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Abstract People may do the same activity in many different ways, hence modeling and 

recognizing that activity based on data gathered through simple sensors like motion 

sensor is a complex task. In this paper, we propose an approach for activity mining and 

activity tracking which identifies frequent normal and interleaved activities that 

individuals perform. With this capability, we can track the occurrence of regular activities 

to monitor users and detect changes in an individual’s behavioral pattern and lifestyle. We 

have tested the proposed method using the datasets of Washington State University 

CASAS and the Massachusetts Institute of Technology (MIT) smart home projects. The 

obtained results show considerable improvements compared with existing methods. 
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1 Introduction 

Smart homes are composed of various services and technologies which are set up to 

improve the quality of life of occupants [1]. Smart homes, on one hand improve home 

comfort, convenience, security and the healthcare of the residents and on the other hand 

enable management of energy, water and other resources [2]. To fulfill these aims, smart 

homes rely on knowledge about residents’ behavior and their preferences. Gathering the 

required knowledge is based on different types of sensors installed in the smart home and 

the supporting communication technologies [3]. Sensors range from simple motion 

sensors to video cameras. Sensed data should be transmitted where they can be 

processed. However, due to the volume of data that should be transmitted, costs of 

installation and maintenance of the sensor network, the required computational efforts 

for processing the gathered data, simple sensors like motion detection, light, temperature, 

humidity, door sensors and alike are more preferred to be exploited in smart homes. Such 

sensors gather numerical data that is easier to process in comparison with images that 

would be gathered by cameras.  

Everyday routines and basic tasks performed by residents are known as Activities of 

Daily Living (ADLs) [4]. Analyzing the residents’ recorded activities enables 

determining the patterns of various behaviors. By recognizing normal behavior of 

residents, a monitoring system can be developed that can identify anomalies, help reduce 

power consumption, maximize residents’ comfort and so forth [5]. However, due to 

human intrinsic uncertainties and based on the fact that people may do the same activity 

in many different ways, modeling people’s activities is complex.  

In this paper, based on data that are gathered from simple sensors like motion and 

door sensors installed in smart homes, we present a supervised method for discovering 

activities of residents of smart homes. The discovered behavioral patterns can be used for 

elderly care, health care, improving safety, security, comfort, managing power 

consumption, etc. 

To discover an individual’s ADLs, we propose Discovery Method for Varying 

Patterns (DMVP) of activities in smart homes. DMVP identifies sensor event sequences 

that probably belong together and appear frequently enough to comprise an activity that 

can be tracked. DMVP combines the frequent sequential pattern miner to identify 

frequent patterns and the Shortest Super Subsequences (SSS) method to find a container 

for common patterns. Since people perform tasks in different ways, discontinuous and 

varied order patterns may arise. By varying pattern, we refer to such discontinuous and 

varied order sensor event occurrences that may all represent the same activity.  

We use a classification model to predict and recognize activities in a smart 

environment based on the discovered patterns of activities. The testbeds for validating 

our work is a part of the CASAS smart home project [6] and the Massachusetts Institute 

of Technology (MIT) smart home dataset [7]. In the conducted tests, our proposed 

method has demonstrated its efficiency for identifying and its suitability for detecting 

discontinuous and interleaved activity pattern. 

The rest of the paper is organized as follows. In section 2, related work is reviewed. 

In Section 3, a theoretical description of the proposed method is presented. Section 4 

provides experimental analysis in the CASAS and MIT testbeds for normal and 

interleaved ADLs. In section 5 a discussion is presented. Section 6 concludes the paper. 

 



 

 

2 Related Work 

Activity recognition is a common process in smart home which is aimed to detect or 

recognize human activities and behavioral patterns in real-life environments. Existing 

algorithms for tracking and recognizing individual's activities mainly rely on data that 

are gathered from various sensors installed in smart homes.  

In [4] the problem of recognizing human activity in everyday routines via supervised 

learning algorithms like Markov and hidden Markov models in physical environments is 

discussed. This paper investigates several possible ways of applying a probabilistic 

model to learn activities when they are performed not only in a sequential fashion, but 

also in complex scenarios like when different activities are interleaved together or are 

performed concurrently by multiple residents. A number of supervised machine learning 

models for Human Activity Recognition (HAR) are proposed. Naive Bayesian network 

has been used with promising results for offline learning of activities [7-9]. It identifies 

the activity that corresponds with the greatest probability to the set of sensor values that 

are observed. However, its performance depends on the volume of data; the larger the 

volume, the higher the performance. Lombriser et al. in [10] have proposed a sequential 

activity prediction using k-Nearest Neighborhood (K-NN) to detect everyday activities 

such as walking, watching TV, etc. K-NN is robust to noisy training data but as it is a 

lazy supervised learner, it runs slowly. Support Vector Machines (SVM) [11] and back 

propagation neural networks [12-13] are also used for detecting smart home residents' 

behaviors. Mehr et al. in [12], have investigated detecting and recognizing resident 

activities such as bathing, grooming, going to work, etc. by using Artificial Neural 

Network (ANN), Quick Propagation (QP), Levenberg Marquardt (LM) and Batch Back 

Propagation (BBP) algorithms.  

Other researchers have employed decision trees to find logical description of the 

activities. This approach often generates understandable rules and if weights of the 

attributes are determined rationally, results can be more appealing than other methods 

[14]. It is shown that decision tree can deal with noisy data that is expected from sensors 

in smart home however, it has the problem of overfitting.  

In [15] and [16], probabilistic models such as Hidden Markov Models (HMM) for 

modeling user activities are exploited. It is a popular method for identifying the 

spatiotemporal relationships between the sensor data [17]. The drawback of using the 

HMM model is that if the data volume is too large then it will have a long run-time [17]. 

Also other variations of HMM such as Hierarchical Hidden Semi-Markov Models 

(HHSMMs) are used for human activity recognition. HHSMM is a type of Dynamic 

Belief Network (DBN) for tracking the ADLs [7]. The algorithm can individualize 

several activities such as “asleep" and “having meals" despite of existing noisy 

information. Although DBNs have proven to be one of the most powerful representation 

method for temporal events that efficiently fuses information from multiple sensors [7], 

the complexity of the networks and learning algorithms makes it difficult to be applied in 

problems involving hundreds of sensors.  

Unsupervised methods are also used for recognizing human activities. Jakkula et al. 

[18] have used k-means clustering approach to cluster the sensor readings into events 

with a centroid. K-means is easy to implement for activity recognition but it is difficult 

to predict the K-value. Rashidi et al. [19], have proposed a context-driven algorithm and 

a clustering algorithm to identify frequent patterns that may be either continues -with the 

same order events- or discontinuous -which might have variability in ordering of events. 



 

 

The aim of [20] is to discuss the possibilities of recognizing and predicting user 

activities in the smart home environment. This paper suggests the combination of a 

pattern clustering method and artificial neural network. In [21], a hierarchical clustering 

algorithm is used in a distributed environment. Validation measures like entropy, 

coefficient of variance and time are applied to evaluate algorithm's accuracy. Although it 

is easy to be implemented however, for large datasets it has a long run-time and poor 

quality of clusters. In [22], the Expectation-Maximization (EM) algorithm is used to 

cluster similar objects into one group. The algorithm is simple and fast but depending on 

the number of input features, the number of objects, and also the number of iteration, it's 

performance would be variable.  

In [23] it is shown that Self Organizing Map (SOM) can aid computer forensic 

investigators to determine anomalous behaviors. The Self Organizing Map (SOM) 

classifies objects into their appropriate clusters and get higher accuracy compared to the 

k-means and the EM-clustering algorithm. But, its performance decreases when the 

number of clusters k increases and shows poor results on large datasets. 

 

3 Proposed Method 

The success of applications of smart home like elderly care, security and comfort 

improvement, depends on the known preferences and behaviors of the residents. 

Knowing what activities individuals do and do not at a certain time and place, enables 

preparing the environment as the resident wishes. It also enables detecting an intrusion or 

deciding if any health threatening issue has happened. Toward the aim of detecting 

activities and modeling the behavior of the residents of a smart home, we propose a 

supervised method for discovering the activities that frequently occur by an individual in 

a smart home. We will then build models to recognize and predict these activities as they 

occur. Our proposed method is consisted of three phases that are schematically depicted 

in Fig. 1. 

Phase 1 of the method is devoted to preprocessing the raw sensor data and converting 

them into event sequences. In phase 2, Discovery Method for Varying Patterns (DMVP) 

identifies frequent sequential patterns from event sequences. Frequent Sequential Pattern 

Mining Algorithm (FSPMA) as a part of DMVP, discovers the most frequent sequential 

patterns from the sensor event data. Then, Shortest Super Subsequences (SSS) method is 

applied to find the longest subsequences common to all sequences in the set of pattern 

sequences. In the next step, DMVP’s output is fed to a pattern classification method to 

model them. The output of the phase 3 enables determining when and where the 

activities occur, based on which related action in a smart home would be taken. In the 

sequel we describe each phase in details. 

 

 



 

 

 

Fig.1 Architecture of the proposed method for discovering and tracking activities 

3.1 Phase 1- Preprocessing 

Preprocessing helps improving the quality of data, efficiency and ease of the mining 

process and consequently, improves the quality of the mining results. In the 

preprocessing phase, raw sensor data will be converted into sensor event sequences. An 

event sequence is an ordered sequence of sensor events, each described by a fixed set of 

sensor id and sensor state features.  

We expect raw sensor data be represented in the descriptive form of [Date-Time, 

Encoded Sensor Id, Sensor Status]. Our proposed method needs the pieces of data that 

are mentioned in the aforementioned descriptive form to (1) order the sensed data based 

on their date-time stamps (2) construct sensor events.  

Sensor id, sensor state and the number of activation or deactivation of the sensors are 

considered for deriving a sensor event. We represent an event in the format of 

XXXYZZZ where XXX, represents encoded ID of the sensor, Y denotes the sensor 

status and ZZZ indicates the number of times the sensor is activated or deactivated to 

that point. The status of a sensor i.e. Y, can be 1(=ON, OPEN, PRESENT, …) or 

0(=OFF, CLOSE, ABSENT, …).  

As an example, assume motion sensor M08 is coded as “8” in a smart home. For the 

first time that the sensor data related to M08 like [2011-11-04 12:43:27 M08 ON] is 

seen, after removing the date and time, the event “811” is derived based on the ON status 

of motion sensor no.8. If the next sensor data is [2011-11-04 12:43:30 M08 OFF], since 

it is the first time that motion sensor no.8 is deactivated, “801” will the corresponding 

event. Given the third sensor data represented in a descriptive form be [2011-11-04 

12:43:31 M08 ON], its corresponding event would be “812”. 

3.2 Phase 2 - Discovery Method for Varying Patterns (DMVP) 

Phase 2 is consisted of two sub-phases namely Frequent Sequential Pattern Mining 

Algorithm (FSPMA) and Shortest Super Subsequence (SSS). It is notable that each of 

the two sub-phases of DMVP reduces the dataset. We will demonstrate each of these 

sub-phases in the following. 

3.2.1 Frequent Sequential Pattern Mining Algorithm (FSPMA) 

Frequent patterns are subsequences of events that appear in a dataset with frequency 

greater than or equal to some specific threshold [24]. In FSPMA first the frequent and 



 

 

repeated patterns of event sequences are identified. Then a model is created for 

recognizing activities.  

A wide range of algorithms for identifying frequent sequences from a sequence database 

exist. PrefixSpan algorithm as a pattern growth-based approach, discovers sequential 

patterns in sequence database [25]. We use PrefixSpan to find event sequence patterns 

from discontinuous instances. PrefixSpan algorithm is shown in Fig. 2. As an example, 

this algorithm extracts pattern {811,711} from event sequences {901,801,811,711}, 

{811,711,211} and {811,202,711}, where the events are discontinuous. Unlike many 

other sequence mining algorithms, PrefixSpan algorithm reports a general pattern that 

contains all repeated conversion of a single pattern that occurs in the input dataset. 

PrefixSpan Algorithm 

 Input of the algorithm:   

A sequence database S, and the minimum support threshold min_support. 

 Output of the algorithm:   

  The complete set of sequential patterns. 

 Subroutine: PrefixSpan(α, L, S|α). 

 Parameters:  

 α: sequential pattern,  

 L: the length of α;  

  S|α: : the α-projected database, if α ≠<>;  

otherwise;  the sequence database S. 

 Call PrefixSpan(<>,0,S) 

 

Method: 

1. Scan S|α once, find the set of frequent items b such that:  

 b can be assembled to the last element of α to form a sequential pattern; or 

 <b>can be appended to α to form a sequential pattern.  

2. For each frequent item b, append it to α to form a sequential pattern α’, and output α’;  

3. For each α’, construct α’-projected database S|α’, and call PrefixSpan(α’, L+1, S|α’). 

Fig.2  PrefixSpan Algorithm[25] 

 

3.2.2 Shortest Super Subsequence (SSS) 

Since PrefixSpan algorithm produces sequential frequent patterns which can be subset of 

other discovered frequent patterns, it is needed to omit sequences that are subset of 

others. Thus to reduce the number of sequential patterns generated by the PrefixSpan in 

previous step, we use Longest Common Subsequences (LCS) method to find the shortest 

super sequences. Let the input sequences be X[1..m] and Y[1..n] of lengths m and n 

respectively. In effect, LCS ( X [1 . . . m ] , Y [1 . . . n ]) determines the longest common 

subsequences for all possible combination of the input strings. The recurrence relation 

for relating the length of the LCS for each prefix X [1 . . . m ] , Y [1 . . . n ] is as follows 

[26]: 

 

0 0 0

[ , ] [ 1, 1] 1 [ ] [ ]

max( [ , 1], [ 1, ]) [ ] [ ]

m or n

LCS m n LCS m n x m y n

LCS m n LCS m n x m y n

 


    
   

 

(1) 



 

 

In effect LCS finds the length of longest common subsequences. However, we need to 

find the shortest super sequence i.e. the shortest sequence that contains other sequences.  

For example, given FSPMA finds three event sequences      ,           and 

             . These are then fed to LCS. LCS compares           with       and 

gives       as a common subsequence between the two sequences. Since the number of 

events in a common subsequence and the number of event in           are not equal, 

         is kept and       is ignored. Then LCS compares           with 

             . With the same reasoning,               is kept as the shortest super 

sequence of the event sequences. 

 

3.3 Phase 3 - Predictive Model 

As stated in Sec 3.1 a sequence of sensor events - that is derived based on sensors 

activation and deactivations - represents an activity an individual performs. In order to 

create our new dataset to build model, we consider each event sequence of an activity as 

an instance and consider the sequential pattern that is resulted from DMVP as a feature. 

Also we consider activities as class labels. We use the Levenshtein (edit) distance [19] - 

sim(A, B ) - to calculate the similarity between each event sequence with all sequential 

patterns that are resulted from DMVP-see Fig. 3. 

In (2) the edit distance, e (A, B), is the number of edits (insertions, deletions, and 

substitutions) required to transform an event sequence A into another event sequence B. 

Then we classify the patterns to build a model for recognizing future occurrences of 

activities.  

( , )
( , ) 1

max( , )

e A B
sim A B

A B
   

(2) 

We exploit Random Forest, K-NN, SVM, Decision Tree classifiers to recognize 

activities in a smart home. Each model is trained to recognize the patterns that 

correspond to the classification representatives found by pattern classification models. 

The values for the parameters and the effect of choosing each classifier on the 

performance of the proposed approach are extensively discussed in Sec.4. 

 

Fig.3 Sample of new database 

 



 

 

4 Experimental Results 

We have examined our proposed method on the data that is collected in the CASAS 

testbed, developed by D. Cook in the project of ”Learning setting - generalized activity 

models for smart spaces”[6] and the MIT dataset. In this section we describe the results 

obtained by applying our proposed algorithm on both datasets. It is notable that our 

method is applicable on any data set as far as from each sensor data the descriptive form 

of [Date-Time, Encoded Sensor Id, Sensor Status] can be derived. 

 

4.1 WSU CASAS Dataset 

We have tested and evaluated our proposed method with WSU CASAS dataset in two 

different realistic scenarios to detect normal and interleaved ADLs. Fig. 4, shows the 

layout of the WSU CASAS project smart home that includes three bedrooms, one 

bathroom, a kitchen, and a living/dining room. The activities of the residents inside the 

smart home are recorded using motion, door, temperature and item sensors. Motion 

sensors are numbered and their ID is initiated by “M” - that is followed by the sensor 

number. State of each motion sensor can take a value of ON/OFF. “D” denotes door 

sensor whose state can be either OPEN or CLOSE. Temperature sensor IDs are initiated 

by “T” whose values indicate temperature in Fahrenheit. Item sensors are used to 

monitor oatmeal, raisins, brown sugar, bowl, measuring spoon whose state values can be 

PRESENT or ABSENT. WSU CASAS dataset is consisted of several files. Name of each 

file is the label of the activity in which its related sensor data are recorded. Sensor data 

gathered in WSU CASAS are tagged with the date and time, indicating when the data 

was collected, sensor id and the state of the sensor. Table 1 depicts few records of a file 

of this dataset as an example.  

 

 

Fig.4 Layout of smart apartment used in CASAS for data collection. The positions of motion sensors are 

indicated by circle[19] 

 



 

 

Table 1 Sample of WSU CASAS sensor data 

2011-11-04 12:51:01.15

4276 

M

01 

ON 

2011-11-04 12:51:01.60

1718 

D

01 

OPEN 

2011-11-04 12:52:23.87

6573 

T

01 

12 

2011-11-04 12:52:33.79

7739 

I0

2 

PRESEN

T 
2011-11-04 12:52:44.71

2481 

M

17 

ON 

2011-11-04 12:52:46.94

3816 

M

17 

OFF 

2011-11-04 12:52:49.87

6573 

D

01 

CLOSE 

 

Table 2 Encoding CASAS Sensor IDs 

Sensor ID M01     M02 M03 …. M051 I01 I02 … I08 D01 D02 …. D12 T01 T02 T03 

Encoded ID 1 2 3 … 51 52 53 … 59 60 61 … 71 72 73 74 

 

Table 3 A part of raw sensor data for eating activity- CASAS Dataset 

2011-11-04 12:43:27.41

6392 

M

08 

O

N 
2011-11-04 12:43:27.84

81 

M

07 

O
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2011-11-04 12:43:28.48

7061 

M
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O
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2011-11-04 12:43:30.28
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08 
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F 
2011-11-04 12:43:31.49

1254 

M

07 
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F 
2011-11-04 12:43:31.49

1254 

M

08 

O

N 
2011-11-04 12:43:32.18

904 

M

07 

O

N 
2011-11-04 12:43:34.23

456 

M

08 

OF

F 
 



 

 

 

Fig 5 Event sequence derivation from the raw sensor data shown in Table 3, Event Sequence= 

{811,711, 911, 801, 701, 812, 712, 802}. 

 

In order to derive the descriptive form of [Date-Time, Encoded Sensor Id, Sensor 

Status] for the collected sensor data in WSU CASAS dataset, initially we have used the 

sensor encoding that is depicted in Table 2. As an example, using such encoding event 

sequence shown in Fig. 5 is derived from Table 3 which shows raw sensor data for an 

eating activity. 

  

4.1.1 Normal ADL discovery 

Normal ADL refers to the cases when inhabitants in a smart home concentrate on 

performing only one activity at a time. These activities are performed separately, with no 

interleaving or interruptions. In WSU CASAS, 24 users have performed the following 

five normal activities: 

1. Phone Calling: The participant looks up a specific number from phonebook located at 

the living room table and calls the number. The participant listens to the recorded 

message and writes down the cooking instructions. 

2. Hand Washing: The participant washes hands in the kitchen sink. 

3. Cooking: The participant cooks oatmeal on the stove according to the recorded 

instructions, adding brown sugar and raisins (from the kitchen cabinet) once done. 

4. Eating: The participant eats oatmeal together with a glass of water and takes some 

medicine to the living room table. 

5. Cleaning: The participant cleans the dishes in the kitchen sink, and return all items 

used to their respective locations. 

 

Data were recorded for each of the five activities performed by all 24 users. Hence the 

total number of 120 sets of data was gathered; 24 sets of data for each type of activity 

that were manually labeled. Specifically, each set of data that belongs to one activity was 

labeled with the corresponding activity id. To test our method, each of the 120 datasets is 

being fed to the preprocessing phase to be converted to event sequences. Then we put 

together all event sequences that were derived for each normal activity into a separate 

dataset - we have 5 datasets for normal activities. 70% of each dataset is allocated for 

training. The remaining 30% of each dataset is referred to test datasets. Afterwards, we 



 

 

have applied the DMVP algorithm to each training dataset separately. In the DMVP 

phase, we discovered frequent sequential patterns in the sensor event data by FSPMA. 

We experimentally set the minimum support thresholds -minSup- of frequent event, to 

0.95 and the threshold of max pattern length for each activity to the minimum length of 

sensor sequences of users for the intended activity. When we analyzed the sensor events, 

the algorithm in total discovered 18325 patterns with the lengths varying from 1 to 11 

events. Then SSS method removed patterns that are subset of another patterns. Finally, 

DMVP’s output was 583 patterns with the lengths varying from 2 to 11 events. 

Using the training data, in the phase 3 we have exploited the four classification 

models, namely Random Forest, SVM, K-NN and Decision Tree for creating model 

which is then exploited to recognize future activities of the users. The four approaches 

are applied on the same dataset and the experimental setup is identical for all of them. 

Fig. 6, compares the accuracy achieved by each method. The accuracy of predicting the 

activity “Phone Calling”, “Hand Washing” and “Cooking” showed up a maximum 

value with each of the four models and “Cleaning” activity get approximately the 

minimum accuracy prediction than the others. Calculating the average accuracy value 

for each classification model shows that Random Forest, SVM and Decision Tree has 

reached the highest accuracy level of 95% and the minimum accuracy level of 92.5% is 

achieved by KNN. 

 

 

Fig.6 Comparison of the accuracy of the four predictive models for normal ADLs 

 

4.1.2 Interleaved ADL Discovery 

In our second experiment, we examined our method to identify interleaved activities 

which are often performed not only in isolation (i.e. sequential), but also in complex (i.e. 

interleaved and concurrent) manner. For example, when an individual prepares a meal, 

the steps to do the job, do not always follow the same sequence, rather, their order may 

be changed and be interleaved with steps that do not consistently appear each time. We 
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have use CASAS dataset for interleaved activities in which 24 participants have 

performed eight activities in the smart apartment. The eight ADLs are as follow. 

1. Fill Medication Dispenser: The participant moves to the kitchen, retrieves a pill 

dispenser and bottle of pills, and follows directions to fill the dispenser. 

2. Watch DVD: The participant moves to the living room, puts a DVD in the player and 

watches a news clip on TV. 

3. Water Plants: The participant retrieves a watering can from the kitchen supply closet 

and waters three plants. 

4. Converse on Phone: The participant answers the phone when it rings and hangs up 

after finishing the conversation. 

5. Write Birthday Card: The participant fills out a birthday card with a check to a friend 

and addresses the envelope. 

6. Prepare Meal: The participant moves to the kitchen and prepares cup of noodle soup in 

the microwave, following the directions on the package. The participant brings the soup 

and a glass of water to the dining room table. 

7. Sweep and Dust: The participant sweeps the kitchen floor and dusts the dining and the 

living room using the supplies located in the kitchen closet. 

8. Select an Outfit: The participant selects an outfit from the clothes closet for a job 

interview. 

 

In CASAS testbed, first the participants have performed each activity at a time in 

sequential order. The participants then have performed all of these activities by 

interweaving them in any way as they like with the goal of being efficient in performing 

the tasks. For example, while preparing meals in the kitchen, if the phone rings in the 

living room, the user stops cooking, goes to the living room, attend the call and continue 

the task in the kitchen. In this run of performing the tasks in an interleaved manner, the 

order in which different activities were performed and interleaved was left to the 

discretion of the participant. As different participants interweaved the task differently, 

the dataset obtained was significantly richer. The data collected for both sets of 

experiments was manually labeled with the corresponding activity id. 

Similar to the first experiment, there were 24 users for the eight activities, hence we 

have 192 datasets. Preprocessing phase converts these datasets to event sequences. Then 

we have applied FSPMA to 70% of data and discovered 41197 sequential frequent 

patterns for all eight activities, with the lengths varying from 1 to 11 events. The 

parameters, minSup and max pattern length for each activity were defined as in the 

previous experiment. After FSPMA, SSS method reduced 41197 patterns to 744 patterns, 

with the same lengths varying from 1 to 11 events, as of FSPMA. 

Then we build the models for recognizing future activities. After the models are 

build, we have tested them with test data. Fig. 7, similar to Fig. 6, compares four 

predictive models in interleaved ADLs. The accuracy of predicting the activities “Watch 

DVD”, “Write Birthday card” and “Select an Outfit” showed up a maximum value in 

each four models. Random Forest model has reached the maximum average accuracy of 

91.07%, but in contrast to the normal ADLs, SVM has shown less accuracy.  

Ultimately we have compared performance of the two experiments on each 

prediction model. Accuracy for detecting normal ADL in any of the four models is from 

92.5% to 95%, while for interleaved ADLs is 80.35%-94.64%. In Fig. 8, it is shown that 

Random Forest prediction model has reached the highest accuracy in the two 

experiments. Moreover, it can be obviously seen that higher accuracy is achieved on 

normal activity routines of residents. 



 

 

 

 

Fig.7 Comparison of the accuracy of the four models for interleaved ADL 

 

 

 

Fig.8 Comparison of the accuracy of all techniques in recognizing normal and interleaved 

activities 
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4.2 MIT Dataset 

We have also examined our proposed method on the dataset that is collected in the MIT 

smart home testbed. Fig. 9 depicts the layout of the two smart homes in MIT project. 

The first subject who lived in the apartment shown in Fig. 9(a) was a 30-year-old 

professional woman who spent her free time at home, and the resident of the second 

apartment that is shown in Fig. 9(b) was an 80-year-old woman who spent most of her 

time at home. Both subjects lived alone in the one-bedroom apartment. 

77 sensors were installed in the first subject’s apartment and 84 in the second 

subject’s apartment. The sensors were installed on doors, windows, cabinets, drawers, 

microwave ovens, refrigerators, stoves, sinks, toilets, showers, light switches, lamps, 

some containers (e.g. water, sugar, and cereal), and electric/electronic appliances (e.g. 

DVDs, stereos, washing machines, dish washers, coffee machines). In this project, 

ADLs are categorized in 13 classes. Table 4 shows the ADL classes and the number of 

activities each individual has performed in each category, during the project (14 days). 

 

 

Fig.9 Layout of two smart apartments used for data collection in MIT smart home project [7] 

 

 

 

 

 



 

 

Table 4 13 classes of ADLs individuals performed in MIT smart home project 

Activity Class Number of activities 
performed by Subject 1 

Number of activities 
performed by Subject 2 

Bathing 18 3 

Cleaning 9 3 

Doing laundry 19 0 

Dressing 20 5 

Going out to work 12 0 

Grooming 37 2 

Preparing a beverage 15 1 

Preparing a snack 15 16 

Preparing breakfast 14 18 

Preparing dinner 8 14 

Preparing lunch 17 20 

Toileting 83 37 

Washing dishes 8 20 

TOTAL 275 139 

 

Table 5 MIT dataset format 

ACTIVITY-LABEL DATE START 

TIME 

END 

TIME 

SENSOR1-ID SENSOR2-ID …. …. 

SENSOR1-OBJECT SENSOR2-OBJECT …. …. 

SENSOR1-ACTIVATION-TIME SENSOR2-ACTIVATION-TIME …. …. 

SENSOR1-DEACTIVATION-TIME SENSOR2-DEACTIVATION-TIME …. …. 

 

The format of recorded sensor data in MIT dataset is shown in Table 5. Start and end 

time shows when the activity started and ended respectively. Sensor-id is a number 

representing the ID of a sensor which is unique for each sensor. Sensor-Object represents 

where the sensor was installed e.g. on kitchen cabinet, door, window, etc. Sensor-

activation and Sensor-deactivation respectively represent the sensor activation and 

deactivation time in seconds. Table 6 depicts a sample of data records in MIT smart 

home dataset. 

In order to make MIT dataset usable with our proposed method, initially we had to 

put the raw sensor data in the descriptive form of [Date-Time, Encoded Sensor Id, 

Sensor Status]. Since MIT dataset stores the time of activation and deactivation of each 

sensor, it is necessary to convert activation and deactivation time of each sensor to its 

underlying descriptive state (e.g. ON/OFF). In some cases, depending on the type of 

activity and the way the resident performs activity, it is possible that deactivation time of 

some sensors occurs after activation time of next sensors. Table 7 shows the “lunch 

preparation” activity which is then converted to [Date-Time, Sensor Id, Sensor Status] 

format, that is shown in Table 8. Then, the sensor data is converted to sequence of 



 

 

events. As described before, Fig. 10, shows event sequence that is derived from Table 8. 

At the end of phase 1, a sequence of events is extracted for each activity. 

 

Table 6 Sample of MIT Dataset 

Preparing lunch Day1 11:21:17 11:38:22 
 

140 137 31 53 131 

Door Freezer Toaster Cabinet Toaster 

11:23:04 11:23:55 11:24:08 11:34:59 11:35:12 

11:23:07 11:24:03 11:24:14 11:35:01 11:35:22 

Dressing Day2 8:25:31 8:26:46 
 

57 75 139 
  

Dress cabinet Drawer Jewelry box 
 

8:24:49 8:26:02 8:26:14 
 

16:45:08 8:26:11 8:26:21 
  

Bathing Day3 15:02:53 15.46.12 
 

93 100 93 101 96 

Shower faucet Toilet Flush Shower faucet Light Switch Exhaust Fan 

15:05:46 15:07:49 15:14:09 15:40:56 15:44:07 

15:14:09 16:03:54 15:36:29 16:17:07 16:17:10 

 

 

Table 7 Sensor data for a lunch preparing activity-MIT dataset 

Preparing 

lunch 

Day1 11:21:17 11:38:22  

140 137 31 53 131 

Door Freezer Toaster Cabinet Toaster 

11:23:04 11:23:55 11:24:08 11:34:59 11:35:12 

11:23:07 11:24:03 11:24:14 11:35:01 11:35:22 

 

4.2.1 ADL Discovery-Subject 1 

To test our method, dataset is being fed to the preprocessing phase to be converted to 

event sequences. Then we have applied the DMVP algorithm to 70% of dataset. In the 

DMVP phase, we discovered frequent sequential patterns in the sensor event data by 

FSPMA. We experimentally set the minimum support thresholds -minSup- of frequent 

event, to 0.8 and the threshold of max pattern length for each activity to the minimum 

length of sensor sequences for intended activity. The algorithm in total discovered 155 

patterns with the lengths varying from 1 to 5 events. Then SSS method removed patterns 

that were subset of other patterns. Finally, DMVPs output was 32 patterns with the 

lengths varying from 1 to 5 events.  

Setting test and train data as in previous experiment we achieved the best accuracy 

with Random Forest, hence, here we have only reported that in Table 9. As is shown in 

Table 9, the average accuracy level for the first subject is 93.64%. 



 

 

Table 8 Conversion of the activity of Table 7 to [Date-Time, Sensor Id, Sensor Status] format 

11:23:04 140 ON 

11:23:07 140 OFF 

11:23:55 137 ON 

11:24:03 137 OFF 

11:24:08 131 ON 

11:24:14 131 OFF 

11:34:59 53 ON 

11:35:01 53 OFF 

11:35:12 131 ON 

11:35:22 131 OFF 

 

 

Fig.10 Event sequence derivation from the raw sensor data shown in Table 8 Event Sequence= 

{14011, 14001, 13711, 13701, 13111, 13101, 5311, 5301, 13112, 13102}. 

 

Table 9 Accuracy result for first and second subject ADLs with the RandomForest predictive 

model 

Activities First Subject 

(by RandomForest) 

Second Subject 

(by RandomForest) 

Bathing 100% 100% 

Cleaning 88.88% 66.66% 

Doing laundry 89.47% 0 

Dressing 95% 80% 

Going out to work 100% 0 

Grooming 100% 50% 

Preparing a beverage 100% 100% 

Preparing a snack 86.66% 87.5% 

Preparing breakfast 100% 100% 

Preparing dinner 87.5% 85.71% 

Preparing lunch 82.35% 80% 

Toileting 100% 97.20% 

Washing dishes 87.5% 85% 

TOTAL 93.64% 71.70% 



 

 

4.2.2 ADL Discovery-Subject 2 

Similar to the first experiment, preprocessing phase converted the data set to event 

sequences. Then we have applied FSPMA to training set and discovered 81 sequential 

frequent patterns for all activities, with the lengths varying from 1 to 10 events. The 

parameters, minSup and max pattern length for each activity were defined as in the 

previous experiment. After FSPMA, SSS method reduced 81 patterns to 30 patterns, with 

the same lengths of events in FSPMA. The next step of the process is to recognize and 

track the discovered activities as they occur in the smart apartment. The test data are 

obtained similar to subject 1 experiment. We built our model based on the discovered 

activities and applied the algorithm to the test data to identify activities. 

 

 

Fig.11 Comparison of the accuracy of recognizing ADLs for subject 1 and 2 

 

Second column of Table 9, demonstrates that, the accuracy of predicting the activity 

“Bathing”, “Preparing a beverage” and “Preparing breakfast” has achieved a maximum 

value of 100% in RandomForest model and “Grooming” activity, unlike the previous 

experiment with achieved the minimum accuracy prediction. The total accuracy result 

for this subject has reached 71.70%. Fig. 11 shows the overall accuracy of each activity 

separately by prediction model. 

The overall accuracy of activity detection for the first subject has been higher than 

for the second subject. This can be demonstrated according to these three reasons (1) the 

number of sensors that were noisy was higher in the second subject apartment [7], and 

(2) the quality of the labeling for the first subject was higher and (3) the first subject 

spent less time at home and the sensor firings were not as complex as those for the 

second subject. 
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5 Discussion 

We have compared our proposed method with [19],[7],[15],[12] and [20]. Results are 

reported in Table 10. In [15], a supervised method for recognizing activities when they 

are interwoven in complex and realistic scenarios based on WSU CASAS testbed is 

introduced. This approach has proposed two probabilistic techniques Naive Bayes and 

HMM for activity recognition. The aim of this approach is providing a tool to 

automatically monitor and assist elderly individuals. However, its accuracy to detect both 

normal and interleaved ADL in contrast to our method is lower. 

In Rashidi et al.’s work [19], an unsupervised automated approach for activity 

tracking that identifies frequent activities of individuals in smart home is introduced. 

Their algorithm is similarly validated on CASAS testbed with which they have reached 

the accuracy of 73.8% and 77.3% respectively for normal and interleaved ADLs. 

Although their approach can be useful for health monitoring but since the nature of their 

model is unsupervised, choosing the right number of clusters and correlating the cluster 

of sensor reading to the activities is difficult. 

Another unsupervised learning method called k-pattern clustering was proposed 

based on WSU CASAS testbed in Bourobou’s work [20] to predict user activities that 

utilizes artificial neural network. Although it is an efficient method to group and identify 

the user activity model, however it has a clustering problem similar to [19]. The accuracy 

of this method that is reported for normal ADLs has reached 78%. 

In Mehr et. al’s work [12], three algorithms of artificial neural networks, namely 

Quick Propagation (QP), Levenberg Marquardt(LM) and Batch Back Propagation(BBP), 

have been used for HAR. These algorithms are validated in MIT dataset smart home. 

The achieved results demonstrate that Levenberg Marquardt algorithm has better 

performance (by 92.81% accuracy) than Quick Propagation and Batch Back Propagation 

algorithms but they all have reached lower accuracy in contrast to our proposed method. 

The reason lies in intrinsic disadvantages of ANN such as slow convergence speed, less 

generalizing performance, arriving at local minimum and over-fitting problems. 

In [7], a supervised method for recognizing activities based on MIT smart home 

testbed is introduced. This approach has used a probabilistic technique like Naive Bayes 

classifier for HAR. However, its accuracy to detect both subject 1 and subject 2 ADLs in 

contrast to our method is lower. 

We have calculated precision, recall, F-score in addition to accuracy for our proposed 

method that are reported in Table 11. The obtained results show the effectiveness of the 

proposed method. 

6 Conclusion 

In this paper, we have introduced a novel method to recognize ADLs in smart 

environments. Our proposed method consists of three phases namely preprocessing, 

DMVP and predictive modeling. Preprocessing converts raw sensor data to event 

sequences which are then fed to DMVP to discover frequent activities that naturally 

occur in homes and then classification model is applied to predict activities. We have 

exploited four models to learn activities when they are performed not only sequentially 

but also when they are interleaved with others. We have applied our proposed method on 

normal and interleaved activities. The predictive model works effectively and reached 



 

 

the average accuracy of 94.37% for normal ADLs and 87.94% for interleaved ADLs for 

WSU CASAS dataset and 93.64% for the first subject and 71.70% for the second one in 

MIT dataset. We have compared our work with other works which have used the same 

datasets of WSU CASAS and MIT for normal and interleaved activities and the results 

shows our proposed method outperforms them. 

 

Table 10   Comparison of the proposed method with [7], [12],[15], [19] and [20] 

 
Method Dataset Accuracy 

Proposed Method 
Supervised 

(DMVP+RandomForest) 

CASAS 

Normal ADL:       92%-95% 

Interleaved ADL: 80%-94% 

MIT Subject 1: 93.64% 

Subject 2: 71.70% 

Singla [15] Supervised CASAS 
Interleaved 

ADL 

Naive Bayes: 66.08% 

 HMM:           71% 

Rashidi [19] 
Hybrid Unsupervised     
(Clustering + HMM) 

CASAS 

Normal ADL:       73.8% 

Interleaved ADL: 77.3% 

 
Bourobou [20] Hybrid Unsupervised  

( K-pattern clustering +NN) 
CASAS Normal ADL: 78% 

Tapia [7] 
Supervised 
(Naive Bayes Classifier) 

MIT 

Subject 1: 60.6% 

Subject 2: 41.09% 

Mehr [12] 
Supervised  
(Algorithms of ANNs) 

MIT Subject 1 

QP :  89.23 % 

LM:  92.81% 

BBP:87.61% 

 

Table 11 Four measures of Accuracy, Precision, Recall, F-score for studied cases 

 Accuracy Precision Recall F-Score 

CASAS Normal ADL 95% 96% 95% 95.4% 

CASAS Interleaved ADL 94.64% 96.25% 94.64% 95.4% 

MIT Subject 1 
93.64 

% 

97% 96% 96.5% 

MIT Subject 2 71.70% 88.44% 93.52% 90.9% 
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