
VIX computation based on affine stochastic volatility models in

discrete time

A. Hitaj∗, L. Mercuri†and E. Rroji‡

December 19, 2015

Abstract

We propose a class of discrete-time stochastic volatility models that, in a parsimonious way, capture the
time-varying higher moments observed in financial series. Three desirable results are obtained. First, we
have a recursive procedure for the log-price characteristic function which allows a semi-analytical formula for
option prices as in Heston and Nandi [2000]. Second, we reproduce some features of the VIX Index. Finally,
we derive a simple formula for the VIX index and use it for option pricing.
Keywords: Affine Stochastic Volatility; VIX; Implied Volatility Surface.

1 Introduction

The Black and Scholes model [see Black and Scholes, 1973] is probably the most famous model proposed for
option pricing. Despite its success, the drawbacks in representing real market stylized facts are well documented
by an increasing empirical literature [see Embrechts et al., 1997, and the references therein]. Since Mandelbrot
[1963], empirical results have shown that the process describing log returns is not a Brownian motion. Indeed,
financial time series exhibit heavy tails, asymmetric distribution, persistence and clustering in volatility.

Several models have been proposed in continuous and discrete time. A first improvement is obtained through
the introduction of the Lévy processes with jumps in finance. For instance, Merton [1976] introduced a Jump
diffusion model in the evaluation of option prices. The success of these models in finance is justified, on one
hand, by their analitycal tractability (the marginal distribution can be determined through the characteristic
function) and, on the other hand, by the ability on reproducing asymmetry and heavy tails in financial time series
[see Schoutens, 2003, Cont and Tankov, 2003, for a general survey]. A special attention deserves the process
whose distribution at time one is a Normal Variance Mean Mixture. Particular cases widely applied in finance
are the Variance Gamma process introduced by Madan and Seneta [1990], the Normal Inverse Gaussian [see
Barndorff-Nielsen and Shephard, 2001], the Hyperbolic and the Generalized Hyperbolic [see Barndorff-Nielsen,
1977, Eberlein and Prause, 1998]. Their main drawback is related to the independence of the increments that
makes them inadequate in capturing the dynamic of higher moments [see Iacus, 2011, for formulas of some Lévy
processes applied in option pricing].
A way to overcome these limits is by using stochastic volatility models for describing log return dynamics.
There are two sources of risk in these models: the first drives the volatility dynamics and the second directly
log returns. The main problem is that the volatility process is not observable in the market.
In discrete time the most commonly used class for modeling financial time series is the family of GARCH models
[Engle, 1995]. Despite the success in financial econometrics and risk management, their use for option pricing
is not yet very well understood, as observed in Christoffersen et al. [2012]. Monte Carlo technique is often used
to compute option prices in GARCH models [see Duan, 1995, Duan and Simonato, 1998, for the efficiency of
Monte Carlo estimator]. Another approach is using approximate formulas based on Edgeworth expansion [see
Duan et al., 1999, 2006]. It is well known that the Monte Carlo procedure is time consuming when calibration
exercise is considered, while the Edgeworth expansion seems to be less accurate for option pricing with long or
medium time to maturity.

A major breakthrough occurred with the paper of Heston and Nandi [2000] where the authors derived a
recursive procedure for the characteristic function of the log price at maturity, obtaining a semi analytical
formula for European call options based on Inverse Fourier Transform, as in Carr and Madan [1999]. Following
the same idea a new class of GARCH models, namely affine GARCH, has been developed assuming different
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assumptions for the innovations. In particular, Christoffersen et al. [2006] considered the Inverse Gaussian
innovations while Bellini and Mercuri [2007] Gamma innovations. Later Mercuri [2008] generalized the class of
affine GARCHmodels assuming that log returns are conditionally Tempered Stable distributed [see Ornthanalai,
2008, for more details on affine GARCH models].

As observed in Christoffersen et al. [2006], the extreme asymmetry of the affine GARCH models with non-
normal innovations gives an advantage for options with very short time to maturity. However, the fit is less
accurate for options with medium maturity probably due to the fact that the medium time to maturity return
distribution slowly converges to the Normal distribution.

To overcome this limit, starting from the affine GARCH model and assuming that the conditional distri-
bution of log returns is a Normal Variance Mean Mixture, we construct a discrete time stochastic volatility
model in a simple way. Indeed, substituting the mixing random variable with an affine GARCH, we obtain
a recursive procedure for the computation of the characteristic function for the log-price at maturity. Option
prices are obtained via Fourier transform. The introduction of this new class is motivated from the fact that
affine models (usually in continuous time) are quite natural for option pricing but the discrete time models are
easily estimated. Although the literature on affine stochastic volatility in continuous time is wide, the discrete
counterpart did not receive the same attention. The substitution of the mixing r.v. with an affine GARCH
process gives to our models the capability of capturing time dependence in financial times series, for instance
persistence in squared returns. This affine GARCH process controls also the magnitude of the return movements
and plays a similar role as the variance process in the continuous time models. Moreover, it generates time
varying higher order moments. Volatility [see Chicago Board Options Exchange, 2003] and Skew [see Chicago
Board Options Exchange, 2011] indexes cannot exist in a world with constant higher moments since they would
be useless. Time-dependence of these moments is coherent with price movements observed in the market making
our approach more realistic.
In our model, it is possible to extrapolate information from the VIX data and use it in option pricing. Indeed,
we find a linear relation between the variance dynamics and the V IX2. A similar result has been obtained in
discrete time by Hao and Zhang [2013] under the GARCH assumption and, for these models, the procedure
for extrapolating information from VIX in pricing Options on S&P500 has been considered recently in Kanni-
ainen et al. [2014] while Liu et al. [2015] analyze how to assess the risk premium in GARCH(1,1), GJR, and
HestonNandi models. However, our model is able to generate time-varying skewness and kurtosis that standard
GARCH models can not reproduce.

The paper is organized as follows. Section 2 explains the construction of stochastic volatility models in
discrete time. In Section 3 we prove that, in our setup, the VIX index is an autoregressive process with
heteroskedastic innovations: we derive a linear relation between the unobservable variance and the current level
of VIX index. In Section 4 we derive explicit formulas specifying the conditional distribution of log returns.
In Section 5 empirical results using the implied volatility surface obtained from Bloomberg data provider are
given. In Section 6 we draw some conclusions.

2 General Setup

In this section we propose a class of stochastic volatility models, in discrete time, through which we are able to
price options using the information extrapolated from the VIX index.
Given a filtered probability space (Ω,F ,Ft,P), we consider a market with two assets:
- riskless with dynamics: Bt = Bt−1 exp(r)
- risky with price dynamics:

St = St−1 exp(Xt)

Xt = r + λ0ht + λ1Vt + σ
√

VtZt (1)

where r is the deterministic free rate observed in the market; λ0 and λ1 are real valued model parameters while σ
must be non negative; Xt is a discrete time stochastic process describing log returns; Zt ∼ N(0, 1), ∀t = 1, ..., T
and is independent from Vt.
We require Vt to be an adapted positive process such that the conditional moment generating function (m.g.f.
hereafter) of Vt given the information available at time t− 1 is:

E[exp(cVt)|Ft−1] = exp(htf(c, θ)) (2)

and ∀ fixed vector θ, ∃ δ > 0 such that ∀c ∈ (−δ, δ) the function f(c, θ) ∈ C∞ and f(0, θ) = 0. The vector θ

contains the parameters of distribution Vt given information at time t − 1. We assume ht to be a predictable
process defined as:

ht = α0 + α1Vt−1 + βht−1. (3)
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The process ht is positive if the parameters α0, α1 and β are non negative.
It is worth noting that if Vt is constant (i.e. Vt = V̄ , t = 1, 2, . . . and consequently ht = h̄), the sequence
{Xt}t=1,2,... is composed by i.i.d gaussian r.v.’ s and a general sample path is centered in r + λ0h̄ + λ1V̄ .

The magnitude of movements depends on the value of V̄ . In this case, the oscillating behaviour of returns in
quiet and in turbulent markets can not be reproduced. The same observation holds if we assume the sequence
{Vt}t=1,2,... to be composed by i.i.d. random variables.
From (2) we have:

E[Vt|Ft−1] =
∂E[exp(cVt)|Ft−1]

∂c

∣
∣
∣
∣
c=0

.

Let g(θ) be defined as:

g(θ) :=
∂f(c, θ)

∂c

∣
∣
∣
∣
c=0

, (4)

the analytical expression for conditional mean of Vt becomes:

E[Vt|Ft−1] = htg(θ). (5)

Adding and subtracting the quantity α1g(θ)ht−1 in ((3)) we obtain for ht a new representation:

ht = α0 + (α1g(θ) + β)ht−1 + α1(Vt−1 − g(θ)ht−1). (6)

Observe that ht is an AR(1) with heteroskedastic error Vt−1 − g(θ)ht−1. Therefore, if we extrapolate from the
market the realizations of ht, the generalized least square technique gives us estimates for the quantities α0, α1,

and α1g(θ) + β. In our model, the conditional variance evolves according to the stochastic process ht:

V ar [Vt| Ft−1] = ht
∂2f(c, θ)

(∂c)2

∣
∣
∣
∣
c=0

.

An essential requirement, based on empirical evidence, is the negative correlation between returns and volatility
which implies:

Cov (Vt,Xt| Ft−1) = λ1V ar(Vt|Ft−1) < 0, (7)

meaning that λ1 must be negative.
If we compute the conditional expectation of Xt we have:

E (Xt |Ft−1 ) = r + (λ0 + λ1g (θ))ht. (8)

Looking to relation in (8) is natural for a financial interpretation to require λ0 + λ1g (θ) > 0 since it implies a
positive risk premium for the asset.
In the special case when σ = 0 the process describing Xt is an affine GARCH as in Christoffersen et al. [2006],
Bellini and Mercuri [2007] and Mercuri [2008].

Our approach tries to generalize the Lévy processes built on the Normal Variance Mean Mixtures since
we introduce a dependence structure. Indeed the conditional distribution evolves through time due to the
predictable process ht.

Both ht and σ are crucial for the variability of the process Xt but σ does not introduce any heteroskedasticity
in the model and for obtaining time dependent higher moments we need ht to be defined as in (6). Through the
predictable process ht, we are able to generalize the Lévy process built on the Normal Variance Mean Mixture
obtaining a distribuition of increments that evolves in time.

The next step is to show how to price a European call option with maturity T where the dynamics of the
log returns for the risky asset is defined in (1). Here, we provide a simple recursive procedure through which
we obtain the conditional m.g.f. of ln (ST ) using a similar approach as that introduced in Heston and Nandi
[2000].

Proposition 1 Under condition (2), the m.g.f. of the random variable lnST given the information at time t

exists and is given by:
E[exp(c ln (ST ))|Ft] = Sc

t exp[A(t;T, c) +B(t;T, c)ht+1].

The time-dependent coefficients A(t;T, c) and B(t;T, c) are:







A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

f(cλ1 + α1B(t+ 1;T, c) + c2σ2

2 , θ)

(9)
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with the following final conditions:
A(T ;T, c) = 0
B(T ;T, c) = 0.

(see Appendix 7.1)

The existence of m.g.f. allows us to obtain the characteristic function and the distribution function is achieved
by the inverse Fourier transform.

Our aim is to price options and compute implied volatility indexes. In order to ensure the martingale
condition under Q measure, we use the following proposition.

Proposition 2 Under the assumptions E(St) < +∞ and λ0 = −f(λ1 + σ2

2 , θ), the discounted price is a
martingale.
(see Appendix 7.2)

We have obtained in Proposition 1 the m.g.f. for the underlying of a call option. The next step is the
evaluation of a European call option as in Heston [1993]

C(K,T ) = S0Π1 −Ke−rTΠ2

Π1 =
1

2
+

1

π

∫ +∞

0

ℜ
(

K−iuE
Q
0 [S

i(u−i)
T ]

iuE
Q
0 [ST ]

)

du

Π2 =
1

2
+

1

π

∫ +∞

0

ℜ
(

K−iuE
Q
0 [Siu

T ]

iu

)

du

The exercise probabilities Π1 and Π2 can be computed following Feller [1968].

3 VIX Index

In this Section we show how to derive the Volatility Implied Index (VIX) in our model. In particular, the linear
relation between VIX and the process ht is derived. From a theoretical point of view, this relation implies
that the VIX is a mean-reverting autoregressive process with heteroskedastic errors. A similar result has been
proposed in Zhang and Zhu [2006] under the assumption that the SPX dynamics is described by Heston [1993].
The methodology for computing the VIX index is based on the replication of a variance swap [see Demeterfi
et al., 1999] and the current level of VIX is related to the value of the portfolio composed by out-of-the money
call/put options on the S&P500. Assuming that the strike prices vary continuously from 0 to +∞, the VIX
squared formula is the following:

(
V IXt

100

)2

=
2er(T−t)

T − t

[
∫ S∗

0

1

K2
P (St,K)dK +

∫ +∞

S∗

1

K2
C(St,K)dK

]

=
2er(T−t)

T − t

[

E
Q
t

(
ST − S∗

S∗
− ln

(
ST

S∗

))]

. (10)

C(St,K) and P (St,K) are out-of-the money call and put option prices. S∗ is the forward price of the SPX
index.
The main result of our model is reported in the following proposition.

Proposition 3 Under the conditions:

α1g(θ) + β < 1

λ1g(θ)− f
(

λ1 +
σ2

2 , θ
)

≤ 0

ht+1 > 0

(11)

the VIX squared is an affine linear function of the predictable process ht:

(
V IXt

100

)2

= −2er(T−t)

T − t
[C(t;T ) +D(t;T )ht+1] (12)

where C(t;T ) and D(t;T ) are functions of the model parameters, given by:







C(t;T ) = α0 [λ1g(θ) + λ0]

{

T−t−1−[α1g(θ)+β]
1−[α1g(θ)+β](T−t)−1

1−[α1g(θ)+β]

1−[α1g(θ)+β]

}

D(t;T ) = [λ1g(θ) + λ0]
1−[α1g(θ)+β]T−t

1−[α1g(θ)+β]

(13)
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with T − t = 30 days.
(See Appendix 7.3)

Considering the fact that VIX is a measure of the 30 days implied volatility on S&P500, equation (12)
becomes:

(
V IXt

100

)2

= −2er30

30
[C30 +D30ht+1]

where r is the one month Libor rate on daily basis.
We define the adjusted VIX as:

V IX
adj
t = − 30

2er30
V IX2

t

104
.

Notice that V IX
adj
t < 0 ∀t since it is a decreasing linear transformation of the VIX squared.

Using Proposition 3 we have:

V IX
adj
t = C30 +D30ht+1 ⇒ ht+1 =

V IX
adj
t − C30

D30
. (14)

The requirement ht+1 > 0 implies that 0 > V IX
adj
t > C30 ∀t.

Using the definition (6) of ht, we have following proposition:

Proposition 4 Under the same conditions of Proposition 3, defining the heteroskedastic error term τt :=
α1(Vt − g(θ)ht)D30, the V IX

adj
t is an AR(1) defined as:

V IX
adj
t = int+ slopeV IX

adj
t−1 + τt

where {
int = 30α0 (λ1g(θ) + λ0)
slope = α1g(θ) + β

(see Appendix 7.4)

Given the model parameters, the current and the one-day-ahead VIX level we have the heteroskedastic error
term defined as:

τt+1 = V IXt+1 − int− slopeV IXt.

From equation (14) we extract ht+1 and obtain the value of the main ”unobservable” variable of our model, i.e
Vt+1:

Vt+1 = g(θ) +
τt+1

α1D30
.

Once estimated int and slope we can redefine D30 and C30 in order to extrapolate a multiple of ht+1 from the
quoted V IXt. In particular we get:

D30 =
D∗

30

α0
=

int
(
1− slope30

)

30 ∗ (1− slope)

1

α0

C30 =




29− slope 1−slope29

1−slope

1− slope




int

30

V IX
adj
t − C30

D∗
30

=
ht+1

α0
> 0

The quantity ht+1

α0
can be used to compute the m.g.f. of ln(ST )|Ft needed in option pricing.

If slope < 1, V IX
adj
t is mean reverting. The long term mean and the reverting speed are respectively:

int

1− slope
, 1− slope.

The conditional mean of the error term is zero but we are in presence of heteroskedasticity:

E [τt| Ft−1] = 0, V ar [τt| Ft−1] = α2
1D

2
30V ar [Vt| Ft−1] .
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Although Cov [τt+1, τt| Ft−1] = 0 and Cov
[
τt+1, τ

2
t

∣
∣Ft−1

]
= 0, the error time-dependence structure is more

complex than a linear one. The following quantities are different from zero and time dependent:

Cov
[
τ2t+1, τt

∣
∣Ft−1

]
= α3

1D
3
30

∂2f

(∂c)2

∣
∣
∣
∣
c=0

[

α0 + α1
∂2f

(∂c)2

∣
∣
∣
∣
c=0

]

ht

Cov
[
τ2t+1, τ

2
t

∣
∣Ft−1

]
= α4

1D30
∂2f(c, θ)

(∂c)2

∣
∣
∣
∣
c=0

[

α0 + (α1g(θ) + β)
∂2f(c, θ)

(∂c)2

∣
∣
∣
∣
c=0

h2
t + α2

1µ3

]

where µ3 = E
[
(Vt − g(θ))3

∣
∣Ft−1

]
.

4 Special cases

The conditional distribution of log returns belongs to the family of Normal Variance Mean Mixture since Zt in
(1) is normally distributed. A univariate Normal Variance Mean Mixture [see Barndorff-Nielsen et al., 1982] is
a random variable defined as:

X
d
=µ+ λV + σ

√
V Z

where Z and V are independent univariate random variables, Z ∼ N(0, 1), and V is defined on the positive real
line. Below we introduce three special cases of our approach where the conditional distribution of log returns is
respectively Variance Gamma [see Madan and Seneta, 1990], Normal Inverse Gaussian [see Barndorff-Nielsen
and Shephard, 2001] and Normal Tempered Stable [see Barndorff-Nielsen and Shephard, 2001].

4.1 Dynamic Variance Gamma

Assuming that the affine GARCH process Vt is conditionally Gamma distributed [see Bellini and Mercuri, 2007]
then Xt in (1) follows a Dynamic Variance Gamma model introduced by Bellini and Mercuri [2011].
The conditional m.g.f. of the Vt is:

E
[
ecVt

∣
∣Ft−1

]
= exp [−ht ln (1− c)]

f(c, θ) = − ln (1− c)
g(θ) = 1.

System (9) becomes:






A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

− ln
(

1− cλ1 − α1B(t+ 1;T, c)− c2σ2

2

)

.

(15)

System (13) becomes:







C(t;T, c) = α0 (λ1 + λ0)

{

(T−t)−(α1+β)
1−(α1+β)T−t−1

1−(α1+β)

1−(α1+β)

}

D(t;T, c) = (λ1 + λ0)
1−(α1+β)T−t

1−(α1+β) .

(16)

with final conditions C(T ;T, c) = 0 and D(T ;T, c) = 0. We have the following restrictions on the parameters:







λ1 ≤ 0

λ0 = ln
(

1− λ1 − σ2

2

)

α1 + β ≤ 1

λ1 + ln
(

1− λ1 − σ2

2

)

≤ 0.

(17)

4.2 Dynamic Normal Inverse Gaussian

If the affine GARCH process Vt is conditionally Inverse Gaussian distributed [see Christoffersen et al., 2006]
than log-returns Xt, given the information at time t − 1, have a Normal Inverse Gaussian distribution [see
Barndorff-Nielsen, 1997].
The density of a Inverse Gaussian distribution is:

fV (v) =
ht√
2πv3

exp

[

−1

2

(√
v − ht√

x

)2
]

.
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The conditional m.g.f. of the Vt is:

E
[
ecVt

∣
∣Ft−1

]
= exp

[
ht

(
1−

√
1− 2c

)]

f(c, θ) =
(
1−

√
1− 2c

)

g(θ) = 1.

System (9) becomes:






A(t;T, c) = xr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

√

1− 2
(
cλ1 + α1B(t+ 1;T, c) + c2σ2

2

)
.

(18)

System (13) becomes






C(t;T, c) = α0 (λ1 + λ0)

{

(T−t)−(α1+β)
1−(α1+β)T−t−1

1−(α1+β)

1−(α1+β)

}

D(t;T, c) = (λ1 + λ0)
1−(α1+β)T−t

1−(α1+β)

(19)

with final conditions C(T ;T, c) = 0 and D(T ;T, c) = 0. We have the following restrictions on the parameters:






λ1 ≤ 0

λ0 = −
(

1−
√

1− 2
(
λ1 +

σ2

2

)
)

λ1 − 1 +
√

1− 2
(
λ1 +

σ2

2

)
< 0

α1 + β < 0

(20)

4.3 Dynamic Normal Tempered Stable

Consider the affine process Vt proposed in Mercuri [2008] then log returns follow a conditional Normal Tempered
Stable as introduced in Barndorff-Nielsen and Shephard [2001]. We recall that the Normal Tempered Stable is
obtained as a Normal Variance Mean Mixture where the mixing density is a Tempered Stable [see Tweedie, 1984]
that is obtained by tempering the tail of a positively skewed α− Stable distribution. The Normal Tempered
Stable has as special cases the Variance Gamma and the Normal Inverse Gaussian.
The conditional m.g.f. of Vt|Ft−1 is:

E
[
ecVt

∣
∣Ft−1

]
= exp

[

htb
(

1− (1− 2cb−1/α)α
)]

(21)

where α ∈ (0, 1) and b > 0.
Comparing (21) with (2), we have:

f(c, θ) = b
(

1− (1− 2cb−1/α)α
)

and
g(θ) = 2αb(α−1)/α.

Applying Proposition 1, we obtain the recursive system of equations for time dependent coefficients:






A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

b
{

1−
[

1− 2b−
1
α

(

cλ1 + αB(t+ 1;T, c) + c2σ2

2

)]α}

.

(22)

From Proposition 2 we have the following constraint:

λ0 = −b

[

1−
(

1− 2

(

λ1 +
σ2

2

)

b1/α
)α]

and, implementing the Fast Fourier Transform, we price the European call option.
Using Proposition 3, we obtain the following time varying coefficients that allow us to extrapolate ht from
current level of VIX:







C(t;T ) = α0

(
2αb(α−1)/αλ1 + λ0

)
∗

∗







(T−t)−(2αb(α−1)/αα1+β)
1−(2αb(α−1)/αα1+β)

T−t−1

1−(2αb(α−1)/αα1+β)
1−(2αb(α−1)/αα1+β)







D(t;T ) = (2αb(α−1)/αλ1 + λ0)
1−(2αb(α−1)/αα1+β)

T−t

1−(2αb(α−1)/αα1+β)

. (23)
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In this case the condition (11) becomes:

{

2αb(α−1)/αλ1 − b
[

1−
(

1− 2
(

λ1 +
σ2

2

)

b−1/α
)α]

≤ 0.

α1 + β < 1
(24)

5 Empirical Analysis

We investigate in details the ability of our models to reproduce the behavior of European option prices on
SPX index. We have two main objectives: replicate the market option volatilities and compare the theoretical
VIX derived in our models with the observed one. The dataset is composed by the implied volatility surfaces
observed each Wednesday going from May 2011 to April 2012, moneyness ranging from 0.9 to 1.1 and time to
maturity 30, 60 and 90 days (the total number of observations is 1008). We choose Wednesday’s observations
to remove possible weekend effects as those discussed in French [1980]. From equation 1 we see that we need
the term structure of the risk-free rate in order to compute the m.g.f of the variable lnST . The Libor curve can
be a possible choice though we know it is not the only one. We downloaded the needed curve from Bloomberg.

The first Wednesdays of each month are the in-sample data (231 observations). The remaining dataset
(777 observations) is used for the out-of-sample analysis. We calibrate the model in each in-sample period.
The values obtained for the parameters are used as input for the out-of-sample analysis. The error measure
considered is:

√

percMSE =

√
√
√
√

∑K
k=1

∑T
t=1

[
σmkt(k,t)−σtheo(k,t)

σmkt(k,t)

]2

NT ∗NK

where σmkt(k, t), σtheo(k, t) are respectively the implied volatilities observed in the market and those obtained
by the models. NT , NK represent respectively the number of the available maturities and strikes.

Tables 1, 2 and 3 report the values of the calibrated parameters and the corresponding in-sample errors.

Insert here Tab. 1, 2 and 3.

Our calibration exercise takes into account the possibility of extrapolating the latent process ht directly
from the VIX index. We find that for the DNTS model the in-sample errors are the lowest except only in one
case where the DNIG model has the best performance. This result strongly supports our initial guess that two
additional parameters would allow to better capture the market dynamics. Observe that if b = 2a and α = 1

a
for a → 0 we obtain the DVG model, while for b = 1 and α = 1

2 the model is the DNIG.
The out-of-sample results suggest the use of the DNTS model in the considered dataset. Indeed, computing

the
√
percMSE on the entire out-of-sample data, we find that the DNTS reaches an error level of 5.05% which

is a reduction error of 21.10% with respect to DNIG (the second best model). To deeply analyse the out of
sample error, Figure 1 reports the results obtained in 36 out-of-sample Wednesdays. In 72% of the cases the
DNTS shows a lower error level than the other two while the DNIG has the lowest error level only in 14% of
the cases.

Insert here Fig. 1.

We remark that in our model the square of the VIX is an autoregressive process. The conditional expected
value of the VIX is not available in a closed form formula. However, using Jensen’s inequality, we easily derive
the following upper bound that we use in our analysis:

E [V IXt+1| Ft] = E

[√

V IX2
t+1

∣
∣
∣
∣
Ft

]

≤
√

E
[
V IX2

t+1

∣
∣Ft

]
= V IXub

t+1.

Using Proposition 4 and equation (14), our upper bound becomes:

V IXub
t+1 =

√

−2e30r104

30
int+ slopeV IX2

t

where all quantities are on daily basis and the year conversion is necessary for comparison with its observed
level.
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We calibrate the model on the first Wednesday of each month (in total there are 12 calibration periods).
The resulting parameters are maintained fixed until the next in-sample day. From Figure 4 and Table 5 we
observe that the DVG model displays the worst performance.

Insert here Fig. 2.

Insert here Tab. 4.

Instead of having fixed parameters for the entire month we can decide to make the recalibration period
dynamic. Intuitively, if the market conditions change a lot (i.e. we observe a jump of the implied volatility),
it is reasonable to think that in order to have a better prediction for the VIX level we must update the model
parameters. This update for us means to recalibrate the model using the option volatilities observed after the
jump has occurred.
We face the problem of defining the jump in terms of relative daily variation of the VIX Index level. If the
observed VIX level is lower than 30 percent we recalibrate if the next day relative variation is higher than 30%.
For example if the current level of VIX is 15% we recalibrate the model if the next day value is higher than 20%
or lower than 10%. For higher levels of the VIX index (more than 30%) the required daily relative variation is
fixed at 25%. This decision comes from the fact that VIX levels higher than 39% are rarely observed. In Figure
3 we report a comparison between the VIX and S&P500 for the considered dates.

Insert here Fig. 3.

The number of calibrations is reduced from 12 (when the parameters for the entire month are fixed) to 9
(when decision is dependent on the VIX level). Comparing the results reported in Table 4, and Table 5, the

error term, defined as

√

E
[

(V IXmkt − V IXub)
2
]

, is reduced when the calibration time is based on VIX index

level. This is also confirmed from Figures 3 and 4.

Insert here Fig. 4.

Insert here Tab. 5.
The choice of the DNTS showed in the calibration exercise seems to be weaker when we try to forecast the

VIX index level. In particular, the DNIG seems to behave better in some extreme market conditions.

6 Conclusions

In this paper we proposed a class of discrete time stochastic volatility models. We started from the affine GARCH
model and assumed that the conditional distribution of log returns is a Normal Variance Mean Mixture with
support the entire real line. We obtained a recursive procedure for the computation of the characteristic function
for the log-price at maturity. Option prices were than obtained via Fourier transform.
In our model, it is possible to extrapolate information from the VIX data. The V IX2 index resulted to be an
autoregressive process and the information extracted was used for pricing options on S&P500.
We specified some special cases for our general model. The Dynamic Normal Inverse Gaussian based model
resulted to be more flexible in capturing market dynamics especially in turbulent periods.

7 Appendix

7.1 Conditional Moment Generating Function

Following the approach proposed in Heston and Nandi [2000] we derive a system of recursive equations for
the time dependent coefficients of the conditional m.g.f. of the random variable ln(ST ) given the available
information at time t. We want to prove that the conditional m.g.f. is given by the following formula:

Et [ exp (c ln (ST ))| Ft] = Sc
t exp [A (t;T, c) +B (t;T, c)ht+1] . (25)

We use the mathematical induction method.

1. We observe that relation (25) holds at time T since A(T ;T, c) = 0 and B(T ;T, c) = 0.

2. We suppose the relation (25) holds at time t+ 1 and, by the law of iterated expectations, we prove it at
time t.

9



E [E [Sc
T | Ft+1]| Ft] = E [ exp [A (t+ 1;T, c) +B (t+ 1;T, c)ht+2]| Ft]

= E [exp [c ln (ST ) + cr +A(t+ 1;T, c)

+ cλ0ht+1 + cλ1Vt+1 + cσ
√
Vt+1Zt+1+

+α0B (t+ 1;T, c) + α1B (t+ 1;T, c)Vt+1 + βB (t+ 1;T, c)ht+1 ] | Ft]
= Sc

t exp [cr +A (t+ 1;T, c) + α0B (t+ 1;T, c) + (cλ0 + βB (t+ 1;T, c))ht+1] ∗
∗E
[

exp
[(

cλ1 + α1B (t+ 1;T, c) + c2σ2

2

)

Vt+1

]∣
∣
∣Ft

]

.

(26)

Using the conditional m.g.f. of the r.v. Vt+1, equation (26) becomes:

E [E [Sc
T | Ft+1]| Ft] = Sc

t exp [cr +A (t+ 1;T, c) + α0B (t+ 1;T, c)+

+
(

cλ0 + βB (t+ 1;T, c) + f
(

cλ1 + α1B (t+ 1;T, c) + c2σ2

2 , θ
))

ht+1

]
(27)

By comparing the expression obtained in equation (27) with (25) we obtain the following recursive system:







A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

f(cλ1 + α1B(t+ 1;T, c) + c2σ2

2 , θ)

(28)

with A(T ;T, c) = 0 and B(T ;T, c) = 0.

7.2 Martingale condition

We want to prove that ∀s ≤ t:

λ0 = −f(λ1 +
σ2

2
; θ)

(1)
=⇒ E

[
St

er

∣
∣
∣
∣
Ft−1

]

= St−1
(2)
=⇒ E

[
St

er(t−s)

∣
∣
∣
∣
Fs

]

= Ss. (29)

(
(1)
=⇒)
We assume r to be constant but the proof holds even assuming r to be a predictable process. By simple calculus,
we obtain:

E

[
St

er

∣
∣
∣
∣
Ft−1

]

= St−1 exp

[(

λ0 + f

(

λ1 +
σ2

2
; θ

))

ht−1

]

(30)

substituting λ0 = −f(λ1 +
σ2

2 ; θ) in (30) we obtain the result.

(
(2)
=⇒)
By the iterated law of conditional expectation we have:

E

[
St

er(t−s)

∣
∣
∣
∣
Fs

]

= E

[

E

[
St

er(t−s)

∣
∣
∣
∣
Ft−1

]∣
∣
∣
∣
Fs

]

= E








1

er(t−s−1)
E

[
St

er

∣
∣
∣
∣
Ft−1

]

︸ ︷︷ ︸

St−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

Fs








= ... = E

[
Ss+1

er

∣
∣
∣
∣
Fs

]

= Ss.

7.3 VIX Index: derivation formula

We derive an analytical formula for the VIX index when the dynamics of S&P 500 belongs to our class. Defined
S∗ as the forward price of St with maturity T − t, we start from the VIX definition:

(
V IXt

100

)2

=
2er(T−t)

T − t







EQ

[
ST − S∗

S∗

∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

(∗)

−EQ

[

ln

(
ST

S∗

)∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

(∗∗)







.

The quantity in (∗) is 0 since:

EQ

[
ST − S∗

S∗

∣
∣
∣
∣
Ft

]

=
1

Ster(T−t)
EQ [ST | Ft]− 1 = 0.
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Given the spot price St, we have ST = St exp
(
∑T

d=t+1 Xd

)

and by substituting in (∗∗) we get the following

expression for VIX squared:

(
V IXt

100

)2

= −2er(T−t)

T − t
E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

(∆)

. (31)

In order to compute the quantity (∆) in (31) we use the mathematical induction method. ∀ l = t, . . . , T we
assume that:

E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl

]

= C(l;T ) +D(l;T )hl+1 +

l∑

d=t+1

λ1Vd + λ0hd (32)

with C(T ;T ) = 0 and D(T ;T ) = 0. First, we notice that all the quantities on the right side of (32) are known
given the information at time l.

1. Since Vt and ht are respectively adapted and predictable process our assumption is true for l = T if
C(T ;T ) = 0 and D(T ;T ) = 0.

2. We suppose the relation holds at time l + 1 and we prove it for time l using the property of iterated
expectations.

E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl

]

= E

[

E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl+1

]∣
∣
∣
∣
∣
Fl

]

. (33)

The quantity on the right hand side of equation (33) is equal to:

E

[

C(l + 1;T ) +D(l + 1;T )hl+2 +

l+1∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl

]

. (34)

Substitute in (34) the definition of hl+2 and get:

C(l + 1;T ) + α0D(l + 1;T ) + (βD(l + 1;T ) + λ0)ht+1 +
∑l

d=t+1(λ1Vd + λ0hd)
+E [ (α1D(l + 1;T ) + λ1)Vl+1| Fl] .

From (5) we get:

C(l + 1;T ) + α0D(l + 1;T ) + [(λ0 + λ1g(θ)) + (β + α1g(θ))D(l + 1;T )]ht+1

+
∑l

d=t+1 λ1Vd + λ0hd

and, by comparison with (32), we get the following system:
{

C(l;T ) = C(l + 1;T ) +D(l + 1;T )α0

D(l;T ) = [λ1g(θ) + λ0] + (α1g(θ) + β)D(l + 1;T )
(35)

with final conditions C(T ;T ) = 0 and D(T ;T ) = 0.
We show that if the following two conditions are satisfied:

• α1g(θ) + β < 1

• λ1g(θ) + λ0 ≤ 0

the right hand of the equation (12) is positive, coherently with the fact of being equal to the squared VIX value.
We notice that D(l;T ) is a linear difference equation whose solution at time l = t, ∀t ≤ T is given by:

D(t;T ) = [λ1g(θ) + λ0]
︸ ︷︷ ︸

≤0

1− [α1g(θ) + β]
T−t

1− [α1g(θ) + β]
︸ ︷︷ ︸

>0

. (36)

The solution (36) and the positivity of α0 imply negative values for C(t;T ):

C(t;T ) = C(T ;T )
︸ ︷︷ ︸

=0

+D(T ;T )
︸ ︷︷ ︸

=0

+α0

T−1∑

l=t+1

D(l;T )
︸ ︷︷ ︸

<0

= α0 [λ1g(θ) + λ0]







T − t− 1− [α1g(θ) + β] 1−[α1g(θ)+β](T−t)−1

1−[α1g(θ)+β]

1− [α1g(θ) + β]






.
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7.4 VIX Index: autoregressive model

In equation (6), we substitute the expression for ht+1 and ht using the VIX adjusted as in (14). We obtain

V IX
adj
t − C30

D30
= α0 + (α1g(θ) + β)

V IX
adj
t−1 − C30

D30
+ α1(Vt − g(θ)ht) ⇒

V IX
adj
t = α0D30 + C30 [1− (α1g(θ) + β)] + (α1g(θ) + β)V IX

adj
t−1 + α1D30(Vt − g(θ)ht).

We can easily observe that V IX
adj
t is an AR(1) and it can be written as:

V IX
adj
t = int+ slopeV IX

adj
t−1 + τt.

Trivially we have:

int = α0D30 + C30 [1− (α1g(θ) + β)]

slope = (α1g(θ) + β)

τt = α1D30(Vt − g(θ)ht).

Using the explicit solution (13) for C30 and D30 and by rearranging, we get a simple expression for int:

int = α0 (λ1g(θ) + λ0)
1−slope30

1−slope + α0 (λ1g(θ) + λ0)
(

29− slope 1−slope29

1−slope

)

= 30α0 (λ1g (θ) + λ0) .
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In sample calibration for DVG

date λ0 λ1 σ α0 α1 β Perc. error

04-May-2011 0.012 -0.012 0.014 0.033 0.493 0.379 0.048
01-Jun-2011 0.036 -0.039 0.069 0.009 0.274 0.148 0.084
06-Jul-2011 0.005 -0.005 0.006 0.033 0.344 0.633 0.027
03-Aug-2011 0.034 -0.035 0.001 0.060 0.317 0.000 0.037
07-Sep-2011 0.008 -0.008 0.011 0.032 0.538 0.444 0.015
05-Oct-2011 0.051 -0.053 0.029 0.028 0.155 0.484 0.024
02-Nov-2011 0.095 -0.100 0.007 0.018 0.057 0.085 0.039
07-Dec-2011 0.060 -0.062 0.007 0.024 0.008 0.454 0.052
04-Jan-2012 0.019 -0.019 0.020 0.023 0.207 0.644 0.048
01-Feb-2012 0.036 -0.038 0.056 0.017 0.014 0.157 0.048
07-Mar-2012 0.042 -0.043 0.029 0.000 0.000 1.000 0.088

Table 1: Calibrated parameters for the DVG model in the in-sample period

In sample calibration for DNIG

date λ0 λ1 σ α0 α1 β Perc. error

04-May-2011 0.049 -0.052 0.062 0.006 0.012 0.572 0.039
01-Jun-2011 0.047 -0.050 0.061 0.006 0.016 0.604 0.029
06-Jul-2011 0.009 -0.009 0.011 0.009 0.168 0.816 0.024
03-Aug-2011 0.035 -0.036 0.042 0.029 0.212 0.059 0.022
07-Sep-2011 0.067 -0.072 0.075 0.017 0.120 0.113 0.022
05-Oct-2011 0.007 -0.008 0.010 0.028 0.427 0.564 0.007
02-Nov-2011 0.060 -0.064 0.066 0.007 0.081 0.674 0.019
07-Dec-2011 0.046 -0.048 0.057 0.005 0.008 0.867 0.024
04-Jan-2012 0.029 -0.030 0.019 0.019 0.065 0.733 0.057
01-Feb-2012 0.030 -0.031 0.042 0.023 0.269 0.109 0.034
07-Mar-2012 0.013 -0.014 0.015 0.010 0.211 0.760 0.026

Table 2: Calibrated parameters for the DNIG model in the in-sample period

In sample calibration for DNTS

date λ0 λ1 σ α0 α1 β b a Perc. error

04-May-2011 0.212 -0.107 0.013 0.002 0.363 0.276 0.814 0.990 0.009
01-Jun-2011 0.066 -0.042 0.039 0.011 0.296 0.000 0.800 0.750 0.019
06-Jul-2011 0.005 -0.005 0.006 0.039 0.380 0.596 1.000 0.500 0.025
03-Aug-2011 0.052 -0.027 0.008 0.012 0.510 0.000 0.897 0.955 0.007
07-Sep-2011 0.005 -0.006 0.009 0.051 0.658 0.409 0.962 0.413 0.015
05-Oct-2011 0.012 -0.016 0.026 0.001 0.116 0.910 0.946 0.345 0.004
02-Nov-2011 0.003 -0.003 0.006 0.133 0.806 0.233 0.863 0.351 0.011
07-Dec-2011 0.085 -0.043 0.010 0.004 0.473 0.072 0.854 0.975 0.005
04-Jan-2012 0.003 -0.005 0.007 0.105 0.772 0.449 1.000 0.341 0.018
01-Feb-2012 0.100 -0.053 0.021 0.001 0.104 0.803 0.800 0.934 0.014
07-Mar-2012 0.018 -0.011 0.007 0.032 0.539 0.090 0.965 0.803 0.024

Table 3: Calibrated parameters for the DNTS model in the in-sample period
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Figure 1: Out of sample weekly comparison.
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Figure 2: Comparison between the predict VIX (upper bound ∗) and next day open, closed, min, max VIX
level using monthly calibration
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Figure 3: Comparison between VIX and S&P500.

DVG DNIG DNTS

Open 1,111% 0,029% 0,140%
Closing 0,967% 0,173% 0,004%

High 2,187% 1,047% 1,216%
Low 0,028% 1,167% 0,999%

Table 4: Errors obtained when the calibration is done the first Wednesday of each month.
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DVG DNIG DNTS

Open 0,589% 0,005% 0,080%
Closing 0,445% 0,139% 0,064%

High 1,665% 1,081% 1,156%
Low 0,550% 1,133% 1,059%

Table 5: Errors obtained when the calibration decision depends on the VIX index level.
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Figure 4: Comparison between the predict VIX (upper bound ∗) and next day open, closed, min, max VIX
level using monthly calibration
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