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Abstract

In this paper we consider ideal sheaves associated to the singular
loci of a divisor in a linear system |L| of an ample line bundle on a
complex abelian variety. We prove an effective result on their (contin-
uous) global generation, after suitable twists by powers of L. Moreover
we show that similar results hold for subvarieties of a complex abelian
variety.

1 Introduction

In the paper [?] Proposition 7.21, G. Pareschi and M. Popa studied the equa-
tions of the special subvarieties Wd in Jacobians by means of theta-regularity
and the continuous global generation of sheaves on abelian varieties. In the
same vein, they gave an effective bound for the equations of the singular
locus of the theta divisor on a Jacobian, Σ(Θ) ∼= W 1

g−1, by showing that
the ideal sheaf IΣ(Θ) is 3-Θ-regular (cf. [?], Proposition 7.21) and hence
IΣ(Θ)(3Θ) is globally generated.
In this paper we generalize this result to an arbitrary complex abelian va-
riety, where we consider an arbitrary ample line bundle instead of a theta
divisor. Moreover we consider the multiplicity-k locus of a divisor D ∈ |L|.
Now we present the generalization.

Let A be a complex abelian variety of dimension g ≥ 2 and L be an
ample line bundle on A. Let D ∈ |L| be a divisor,

Σk(D) = {x ∈ A | multxD > k},

be the multiplicity-k locus of D and IΣk(D) be its ideal sheaf:
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The sheaf IΣk(D) ⊗ L⊗3 is globally generated.
This Theorem allows us to find the degrees of defining equations of Σ(D).

In particular, it implies that Σk(D) is cut-out by equations in |L⊗3|, i.e.
locally there exist divisors D1, . . . , Dm ∈ |L⊗3| such that Σk(D) = D1 ∩
. . . ∩Dm.

A more general problem in the case of Jacobians is to find for which
positive integers k the sheaves IW r

d (C)(kΘ) are globally generated, where
W r
d (C) are the Brill-Noether loci on a smooth curve C, i.e.

W r
d (C) = {L ∈ Picd(C) | h0(L) ≥ r + 1}.

Let Θ be a theta divisor on the jacobian J(C) of a smooth curve C of genus
g. Via the identification

Θ ∼= W 0
g−1(C) = {L ∈ Picg−1(C) | h0(L) ≥ 1},

Riemann’s Theorem ensures that

Σk(Θ) = W k
g−1(C),

so Theorem ?? is a result in this direction.
The notion of globally generated sheaf is not the unique way in order to

get equations of a subvariety. Let A be a complex abelian variety and F be
a sheaf on A. We say that the sheaf F is continuously globally generated if
for any non-empty open subset U ⊂ Pic0(A) the sum of evaluation maps⊕

α∈U
H0(F ⊗ α)⊗ α∨ −→ F

is surjective (see [?]). With the same notation as in Theorem ?? we have
another result: The sheaf IΣk(D) ⊗L⊗2 is continuously globally generated.

We will see that Theorem ?? is an easy consequence of Theorem ??.
In particular, Theorem ?? implies that Σk(D) is cut-out by equations in
|L⊗2 ⊗ α|, for some α ∈ Pic0(A), i.e. there exist line bundles α1, . . . , αt ∈
Pic0(A) and divisors D1, . . . , Dm ∈

⋃
i |L⊗2⊗αi| such that locally Σk(D) =

D1 ∩ . . . ∩Dm.
The proofs of Theorem ?? and Theorem ?? use a general method dif-

ferent from the ad-hoc argument in [?], Proposition 7.21. Our main tool is
the use of the bundle of differential operators associated to an ample line
bundle on a complex abelian variety, see [?]. In this case we will see that
the bundle of differential operators satisfies nice cohomological properties.
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In the last section we investigate the same problem on subvarieties of a
complex abelian variety. More precisely, let X ⊂ A be a complex projective
smooth subvariety of dimension n ≥ 2 of a complex abelian variety A, and
let M be an ample line bundle on X and D ∈ |M⊗ωX | be a divisor. Putting
L := M ⊗ ωX we have the following results:

(i.) The sheaf IΣ1(D) ⊗ L⊗2 ⊗ ωX is continuously globally generated.

(ii.) The sheaf IΣ1(D) ⊗ L⊗3 ⊗ ωX is globally generated.

(iii.) The sheaf IΣ1(D) ⊗ L⊗n+2 is continuously globally generated and

(iv.) The sheaf IΣ1(D) ⊗ L⊗n+3 is globally generated.
In order to prove the last two points we will remark that the cotan-

gent bundle of a subvariety of an abelian variety is nef and we will state a
vanishing theorem for varieties with nef cotangent bundle.

2 Notations and Preliminaries

Throughout this paper every variety is assumed to be irreducible. If Y is a
subvariety, its ideal sheaf is denoted by IY .

In this section we present the notion of sheaf satisfying the Index Theo-
rem, that is a condition on the cohomology of the sheaf. After, following [?],
we will give the definition of continuously globally generated sheaf, putting
them in relation with globally generated sheaves and sheaves satisfying the
index theorem. Only in this section every variety is defined over an alge-
braically closed field of arbitrary characteristic.

[Sheaf Satisfying the Index Theorem with Index i] A sheaf F on
an abelian variety A satisfies the index theorem with index i, I.T. i for short,
if

Hj(F ⊗ α) = 0

for any α ∈ Pic0(A) and for any j 6= i.
An ample line bundle on an abelian variety satisfies I.T. 0: see for ex-

ample [?] Application I, p.60, and Chapter 16. In characteristic zero it is a
simple consequence of Kodaira’s Vanishing Theorem.
Recall that a sheaf F on an abelian variety A is globally generated if the
evaluation map H0(F) ⊗ OA → F is surjective. A similar notion is the
following

[Continuously Globally Generated Sheaf ] A sheaf F on an abelian
variety A is continuously globally generated if for any non-empty open subset
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U ⊂ Pic0(A) the sum of evaluation maps⊕
α∈U

H0(F ⊗ α)⊗ α∨ −→ F

is surjective.
The link between this kind of sheaves and globally generated sheaves is

explained by the following two propositions.
Let F be a coherent continuously globally generated sheaf on an abelian

variety A and H be a continuously globally generated sheaf on A which is
everywhere of rank one on its support, then F ⊗ H is globally generated.
If F is a sheaf satisfying I.T. 0 on an abelian variety A, possibly supported
on a subvariety X of A, then F is continuously globally generated.

For the proof of Proposition ?? see Lemma 2.3 in [?] and for the proof
of Proposition ?? see Proposition 2.13 in [?] where it is stated in a more
general setting.

In the sequel we will use the following Lemma.
Let A be an abelian variety.

(i.) A quotient of a continuously globally generated sheaf G on A is still a
continuously globally generated sheaf.

(ii.) Let
0 −→ F ′ −→ F −→ F ′′ −→ 0

be an exact sequence of sheaves on A, where F ′ and F ′′ are continuously
globally generated sheaves and such that H1(F ′ ⊗ α) = 0 for any α ∈
Pic0(A). Then the sheaf F is continuously globally generated.

Proof.

(i.) Let G′ be a quotient of G and U ⊂ Pic0(A) be a non-empty open subset.
Consider the following commutative diagram⊕

α∈U H
0(G ⊗ α)⊗ α∨ σ−→ G
↓ ↓ ν⊕

α∈U H
0(G′ ⊗ α)⊗ α∨ τ−→ G′.

Since the maps σ and ν are surjective, τ also has to be surjective, thus
G′ is continuously globally generated.

(ii.) If H is a sheaf and U ⊂ Pic0(A) is a non-empty subset, denote by
H̄U the sheaf

⊕
α∈U H

0(H ⊗ α) ⊗ α∨. The hypotheses imply that for any
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non-empty open subset U ⊂ Pic0(A) there is a commutative diagram

0 −→ F̄ ′U −→ F̄U −→ F̄ ′′U −→ 0
↓ ↓ ↓

0 −→ F ′ −→ F −→ F ′′ −→ 0

where the first and the third vertical arrow are surjective. At this point the
five-lemma implies that the middle vertical arrow is surjective as well.

3 The Bundle of Differential Operators

In order to prove Theorem ?? and Theorem ??, we need to introduce the
bundle of differential operators of order ≤ k, see [?], [?] and [?].

Let X be a smooth complex projective variety of dimension n and L be a
line bundle on X. Let ∆ ⊂ X×X be the diagonal of X and p, q : X×X → X
be the two projections onto the first and second factor. The k-jet bundle
associated to L, Jk(L), is the vector bundle

p∗(OX×X/Ik+1
∆ ⊗ q∗L)

where
Ik+1

∆ = {f ∈ OX×X | ordx(f) ≥ k + 1 for any x ∈ ∆}.

The k-jet bundle is a vector bundle of rank
(
k+n
n

)
whose fiber is

(Jk(L))x = Lx ⊗OX,x/mk+1
x ,

where x ∈ X and mx is the maximal ideal of OX,x. In other words the
elements of a fiber are equivalence classes of sections of L, where two sections
are in the same class if their Taylor expansions coincide up to order k near
x.

There are natural maps of sheaves

jk : L −→ Jk(L)

sending the germ of a section s at a point x ∈ X to its k-th jet. More
specifically for s ∈ H0(X,L), jk(s(x)) is the

(
k+n
n

)
-ple determined by the

coefficients of the terms of degree up to k, in the Taylor expansion of s
around x.

In this way we get a natural projection map

Jk(L) −→ Jk−1(L).
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A germ of a section of Jk(L) at a point x ∈ X is sent to zero, under the
projection map, if the terms of degree up to k − 1 in its Taylor expansion
vanish, hence the kernels of these maps are the vector bundles Symk(Ω1

X)⊗L.
In fact a germ of a section of Symk(Ω1

X)⊗ L at a point x ∈ X corresponds
to the

(
k+n−1
n−1

)
-ple determined by the coefficients of the terms of degree k in

its Taylor expansion around x.
Thus, for k ≥ 1, there are exact sequences of sheaves of OX -modules

0 −→ Symk(Ω1
X)⊗ L −→ Jk(L) −→ Jk−1(L) −→ 0.

Now we define the bundle of differential operators of order ≤ k associated
to L as

DkL := H omOX
(Jk(L), L) = Jk(L)∨ ⊗ L.

By dualizing and after tensoring by L the previous exact sequences we get
new exact sequences of sheaves of OX -modules.

0 −→ Dk−1
L −→ DkL −→ Symk(TX) −→ 0. (1)

A non-zero section s ∈ H0(X,L) determines a morphism of vector bundles

dk(s) : DkL −→ L

in this way. Let U ⊂ X be an open subset and let f := s|U ∈ L(U),
the map associates to any differential operator ΨU ∈ DkL(U) the section
ΨU (jkU (f)) ∈ L(U), where L(U) and DkL(U) are the rings of sections of L
and of DkL over the open set U and jkU is the map jk on the open set U . It
follows that dk(s) is zero exactly at the locus where s vanishes to order > k.
More precisely let D ∈ |L| = P(H0(X,L)), then D corresponds to a section
(modulo scalars), say φ. Consider the multiplicity-k locus

Σk(D) = {x ∈ X | multxD > k},

with its natural scheme structure. Then the image of dk(φ) is just the ideal
sheaf of this scheme, i.e. one has a surjective sheaf morphism

DkL −→ IΣk(D) ⊗ L. (2)

4 Proof of the Theorem

Now we are ready to prove the following
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Let A be a complex abelian variety of dimension g ≥ 2 and L be an
ample line bundle on A. For any k ≥ 1 and any divisor D ∈ |L|, let
Σk(D) = {x ∈ A | multxD > k} be the multiplicity-k locus of D. Then the
sheaf IΣk(D)⊗L⊗s is continuously globally generated for any k ≥ 1 and any
s ≥ 2.

Proof. Let Jk(L) be the k-jet bundle associated to L and DkL its bundle of
differential operators. Note that J0(L) = L and that D0

L = OA. First of all
we will prove that the bundle DkL ⊗ L⊗s−1 satisfies I.T.0. This is done by
induction on k, we begin with k = 1.

Since on an abelian variety the tangent bundle is trivial, by the exact
sequence (??) we get a new exact sequence

0 −→ OA −→ D1
L −→

⊕
g

OA −→ 0,

and by tensoring it by L⊗s−1, with s ≥ 2, we get

0 −→ L⊗s−1 −→ D1
L ⊗ L⊗s−1 −→

⊕
g

L⊗s−1 −→ 0.

The line bundle L satisfies I.T. 0 since it is ample on an abelian variety,
for the same reason also L⊗s−1 and

⊕
g L
⊗s−1 satisfy I.T. 0. Therefore

D1
L ⊗ L⊗s−1 satisfies I.T. 0.

Now suppose that the bundle Dk−1
L ⊗L⊗s−1 satisfies I.T. 0. By the exact

sequence (??) and by tensoring it by L⊗s−1 we get a new exact sequence

0 −→ Dk−1
L ⊗ L⊗s−1 −→ DkL ⊗ L⊗s−1 −→

⊕
(g+k−1

g−1 )
L⊗s−1 −→ 0.

The first term of the sequence satisfies I.T. 0 by inductive hypothesis and
easily also the last term satisfies I.T. 0, hence also the middle term satisfies
I.T. 0. By Proposition ?? the bundleDkL⊗L⊗s−1 is also continuously globally
generated.

Let D ∈ |L|. By tensoring the surjection (??) by L⊗s−1, we get a new
surjection

DkL ⊗ L⊗s−1 −→ IΣk(D) ⊗ L⊗s,

and hence the quotient IΣk(D) ⊗ L⊗s is continuously globally generated by
Lemma ?? (i.).
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With the same notation as in the previous Theorem, we have the follow-
ing

The sheaf IΣk(D) ⊗ L⊗s is globally generated for any k ≥ 1 and any
s ≥ 3.

Proof. By Theorem ?? we have that the sheaf IΣk(D) ⊗L⊗s is continuously
globally generated for any k ≥ 1 and any s ≥ 2. By tensoring this sheaf by
L, which is continuously globally generated by Proposition ??, we get the
claimed result by Proposition ??.

Finally, we would like to point out that, while the basic properties of con-
tinuously globally generated sheaves hold in arbitrary characteristic, those
of the bundles of differential operators hold only in characteristic zero, for
differentiation reasons. Hence the proof of Theorem ?? given above does
not work in positive characteristic.

5 Subvarieties of an Abelian Variety

In this section we investigate the same problem on smooth subvarieties of a
complex abelian variety.

[Nef Bundles] A line bundle L on a projective variety X is nef (or
numerically effective) if for every curve C ⊂ X∫

C
c1(L) ≥ 0.

A vector bundle E on a projective variety X is nef (or numerically
effective) if the associated line bundle OP(E)(1) is nef on the projectivized
bundle P(E) = Proj(

⊕
m SymmE).

For generalities on nef vector bundles see for example [?] Theorem 6.2.12.
Recall that quotients and pull-backs of nef vector bundles are nef, and that
any tensor product, exterior product, symmetric product, direct sums and
extensions of nef bundles are again nef. Moreover, the trivial bundle is
always nef and the tensor product of a nef bundle with an ample bundle is
an ample bundle. Note that the cotangent bundle of a smooth subvariety X
of an abelian variety (of arbitrary characteristic) A is nef : it is easy to get
a surjective map Ω1

A|X → Ω1
X , just consider the exact sequence

0 −→ IX/I2
X −→ Ω1

A|X −→ Ω1
X −→ 0,
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where IX/I2
X is the conormal sheaf of X in A. Since

Ω1
A|X =

⊕
OX

is nef then Ω1
X is also nef. We define Ωp

X :=
∧p Ω1

X .
For subvarieties, the setting is the following. Let A be a complex abelian

variety of dimension g and let X be a complex projective smooth subvariety
of A of dimension n ≥ 2. Let M be an ample line bundle on X and D ∈
|ωX ⊗M | be a divisor. Note that the linear system |ωX ⊗M | is non-empty:
it is enough to apply Theorem 5.8 in [?] to a subvariety of an abelian variety.
Let

Σ1(D) = {x ∈ X | multxD > 1}

be the singular locus of D.
Putting L := ωX ⊗ M , the sheaf L⊗s ⊗ ω⊗pX satisfies I.T. 0 for any

s ≥ 1 and any p ≥ 0: it follows by Kodaira’s Vanishing Theorem since
L⊗s ⊗ ω⊗pX = ωX ⊗ ω⊗s−1+p

X ⊗M⊗s and the line bundle ω⊗s−1+p
X ⊗M⊗s is

ample since ωX is nef and the tensor product beetwen a nef line bundle and
an ample line bundle is still ample.

The sheaf IΣ1(D)⊗L⊗s⊗ω
⊗p
X is continuously globally generated for any

s ≥ 2 and any p ≥ 1.

Proof. Consider the standard exact sequence for the bundle of differential
operators of order ≤ 1 associated to L

0 −→ D0
L = OX −→ D1

L −→ TX −→ 0.

By tensoring this sequence by L⊗s−1 ⊗ ω⊗pX , with s ≥ 2 and p ≥ 1, we get a
new one

0 −→ L⊗s−1⊗ω⊗pX −→ D
1
L⊗L⊗s−1⊗ω⊗pX −→ Ωn−1

X ⊗L⊗s−1⊗ω⊗p−1
X −→ 0,

where we have used the fact that Ωn−1
X = TX ⊗ ωX , see [?] Exercise II.5.16.

The first term of the sequence satisfies I.T. 0 and therefore it is contin-
uously globally generated by Proposition ??. The surjection

⊕
gOX → Ω1

X

of the conormal exact sequence induces a surjection
⊕

( g
n−1)
OX → Ωn−1

X .

By tensoring this surjection by L⊗s−1 ⊗ ω⊗p−1
X , we have that the quotient

Ωn−1
X ⊗L⊗s−1⊗ω⊗p−1

X is continuously globally generated by Lemma ?? (i.).
Now applying Lemma ?? (ii.) we also get that the middle term of the se-
quence, D1

L⊗L⊗s−1⊗ω⊗pX , is continuously globally generated and therefore
the quotient IΣ1(D) ⊗ L⊗s ⊗ ω

⊗p
X is continuously globally generated.
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Proceeding as in the proof of Corollary ?? we easily get the following
The sheaf IΣ1(D) ⊗ L⊗s ⊗ ω

⊗p
X is globally generated for any s ≥ 3 and

any p ≥ 1.
We can also ask for which positive integers s the sheaf IΣ1(D) is cut-

out by equations in |L⊗s|. We will use the following vanishing theorem for
varieties whose cotangent bundle is nef.

Let X be a complex projective smooth variety of dimension n whose
cotanget bundle Ω1

X is nef, and let L be an ample line bundle on X. Then

H i(Ωp
X ⊗ ω

⊗p+1
X ⊗ L) = 0, i > 0, p = 0, . . . , n.

Proof. The cases p = 0, n follow directly from the Kodaira’s Vanishing The-
orem. The idea in general is to apply Demailly’s Vanishing Theorem, see [?]
Theorem 7.3.14. To fix notation, recall briefly the theorem. Given a vector
bundle E of rank e and a representation

ρ : GL(e,C) −→ GL(N,C)

of algebraic groups one can associate to E a bundle Eρ of rank N by applying
ρ to the transition matrices describing E. The irreducible finite dimensional
representations of GL(e,C) are parametrized by non-increasing e-ples λ =
(λ1, . . . , λe) where λi are non negative integers and λ1 ≥ . . . ≥ λe ≥ 0. The
height of an e-ple h(λ) is the number of non-zero components of λ. Given
E and λ, we denote by ΓλE the bundle associated to the representation
corresponding to λ. Note that if λ = (1, . . . , 1, 0, . . . , 0) with m repetitions
of 1 then ΓλE =

∧mE. Demailly’s Vanishing Theorem states that if E is a
nef vector bundle and L is an ample line bundle then

H i(ωX ⊗ ΓλE ⊗ (detE)⊗h(λ) ⊗ L) = 0, i > 0.

Now it is sufficient to apply Demailly’s Vanishing Theorem with E = Ω1
X

and with λ = (

p−times︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0), in which case h(λ) = p.

With the same hypothesis of Theorem ??, we have
The sheaf IΣ1(D) ⊗ L⊗s is continuously globally generated for any s ≥

n+ 2.

Proof. By tensoring the standard exact sequence for the bundle of differen-
tial operators associated to L of order ≤ 1 by L⊗s−1, with s ≥ n+ 2, we get
the following exact sequence

0 −→ L⊗s−1 −→ D1
L ⊗ L⊗s−1 −→ TX ⊗ L⊗s−1 −→ 0.
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Let’s prove that the bundle D1
L ⊗ L⊗s−1 satisfies I.T. 0.

The first term of the sequence satisfies I.T. 0 and by Proposition ?? we get
that

H i(TX ⊗ L⊗s−1 ⊗ α) = H i(Ωn−1
X ⊗ ω⊗nX ⊗ ω⊗s−n−2

X ⊗M⊗s−1 ⊗ α) = 0,

∀ α ∈ Pic0(X), i > 0, s ≥ n+ 2,

therefore also the third term of the sequence satisfies I.T. 0. Then also the
middle term of the sequence satisfies I.T. 0 and hence it is continuously
globally generated. By Lemma ?? (i.) the quotient IΣ1(D) ⊗ L⊗s is also
continuously globally generated.

By Proposition ?? we get the following The sheaf IΣ1(D)⊗L⊗s is globally
generated for any s ≥ n+ 3.
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