier-based
exploration composed of the following steps:

(a) the robot perceives a portion of E from its current location pR using the
laser range scanner and integrates the new perception in the current map
ME of the environment,

(b) the robot identifies the current set of frontiers, namely the boundaries be-
tween known and unknown space, and considers them as possible candidate
locations,

(c) the robot selects the most promising candidate location, according to an
exploration strategy,

(d) the robot reaches the selected location updating pR and starts again from
(a).

The above steps are repeated until no frontier is left and the mapME represents
all the free space of E (reachable from the initial location of the robot).

The robot maintains a grid map ME of the discovered environment using a
SLAM algorithm. We use GMapping [9] in our experiments. Each cell of ME

can be known or unknown and, in the former case, free or occupied. Given ME ,
we identify the chains of free cells that are adjacent to at least an unknown
cell. Each of such chains is a frontier and the middle cell of each frontier is a
candidate location. More precisely, a candidate location is the cell that divides a
frontier into two equal segments. (Note that it is not safe for the robot to select
a candidate location beyond a frontier.) Hence, given ME , we have a set C of
candidate locations. Each candidate location p ∈ C is evaluated in step (c) above
according to an utility function u(p) that combines distance and information gain
(e.g., as in [3, 8]). In particular (α ∈ [0, 1] is a parameter that weights the two
components),

u(p) = α · d(p) + (1− α) · i(p). (1)

In the above equation, d(p) is the distance utility value that is calculated as:

d(p) =
Dmax −D(p, pR)

Dmax
, (2)

where D(p, pR) is the Euclidean distance between the current location of the
robot pR and the candidate location p and Dmax is the maximum D(p, pR) over
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all the candidate locations p ∈ C. In (1), i(p) is the information gain utility
value and is calculated as:

i(p) =
I(p)

Imax
, (3)

where I(p) is the estimate of the amount of new (unexplored) area visible from
p (calculated as described in Section 3.3) and Imax is the maximum value of I(p)
over all the candidate locations p ∈ C. The next best candidate location p∗ is
thus selected as follows:

p∗ = argmax
p∈C

u(p). (4)

According to the value of α, p∗ represents the best balance between closeness and
expected new area visible and, as such, is considered a good greedy choice for an
efficient exploration of the environment [1]. (Note that with α = 1 our method
performs a closest-frontier exploration.) As shown in Section 4, the exploration
performance is measured in terms of distance travelled and time employed to
fully map the environment.

3.2 A Priori Knowledge

(a) (b) (c) (d)

Fig. 1: An example of floor plan (1a), a map built by the robot (1b), an overlay
of the floor plan on the map (1c), and the environment simulated in Gazebo
(1d).

In this paper, we focus on a specific type of a priori knowledge, which is
the floor plan. For indoor environments, floor plans can be easily obtained from
documents, blueprints, and even from evacuation plans [5]. A floor plan EFP is a
two-dimensional representation of the environment E composed of line segments
(walls) that identify the spaces within the environment, like rooms and corridors.
Note that EFP does not need to be fully accurate, for example, it usually does not
include information about furniture, which limits significantly the area of E that
could be explored by a robot, and small objects, which affect path planning and
whose number, type, and location cannot be known in advance. An example of
floor plan is reported in Fig. 1a, while the corresponding (simulated) environment
(with furniture) is in Fig. 1d. Moreover, E can have obstacles, as closed doors,
that are not present in EFP or can exhibit connections between locations that are
not connected in EFP (e.g., when E has been structurally modified and EFP is
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outdated). In this sense, we say that EFP can be topologically inaccurate. Hence,
although the floor plan EFP of E is known, the map ME for safe navigation of a
robot in E should be built and an exploration is still required. In the proposed
approach, EFP should be manually fed to the system. The required human effort
required for this step involves: getting prior knowledge in the form of a floor plan
(e.g., taking a picture of a paper blueprint), “cleaning” the floor plan image from
unnecessary details (e.g., words indicating the name of the building and symbols
like emergency exits), scaling and aligning the floor plan to the map built by
the robot. The processing of EFP is done once for each environment, and in our
experience requires just few minutes.

In the proposed approach, EFP is exploited to make informed decisions when
evaluating and selecting the next best candidate location using Equations (3)
and (4), respectively. More precisely, we compute an estimate of the area that
the robot can perceive from a candidate location p (when it is oriented toward
the unknown space, to maximize the new area perceived) by superimposing ME

on EFP. We assume that EFP and ME are metrically consistent, namely that
they are aligned and with the same scale, without deformations. In practice,
this amounts to assume that the initial pose of the robot is known, that EFP

is represented as a grid map with the same resolution of ME , where a cell of
EFP is either free or obstacle, and that EFP and ME are aligned in a global
coordinate system. In our experiments, we perform the alignment manually, but
an automatic method can be developed. For example, one can use the approach
of [4] to localize the robot in EFP and then calculate its alignment with ME .
Fig. 1 reports a map ME (Fig. 1b) and the scaled and aligned floor plan EFP

overlapped to ME (Fig. 1c).
While it could be limiting to use the knowledge derived from floor plans

only on-line (namely, during the exploration process), because it seems that
the availability of floor plans is not fully exploited, this approach copes well
with increasing inaccuracies in prior knowledge. Indeed, in these cases, plans
calculated off-line (namely, before the exploration process starts) could become
useless, because they are built on inaccurate knowledge, and their revision (e.g.,
replanning) can be costly. For example, in the method of [11], replanning requires
to solve a TSP, which can be done efficiently using a solver (Concorde, in that
case) for topo-metric maps with a limited number of nodes (less than 100 in [11]),
but that does not efficiently scale to larger instances, being the TSP a NP-hard
problem.

3.3 Expected Information Gain

We calculate I(p), namely the estimate of the amount of the unexplored area
visible from a candidate location p by using the a priori information obtainable
from EFP.

The state-of-the-art approaches for estimating I(p) measure the maximum
visible area from p given the footprint of the robot’s laser range scanner (as
done, e.g., in [3,8]) or the length of the frontier (as partially done, e.g., in [18]).
These approaches are reasonable if no a priori knowledge about the environment
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(a) (b)

Fig. 2: A candidate location p (red cell) in a grid map (free cells are white,
obstacle cells are black, and unknown cells are gray) (2a) and I(p) (light blue
area) computed according to the footprint of the robot’s laser range scanner
(2b).

is available. Fig. 2 shows an example in which I(p) is calculated as the maximum
area of the unknown cells that can be perceived by the laser range scanner from
p. This estimate is optimistic and implicitly assumes that the area beyond the
frontier on which p is located is free of obstacles.

Instead, we calculate I(p) as follows. Given p ∈ME , we find the correspond-
ing cell pFP ∈ EFP (i.e., the cell with the same center after scaling and alignment
of ME with EFP). Then, for each unknown cell c ∈ME that is within the foot-
print of the laser range scanner when the robot is in p, we find the corresponding
cFP ∈ EFP. The cell c contributes to calculate the expected area I(p) visible from
p when all the following conditions are all satisfied:

– cFP is free,
– cFP is visible from pFP in EFP, namely the line segment connecting their

centers does not touch any obstacle cell in EFP, and
– c is visible from p in ME .

Eventually, given the cells c that satisfy the above conditions, I(p) is calculated
by summing the areas of those cells. Fig. 3 shows an example, in which the
method just described is used to calculate I(p). It is interesting to contrast it
with Fig. 2. Although the proposed approach appears to be a variant of classi-
cal frontier-based exploration approaches, it provides significant benefits to the
performance of exploration also when EFP is inaccurate, as we show in the next
section.

4 Experimental Evaluation

To evaluate our approach and its ability to exploit inaccurate a priori knowledge
for efficient exploration, we present several tests conducted both in simulation
and with real robots. We measure, as exploration progresses, the distance trav-
elled by the robot (as done, e.g., in [8, 18]) and the percentage of covered area,
namely the percentage of free area of E mapped in ME , as done, e.g., in [3]. To
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(a) Map ME (b) Floor plan EFP (c) Overlap (d) I(p)

Fig. 3: An example of how I(p) is calculated exploiting the knowledge of the floor
plan. See Fig. 2 for notation.

have a fair comparison, we present results up to 95% of coverage, since some runs
end without reaching full coverage, due to noise in localization and mapping.

4.1 Simulations

Simulations are performed with ROS Gazebo, using the ROS GMapping and
Nav2D packages4 for SLAM and robot navigation, respectively. We consider
three indoor environments with different characteristics (Fig. 4): a basic envi-
ronment (19m × 10m) that represents a small apartment, an office environment
(90m × 53m) with several small rooms, and an open environment (57m × 45m)
with few large rooms.

(a) basic (19× 10 m) (b) office (90× 53 m)

(c) open (57× 45 m)

Fig. 4: The floor plans of environments used in simulations.

4 http://wiki.ros.org/{gazebo,gmapping,nav2d}. Gazebo is a 3D dynamic robot
simulator.
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Two settings are considered for each environment, namely with and without
furniture. The furniture is coherent with the type of the environment. For the
basic environment, the furniture includes couches, chairs, tables, beds, night
stands, and so on (Fig. 1d). Furniture include desks and chairs for the office
environment and shelves for the open environment. Environments are static and
differences between them and the floor plans are due to the presence of furniture.

Exploration is performed by a simulated robot equipped with a laser range
scanner with a field of view of 180◦ and range of 10m for the basic environment
and of 25m for the other two environments. In our experiments, longer ranges
for the laser range scanner result in less frontiers and in less decisions. Linear
and angular speeds of the robot are fixed, so the robot moves at a constant
velocity. After several preliminary tests, we set α = 0.5 in (1) to equally balance
distance and information gain. For each environment, we perform 10 exploration
runs (starting from the same pose) and average results over the runs. Gaussian
noise with zero mean and 0.1m standard deviation is added to scans acquired
by the laser range scanner. The maps obtained in different runs are, as a con-
sequence, slightly different from each other, thus resulting in different frontiers
being detected and, ultimately, in different choices being made by the robot.

We compare our approach to a state-of-the-art approach where the informa-
tion gain I(p) is evaluated without prior knowledge, taking an optimistic stance,
as in [3, 8] (see Fig. 2).

We start from the open environment without furniture. Table 1 shows that
our approach is able to explore a given amount of area in a significantly shorter
time T than the approach without prior knowledge, especially when the covered
area is less than 80%. As an example, the difference at 60% has p-value= 0.00034
in one-way ANOVA. Similarly, the robot reaches the same percentage of covered
area travelling a shorter distance D when using our approach. This is because
frontiers that are close to walls are correctly evaluated to have small I(p) us-
ing our method, while the same frontiers can have large I(p) when no a priori
knowledge is used. The gain reduces towards the end of the exploration because
the selection of the few frontiers left is less critical, thus reducing the impact of
a wrong decision.

Similar results are found for the furnished open environment, as shown by
Table 2, where the trends of the two strategies become very different after reach-
ing a coverage of 90%. From that point, our exploration strategy has a consis-
tently better performance with respect to the strategy without prior knowledge.
For instance, the difference between the time required by the two strategies is
significant for coverage values of 90% and 95%, with p-value= 0.0012 and p-
value= 0.00035, respectively. Note that the prior knowledge represented by EFP

is less accurate in the case of the furnished environment than in the case of the
unfurnished environment.

The same results are qualitatively found also for the other two environments
(full data are not reported). Finally, Table 3 reports the overall results obtained
in the three simulated environments for 95% of coverage. Using a priori knowl-
edge improves considerably the performance in all the three cases, allowing the
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coverage without prior knowledge with prior knowledge difference
D σ T σ D σ T σ D T

70% 71.15 14.43 101.39 21.41 43.99 3.51 66.07 4.97 -38% -35%
80% 83.53 13.75 116.29 21.04 73.95 5.30 104.08 10.64 -11% -10%
90% 140.30 22.30 188.79 27.62 127.20 11.68 176.70 16.48 -9% -6%
95% 186.87 30.14 244.82 39.61 161.40 17.52 218.12 24.27 -14% -11%

Table 1: Results for the unfurnished open environment (Fig. 4c). D is distance
in m, T is time in s, and σ is the corresponding standard deviation. The last two
columns show the percentage difference in performance, according to D and T ,
of the strategy with prior knowledge over that without prior knowledge: negative
numbers mean that the former performs better than the latter.

robot to cover large portions of the environments travelling a shorter distance
and spending less time. Note that, as the robot speed is fixed, differences in
average speeds are due to the different exploration paths. Using prior knowledge
results in more direct and straight paths, with less rotations of the robot.

We now consider two environments from [11] (reported in Figs. 5a and 5b)
and we use the same range of the robot’s laser range scanner (6m) and the same
initial positions (in red in the figures) used in [11]. The first environment has
approximately a size of 34m × 34m, while the second one has a size of 38m ×
25m. The evaluation is done by performing one exploration run for each initial
position. Results are then averaged over runs.

Authors of [11] report that, in case of fully accurate a priori knowledge
(EFP = E in our notation), the exploration path built with their method reaches
a coverage of 100% by travelling a distance of about 239m in the first environ-
ment and of about 171m in the second one. Our approach fully explores the
environments travelling a longer distance, about 433m and 429m, respectively.
This is expected because the method of [11] plans off-line a global exploration
path that is completed on-line, while our approach is fully on-line. However,
after 239m and 171m, our approach remarkably covers ' 87% and ' 91% of

coverage without prior knowledge with prior knowledge difference
D σ T σ D σ T σ D T

70% 78.86 12.84 109.87 17.89 67.51 9.79 92.91 15.54 -14% -15%
80% 117.23 13.27 159.02 16.37 111.87 6.95 149.95 149.95 -5% -6%
90% 237.26 23.03 315.90 31.44 185.24 23.26 245.85 42.11 -22% -22%
95% 305.83 28.43 407.35 42,44 223.56 18.54 293.88 36.20 -27% -28%

Table 2: Results for the furnished open environment (Fig.4c). See Table 1 for
notation.
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basic environment office environment open environment

without prior
knowledge

with prior
knowledge difference

without prior
knowledge

with prior
knowledge difference

without prior
knowledge

with prior
knowledge difference

without
furniture

T 100.69 70.09 −30% 570.81 500.22 −12% 244.82 218.12 −11%
D 36.14 28.99 −20% 407.55 370.83 −9% 186.87 161.40 −14%

with
furniture

T 162.34 137.99 −15% 645.80 568.40 −12% 407.35 293.89 −28%
D 57.89 56.95 −1% 460.04 414.29 −9% 305.83 223.56 −27%

Table 3: Performance evaluation at 95% of coverage for the simulated environ-
ments of Fig. 4. See Table 1 for notation.

(a) 34m × 34m (b) 38m × 25m (c) map of (5a)

Fig. 5: Two environments from [11] (5a and 5b) and a map covering the 90% of
the first environment (5c).

the area of the two environments, respectively (with a standard deviation of 2%
and 3%, respectively). This suggests that our approach makes very good initial
decisions and quickly covers almost completely the environments but then it
needs to travel back to cover small portions that have been left behind (like the
top right and the bottom left corners in Fig. 5c).

Results from [11] show that, when Gaussian noise with standard deviation
larger than 2.5m is added to the node positions of the topo-metric map, their
method performance is on par with that of a method that does not consider prior
knowledge. We cannot compare our method directly to these results, because the
noise added in [11] to the user-provided topo-metric map cannot be transferred
to the floor plan we consider. However, in the following, we show that, also
when available knowledge of EFP is inaccurate, our method performs consistently
better than an exploration strategy that does not consider prior knowledge.

The computing effort of our approach is negligible (selection of frontiers takes
a time in the order of milliseconds).

4.2 Hand-Drawn Floor Plans

In this section, we test our approach using inaccurate floor plans in order to
evaluate its robustness. More specifically, we use three hand-drawn floor plans
as EFP and we compare, as before, the performance of our exploration strategy
with that of the exploration strategy that does not use any prior knowledge.
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The floor plans represent a building and are hand-drawn by three different
people who work in the same building, and are later digitalized and scaled.
Draws are based only on their memory, without any support for recollection. The
environment has approximately a size of 50m × 43m. The correct floor plan and
the three digitalized hand-drawn floor plans are reported in Fig. 6, along with
one of the original drawings. While the corridors are drawn almost correctly and
consistently in the three floor plans, the number and size of rooms are different
and several small rooms are missing or are merged to adjacent bigger rooms. In
practice, while the hand-drawn floor plans might appear visually similar to the
real floor plan, a point in a room of a hand-drawn floor plan could correspond
to a point in a completely different room of the real floor plan.

Experiments are made in a simulated version of the building, performing 5
exploration runs starting from the same initial position (results are averaged
over the runs). The range of the robot’s laser range scanner is set to 25m.

(a) floor plan (50m x
43m)

(b) hand-drawn 1

(c) hand-drawn 2 (d) hand-drawn 3 (e) original draw of (6b)

Fig. 6: The correct floor plan (6a), three hand-drawn floor plans (6b-6d), and an
original draw (6e).

In Table 4 we see how the accuracy of a priori knowledge affects the perfor-
mance of the exploration. The use of the more accurate prior knowledge provided
by the correct floor plan leads to a significant improvement in performance. The
use of hand-drawn floor plans as a priori knowledge sometimes leads to wrong es-
timates of the information gain, delaying the exploration of frontiers which could
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bring the robot to perceive larger amounts of new area of the environment. In
fact, the presence of an obstacle in a hand-drawn floor plan could cause an un-
derestimation of the actual information gain from a frontier, leading the robot
to explore other frontiers with an actual lower information gain and, therefore,
worsening the system performance. However, it is remarkable that, despite the
inaccurate knowledge, in all cases, the exploration strategies with prior knowl-
edge make the robot travel a shorter distance than the strategy without prior
knowledge, covering the 95% of the area with a gain that ranges from 3% to
9%.

coverage without prior knowledge floor plan hand-drawn 1 hand-drawn 2 hand-drawn 3
D σ D σ difference D σ difference D σ difference D σ difference

70% 129.22 16.42 101.84 6.83 -21% 118.60 7.16 -8% 143.29 15.50 +10% 152.91 17.32 +18%
80% 187.87 36.22 151.35 25.76 -19% 189.34 13.19 0% 179.78 12.72 -4% 195.59 18.92 -4%
90% 253.24 42.74 235.18 26.06 -7% 239.92 20.83 -5% 225.13 10.79 -11% 236.60 27.39 -7%
95% 320.91 31.33 302.33 17.79 -6% 298.11 45.42 -7% 290.45 33.36 -9% 310.49 19.97 -3%

Table 4: Performance comparison between the exploration strategy without prior
knowledge and the exploration strategies with prior knowledge with correct floor
plan and with the approximate hand-drawn floor plans in the environment of
Fig. 6. See Table 1 for notation. Results are over 5 runs.

4.3 Experiments with Real Robots

In this section we describe the results of the experiments in different environ-
ments conducted with the implementation of our approach on two autonomous
mobile robots, running the same ROS configuration used for simulations. Also
in this case, we compare our approach with an exploration strategy that does
not use a priori knowledge.

The first set of experiments is performed on a three-wheeled differential drive
robot, called Robocom, equipped with a SICK LMS100 laser range scanner with
a field of view of 270◦ and a range of 20m (Fig. 7a). The runs are performed in
a portion of the environment of Fig. 6a, with a size of 36m × 27m and shown
in Fig. 7b, performing 3 exploration runs from the same initial position. Results
are averaged over the runs. Note that discrepancies between the actual map and
the floor plans can change due to the changes of furniture in different runs.

The results in Table 5 confirm that our exploration strategy outperforms
the exploration strategy without a priori knowledge. Also in this case, the main
reason why our approach has better performance lies in a better information gain
estimate. In particular, our approach gives low I(p) to frontiers that are close
to walls and large I(p) to frontiers that are in cluttered areas but, according to
the floor plan, are far from walls. This leads the robot to first explore frontiers
with a higher information gain, reaching large percentages of explored area in a
shorter time. This behavior is more evident when clutter and occlusions increase,
e.g., when the number of obstacles (like furniture) increases. Because of this, the
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(a) (b)

Fig. 7: Robocom (7a) used in experiments in the environment with floor plan
in 7b. In red, the initial position of the robot.

coverage without prior knowledge with prior knowledge difference
D σ T σ D σ T σ D T

70% 33.49 8 386.03 94.86 26.76 2.36 281.20 25.80 -20% -27%
80% 37.96 8 425.11 99.15 30.64 2.24 317.13 24.46 -19% -25%
90% 44.17 7.87 488.46 120.29 37.33 1.82 368.33 27.46 -15% -25%
95% 47.10 7.8 528.31 96.75 41.77 2.96 411.11 14.60 -11% -22%

Table 5: Results (over 3 runs) of the experiments with the Robocom robot. See
Table 1 for notation.

coverage without prior knowledge with plain floor plan difference with modified floor plan difference
D σ T σ D σ T σ D T D σ T σ D T

70% 3.96 0.45 25.86 2.00 4.54 0.58 24.00 0.99 +15% -7% 4.43 0.22 23.36 1.93 +11% -9%
80% 7.56 2.92 56.06 17.81 5.91 0.09 33.70 2.57 -21% -40% 4.80 0.43 25.52 1.82 -37% -55%
90% 10.56 3.58 75.60 26.64 9.98 1.21 58.99 6.74 -6% -22% 9.04 1.93 53.11 13.00 -15% -30%
95% 24.68 5.04 171.05 31.15 17.70 6.68 116.87 26.90 -28% -32% - - - - - -

Table 6: Results (over 3 runs) of the experiments with the TurtleBot3 Burger
robot, using a plain floor plan and a modified one as a priori knowledge. See
Table 1 for notation.

application of our method to real world settings provides even more advantages
than in the more controlled environments used in simulations. It can also be
noted that the strategy without prior knowledge has a higher standard deviation
than our approach, due to more variable decisions based on an overestimated
information gain. This is also confirmed by looking at the average speed along the
different exploration paths (remember that linear and angular speeds are fixed).
Paths obtained using prior knowledge are more direct and straight (followed at
about 10 cm/s) than the paths obtained without prior knowledge (followed at
less than 9 cm/s).
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(a) (b)

(c) (d)

Fig. 8: The TurtleBot3 Burger (8a) used in experiments in the environment with
plain floor plan shown in (8b). In red, the initial position of the robot. (8c) shows
the modified floor plan including furniture, in gray, while (8d) shows the map
created by the robot in one of the runs.

The second set of experiments is performed using a TurtleBot3 Burger5
(Fig. 8a), a small-size two-wheeled differential drive robot, equipped with a
Hokuyo URG-04LX-UG laser range scanner with a field of view of 180◦ and
a range of 5.6m.

The runs are performed in a house environment with a size of 6m × 6m with
an area of 30m2 (Fig. 8b), performing 3 exploration runs from the same initial
position and averaging over the runs. The total area that could be explored by
the robot is limited by the furniture, as 9m2 of the total 30m2 are occupied by
static furniture, like wardrobes, shelves, and a kitchen, and cannot be accessed
by the robot. Others 2m2 are occupied by dynamic furniture like chairs and
small objects lying on the floor. Overall, 30% of the area is covered by (static)
furniture and about 5% is covered by clutter, resulting in the floor plan EFP

overestimating the amount of explorable area by 35%. This difference between
the floor plan EFP and the actual environment E where the robot operates allows

5 http://www.robotis.us/turtlebot-3/
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us to test the robustness of our approach, and in particular to investigate how
the accuracy of the prior knowledge affects its performance in the real world.

To this end, three configurations are used in this setting: an exploration strat-
egy that does not use a priori knowledge, an exploration strategy that uses the
floor plan of the house as a priori knowledge EFP, and an exploration strategy
that uses EFP modified in order to include the static furniture as a priori knowl-
edge. The modified EFP is a more accurate representation of the environment
than the plain EFP, but it still does not include small objects such as chairs.

Results are shown in Table 6 and confirm that our exploration strategy is
more efficient than that without a priori knowledge. Despite the fact that the
plain EFP is a rough estimate of the actual environment, the gain in terms
of time and distance is consistent. A more significative improvement is obtained
with the use of the modified floor plan that includes knowledge of static furniture.
In general, with both types of prior knowledge, the advantages of our approach
over the one not using prior knowledge are clear, especially after the robot has
explored some portions of the environment (when the covered area is more than
75% in Table 6). Using or not prior knowledge could make little difference in
the early stages of exploration, since the robot typically reaches frontiers close
to the starting point. After this initial phase, the use of prior knowledge drives
the robot directly to the most interesting frontiers, thus reducing the distance
and the time required to map the environment.

Interestingly, the use of the more accurate floor plan (modified EFP, which
includes static furniture) stops the exploration process at about 92% of the ex-
plorable area, since no further frontier is detected (see ‘-’ in Table 6). This is
because the robot, when not considering any prior knowledge or when consid-
ering the empty EFP, can map thoroughly also the small gaps between pieces
of furniture or between furniture and walls. For example, in our runs without
prior knowledge, a small (approximatively 10 cm) gap between a sofa and a wall
is detected as an interesting and explorable area, and the robot tries to reach
a location from which it can observe such small gap (although it cannot enter
in that narrow space). When the modified floor plan is used, the robot “knows”
that the gap area is uninteresting and does not try to observe it, selecting more
interesting frontiers.

Overall, experiments performed with real robots in real environments suggest
that the use of a priori knowledge can be particularly useful in human-inhabited
settings where objects, furniture, people, and obstacles (as partially open doors)
can negatively affect the perception of the robot. In these settings, the use of a
floor plan, even if it is far from faithfully representing the environment (as in the
case of the plain EFP), provides an effective mean to drive the robot to select the
next best locations for exploration. In conclusion, the performance improvement
of our proposed exploration strategy over the strategy that does not consider
prior knowledge is more evident in the real world, which is inherently more
complex and noisy, than in simulations.
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5 Conclusions

In this paper, we introduced an on-line exploration strategy that exploits a
priori knowledge, in the form of floor plans, to select the next best locations for
a robot exploring indoor environments. Experiments assessed the effectiveness of
the proposed method, also when the floor plans are inaccurate. In a nutshell, our
results show that, while it is intuitive that accurate prior knowledge can improve
the performance of the exploration process, also inaccurate prior knowledge can
provide some benefits, which is far less intuitive.

The question of how to best balance the effort to get accurate prior knowl-
edge and the improvements on the exploration performance is still open and is
a direction for future work. Future work will also investigate the use of other
forms of a priori knowledge, like pictures of evacuation maps that can be easily
obtained in large buildings, and the quantitative relationship between the qual-
ity of a priori knowledge and the exploration performance. Moreover, means to
represent, and include in the evaluation of the information gain, the uncertainty
of the prior floor plan will be considered. Inspirations could come from methods
to update maps when robots discover new features that do not match current
expectations. Finally, the use of partial or empty floor plans could be studied.
With empty floor plans, our method basically becomes a closest-frontier explo-
ration, with information gain equal for all frontiers. With partial floor plans, our
method works as shown in this paper for the known parts and as a closest-frontier
exploration for the unknown parts of the floor plan.
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