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High Crosslink process was introduced in the development of joint prosthetic devices, in

order to decrease the wear rate of ultrahigh molecular weight polyethylene (UHMWPE),

but it also triggers the formation of free radicals and oxidative stress, which affects

the physiological bone remodeling, leading to osteolysis. Vitamin E stabilization of

UHMWPE was proposed to provide oxidation resistance without affecting mechanical

properties and fatigue strength. The aim of this study is to evaluate the antioxidant

effect of vitamin E added to UHMWPE on oxidative stress induced osteolysis, focusing

in particular on the oxidative stress response in correlation with the production

of osteoimmunological markers, Sclerostin and DKK-1, and the RANKL/OPG ratio

compared to conventional UHMWPE wear debris. Human osteoblastic cell line SaOS2

were incubated for 96 h with wear particles derived from crosslinked and not crosslinked

Vitamin E-stabilized, UHMWPE without Vitamin E, and growth medium as control.

Cellular response to oxidative stress, compared to not treat cells, was evaluated in terms

of proteins O-GlcNAcylation, cellular levels of OGA, andOGT proteins by immunoblotting.

O-GlcNAcylation and its positive regulator OGT levels are increased in the presence of

Vitamin E blended UHMWPE, in particular with not crosslinked Vit E stabilized UHMWPE.

Conversely, the negative regulator OGA increased in the presence of UHMWPE

not blended with Vitamin E. Vitamin E-stabilized UHMWPE induced a decrease of

RANKL/OPG ratio compared to UHMWPE without Vitamin E, and the same effect was

observed for Sclerostin, while DKK-1 was not significantly affected. In conclusion, Vitamin

E stabilization of UHMWPE increased osteoblast response to oxidative stress, inducing

a cellular mechanism aimed at cell survival. Vitamin E antioxidant effect influences the
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secretion of osteoimmunological factors, shifting the bone turnover balance toward

bone protection stimuli. This suggests that Vitamin E-Stabilization of UHMWPE could

contribute to reduction of oxidation-induced osteolysis and the consequent loosening of

the prosthetic devices, therefore improving the longevity of total joint replacements.

Keywords: vitamin E, high-molecular-weight polyethylene (HMWPE), oxidative stress, osteoblasts, proteins O-

GlcNAcylation, osteoimmunological markers

INTRODUCTION

One of the main problems in total hip arthroplasty
is osteolysis triggered by ultrahigh molecular weight
polyethylene (UHMWPE) wear particles (1) and different
strategies have been developed to improve the oxidation and
wear resistance.

High crosslink process was developed in order to decrease the
wear rate of UHMWPE (2), but it also triggers the formation
of free radicals (3), leading to oxidative degradation of the
material through a cascade reaction with oxygen (4). In order
to reduce oxidation, Vitamin E was introduced in UHMWPE
stabilization, to provide oxidation resistance without affecting
mechanical and fatigue strength of the material (5, 6). Vitamin

E in the most abundant and effective antioxidant in the body,

able to react with free radicals in cell membrane and protect

polyunsaturated fatty acids from degradation due to oxidation
(7). Polyethylene has a lipid—like molecular structure and its

oxidation follows a similar mechanism of oxidation of lipids
in vivo (8).

The physiological intracellular redox state is maintained
in equilibrium by the balance of antioxidants and reactive
oxygen species (ROS)- producing enzyme. Oxidative stress
occurs when the overproduction of ROS is not balanced
by an adequate level of antioxidants (9). The redox state
affects the physiological process of bone remodeling (9).
Indeed, changes in the ROS/antioxidant balance are involved
in the pathogenesis of bone loss. In particular, oxidative
stress activates the differentiation of osteoclasts from their
precursors, while inducing osteoblasts apoptosis, thus shifting
the balance toward osteoclastogenesis and bone resorption
(9). High levels of ROS reduce osteoblast differentiation
and activity, therefore reducing mineralization and bone
mass (10, 11). On the contrary, antioxidant may contribute
to osteoblasts differentiation and activity, promoting bone
formation (9, 11).

Moreover, oxidative stress promotes the inflammatory
response and directly interferes with the osteoimmunological
regulation of bone remodeling, based on the action of the
RANKL/RANK/OPG system. The receptor activator of NF-κB
(nuclear factor-κB) ligand (RANKL) is a key factor stimulating
the differentiation and activation of osteoclasts, and therefore,
is essential for bone remodeling. The binding of RANKL to its
receptor RANK leads to osteoclasts differentiation, while the
decoy receptor Osteoprotegerin (OPG) counteracts this effect
by binding and blocking RANKL. ROS act as specific secondary
messengers in signaling pathways involved in RANKL-induced

osteoclast differentiation (12). The expression of RANKL and
OPG is sensitive to oxidative status that reduces OPG expression
and induces RANKL expression, thus shifting the balance toward
bone loss. An excess of oxidative stress also induces apoptosis
of osteocytes, resulting in the reduction OPG production and
increase of Sclerostin and DKK-1, two inhibitors of the WNT
pathway involved in the osteoimmunological regulation of
bone remodeling (13, 14). The expression of WNT pathway
inhibitors seems to be induced by inflammatory mediators and
aging (15), both conditions characterized by an increase in
oxidative stress.

In this context, knowing that oxidative stress plays an
important role in bone remodeling disorders, it’s extremely
important to study the effect of antioxidant agent (Vitamin
E) added to UHMWPE that may reduce oxidative stress, thus
modulating the inflammatory process and the regulation
of bone remodeling by osteoimmunological mediators,
eventually protecting from periprosthetic bone loss. Several
studies in the recent years evaluated the clinical advantages
of Vitamin E added to UHMWPE (16–20), but there is
little if no evidence focusing in particular on the protective
role of Vitamin E from oxidative stress in correlation
with inflammation and the consequent periprosthetic
bone loss.

One of the main mechanisms of cellular oxidative stress
response is the modification of intracellular proteins by
monosaccharides of O-linked β-N- acetylglucosammine,
known as O-GlcNAcylation (21). This is a post-translational
modification of nuclear and cytoplasmic proteins, which
consists in the attachment of a single N-acetylglucosamine
(O-GlcNAc) to serine and threonine residues of a protein
(22).Two enzymes regulate this process: O-GlcNAc transferase
(OGT) that catalyzes the addition of O-GlcNAc to the hydroxyl
group of serine or threonine residues of a protein, and O-
GlcNAcase (OGA) that removes O-GlcNAc from proteins
(23, 24). Levels of O-GlcNAc are induced in response to
stress, in order to prevent apoptosis and promote cell survival
mechanism, and are considered a target of mammalian stress
response (25). The protein O-GlcNAcylation, OGA and OGT
levels are therefore considered markers of cellular response to
oxidative stress.

The aim of this study is to evaluate the antioxidant effect
of vitamin E added to UHMWPE and the association with the
main osteoimmunological biomarkers (RANKL/RANK/OPG),
and WNT pathway inhibitors, in order to better understand how
the antioxidant effect of Vitamin E can prevent periprosthetic
inflammation and the consequent o and prosthetic loosening.
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METHODS

UHMWPE Particles Generation
UHMWPE wear particles were generated as previously described
in Galliera et al.(26) by four different UHMWPE articular inserts
(raw material GUR 1020): Material (1) moderately cross-linked
vitamin E-blendedUHMWPE (60 kGy electron-beam irradiated)
(vitamin E concentration 0.1 wt%), EtO sterilized (Vital-XE R©,
Permedica S.p.A.); Material (2) standard UHMWPE (without
vitamin E and not cross-linked), EtO sterilized (Permedica
S.p.A); Material (3) vitamin E-blended UHMWPE (vitamin E
concentration 0.1 wt%) not cross-linked, EtO sterilized (Vital-
E R©, Permedica S.p.A.).

All UHMWPE wear particles were generated as described
previously (26). Briefly, the articular inserts were rubbed for 10
days at 230 rpm against ceramic ball heads using a combined
drilling and tapping machine (IM company, Italy), applying a
load of 1,000N. The resulting UHMWPE particles were released
directly into a closed sterile recipient containing 500mL of
ultrapure water with 0.2% sodium azide (antibacterial additive).

Cell Culture and Treatment With
Wear Particles
SAoS2 cells, a permanent line of human osteoblast-like cells,
were obtained from a partner institute and grown in RPMI
1,640 (Invitrogen, Germany) with L-glutamine, 10% fetal bovine
serum (FBS), 100 U/mL penicillin and 100µg/mL streptomycin
(GIBCO, USA). Cells were cultured in 5% CO2 at 37

◦C in 12-well
culture plates (Corning, USA).

Treatment with HUMWPE wear particles was performed
as previously described (26). Briefly, after sterilization by UV
irradiation overnight, the three types of wear particle (described
above) diluted in growth media at a concentration of 1:1 or
pure media (as control) were added to the cell culture. After
96 h of incubation, the supernatants of each well were collected
and stocked at −20◦C for ELISA assays, while cells were washed
with PBS twice and then lysed for 15min at 4◦C in lysis buffer
(25mM Tris-HCl pH 7.4, 150mM NaCl, 5mM EDTA, 20mM
NaF, 1mM Na3VO4, 0.5% v/v NP40, 10 mg/ml leupeptin, 10
mg/ml aprotinin, 1 mg/ml pepstatin A). Insoluble material was
removed by centrifugation at 13,000 g for 10min, supernatants
were collected and assayed for protein concentration with
Coomassie Protein Assay (Pierce). Then samples were analyzed
by immunoblotting.

Evaluation of Oxidative Stress Parameters:
Immunoblotting and Densitometry Analysis
Forty micrograms of cell proteins were separated by SDS
electrophoresis under denaturating conditions using 6–10%
polyacrylamide gels. SDS-PAGE gels were electrophoretically
transferred on PVDF membrane in Tris-glicine buffer, using
the Mini Transblot System (Bio-Rad Laboratories, Richmond,
VA). O-GlcNAc levels were measured by anti-b-O-linked N-
Acetylglucosamine (OGlcNAc) CTD 110.6, an antibody that
specifically recognizes endogenous levels of O-GlcNAc, linked to
both serine and threonine residues of proteins, 1:1000 dilution
(Cell Signaling). Other primary antibodies were used as follows:

anti-OGA 1:3000 dilution (Sigma-Aldrich), anti-OGT 1:500
dilution (Sigma–Aldrich), and anti-Histone H3 1:2000 dilution
(Cell Signaling).

Each membrane was washed three times for 10min and then
incubated with the appropriate secondary antibody conjugated
with horseradish peroxidase (Santa Cruz Biotechnology) for 1 h.
For the immunological detection of proteins, MINI HD 9 System
(Uvitec Limited, Cambridge UK) was used. Band density was
quantified Quantity One Software (Bio-Rad Laboratories).

Evaluation of Oxidative Stress Parameters:
ROS Generation Assay
ROS production was tested by OxiSelectTM In vitro ROS/RNS
Assay kit [Green Fluorescence (Cell Biolabs)], according to
manufacturer’s protocol. Briefly, the OxiSelectTM In vitro
ROS/RNS Assay Kit is an in vitro assay for measuring total
ROS/RNS free radical activity. Unknown ROS or RNS samples
or standards are added to the wells with a catalyst that helps
accelerate the oxidative reaction. After a brief incubation,
the prepared DCFH probe is added to all wells and the
oxidation reaction is allowed to proceed. Samples are measured
fluorometrically against a hydrogen peroxide or DCF standard.
The assay is performed in a 96-well fluorescence plate format
that can be read on a standard fluorescence plate reader. The
free radical content in unknown samples is determined by
comparison with the predetermined DCF or hydrogen peroxide
standard curve.

Evaluation of Osteoimmunological
Biomarkers: ELISA Assay
The osteoimmunological biomarkers were evaluated by ELISA
assay in SaOS2 supernatant. In particular, RANKL was
measured using an ELISA Duo Set assay (R&D System,
Minneapolis, MN, USA), while DKK-1, OPG, and Sclerostin
were measured by ELISA Quantikine colorimetric sandwich
assays (R&D System, Minneapolis, MN, USA), according to the
manufacturer’s protocols.

RANKL: CV intra assay 8.01% and inter assay 6.2%; OPG: CV
intra assay 7.3% and inter assay 6.9%; DKK-1: CV intra assay 2.7
% and inter assay 5.4 %, SOST: CV intra assay 2.1 %, and inter
assay 8.2%.

Evaluation of Cell Vitality
Cell viability was assessed quantitatively using the resulting
Alamar Blue R© test, a non-toxic test for cells as it exploits the
reducing power of living cells by measuring their metabolic
activity quantitatively, which makes it possible to analyze, in
different timing, the same proliferating cell population. This test
was also used as an indirect index of cell proliferation. The
assay exploits the mitochondrial activity of viable cells capable
of maintaining an environment of reducing inside the cell.
Resazurin, the active component of Alamar Blu, is a compound
able to cross the membranes, and once it enters the cell, it gets
reduced in Resorufin and its color turns from blue to red. The
reduction was measured by a spectrophotometer at 560 and
600 nm (Glo Max, Promega). The results obtained by both the
readings were analyzed following the indications provided by the
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assay protocol by calculating the percentage of cell viability as the
difference in the reduction between the treated samples and the
samples control (medium+ Alamar Blue R©).

Evaluation of Mineralization
The cells were seeded in 6-well plates at a density of 0.8
× 105 cells/well and stabilized for 24 h. To induce osteoblast
differentiation, Osteogenic medium (Promocell), containing
50µg/ml L-ascorbic acid and 10mM β-glycerophosphate, was
added to culture for 11 days. The culture medium was changed
every 3–4 days. Then, the cells were fixed in 10% formalin
for 10min and stained with the 40mM Alizarin Red-S (pH
4.2; Sigma-Aldrich; Merck KGaA) for 15min, all at RT. For
quantification of Alizarin red S, 500µl citrate solution containing
20% methanol and 10% acetic acid was added for 20min at RT,
and the absorbance of supernatants was measured at 570 nm
using a GloMAx Fluorescence Reader (Promega). The plates
were observed under the Leica Microscope DML B2/11888111
equipped with Leica camera DFC450 at×100 magnification.

Statistical Analysis
Statistical analysis was performed with dedicated statistical
software (GraphPad Prism 7); normality of distribution of the
groups was verified by KS normality for all the parameters
evaluated. Statistical analysis was performed with one-way
ANOVA, considering p < 0.05 as significant and p < 0.001 as
highly significant. Data are expressed as the mean ± standard
deviation (SD).

RESULTS

Oxidative Stress Response
To investigate the effect of the of Vitamin E blended UHMWPE
on O-GlcNAcylation process, we measured cellular O-GlcNAC
levels by western blot using CTD110.6 antibody. As shown
in Figure 1, Panel A, O-GlcNAcylation levels increased in the
presence of Vitamin E blended UHMWPE (in particular with not
crosslinked Vit E blended UHMWPE) while, conversely, they fall
in the absence of Vitamin E.

Densitometric analysis showed a significative (p < 0.005)
increase in O-GlcNAC levels in the presence of not-crosslinked
Vit E blended HMWPE and a significative (p < 0.005) decrease
in Vitamin E absence (Figure 1B).

In order to determine whether the observed variation in
O-GlcNAC levels was caused by an alteration of the ratio
between the two O-GlcNAc cycling enzymes, we examined
protein expression of OGA and OGT by western blot analysis
(Figures 2A,B). As shown in Panel A, a significant increase
(p < 0.01) of OGT protein level was found in the presence
of not-crosslinked Vitamin E blended UHMWPE, whereas
a significant increase (p < 0.05) of OGA enzyme was
observed in Vitamin E absence. The OGT/OGA expression
ratio shows a behavior consistent with the observed O-GlcNAC
levels (Figure 2B).

ROS production was evaluated during the treatment, at 24,
48, 72, and 96 h (Figure 4C).The results show that at early
time points (24 h), there is a significative increase of ROS

induced by M1 (crosslinked HUMWPE vitamin E added), while
M3 (not crosslinked V, Vitamin E added UHMWPE) display
a significative decrease compared to M2 (not crosslinked V,
UHMWPE without Vitamin E). This effect attenuates at 48 h,
resulting in an insignificant difference between M1 and M2,
maintaining a low but weakly significant level in response to
M3. At 72 h, there is a little and insignificant increase in ROS
in response to M1 and M3, which then turns into comparable
levels, with no significative difference between the three materials
at 96 h.

Osteoimmunological Biomarkers
The secretion of osteoimmunological markers in the supernatant
was measured after 96 h of incubation with material 1, 2, and 3, as
described in the Method Session, and growth medium as control.
The two main osteoimmunological pathways were evaluated: the
RANK/RANKL/OPG, by measuring the secretion of RANKL
and OPG from the osteoblast cell line SaOs2 pathway, and the
Wnt pathway, by measuring the secretion of the two main Wnt
inhibitors, Sclerostin (SOST), and DKK-1.

RANKL production (Figure 3A) displayed a insignificant
increase in response to M1 material, compared to control, and
it resulted comparable to control in response to M3 material. On
the contrary, RANKL displayed a strong and significant increase
in response to material M2. Conversely, OPG (Figure 3B)
displayed a significant reduction in response to material M2,
while it showed a significant increase in response to M1 and an
even higher increase in response to material M3.

In order to evaluate the trend of bone remodeling regulators
in vitro, the RANKL/OPG ratio was calculated (Figure 3E).
In all the conditions, the RANKL/OPG ratio resulted largely
<1.However, while in response to M1 and M3 the RANKL/OPG
ratio was very low and comparable to control, in response to M2
the RANKL/OPG ratio displayed a very significant increase.

Sclerostin, a marker of bone resorption, displayed a significant
increase in response to material M2, while it showed a significant
decrease in response to material 1 and a little, even significant
decrease in response tomaterialM3 (Figure 3C). The secretion of
the other Wnt inhibitor DKK-1 displayed no significant changes
in response to material M1 compared to control (Figure 3D).

Cell Vitality and Mineralization After
Exposure to M1, M2 and M3 Wear Debris
Cell were plated at the concentration of 103cells/mL, and 24 h
after, when they resulted completely adherent, the incubation
with wear particles started and lasted for 96 h, during the
exponential growth phase. Doubling time of Saos cell is 37 h
and they can be cultured in logaritimic growth for 7 days before
splitting, when they reach the concentration of 3× 105cells/mL.

Cells were equally plated for treatment with wear particles and
control medium. The vitality and the growth rate of the Sa0S2
cell were evaluated by Alamar blue, and treated as well as not
treated cells displayed exactly the same viability and growth rate,
as shown in Figure 4A.

Mineralization assays were performed in the presence of
material 1, 2, and 3, and only mineralization medium as control.
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FIGURE 1 | Total O-GlcNAcylations after exposure to M1, M2, and M3 wear debris. (A) O-GlcNAcylations of cell proteins examined by western blotting. The western

blot image is representative of three experiments. (B) Densitometric analysis of proteins expression was performed using Histone H3 as loading control. *P < 0.05 vs.

Ctrl. Materials M1, M2, M3 are described in the Methods section, as follows: Material M1 a moderately cross-linked vitamin E-blended UHMWPE, EtO sterilized;

Material M2 standard UHMWPE (without vitamin E and not cross-linked), EtO sterilized; Material M3 vitamin E-blended UHMWPE not cross-linked, EtO sterilized.

Cnotrol (white bar) Material M1 (light gray bar), material M2 (medium gray bar), material M3 (dark gray bar).

As shown in Figures 4B,D. The three different kinds of material
did not affect the mineralization of SaoS2.

DISCUSSION

Implant materials can release wear particles which may elicit
adverse reactions in patients, such as local inflammatory
response leading to tissue damage, which eventually results
in loosening of the implant. In the case of ultra-high
molecular weight polyethylene (UHMWPE), the inflammation
is further boosted by the oxidation of the material, which
has been recognized as a potential limiting factor for the
longevity of total joint replacements (6). In order to reduce
UHMWPE oxidation, chemical stabilization with Vitamin E
was introduced over the past decade. Vitamin E, when added
to UHMWPE, has been shown to suppress the oxidation
cascade by reducing both alkyl and peroxy radicals (27).
The antioxidant effect of Vitamin E has been extensively
studied from the biochemical point of view (17, 28), but the
comprehensive effect on cellular response to oxidative stress
and the correlation with inflammatory response and bone
resorption still needs to be fully elucidated. For this reason,
this study aimed to evaluate the effects of Vitamin E addition
to UHMWPE on both the aspects of inflammation leading to
bone tissue damage: on the one hand the cellular response
to oxidative stress and on the other hand the production of
osteoimmunological mediators, that combine the regulation

of inflammatory response to bone remodeling (23). In order
to evaluate the effect of Vitamin E added, different variants
of UHMWPE were evaluated. In the Vitamin E- UHMWPE
production, the radiation cross linking process is required to
reduce wear, but it also increases the oxidation of UHMWPE
(24). For this reason, we evaluated two different types of
Vitamin E-stabilized UHMWPE, one crosslinked, and one not
crosslinked, compared to not crosslinked UHMWPE, without
Vitamin E.

Cells and tissue respond to oxidative stress, environmental
and injury by reprogramming gene expression, transcription,
transduction, and post trasductional protein modification in
order to stat pathways of repair and survival. In particular
oxidative stress induces a dynamic O-GlcNAcylation (25,
29), promoting the glycosilation of some proteins and the
deglycosilation of others, in order to prevent apoptosis and
promote the cell survival mechanism (29). The dynamic O-
GlcNAcylation is cycled by two enzymes, the O-GlcNAc
transferase (OGT), which catalyzes the addition of O-GlcNAc
residues, and the O-GlcNAcase (OGA), which removes O-
GlcNAc residues. The level of O-GlcNAcylation, OGA, and OGT
levels are thereforemarkers of cellular response to oxidative stress
and were measured in the present study to evaluate the response
of the osteoblastic cell line SaOs2 to wear debris from crosslinked
Vitamin E—stabilized UHMWPE, not-crosslinked Vitamin E—
stabilized UHMWPE and not-crosslinked UHMWPE without
vitamin E, compared to not-treated cells. As shown in
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FIGURE 2 | OGA and OGT levels after exposure to M1, M2, and M3 wear debris. (A) Cellular levels of OGA and OGT proteins examined by western blotting. The

western blot image is representative of three experiments. Densitometric analysis of proteins expression was performed using Histone H3 as loading control. (B)

OGT/OGA expression ratio. *P < 0.05 Vs. Ctrl; **P < 0.01 Vs. Ctrl. Materials M1, M2, M3 are described in the Methods section, as follows: Material M1 a moderately

cross-linked vitamin E-blended UHMWPE, EtO sterilized; Material M2 standard UHMWPE (without vitamin E and not cross-linked), EtO sterilized; Material M3 vitamin

E-blended UHMWPE not cross-linked, EtO sterilized. Control (white bar) Material M1 (light gray bar), material M2 (medium gray bar), material M3 (dark gray bar).

Figure 1, O-GlcNAcylation is significantly reduced in response
to notVitamin E-stabilized UHMWPE, while they are increased
in response to Vitamin E—stabilized UHMWPE, compared to
controls, with a significant increase in the case of not-crosslinked
Vitamin E—stabilized UHMWPE (material 3), indicating that
the presence of Vitamin E increase the ability of Saos2 Cells
to respond to oxidative stress due to UHMWPE. This result
is also confirmed by the specific evaluation of OGA and
OGT: OGT production showed the same changes observed
for O-GlcNAcylation, with a significant increase in response

to not-crosslinked Vitamin E—stabilized UHMWPE, a little
but not significant increase in response to crosslinked Vitamin
E—stabilized UHMWPE and a decrease in response to not-
crosslinked UHMWPE without Vitamin E. These results are in
accordance with previous reports indicating that stress induced
O-GlcNAcylation is coincident with increased protein expression
of OGT of OGT (29–31). OGA exert the opposite role of OGT
(21), and even though less is known about the regulation of OGA
levels in stresses cells, recent studies reported that increased O-
GlcNAcylation levels are associated with a decrease in OGA (29,
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FIGURE 3 | Secretion of osteoimmunological biomarkers in the cell culture supernatant after exposure to M1, M2, and M3 wear debris. Concentrations (picograms

per milliliter) of RANKL (A), OPG (B), Sclerostin (SOST, C), and DKK-1 (D), RANKL/OPG ratio (E) in the cell culture supernatant of control (white bar), material M1 (light

gray bars), material M2 (medium gray bars), material M3 (dark gray bars). Materials M1, M2, M3 are described in the Methods section, as follows: Material M1 a

moderately cross-linked vitamin E-blended UHMWPE, EtO sterilized; Material M2 standard UHMWPE (without vitamin E and not cross-linked), EtO sterilized; Material

M3 vitamin E-blended UHMWPE not cross-linked, EtO sterilized. Control (white bar) Material M1 (light gray bar), material M2 (medium gray bar), material M3 (dark gray

bar). *p < 0.05, statistically significant; **p < 0.01; ***p < 0.005.

31). Consistently with these evidences, we observed a significant
increase of OGA in response to material 2 (UHMWPE without
Vitamin E), in correspondence to a decrease of OGT, and no
significant change in response to material 1 and 3 (UHMWPE
with Vitamin E). The overall effect is more evident by evaluating
OGT/OGA ratio, showing that UHMWPE without Vitamin E
induced a very significant decrease in OGT/OGA ratio while
not-crosslinked Vitamin E—stabilized UHMWPE induced a very
significant increase in OGT/OGA ratio, shifting the balance
toward increased cell survival. These results suggest that the
addition of Vitamin E to UHMWPE increases the ability of SaOs2
cells to respond to oxidative stress induced by UHMWPE, while
the absence of Vitamin E reduces the cell response to oxidative

stress. Material 1 (crosslinked Vitamin E—stabilized UHMWPE)
stimulated an increase in OGT/OGA ratio but in a minor
extent of its not-crosslinked counterpart (material 3), indicating
that the cross linking process contributes to generate oxidative
stress and weakly reduces the beneficial effect of Vitamin E-
stabilization. This is in accordance with the literature reporting
that the cross linking process is a strong source of UHMWPE
oxidation (6, 32, 33). Taken together, these results suggest that
the Vitamin E-stabilization, in particular in absence of cross
linking, stimulates cellular response to oxidative stress, in order
to promote cell survival.

The results of ROS production are in line with recent literature
evidences indicating that UHMWPE induce oxidative stress,
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FIGURE 4 | Cell Vitality, mineralization, and ROS production after exposure to M1, M2, and M3 wear debris. (A) vitality and the growth rate of Sa0S2 cell evaluated by

Alamar blue (A,B). The vitality of the cells is expressed as percentage of reduced Alamar Blue (%AB), as indicated in Alamar Blue protocol. Mineralization Assay was

evaluated by alizarin Red (AR) staining. The plates were observed under the Leica Microscope DML B2/11888111 equipped with Leica camera DFC450 at ×100

magnification (B). For quantification of Alizarin red S, 500 µl citrate solution containing 20% methanol and 10% acetic acid was added for 20min at RT, and the

absorbance of supernatants was measured at 570 nm using an Fluorescence Reader (GloMAx). The mineralization is expressed as percentage of Alzarin Red staining

(% ARS) of treated cells vs. untreated control (D). (C) ROS production was tested by OxiSelectTM In vitro ROS/RNS Assay kit. ROS production is expressed as

percentage of H2O2 production vs. untreated control. Materials M1, M2, M3 are described in the Methods section, as follows: Material M1 a moderately cross-linked

vitamin E-blended UHMWPE, EtO sterilized; Material M2 standard UHMWPE (without vitamin E and not cross-linked), EtO sterilized; Material M3 vitamin E-blended

UHMWPE not cross-linked, EtO sterilized. Control (white bar) Material M1 (light gray bar), material M2 (medium gray bar), material M3 (dark gray bar). *p < 0.05; **p <

0.01, statistically very significant; ***p < 0.005.

even when modified (34) with Vitamin E. Indeed, Vitamin E
exerts an antioxidant effect mainly in vivo as a scavenger of
oxidant molecules, in particular lipid-soluble peroxyl radical,
when they reach a high concentration, in order to prevent cell
damage (35). On the other hand, is should be noted that low
levels of oxidative stimuli, such as ROS generation (36), induce
a cellular adaptive response to upregulate the defense capacity
against subsequent oxidative stress (35, 37–39). Consistently,
O-GlvNAcylation response proceeds as a two-step process. An
initial ROS stimulus stimulates O-GlvNAcylation which, in turn,
activates an intracellular signaling cascade leading to a long-
term oxidative defense process. Indeed, a significative reduction
in ROS generation is reported to be reduced by a sustained
O-GlvNAcylation (40). In our results, the early and transient
ROS production in response to M1 and M3 could be considered
a priming factor that induces, at later time points, the O-
GlvNAcylation as amechanism of long-term antioxidant defense.
Indeed, at a time point of 96 h, O-GlvNAcylation was observed

in concordance with a decrease in ROS and a stabilization, with
no significative difference between the three materials. These
results indicate that Vitamin E added to WHMWPE does not
have an immediate antioxidant effect (24 h) on the reduction ROS
generation, but a more long term effect, stimulating, by an initial
and transient ROS increase, the O-GlvNAcylation, which leads in
turn to a antioxidant defense process.

These results are consistent with the final goal of Vitamin
E adding to UHMWPE, to prevent the long-term effect of
UHMWPE oxidation.

Oxidative stress is related to the inflammatory response, which
in turn, affects bone turnover and remodeling by means of
osteoimmunological mediators (9).

Vitamin E has also been shown to influence inflammatory
cytokine production (17, 41). We recently showed the
effect of Vitamin E—stabilized UHMWPE wear particles
on osteoimmunological molecule’s gene expression and secretion
at early time points (26), so in this study, we aimed to analyze
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in parallel the effects of Vitamin E added to UHMWPE on
oxidative stress response and osteoimmunological response.
In particular, O-GlcNAcylation has been reported to affect the
production of osteoimmunological factors (42). In our study, the
osteoimmunological factors RANKL and its negative regulators
confirmed our previous report, showing an increase in the
bone-resorptive marker RANKL and a correspondent reduction
of the osteo-protective marker OPG in response to UHMWPE
without Vitamin E, while when vitamin E is added to stabilize
UHMWPE, there is an strong reduction in RANKL, and an
increase in OPG. In order to give a comprehensive result, we
measured the RANKL/OPG ratio, which is considered a better
parameter than the single RANKL and OPG values to evaluate
the trend toward bone resorption or bone formation stimuli
(43). A number of studies have shown that bone remodeling is
dependent on the ratio of RANKL to OPG: if RANKL is higher
bone resorption dominates, while when OPG is higher, the
balance is shifted toward bone formation (44, 45). Thus, OPG
acquired its name from its ability to protect bone from excessive
resorption by counteracting the osteoclastic effects of RANKL
(46, 47). Over the last decade, innovative, efficacious treatments
for osteolysis have been developed specifically targeting the
RANKL/OPG ratio, in order to reduce the incidence of related
implant failures (43). In our study, RANKL/OPG ratio showed
a trend toward an increase in this ratio when UHMWPE is
not stabilized with Vitamin E, while the addition of Vitamin
E restores the bone turnover stimuli to levels comparable
to controls.

These results are also confirmed by the evaluation of two
other main osteoimmunological factors, Sclerostin (SOST),
and DKK-1, two inhibitors of the Wnt pathway involved in
bone remodeling regulation. Wnt Signaling stimulates OPG
expression, while the Wnt inhibitors Sclerostin and DKK-
1 prevent this effect (13), thus promoting bone resorption.
Our results confirmed an increase in Sclerostin expression in
correspondence to a decrease in OPG expression, in response
to material 2 (UHMWPE without Vitamin E), and a decrease
of Sclerostin in correspondence to the treatment with Vitamin
E-stabilized UHMWPE. In this case, no significant difference
was observed among crosslinked and not-crosslinked Vitamin E-
stabilized UHMWPE, suggesting that the cross linking process
does not affect the expression of these osteoimmunological
biomarkers. A different effect was observed for DKK-1 secretion,
showing no significant decrease in response to material 1 and
a little increase in response to material 3, while as expected it
displayed an increase, even though not significant, in response
to material 2. The exact mechanism of DKK-1 regulation of
OPG production still needs to be elucidated, and these results
suggest that it could be different from the Sclerostin mechanism.
It is known that Sclerostin and DKK-1 can act separately and
even alternatively in the regulation of bone turnover (48). We
have already shown that Vitamin E-stabilized UHMWPE wear
debris had different effects on Sclerostin and DKK-1 (26), and
recent evidence indicated that these two Wnt inhibitors can
be differently influenced by treatments (49) or pathological

conditions (50). Consistently with these results, recent evidence
showed that redox regulating mechanisms are able to affect
cytokine and osteoimmunological factors produced by bone
tissue and that the expression of RANKL, OPG and Sclerostin
are redox regulated processes (51, 52). In particular, among
Wnt pathway inhibitors, Sclerostin can be affected by oxidative
stress, showing the same reduction in response to antioxidant as
RANKL expression and RANKL/OPG ratio (52).

The limitation of this study is that the effect of Vitamin
E stabilization was not tested on primary human osteoblasts,
which could better reproduce the in vivo conditions, but on
an immortalized human osteoblast cell line. Nevertheless, this
choice was made in order to introduce as few variables as
possible, since the effect of Vitamin E stabilization of UHMWPE
on osteoblasts was unknown. Osteoblastic–like SaOS-2 cells are
considered a valuable system for studying osteoblast functions
and response to oxidative stress (10). Moreover, the choice for
this immortalized cell line provides some advantages, such as a
more stable and standardized growth condition than the primary
cell culture.

In conclusion, taken together, these results suggest that
the Vitamin E stabilization of UHMWPE produces two
synergic effects on osteoblasts: on the one hand, it improves
the ability of osteoblasts to respond to oxidative stress,
inducing the cellular mechanism of defense, such as dynamic
O-GlcNAcylation; on the other hand, the antioxidant effect
influences the secretion on osteoimmunological factors,
stimulating bone protective osteoimmunological factors
such as OPG and reducing the RANKL/OPG ratio. This
effect observed in vitro, could reflect In vivo through
inducing a shift of the bone turnover balance toward bone
protection. This suggests that the Vitamin E-Stabilization of
UHMWPE could contribute to reduce oxidation- induced
osteolysis (6, 32, 53) and the consequent loosening of the
prosthetic device, therefore, improving the longevity of total
joint replacements.
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