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Abstract. The notion of modulus is a striking feature of Rosenlicht-Serre’s theory of generalized Jacobian varieties
of curves. It was carried over to algebraic cycles on general varieties by Bloch-Esnault, Park, Rülling, Krishna-Levine.
Recently, Kerz-Saito introduced a notion of Chow group of 0-cycles with modulus in connection with geometric class

field theory with wild ramification for varieties over finite fields. We study the non-homotopy invariant part of the
Chow group of 0-cycles with modulus and show their torsion and divisibility properties.

Modulus is being brought to sheaf theory by Kahn-Saito-Yamazaki in their attempt to construct a generalization
of Voevodsky-Suslin-Friedlander’s theory of homotopy invariant presheaves with transfers. We prove parallel results

about torsion and divisibility properties for them.

1. Introduction

Let k be a field and let X be a proper k-variety equipped with an effective Cartier divisor D. For such a pair
(X,D), Kerz and Saito recently defined in [7] a notion of Chow group CH0(X|D) of 0-cycles on X with modulus
D as a quotient of the group Z0(X) of 0-cycles on the open complement X := X \ |D|.

The Kerz-Saito Chow group of 0-cycles with modulus is one of the most recent developments of the emerging
theory of algebraic cycles with certain constraints at infinity. The idea originated from the work of Bloch and
Esnault [4], and was subsequently developed in [15], [17], [9], [10], [11].

When X is a smooth projective curve, the group CH0(X|D) is isomorphic to the relative Picard group Pic(X,D)
of isomorphism classes of pairs given by a line bundle on X together a trivialization along D. Its degree-0-part
agrees with the group of k-rational points of the generalized Jacobian Jac(X|D) of Rosenlicht and Serre (see,
for instance, [19, Chapter II]). If D is non-reduced, then Jac(X|D) is a commutative algebraic group of general
type, i.e. an extension of a semi-abelian variety by a unipotent group, which depends on the multiplicity of D.
The existence of such non-homotopy invariant part suggests that the group CH0(X|D) may give new geometric
and arithmetic information about the pair (X,D) that cannot be captured by the classical (homotopy invariant)
motivic cohomology groups.

Intimately connected with the world of cycles subject to some modulus conditions is the recent work of Kahn,
Saito and Yamazaki [6], which gives a categorical attempt at the quest for a non-homotopy-invariant motivic
theory. This encompasses unipotent phenomena and is modeled on the generalized Jacobians of Rosenlicht and
Serre. Kahn-Saito-Yamazaki developed the notion of “reciprocity” for (pre)sheaves with transfers, which is weaker
than homotopy invariance, with the purpose of eventually constructing a new motivic triangulated category, larger
than Voevodsky’s DMeff(k,Z) and containing unipotent information.

The goal of this paper is to exhibit some differences between the classical homotopy invariant objects and the
new non-homotopy invariant ones, such as 0-cycles with modulus and reciprocity sheaves.

For 0-cycles, we shall see in §2.2 that there is a canonical surjection from the Chow group with modulus to the
0-th Suslin homology group (as defined e.g. in [14, Definition 7.1])

πX,D : CH0(X|D) −→ HSing
0 (X).

Since HSing
0 (X) is the maximal homotopy invariant quotient of the group Z0(X) of 0-cycles on X, the kernel

U(X|D) of πX,D measures the failure of CH0(X|D) to be homotopy invariant (nonetheless, its degree-0-part enjoys

P1-invariance as pointed out in Remark 2.4). The first result of this paper is the following divisibility property of
U(X|D):

Theorem 1.1 (see Theorem 2.7). (1) If char(k) = 0, then the group U(X|D) is divisible.
(2) If char(k) = p > 0, then U(X|D) is a p-primary torsion group.
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In particular, the prime-to-p-torsion part of CH0(X|D) agrees with the prime-to-p-torsion part of HSing
0 (X) in

the positive characteristic case. Our second result is complementary to Theorem 1.1, and concerns the torsion part
of CH0(X|D).

Theorem 1.2 (see Corollary 2.26). Let k be an algebraically closed field of exponential characteristic p ≥ 1. Let
X be a projective variety over k, regular in codimension one. Let D be an effective Cartier divisor on X such that
the open complement X = X \ |D| is smooth over k. Let α ∈ CH0(X|D) be a prime-to-p-torsion cycle. Then there
exist a smooth projective curve C and a morphism φ : C → X for which φ∗D is a well defined Cartier divisor on
C, and a prime-to-p-torsion cycle β ∈ CH0(C|(φ∗D)red) such that φ∗(β) = α.

In other words, the torsion part of CH0(X|D) is nearly independent of the multiplicities ofD even in characteristic
0. However, the theorem does not provide, a priori, an identification between the torsion parts of CH0(X|D) and

of HSing
0 (X).

Our third result is about reciprocity sheaves:

Theorem 1.3 (see Theorem 3.5). Let F ∈ RECk be a reciprocity presheaf with transfers, separated for the Zariski
topology. Then F is homotopy invariant (i.e. the map of presheaves F → F (− × A1) is an isomorphism) either
when char(k) = 0 and F is torsion, or when char(k) = p > 0 and F is p-torsion free.

In order to measure the lack of homotopy invariance of a reciprocity sheaf F , we define, similarly to what we did
for 0-cycles, U(F ) to be the kernel of the canonical surjection

F → H0(F ),

where H0(F ) is the maximal homotopy invariant quotient of F (see § 3.3). Corollary 1.4 gives an analogue of
Theorem 1.1 for the reciprocity sheaf U(F ):

Corollary 1.4 (see Corollary 3.10). (1) If char(k) = 0, then U(F ) is divisible.
(2) If char(k) = p > 0, then U(F ) is a p-primary torsion sheaf.

We remark that by combining Corollary 1.4 and some results of [6], one can give an alternative proof of Theorem
1.1 when X is smooth and quasi-affine.

This paper is organized as follows. Section 2 is devoted to studying the Chow groups of 0-cycles with modulus.
In § 2.2, we investigate the relation between CH0(X|D) for a pair (X,D) and the 0-th Suslin homology of the
complement X \ |D|. In § 2.3, we prove Theorem 1.1, using some technical results, Lemma 2.8 and Lemma 2.9. In
§§2.4–2.5, we prove Theorem 1.2. Its proof is purely geometric and follows the approach of Levine [12] to Rojtman’s
torsion theorem for singular projective varieties. One of the main tools, inspired by the work [13] of Levine and
Weibel on 0-cycles on singular varieties, is a rigidity result for the torsion subgroup of CH0(X|D) (see Theorem
2.13).

Section 3 is devoted to studying torsion and divisibility phenomena for reciprocity (pre)sheaves with transfers.
In § 3.2, we prove Theorem 1.3, using again Lemma 2.8 and Lemma 2.9. In § 3.3, we study the sheaf U(F ) and the
homology sheaves Hi(F ) of the Suslin complex of a reciprocity sheaf F . As consequences of Theorem 1.3 we get
Corollary 1.4 and some further result on Hi(F ) (see Corollary 3.11).
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Theory at the University of Duisburg-Essen (SS 2014). The authors wish to thank Marc Levine heartily for providing
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for Leading Graduate Schools, MEXT, Japan during the work. The fourth author is supported by JSPS KAKENHI
Grant (16K17579). We sincerely appreciate the referee’s careful and valuable comments to an earlier draft of this
paper, which helped us to significantly clarify and improve the exposition.

2. Chow group of 0-cycles with modulus

2.1. Definition of 0-cycles with modulus. We recall the definition of CH0(X|D) from Kerz and Saito [7].
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2.1.1. We fix a base field k. For an integral scheme C over k and for a closed subscheme E of C, we set

G(C,E) =
∩
x∈E

Ker
(
O×

C,x
→ O×

E,x

)
= lim−→

E⊂U⊂C

Γ(U,Ker(O×
C
→ O×

E)),

where x runs over all the points of E and U runs over the set of open subsets containing E. The intersection
takes place in the rational function field k(C). We say that a rational function f ∈ G(C,E) satisfies the modulus
condition with respect to E.

2.1.2. Let X be a scheme of finite type over k and let D be an effective Cartier divisor on X. Write X for the
complement X \ |D| and Z0(X) for the group of 0-cycles on X. Let C be an integral normal curve over k and let
φC : C → X be a finite morphism such that φC(C) ̸⊂ D. Write C = φ−1

C
(X). The push-forward of cycles gives a

group homomorphism τC : G(C,φ∗
C
(D))→ Z0(X) that sends a function f to the 0-cycle (φC |C)∗ divC(f).

Definition 2.1. In the notations of 2.1.2, we define the Chow group CH0(X|D) of 0-cycles of X with modulus D
as the cokernel of the homomorphism

τ :
⊕

φC : C→X

G(C,φ∗
C
(D))

⊕
τC−−−→ Z0(X),

where the sum runs over the set of finite morphisms from an integral normal curve φC : C → X such that φC(C) ̸⊂ D.

Remark 2.2. A generalization to higher dimensional cycles and to higher Chow groups (in the sense of Bloch [3])
CHr(X|D,n) is given in [2], where the above groups CH0(X|D) are shown to agree with the corresponding higher
Chow groups with modulus CH0(X|D, 0) (see [2, Theorem 3.3]). A different definition of Chow group of 0-cycles
with modulus is proposed by Russell in [18].

Proposition 2.3. Let (X,D) and (Y ,E) be pairs of proper schemes of finite type over k and effective Cartier
divisors on them. Assume that Y is connected and Y = Y \ |E| has a k-rational point. If the degree map induces

an isomorphism CH0(Y k′ |Ek′)
≃−→ Z for any finite field extension k′/k, then the proper push-forward map induced

by the projection p1 : X × Y → X is an isomorphism

p1,∗ : CH0(X × Y |X × E +D × Y )
≃−→ CH0(X|D).

Proof. Let y0 be a k-rational point of Y and let ι : X × {y0} ↪→ X × Y be the canonical closed embedding. Since
we have that p1,∗ ◦ ι∗ = id on CH0(X|D), it suffices to show that ι∗ : CH0(X|D)→ CH0(X × Y |X × E +D × Y )
is surjective.

Let z be a closed point on X × Y (here we write X = X \ |D|, Y = Y \ |E|) and let k(z) be its residue field.
We claim that the class of z in CH0(X × Y |X × E + D × Y ) comes from CH0(X × {y0}|D × {y0}). Note that
the 0-cycle z comes from a canonical 0-cycle on (X × Y )k(z). By the commutative diagram of push-forward maps

below, it suffices to show that this 0-cycle comes from CH0((X × {y0})k(z)|(D × {y0})k(z)),

CH0((X × {y0})k(z)|(D × {y0})k(z)) //

��

CH0((X × Y )k(z)|(X × E +D × Y )k(z))

��
CH0(X × {y0}|D × {y0}) // CH0(X × Y |X × E +D × Y ).

Thus by replacing k by k(z), we may assume z is a rational point x×y, where x ∈ X(k) and y ∈ Y (k) (note that the
assumptions on Y remain valid after this replacement). Since we have CH0(Y |E) ≃ Z via the degree map, there are
finitely many integral normal curves W i with finite maps φi : W i → Y and rational functions fi in G(W i, φ

−1
i (E))

such that the equality of cycles ∑
i

φi,∗ divW i
(fi) = [y]− [y0]

holds on Y . Let T i = {x} ×Wi (≃Wi) and let ψi = (x, φi) : T i → X × Y be the induced finite map. Then we find
that fi belongs to G(T i, ψ

−1
i (X × E +D × Y )) and the following equality holds on X × Y∑

i

ψi,∗ divT i
(fi) = [x× y]− [x× y0].

Thus the class of z is in the image of ι∗. This completes the proof. □
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Remark 2.4. A relevant example for Proposition 2.3 is the isomorphism

(2.1) CH0(X × P1|D × P1) ≃ CH0(X|D),

that can be interpreted as a P1-invariance property for Chow groups of 0-cycles with modulus. For X smooth and
quasi-projective, the isomorphism (2.1) is also a consequence of [11, Theorem 4.6].

Remark 2.5. Proposition 2.3 can be interpreted in the language of reciprocity sheaves (see § 3.1) as follows: Let
(X,D) and (Y ,E) be pairs of proper integral k-schemes and effective Cartier divisors such that X \ |D| and Y \ |E|
are smooth and quasi-affine. For such pairs, we have reciprocity presheaves h(X,D) and h(Y ,E) (see Remark
3.4) which, for any field extension k′/k, satisfy h(X,D)(k′) = CH0(Xk′ , Dk′) and h(Y ,E)(k′) = CH0(Y k′ , Ek′)
(see Remark 3.4 as well as [6, Proposition 2.2.2]). Now assume that Y := Y \ |E| has a k-rational point and that
h(Y ,E)Zar ≃ Z. In particular, for any field extension k′/k we have CH0(Y k′ |Ek′) ≃ Z. An example of such pair is
given by (P1,∞). Then there is an isomorphism

(2.2) h(X × Y ,D × Y +X × E)Zar
≃−→ h(X,D)Zar.

Indeed, by Proposition 2.3 we have isomorphisms h(X × Y ,D × Y + X × E)(k′)
≃−→ h(X,D)(k′) for any field

extension k′/k. Then, the Injectivity Theorem [6, Theorem 6] for reciprocity sheaves applied to the kernel and
cokernel of the map (2.2) gives our assertion.

Note that the condition h(Y ,E)Zar ≃ Z implies that h(Y ,E′)Zar ≃ h0(Y )Zar ≃ Z for every divisor E′ contained
in E as a subscheme. The reader should compare the isomorphism with the isomorphism of homotopy invariant
sheaves

h(X × Y )Zar ≃ h(X)Zar.

The displayed isomorphism (2.2) will give some examples to the question raised in [6, Remark 3.5.1], e.g., if
dimX = 1, we get an isomorphism

h0(X × Y , (D × Y +X × E)red)Zar ≃ h0(X × Y )Zar.

2.2. Relation to Suslin homology. Let S be an irreducible scheme of finite type over k and X be a scheme of
finite type over S. We denote by C0(X/S) the group of finite correspondences of X over S [21, §3], i.e. the free
abelian group generated by closed integral subschemes of X that are finite and surjective over S. Recall from [21,

§3] (or [14, Definition 7.1]) that one defines the 0-th Suslin homology group HSing
0 (X) of X to be the cokernel of

C0(X × (P1 \ {1})/(P1 \ {1})) ∂=(∂0−∂∞)−−−−−−−−→ C0(X/Spec(k)) = Z0(X),

where ∂i is induced by t = i : Spec(k) → P1, for i = 0,∞. The groups HSing
0 (X) are covariant for arbitrary

morphisms of k-schemes of finite type. Note that there is a natural surjection induced by the identity map on

0-cycles: HSing
0 (X) → CH0(X). The following is stated in [7, Introduction]. We include a verification of it for the

convenience of the reader.

Proposition 2.6. Let X be a proper scheme over k, D an effective Cartier divisor on X and X the complement
X \ |D|. Then the identity map of Z0(X) induces a natural surjection

πX,D : CH0(X|D) −→ HSing
0 (X).

Proof. The two groups have the same set of generators, so it is enough to show that the relations defining the
Chow group of 0-cycles with modulus are 0 in the Suslin homology group. Let φC : C → X be a finite morphism

from a normal curve C with φC(C) ̸⊂ D and let f ∈ G(C,φ∗
C
(D)). We claim that τC(f) = 0 in HSing

0 (X). We may

replace X by C to prove the claim (by the covariance of HSing
0 (−)). We regard f as a morphism f : C → P1. Since

C is proper over k the map f either constant or surjective. In the former case the claim is obvious, so let us assume
f is surjective. Let Γf ⊂ C × P1 be the graph of f and let W = Γf ∩ (C × (P1\{1})). Since f ≡ 1 mod φ∗

C
(D),

the irreducible closed set W belongs to C0((C \D)× (P1 \ {1})/(P1 \ {1})) and that we have

∂(W ) = (∂0 − ∂∞)(W ) = divC(f) = τC(f),

proving the claim. □
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2.3. Divisibility result for 0-cycles with modulus. Let X be a proper k-scheme and let D be an effective
Cartier divisor on it. As before, let X = X \ |D|. By Proposition 2.6, there is a canonical surjection

πX,D : CH0(X|D) −→ HSing
0 (X).

We define U(X|D) to be the kernel of πX,D, and call it the unipotent part of CH0(X|D). Since the surjection πX,D

is compatible with the degree maps, the group U(X|D) fits into the following exact sequence

0 −→ U(X|D) −→ CH0(X|D)0 −→ HSing
0 (X)0 −→ 0,

where CH0(X|D)0 and HSing
0 (X)0 denote the degree-0-parts of CH0(X|D) and HSing

0 (X) respectively. Since

HSing
0 (X) is the maximal homotopy invariant quotient of the group of 0-cycles Z0(X), the group U(X|D) mea-

sures precisely the failure of homotopy invariance of CH0(X|D).

Theorem 2.7. Let X be a proper k-scheme and D be an effective Cartier divisor on it. Then we have:

(1) If char(k) = 0, then U(X|D) is divisible.
(2) If char(k) = p > 0, then U(X|D) is a p-primary torsion group.

We start with some auxiliary lemmas.

Lemma 2.8. Let k be a field of characteristic zero. Let C be a proper normal integral curve over k. Let D be
an effective Cartier divisor on C and write Dred for the corresponding reduced divisor. Then the quotient group
G(C,Dred)/G(C,D) has a k-vector space structure. In particular, for any integer n > 0, there is an isomorphism

G(C,D)/n
≃−→ G(C,Dred)/n.

Proof. Write D =
∑r

i=1 ni[Pi]. By the definition of G(C,D), one has the following commutative diagram with
exact rows

0 // G(C,D) //

��

O×
C,Dred

//
r⊕

i=1

(
OC,Pi

/mni
Pi

)×

��

// 0

0 // G(C,Dred) // O×
C,Dred

//
r⊕

i=1

k(Pi)
× // 0.

Therefore by the snake lemma, we get

(2.3) G(C,Dred)/G(C,D)
≃←−

r⊕
i=1

1 +mPi

1 +mni

Pi

≃−→
r⊕

i=1

mPi/m
ni

Pi
,

where the second isomorphism is obtained by taking the logarithm. Since the last term in (2.3) is a k-vector space,
the group G(C,Dred)/G(C,D) has an induced k-vector space structure. □

Lemma 2.9. Let k be a field of positive characteristic p. Let C be an integral scheme of finite type over k and
D′ ⊂ D be closed subschemes of C having the same support. Then there is a positive integer m such that for any
f ∈ G(C,D′), its pm-power fp

m

belongs to G(C,D) (and consequently, the quotient group G(C,D′)/G(C,D) is
annihilated by a power of p).

Proof. Let f ∈ G(C,D′) =
∩

x∈D′ Ker(O∗
C,x
→ O∗

D′,x). For each point x ∈ D′, we have

f ∈ 1 + I ′x ⊂ O∗
C,x

where I ′x is the stalk at x of the ideal sheaf I ′ ⊂ OC defining D′. By the relation |D| = |D′|, the defining ideal I of

D contains some power of I ′ (say (I ′)p
m ⊂ I). Thus we have

fp
m

∈ 1 + I ′p
m

x ⊂ 1 + Ix

for each x ∈ |D| ⊂ |D′|. Therefore fpm

belongs to
∩

x∈D(1 + Ix) = G(C,D). This completes the proof. □
Lemma 2.10. There is a surjection

(2.4)
⊕

φ∗ :
⊕

φ : C→X

G(C,φ∗(D)red)/G(C,φ
∗(D)) −→ U(X|D)

where φ : C → X runs over the set of finite morphisms from normal proper curves C over k such that φC(C) ̸⊂ D.
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Proof. By definition, the group U(X|D) is generated by the cycles of the form ∂(W ) forW ∈ C0(X×(P1\{1})/(P1\
{1})). Without loss of generality, we may assume that W is irreducible. Let W be its closure in X×P1 and W

N
be

its normalization. Note that it is an integral normal curve. Let f be the composite map f : W
N → X×P1 → P1 and

let φ : W
N → X ×P1 → X. From the condition W ∈ C0(X × (P1 \ {1})/(P1 \ {1})), we find f ∈ G(WN

, φ∗(D)red).
We have

(2.5) ∂(W ) = φ∗(divWN (f)).

Since W
N

is a proper integral curve, the map φ : W
N → X is either constant or finite. In the former case the right

hand side of the equation (2.5) is zero. In the latter case, the finite map φ and the function f ∈ G(WN
, φ∗(D)red)

determine an element in the source of the map (2.4). In any case the equation (2.5) displays ∂(W ) as an element
in the image of the map (2.4). □
Proof of Theorem 2.7. Given the previous Lemma 2.10, if char(k) = 0 then the statement is a consequence of
Lemma 2.8. If char(k) = p > 0, it is a consequence of Lemma 2.9. □

Corollary 2.11. Let X be a proper k-scheme and D be an effective Cartier divisor on it. Write X = X \ |D|.
Then:

(1) If char(k) = 0, then there is a non-canonical decomposition

CH0(X|D) ≃ HSing
0 (X)⊕U(X|D).

(2) If char(k) = p > 0, then the canonical surjection πX,D : CH0(X|D) → HSing
0 (X) is an isomorphism up to

p-torsions.

Remark 2.12. Under the much stronger assumption that X is smooth and quasi-affine, Theorem 2.7 also follows
from Corollary 3.10 for F = h(X,D). Indeed, in the notations of loc. cit. we have h(X,D)(k) = CH0(X|D) and
U(h(X,D))(k) = U(X|D).

2.4. Discreteness of torsion 0-cycles with modulus. In this section, generalizing some ideas developed in [13]
for the Chow group of 0-cycles on a singular variety, we prove the useful Theorem 2.13 below, showing a form of
discreteness or rigidity for the torsion subgroups of the groups CH0 with modulus. We will frequently apply this
property in the next section.

2.4.1. Let X be a proper variety over an algebraically closed field k of exponential characteristic p ≥ 1. Let D
be an effective Cartier divisor on X and suppose that the singular locus of X is contained in D, so that the open
subscheme X = X \ |D| is a regular (equivalently, smooth) k-scheme. We denote by clX|D the canonical projection

morphism
clX|D : Z0(X)→ CH0(X|D).

2.4.2. Let C be a smooth curve over k and W =
∑n

i=1 niWi ∈ C0(C ×X/C) a finite correspondence from C to X
such that |W | ⊂ C×X. Let x be a closed point in C. Since |W | is flat over C, we know that dim(|W |∩(x×X)) = 0,
so that |W | and x×X are in good position. Let p1, p2 be the projections from C ×X to C and to X respectively.
Then the 0-cycle

W (x) := p2,∗(W ∩ p∗1(x))
on X is well-defined and supported outside D.

Theorem 2.13. Let the notations be as in §§2.4.1 and 2.4.2. Let n be an integer prime to p. Assume that there
exists a dense open subset Co of C such that for every x ∈ Co(k) one has

n · clX/D(W (x)) = 0.

Then the function x ∈ C(k) 7→ clX/D(W (x)) is constant.

Proof. The proof uses the strategy of the proof of [13, Proposition 4.1]. Let C ⊆ C be the smooth compactification

of C. Let W i be the closure of Wi in C ×X and W
N

i be its normalization, which is a smooth projective curve. Let

ui : W
N

i → X be the composite W
N

i → C ×X p2−→ X (which is either a constant map into X or is a finite map).

By [11, Proposition 2.10] we have a proper push-forward map ui,∗ : CH0(W
N

i |u∗i (D))→ CH0(X|D). Let ϕi be the

composite W
N

i → C ×X p1−→ C. Set an effective Cartier divisor DC,W :=
∑

i ϕi,∗u
∗
iD on C. By [11, Proposition

2.12], there is a flat pull-back map ϕ∗i : CH0(C|DC,W )→ CH0(W
N

i |u∗iD).
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We define a homomorphism:

TrW =

n∑
i=1

ϕ∗i ◦ ui,∗ : CH0(C|DC,W )→ CH0(X|D).

An easy computation shows that we have for every x ∈ C(k)
(2.6) clX/D(W (x)) = TrW (clC/DC,W

(x)).

Let CH0(C|DC,W )0 denote the degree-0-part of the Chow group CH0(C|DC,W ). It is generated by differences of

classes of closed points in Co by a moving argument on the curve C using the Riemann-Roch theorem, and there-
fore TrW maps CH0(C|DC,W )0 into CH0(X|D)[n]. Note now that since C is a curve, we have CH0(C|DC,W )0 =

Jac(C|DC,W )(k)0 where the right hand side is the neutral component of the Rosenlicht-Serre generalized Jaco-

bian. Since n is prime to char(k), CH0(C|DC,W )0 is n-divisible by [19, Chapter V], and therefore the image of

CH0(C|DC,W )0 in CH0(X|D) is 0. Hence by (2.6), for every pair of closed points x1, x2 in C(k), we have

clX/D(W (x1))− clX/D(W (x2)) = TrW (clC/DC,W
(x1))− TrW (clC/DC,W

(x2))

= TrW (clC/DC,W
(x1)− clC/DC,W

(x2)) = 0,

proving the statement. □

Remark 2.14. (1) Let the notations be as in §§2.4.1 and 2.4.2. The function clX/D(W (−)) can be regarded as

function clX/D(W (−))K : C(K)→ CH0(XK |DK) for any field extension K/k. If the function clX/D(W (−))K maps

Co(K) to CH0(XK |DK)[n] for an algebraically closed field K, then the map is constant.
(2) The statement of Theorem 2.13 is true for a local setting in the following sense. Let k be an algebraically

closed field and let X,D be as above. Let S be a semi-local scheme of a normal curve over k at closed points and
let K be the fraction field of S. Let W ∈ C0(X × S/S) be a relative finite correspondence. The divisor W defines
as above a function S(K)→ CH0(XK |DK). If the image is contained in the n-torsion subgroup, then the function
is constant.

Corollary 2.15. Let the notations be as in §2.4.1 and let K be an extension field of k. Then the natural map

CH0(X|D) −→ CH0(XK |DK)

is injective and induces an isomorphism

CH0(X|D){p′} ≃ CH0(XK |DK){p′},
where M{p′} denotes the prime-to-p-torsion subgroup of an abelian group M .

Proof. Suppose z ∈ CH0(X|D) is annihilated in CH0(XK |DK). Then, by a limit argument, the relation annihi-
lating zK is defined over XA, where A is a finitely generated k-subalgebra of K: i.e. there is a flat family C ⊂ XA

of curves in X parametrized by Spec(A) and a rational function f ∈ G(C,DA) with div(f) = zA. By specializing
to a k-rational point of Spec(A), we get a relation annihilating z; hence z ∈ CH0(X|D) is zero.

Having shown the injectivity, to show the surjectivity on prime-to-p-parts we may assume that K is algebraically
closed. Suppose we are given an element zK ∈ CH0(XK |DK) annihilated by an integer n prime to the exponential
characteristic. The same limit argument shows that there exist:

(1) a finitely generated smooth k-subalgebra A of K;
(2) a cycle zA on XA which is flat over Spec(A) and induces zK by the scalar extension A→ K;
(3) a relation annihilating n · zA.

By specializing to an arbitrary k-rational point x : Spec(k)→ Spec(A), we get a cycle z on X which is annihilated
by n in CH0(X|D). We show now that z maps to zK by scalar extension k → K.

Consider the K-scheme Spec(A⊗kK). There are two distinguished K-rational points on it: one is η : Spec(K)→
Spec(A⊗k K) which corresponds to the inclusion A→ K and the other is x×k K : Spec(K)→ Spec(A⊗k K). By
Bertini’s theorem, there is a smooth curve C of Spec(A⊗k K) passing thorough η and x⊗k K. Restriction of the
flat family of cycles zA over Spec(A) by C → Spec(A) gives a cycle zC on X ×k C = XK ×K C, which is a family
of n-torsion 0-cycles on XK parametrized by C. Then since K is algebraically closed, we can apply Theorem 2.13
to conclude that z ⊗k K = zC(x×k K) and zK = zC(η) are equal in CH0(XK |DK). □

2.5. Torsion cycles with modulus and cycles on curves.
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2.5.1. Suppose that X is a projective variety over an algebraically closed field k of characteristic p ≥ 0, regular
in codimension one. Let D be an effective Cartier divisor on X such that the open complement X = X \ |D| is
smooth.

Denote by TX|D the subgroup of CH0(X|D)0 generated by elements b for which there exists a smooth proper

curve C with a finite morphism φ : C → X satisfying φ(C) ⊈ D, and an element a ∈ CH0(C|φ∗D)tors such that
b = φ∗a.

The main technical result of this section is Theorem 2.16. The proof is strongly inspired by [12, Proposition 3.4].

Theorem 2.16. Under the notations of §2.5.1, we have an equality TX|D{p′} = CH0(X|D){p′}.

We will actually be able to deduce from it the following more refined result that represents the heart of the proof
of Theorem 1.2 (see Corollary 2.26 below).

Proposition 2.17. For any given element of CH0(X|D){p′}, there is a smooth proper curve C over k with a finite
morphism φ : C → X, such that the given element comes from CH0(C|φ∗D){p′}.

Example 2.18. In characteristic 0, we can show that CH0(X|D)tors ≃ HSing
0 (X)tors in the case X = C1 × C2 for

Ci two smooth projective curves over k and D = C1×m for m =
∑r

i=1 ni[xi] an effective divisor on C2. The proof,
that we omit, uses Proposition 2.17 together with Rojtman’s torsion theorem for an open subvariety of a smooth
projective variety (as in the formulation of [20]).

The proofs of Theorem 2.16 and Proposition 2.17 require some technical works. Their eventual proofs are
completed at the end of this section.

2.5.2. If dimX = 1, then Theorem 2.16 is trivially true. So we may assume dimX ≥ 2. The following lemma
reduces the general case to the case of surfaces.

Lemma 2.19. Suppose that the following equality holds for all (X,D) as above whenever dimX = 2:

TX|D{p
′} = CH0(X|D){p′}.

Then the equality holds for all (X,D).

Proof. Let z be a 0-cycle whose class in CH0(X|D)tors is nonzero and n-torsion with n prime to p. Then there are
normal, proper, integral curves C1, . . . , Cs with finite morphisms φi : Ci → X and fi ∈ G(Ci, φ

∗
i (D)) such that

nz =
s∑

i=1

φi,∗(div(fi)).

One may assume that φi maps Ci birationally to its image. By blowing up with point centers lying on X, one can
construct a projective birational morphism π : Y → X such that

(1) π−1(X) is smooth and π−1 is an isomorphism in a neighborhood of D;
(2) the maps φi : Ci → X factor through an inclusion ϕi : Ci → Y ;
(3) there is a 0-cycle z̃ on Y , smooth projective rational curves Lj for j = s+ 1, · · · , r lying in the exceptional

locus, and rational functions gj on Lj such that we have relations:

π∗(z̃) = z, nz̃ =

s∑
i=1

ϕi,∗(div(fi)) +

r∑
j=s+1

ϕj,∗(div(gj)),

where ϕj : Lj → Y is the inclusion.

Furthermore, after further blow-ups, we may assume that the union

C =
s∪

i=1

Ci ∪
r∪

j=s+1

Lj

has at most two components passing through any point of C. In particular, C has embedding dimension two, which
implies that there is a general surface section S of Y containing C which is regular in S ∩ π−1(X) [8, Theorems
(1), (7)]. Then the assumption applied to (the normalization of) S implies that z̃ ∈ TS|E . Composing with π, we

get that z ∈ TX|D. □
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2.5.3. From now until the end of the proof of Theorem 2.16, we will assume that dimX = 2. Let n be a positive
integer prime to p. Let z be a 0-cycle on X of degree zero. Let C be a proper smooth curve in X containing |z|.
Then, as CH0(C|φ∗D)0 is n-divisible, there is a 0-cycle y on C with ny = z in CH0(C|φ∗D)0.

Definition 2.20. Let n, C be as above. We define an element n−1

C
(z) ∈ CH0(X|D)0/TX|D to be the class

represented by y.

This does not depend on the choice of y and it satisfies n−1

C
(nz) = n · n−1

C
(z) = z in CH0(X|D)0/TX|D. The

next proposition shows that it also does not depend on the choice of the curve C.

Proposition 2.21. Let z be a 0-cycle on X of degree zero and C,C
′
be two curves satisfying the above conditions

of §2.5.3 with respect to z. Then we have an equality n−1

C
(z) = n−1

C
′ (z) in CH0(X|D)0/TX|D.

Proof. Fix a closed point x0 ∈ X, x0 /∈ |z|. Let P = {Cx = Hx ·X | x ∈ P1} be a pencil of hypersurface sections
of X satisfying the following conditions

(1) The generic member Ct of P is smooth and irreducible, and misses the singular locus of Dred.
(2) The base locus of P contains |z| ∪ {x0} and misses D.

(3) The equality of Cartier divisors C0 = C+E and C∞ = C
′
+E′ holds on X, where E and E′ are smooth and

irreducible, intersect D at least in one point each, but miss the singular locus of Dred. Moreover they are
disjoint from the base locus of P . In addition, C0 and C∞ have only ordinary double points as singularities.

(The condition that E and E′ meet D is automatic if the hypersurfaces have sufficiently high degree.)
By blowing up along the base locus of P we get a morphism πP : XP → P1. We denote by u the blowing down

map u : XP → X. Set XP = u−1(X) and DP = u∗D. Write z =
∑

i nipi and set Z =
∑
niu

−1(pi) which is a

divisor on XP and satisfying Cx · Z = z on Cx for every member Cx of the pencil P .
Let S be the spectrum of the local ring of P1 at 0, and denote by s its closed point, by η its generic point and by

η a geometric generic point. We denote by XS → S the base-change of πP to S: it is a semistable projective curve
over S. By construction, the special fiber (XS)s coincides with C0 = C + E, while the generic fiber Cη := (XS)η
represents the generic member of the pencil.

The choice of the extra point x0 outside D determines a section s0 : P1 → XP of πP . We let s0 denote the closed
subscheme of XP given by it as well.

Consider the presheaf of abelian groups Pic0
(XS |DS⊔s0)/S

on the category of separated schemes of finite type over

S given by T 7→ {pairs (L, α)} where L is a line bundle on XS ×S T which has degree zero along every fiber over
T and α is an isomorphism L|(DS⊔s0)×ST ≃ O(DS⊔s0)×ST . It is representable by a scheme locally of finite type

over S (cf. Lemma 2.22 below). The divisor Z ⊂ XP determines a section Z : S → Pic0
(XS |DS⊔s0)/S

. Take a point

ξs (resp. ξη) on the closed fiber Jac(C0|(D ⊔ s0) · C0) (resp. on the geometric generic fiber Jac(Cη|(D ⊔ s0) · Cη))

of Pic0
(XS |DS⊔s0)/S

such that nξs = Zs (resp. nξη = Zη ) and that ξs is a specialization of ξη. Here we used the

n-divisibility of Jac(C0|(D ⊔ s0) · C0) and Jac(Cη|(D ⊔ s0) · Cη). Then there is a spectrum S′ of a DVR dominating
S and a morphism

γ′ : S′ −→ Pic0
(XS |DS⊔s0)/S

such that γ′(s′) = ξs and γ′(η′) = ξη. Here s′ and η′ are the closed point and the geometric generic point of

S′. There is a Cartier divisor W on XS ×S S
′ finite flat over S′ representing γ′. It naturally gives an element in

C0(XS′/S′). Then we have n · cl(W (s′)) = u∗(Zs) in CH0(Xs′ |Ds′) and n · cl(W (η′)) = u∗(Zη) in CH0(Xη′ |Dη′).

Then the image of the map ϕ = cl(W (−))−cl(W (s′)) : S′(k(η′)) −→ CH0(Xη′ |Dη′) lies in the n-torsion subgroup

of the target, since u∗(Zs) = u∗(Zη) in CH0(Xη|Dη). By the discreteness given by Theorem 2.13 (in the formulation
of Remark 2.14(2)), and by ϕ(s′) = 0, the map ϕ is identically zero. Therefore we have

0 = cl(W (η′))− cl(W (s′)) = n−1

Cη
(z)− n−1

C
(z).

Hence n−1

Cη
(z) = n−1

C
(z). Similarly n−1

Cη
(z) = n−1

C
′ (z). This completes the proof of Proposition 2.21. □

In the above proof, we used the following lemma. We let S be the spectrum of a discrete valuation ring and
denote by s the closed point of S and by η the generic point of S.

Lemma 2.22. Let π : X → S be a semistable projective curve over S, i.e. π is a projective and flat morphism
of relative dimension 1 whose geometric fibers are reduced, connected curves having only ordinary singularities.
Assume π is smooth over η and admits a section s0. Let D be an effective Cartier divisor on X which is flat over
S. Then the relative Picard functor Pic0(X|D⊔s0)/S is representable by a scheme (locally) of finite type over S.
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Proof. The presheaf Pic0(X|s0)/S of line bundles of degree 0 with a fixed trivialization along s0 is isomorphic to

P 0 in [16, §§(1.2) and (3.2)d, cf. §(1.3)]. Thanks to the semi-stability assumption, the conditions [16, (N)∗(6.1.4)]
and [16, Theorem 8.2.1 (i)] are satisfied in our situation. Therefore by [op. cit., implication (i)⇒(vi)], the presheaf
Pic(X|s0)/S is representable by a scheme (locally) of finite type over S. Forgetting the extra trivialization along D
gives a canonical morphism of sheaves

ϕ : Pic0(X|D⊔s0)/S → Pic0(X|s0)/S .

LetG be the affine group scheme over S given by πD,∗Gm,D. Then it is easy to show that ϕmakesPic0(X|D⊔s0)/S aG-

torsor over Pic0(X|s0)/S . Hence, by the relative representability theorem [5, Lemma 3.6], the presheaf Pic0(X|D⊔s0)/S

is representable by a scheme locally of finite type over S. □

Let Z0(X)0 denote the group of 0-cycles on X of degree zero. By Proposition 2.21 we have a well-defined
homomorphism

n−1
X : Z0(X)0 → CH0(X|D)0/TX|D

satisfying n−1
X (nz) = n · n−1

X (z) = z. In order to complete the proof of Theorem 2.16, we need two more lemmas.

Lemma 2.23. Let u : X
′ → X be a blow-up at a point p in X. Then the following diagram commutes:

Z0(X
′)0

n−1

X′ //

u∗

��

CH0(X
′|D)0/TX|D

u∗

��
Z0(X)0

n−1
X // CH0(X|D)0/TX|D

Proof. Write an element z′ ∈ Z0(X
′)0 as z′ = z′1 + z′2 where z′1 is supported on the exceptional divisor E of u and

z′2 is supported on X ′ \ E. Set d = deg z′1. Choose q ∈ E and write

z′ = (z′1 − d · q) + (d · q + z′2)

as sum of 0-cycles of degree zero. The first term vanishes when we apply u∗ and when we apply u∗ ◦n−1
X′ , so we may

assume z′ is of the form z′ = d · q+ z′2. Take a proper smooth curve in X which contains |u∗z′| and passes through
p having the right tangent direction so that the strict transform C ′ ⊂ X ′ (which is isomorphic to C) contains q.
We have a tautological identity

u∗(n
−1
C′ (z

′)) = n−1
C (u∗z

′).

The left hand side is equal to u∗(n
−1
X′ (z′)), and the right hand side to n−1

X (u∗z
′). □

Lemma 2.24. The map n−1
X factors through CH0(X|D)0/TX|D.

Proof. It suffices to show the following: let φ : C → X be a morphism from a proper smooth curve such that φ is
a birational map to its image and such that φ(C) ̸⊂ D, and let z be a 0-cycle on C which represents a torsion class
in CH0(C|φ∗D)0. Then n−1

X (j∗z) = 0. To achieve this, blow up X at the singular points of φ(C) several times so

that the strict transform of φ(C) is non-singular, therefore isomorphic to C. If we take a 0-cycle y on C such that
ny = z in CH0(C|φ∗D)0, by Lemma 2.23 applied to z ∈ Z0(X

′)0 we have

n−1
X (φ∗z) = φ∗y in CH0(X|D)0/TX|D.

Since y is a torsion class on C, the right hand side is zero. This completes the proof. □

Proof of Theorem 2.16. By Lemma 2.24, we have a map

n−1
X : CH0(X|D)0/TX|D → CH0(X|D)0/TX|D

such that for every z ∈ CH0(X|D)0/TX|D we have n−1
X (nz) = n · n−1

X (z) = z. If z ∈ CH0(X|D)0 is annihilated by

an integer n prime to p, then we have z = n−1
X (nz) = 0 in CH0(X|D)0/TX|D. This completes the proof of Theorem

2.16. □

Lemma 2.25. Let C be a smooth proper curve and φ : C → X be a morphism with C → φ(C) birational. Suppose
we are given a pencil P = {Cx = Hx ·X | x ∈ P1} satisfying:

(1) C1 = φ(C) + E, where E is a smooth proper irreducible curve missing φ(C) ∩ |D| such that E intersects
φ(C) transversally.
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(2) The axis misses D and intersects X transversally.

Then we have:

φ∗(CH0(C|φ∗D){p′}) ⊂ φCη∗(CH0(Cη|D · Cη){p′}) in CH0(Xη|Dη)tors,

where Cη is the geometric generic member of the pencil.
Moreover, the map

φCη∗ : CH0(Cη| D · Cη){p′} → CH0(Xη|Dη){p′}
Cor. 2.15

= CH0(X|D){p′}
is Gal(η/η)-equivariant.

Proof. By blowing up along the base locus of P we get a morphism πP : XP → P1. Since the base locus misses
D, we can view D = DP as a Cartier divisor on XP . If we choose a point x0 in the base locus, we get a section
s0 : P1 → XP . Denote by S the local scheme of P1 at 1. Let XS and DS be the base change to S of XP and
DP respectively. The Cartier divisor DS on XS is finite and flat over S and we can use Lemma 2.22 to show that
Pic0

(XS |DS⊔s0)/S
is representable. Take any y ∈ Jac(C|φ∗D){p′} and a lifting y′ of (y, 0) ∈ Jac(C|φ∗D)⊕Jac(E|D·E)

in the surjection
Jac(C1|(D · C1) ⊔ x0){p′}↠ Jac(C|φ∗D){p′} ⊕ Jac(E|D · E){p′}.

Then the image of y in CH0(X|D) is equal to the image of y′ by the composite map

Jac(C1|(D · C1) ⊔ x0){p′}↠ Jac(C|φ∗D){p′} ⊕ Jac(E|D · E){p′} → CH0(X|D).

Suppose that the lift y′ is annihilated by an integer n prime to p. Then there is an irreducible component B
of Pic((XS |D ⊔ s0)/S)[n] containing y′, since this group scheme is étale over S. Note that B is regular and 1-
dimensional. There is a horizontal Cartier divisor W on XS ×S B which represents the section B → Pic((XS |D ⊔
s0)/S). Then by the rigidity (Remark 2.14) of

cl(W (−)) : B(k(η))→
⨿

b∈B(k(η))

Jac(Cb| D · Cb)[n] −→ CH0(X|D)[n]

we find that y′ is in the image of Jac(Cη| D · Cη)[n].

For the second assertion, we first take any n prime to p and z ∈ Jac(Cη|D ·Cη ⊔ x0)(η)[n]. Let B be the closure
in Pic(XP |D⊔s0)/S

[n] of its image in Jac(Cη|D · Cη ⊔ x0)[n]. If we let σ ∈ Gal(η/η) act on z, the resulting element

zσ : Spec(k(η))
σ−→ Spec(k(η))

z−→ B

lands on the same point of B. On the other hand, by the discreteness Theorem 2.13, B(η) → CH0(X|D)[n] is a
constant map. Therefore z and zσ maps to the same element of CH0(X|D)[n]. This shows that the map

Jac(Cη|D · Cη ⊔ x0)(η){p′} → CH0(X|D)

is Gal(η/η)-equivariant. It follows that so is the map

Jac(Cη|D · Cη)(η){p′} → CH0(X|D).

This complets the proof of Lemma 2.25. □
Proof of Proposition 2.17. Take any two elements y1, y2 ∈ CH0(X|D){p′}, which come from torsion parts of

CH0 of smooth proper curves C
(1)
, C

(2)
respectively. We show that there are a smooth proper curve C

(3)
mapping

to X and an element in CH0(C
(3)|D ·C(3)

){p′} which maps to y1 + y2. We may assume for i = 1, 2, that C
(i) → X

maps C
(i)

birationally to the image. Take a pencil such that

(1) C0 = φ(1)(C
(1)

) +E(1), where E(1) is a smooth proper irreducible curve missing φ(1)(C
(1)

)∩ |D| such that

E(1) intersects φ(1)(C
(1)

) transversally.

(2) C1 = φ(2)(C
(2)

) +E(2), where E(2) is a smooth proper irreducible curve missing φ(2)(C
(2)

)∩ |D| such that

E(2) intersects φ(2)(C
(2)

) transversally.
(3) The axis misses D and intersects X transversally.

Then we can apply Lemma 2.25 to deduce that the image of Jac(Cη| D · Cη){p′} contains the images of

Jac(C
(1)|φ(1)∗D){p′} and Jac(C

(2)|φ(2)∗D){p′}. Specializing to a generic member of the pencil, we find that the

given elements y1, y2 come from C
(3)

:= Cx for some x ∈ P1(k). Repeating this argument finitely many times, we
find that any element of T comes from an appropriate smooth proper curve C over k. □
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Corollary 2.26 (see Theorem 1.2). Let k be an algebraically closed field of exponential characteristic p ≥ 1. Let
X be a projective variety over k, regular in codimension one. Let D be an effective Cartier divisor on X such that
the open complement X = X \ |D| is smooth over k. Let α ∈ CH0(X|D) be a prime-to-p-torsion cycle. Then there
exist a smooth projective curve C with a morphism φ : C → X such that φ∗D is a well defined Cartier divisor on
C and a prime-to-p-torsion 0-cycle β ∈ CH0(C|(φ∗D)red){p′} such that φ∗(β) = α in CH0(X|D).

Proof. By Proposition 2.17, it is enough to show that for a proper smooth curve C and an effective divisor D on
C, we have the following isomorphism

πC,D{p
′} : CH0(C|D){p′} ≃−→ CH0(C|Dred){p′} = HSing

0 (C){p′}.

The second equality is true because C is a curve. The first map is an isomorphism because its kernel U(C|D) =
G(C,Dred)/G(C,D) is uniquely n-divisible for any n prime to p by Lemma 2.8 and Lemma 2.9. □

Remark 2.27. For a more definitive result regarding the torsion of CH0(X|D) in characteristic zero see [1, Theorem
7.8 and Theorem 8.8], which uses a completely different method.

3. Reciprocity presheaves and sheaves

3.1. Recall of definitions and fundamental results. We denote by Sch/k the category of separated schemes
of finite type over k and by Sm/k the subcategory of smooth schemes over k. Let Cor/k be the category of
finite correspondences over k: it has the same class of objects of Sm/k, and the set of morphisms from X to Y is
HomCor/k(X,Y ) = Cor(X,Y ) := C0(X×Y/X). A presheaf with transfers is a presheaf of abelian groups on Cor/k
(see [14, Lecture 2] for their basic properties). We write PST for the abelian category of presheaves with transfers.

The following definitions are taken from [6, §2].

Definition 3.1. A pair (X,Y ) of schemes is called a modulus pair if

i) X ∈ Sch/k is integral and proper over k;
ii) Y ⊂ X is a closed subscheme such that X = X \ Y is quasi-affine (i.e. quasi-compact and isomorphic to
an open subscheme of an affine scheme) and smooth over k.

Let (X,Y ) be a modulus pair and write X = X \ Y for the quasi-affine open complement. For S ∈ Sm/k, we
denote by C(X,Y )(S) the class of morphisms φ : C → X × S fitting in the following commutative diagram

C

φ

��

γφ

""F
FF

FF
FF

FF
pφ

||zz
zz
zz
zz
zz

S X × S //oo X,

where C ∈ Sch/k is an integral normal scheme and φ is a finite morphism such that, for some generic point η of S,
dimC ×S η = 1 and the image of γφ is not contained in Y .

Let G(C, γ∗φY ) as in §2.1.1. Then the divisor map on C induces

divC : G(C, γ∗φY )→ C0(C/S),

where C = C \ γ∗φY .

Definition 3.2. Let F ∈ PST be a presheaf with transfers, (X,Y ) a modulus pair with X = X \Y . Let a ∈ F (X).
We say that Y is a modulus for a if for every φ : C → X × S ∈ C(X,Y )(S) and every f ∈ G(C, γ∗φY ), we have

(φ∗divC(f))
∗(a) = 0

in F (S). Here φ∗ : C0(C/S)→ C0(X × S/S) = Cor(S,X) denotes the push-forward of correspondences.

Definition 3.3. Let F ∈ PST be a presheaf with transfers. We say F has reciprocity (or that F is a reciprocity
presheaf ) if, for any quasi-affine X ∈ Sm/k, any a ∈ F (X), and any open immersion X ↪→ X with X integral
proper over k, a has modulus Y for some closed subscheme Y ⊂ X such that X = X \Y . Following the notation in
[6], we use REC to denote the full subcategory of the category of presheaves with transfers consisting of reciprocity
presheaves. Note that REC is an abelian category.
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Remark 3.4. Let (X,Y ) be a modulus pair. Denote the category of abelian groups by Ab. By [6, Theorem 2.1.5],
the functor

PST→ Ab, F 7→ {a ∈ F (X)|a has modulus Y }
is representable by a presheaf with transfers, denoted by h(X,Y ). It is explicitly constructed by

S 7→ coker

 ⊕
φ∈C(X,Y )(S)

G(C, γ∗φY )
φ∗◦div−−−−→ C0(X × S/S)

 .

If Y happens to be an effective Cartier divisor on X, then h(X,Y ) ∈ REC.

3.2. Homotopy invariance and torsion reciprocity sheaves.

Theorem 3.5. Let F be a reciprocity presheaf with transfers which is separated for the Zariski topology. Then F
is homotopy invariant in the following cases:

(1) char(k) = 0 and F is torsion;
(2) char(k) = p > 0 and F is p-torsion free.

Proof. We first prove (1). By [6, Theorem 3.1.1(2)], it suffices to show that any element a ∈ F (X) has reduced
modulus. Since F is separated for the Zariski topology, we can use the criterion given by [6, Remark 4.1.2] (which
depends on Injectivity Theorem [6, Theorem 6]). Namely, let K = k(S) be the function field of a connected
S ∈ Sm/k and C be a normal integral proper curve over K. Let φ : C → X ×k K be a finite morphism such that
φ(C) ̸⊂ Y ×kK. Put C = φ−1(X ×kK) and let ψ : C → X be the induced map. Let D = φ−1(Y ×kK). Then the
element a has reduced modulus if, for all φ : C → X ×k K as above, the map

(ψ∗ div(−))∗(a) : G(C,Dred)→ F (K)

is zero.
Since F is torsion, there is an integer n > 0 such that na = 0. Thus the above map factors through G(C,Dred)/n.

Since F is a reciprocity presheaf with transfers, it has in particular weak reciprocity in the sense of [6, Definition
5.1.6]. By definition, there exists then an effective divisor E on C which is a weak modulus for ψ∗(a), with
|E| = |D|. By Lemma 2.8, we have G(C,E)/n ≃ G(C,Dred)/n, so that the map (ψ∗ div(−))∗(a) : G(C,Dred) →
G(C,Dred)/n ≃ G(C,E)/n→ F (K) is zero. This proves (1).

We now prove the case (2). Again, it suffices to show that any element a ∈ F (X) has reduced modulus. We use
the following variant of [6, Remark 4.1.2] deduced from [6, Theorem 6]: the element a has reduced modulus if for
any morphism φ : C → X as above and for any f ∈ G(C,Dred), the element (φ∗ div(f))

∗(a) ∈ F (K) is zero.
Now, since F is a reciprocity presheaf, the section a has a modulus Y ⊂ X supported onX\X. By Lemma 2.9, for

a large n > 0, we have fp
n ∈ G(C,φ∗(Y ×kK)). Since Y is a modulus for a, we have (φ∗div(f

pn

))∗(a) = 0 in F (S),
that is,

pn(φ∗divC(f))
∗(a) = 0 in F (S).

But by assumption F (S) is a p-torsion free abelian group, so that (φ∗divC(f))
∗(a) = 0. This completes the proof. □

3.3. Unipotency and divisibility. Recall that, by Chevalley’s Theorem, every algebraic group G over a perfect
field k can be written as an extention of a semi-abelian variety A by a unipotent group U

(3.1) 0→ U → G→ A→ 0,

where (3.1) is exact when U , G and A are considered as sheaves for the étale (or the Zariski) topology. Note that
every commutative algebraic group over k defines a presheaf with transfers, cf. [20, Proof of Lemma 3.2].

For the rest of the section, by a sheaf we will mean a Zariski sheaf on Sm/k. If F is a sheaf with transfers, we
denote by Hi(F ) the i-th homology sheaf of the Suslin complex C∗(F ) of F . This is defined as follows (see [14,
Definition 1.4]): using the cosimplicial scheme {∆i}i≥0 with ∆i = Spec(k[x0, . . . , xi]/(x0 + · · · + xi − 1)), the i-th
term Ci(F ) of the Suslin complex is given by Ci(F ) = F (−×∆i). The differentials are given by alternating sums
of the face maps. It is known that Hi(F ) are homotopy invariant for every i ≥ 0 [14, Corollary 2.19].

Proposition 3.6. For every unipotent group U, we have H0(U) = 0.

Proof. We have to show that for every smooth k-scheme X, the map of abelian groups

i∗0 − i∗1 : U(X × A1)→ U(X)

is surjective. Note that U is isomorphic to an affine space An as a scheme. Fix an isomorphism U ≃ An mapping
0 ∈ U to the origin. Translating the “multiplication by t ∈ A1” map by this isomorphism, we have a morphism of
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schemes µ : U × A1 → U , which coincides with idU on U × {1} and with the constant map to 0 on U × {0}. Now

given an f ∈ U(X), we define a section f̃ ∈ U(X × A1) by the composition

X × A1 f×id−−−→ U × A1 µ−→ U

Then we clearly have i∗0(f̃) = 0 and i∗1(f̃) = f , so the section −f̃ ∈ U(X × A1) does the job. □

Corollary 3.7. Let G be an algebraic group, which is an extention of a semi-abelian variety A by a unipotent group
U as in (3.1). Then we have H0(G) = A. In particular, an algebraic group G over a perfect field is unipotent if and
only if one has H0(G) = 0.

This corollary motivates the following definition.

Definition 3.8. (1) A reciprocity Zariski sheaf F is said to be unipotent if it satisfies H0(F ) = 0.
(2) For a reciprocity sheaf F , we define a reciprocity sheaf U(F ) (the unipotent part of F ) to be the kernel of the

canonical surjection F → H0(F )
U(F ) = Ker(F → H0(F )).

Note that the definitions themselves make sense for any abelian Zariski sheaf.

Remark 3.9. (1) An algebraic group over a perfect field k is unipotent as a reciprocity sheaf if and only if it
is unipotent in the classical sense.

(2) The unipotent part of a sheaf F is unipotent in the sense of Definition 3.8; this follows from the long exact
sequence of Suslin homology arising from the short exact sequence 0→ U(F )→ F → H0(F )→ 0:

0 = H1(H0(F ))→ H0(U(F ))→ H0(F )
≃−→ H0(H0(F )).

(3) The reciprocity sheaf Ωi
− ([6, Appendix]) is unipotent. When k is perfect, so is Ωi

−/k. In fact, every

O-module F on Sm/k satisfies the condition H0(F ) = 0 even before Zariski-sheafification.

The following Corollaries are direct consequences of Theorem 3.5. Recall that an abelian sheaf F is said to be

divisible if the multiplication-by-n map F
n−→ F is surjective as a map of sheaves for any positive integer n.

Corollary 3.10. Let F be a reciprocity sheaf.

(1) Suppose char(k) = 0. Then the unipotent part U(F ) is divisible.
(2) Suppose char(k) = p > 0. Then the unipotent part U(F ) is of p-primary torsion.

Proof. We first show (1). Let G = U(F ). Consider the cokernel G/n of the map G
n−→ G. By Theorem 3.5, G/n

is homotopy invariant. Thus we have a surjection H0(G)→ H0(G/n) = G/n, and hence G/n = 0 by H0(G) = 0.
We now show (2). Let U(F ){p} be the subsheaf of U(F ) of p-primary torsion and let G be the quotient of U(F )

by U(F ){p}. Then we have a short exact sequence

0 −→ U(F ){p} −→ U(F ) −→ G −→ 0.

By Theorem 3.5 (2), G is homotopy invariant. The argument given above applies to show that G = 0, completing
the proof. □

Corollary 3.11. Let F be a reciprocity sheaf.

(1) If char(k) = 0, then H1(F ) is torsion free and Hi(F ) is uniquely divisible for any i ≥ 2;
(2) If char(k) = p > 0, then Hi(F ) is of p-primary torsion for any i ≥ 1.

Proof. Consider the exact sequence 0 → U(F ) → F → H0(F ) → 0. Taking homology H∗ gives a long exact
sequence

· · · → Hi+1(H0(F ))→ Hi(U(F ))→ Hi(F )→ Hi(H0(F ))→ · · · .
Since H0(F ) is homotopy invariant, Hi(H0(F )) = 0 for i ≥ 1 and thus we have Hi(U(F )) = Hi(F ) for i ≥ 1. We
may therefore assume that F = U(F ). In this case, assertion (2) is clear, since all sections of U(F ) are of p-primary
torsion by Corollary 3.10 (2). It remains to show the assertion (1) when F = U(F ). Let n > 1. By Corollary
3.10 (1), we have an exact sequence

(3.2) 0 −→ F [n] −→ F
n−→ F −→ 0.

By Theorem 3.5, F [n] is homotopy invariant, and hence Hi(F [n]) = 0 for i ≥ 1. Taking homology on (3.2) gives

then a short exact sequence 0 −→ H1(F )
n−→ H1(F ) → F [n] −→ 0, proving that H1(F ) is torsion free and that

Hi(F ) is uniquely divisible for i ≥ 2. □
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Remark 3.12. We call a sheaf F uniquely divisible if F
n−→ F is an isomorphism of sheaves for every n > 0

(equivalently, the sections of F are uniquely divisible abelian groups). For a given reciprocity sheaf F over a field
of characteristic 0, there are equivalent conditions (see Corollaries 3.10–3.11): (1) U(F ) is torsion free; (1)′ U(F )
is uniquely divisible; (2) Ftors ≃ H0(F )tors by the canonical map; (3) H1(F ) is divisible; (3)′ H1(F ) is uniquely
divisible.

Note that the class of such presheaves with transfers is closed under extension.

Remark 3.13. An example of a unipotent reciprocity sheaf over a field of characteristic zero which is not uniquely
divisible is provided by Ga/Z, the quotient of Ga by the constant sub-presheaf with transfers Z. Its torsion part is
the constant sheaf with transfers Q/Z. In this case one has H1(Ga/Z) = Z.

For unique divisibility, we have the following

Proposition 3.14. Suppose k is an algebraically closed field of characteristic zero. Let U be a unipotent reciprocity
sheaf which is an étale sheaf. Then the quotient presheaf (which is a Zariski sheaf) U/U(k) is uniquely divisible.
Here we view U(k) as a constant subsheaf of U .

Consequently, over k, the sheaf U is uniquely divisible if and only if the abelian group U(k) is torsion free.

Proof. For all local smooth scheme X, we have a commutative diagram of exact sequences

0→ U(X)tors // U(X) // U(X)/U(X)tors → 0

0→ U(k)tors

ρ

OO

// U(k)

OO

// U(k)/U(k)tors → 0.

OO

By Suslin’s rigidity [14, Theorem 7.20] which is applicable by Theorem 3.5(1), the map ρ is an isomorphism. Now
by Corollary 3.10(1), the groups U(X)/tors and U(k)/tors are uniquely divisible. Then by the snake lemma we see
that U(X)/U(k) is uniquely divisible.

□
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