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ABSTRACT 

The effect of Pt particle size deposited on TiO2 on the photocatalytic steam reforming of methanol 

was studied by in-situ attenuated total reflectance infrared spectroscopy (ATR-IR). Two 0.5 wt.% 

Pt/TiO2 samples were investigated, one possessing Pt nanoparticles of ca. 5 nm size and the other Pt 

clusters below 2 nm size showing significant different photoactivity both in terms of hydrogen 

production rate and selectivity to CO, CO2 and all other by-products. The presence of Pt 

nanoparticles strongly affects both the adsorption/desorption and the reactivity properties of the 

TiO2 surface and reduces the extent of photopromoted conduction band and shallow trapped 

electrons (i.e. increased electron-hole separation). Reducing the Pt size from nanoparticles to 

clusters increases the rate of methanol and water absorption and hinders the detrimental formation 

of irreversibly adsorbed CO on Pt. All of these aspects contribute to increase the photocatalytic 

performance of Pt cluster-decorated TiO2 with respect to Pt nanoparticles containing TiO2. Finally, 

prolonged exposure of all samples to methanol/water vapour in the dark lead to the formation of 

unreactive formate which persist also under UV-vis irradiation. By contrast, these spectator species 

do not form when the sample is exposed to methanol/water vapour under UV-vis irradiation. 
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1.  Introduction 

Photocatalytic reactions became very attractive in the last years for their applications in green 

chemistry both in the fields of water and air detoxification, and for solar to chemical energy 

conversion and storage (i.e. as hydrogen or hydrocarbons solar fuels). The latter processes occur 

under anaerobic conditions, with water acting as the oxidant, and are characterised by a positive 

standard Gibbs free energy change (up-hill reactions). The photocatalyst is a semiconductor able to 

absorb light because of the electron transition from the valence (VB) to the conduction (CB) band. 

The so formed electron-hole pairs promote redox reactions on the photocatalyst surface. The major 

problem, responsible for the usual low quantum efficiency of photocatalytic reactions, is the high 

probability of charge carriers recombination before promoting any surface reaction. In the case of 

photocatalytic hydrogen production the efficiency can be effectively enhanced by modifying the 

semiconductor surface with noble metal nanoparticles, e.g. Pt and Au, (able to capture CB 

electrons) and by adding more efficient hole scavengers in the reaction mixture such as methanol 

[1].  

The photocatalytic steam reforming of methanol, occurring in gas phase, proceeds according to the 

following reaction: 

CH3OH + H2O → CO2 + 3 H2  (1) 

In a previous work, we deeply investigated the mechanism of this reaction and found that methanol 

is oxidized to formaldehyde, formic acid, and finally to CO2 through both a direct and an indirect 

mechanism depending on the methanol-to-water ratio [2]. In the direct mechanism, prevailing at 

high ratio, methanol reacts directly with the VB holes. In the indirect mechanism, prevailing at low 

ratio, methanol reacts with hydroxyl radicals produced by the reaction of water with VB holes. 

Carbon monoxide, methane, methyl formate, acetaldehyde and dimethyl ether were also identified 

as side products [1]. Moreover, the selectivity to all of these intermediates and by-products strongly 

depends on several factors, including the TiO2 crystal structure [3], surface modification with noble 
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metals [1,4] and TiO2 doping (e.g. with fluoride [5]). In the case of Pt modified TiO2, the selectivity 

was also affected by the preparation method, i.e. by the Pt particle size and distribution [1]. For 

example, the selectivity to CO of TiO2 P25 and of two 0.5 wt% Pt catalysts prepared by deposition 

of preformed Pt nanoparticles on P25 and in single step by flame spray pyrolysis (possessing 

smaller Pt particle size) was 17.7%, 8.3% and 1.1%, respectively [1]. The hydrogen production rate 

(and selectivity to CO2) of these samples was 0.36 (10.7%), 7.75 (17.5%) and 14.23 mmolH2
 h

-1
  

gcat
-1

 (21.6%), respectively.  

Infrared spectroscopy has been widely used to study the interactions of methanol and water with the 

TiO2 surface [6–10] and to provide information on the mechanism of photoreaction [10–15]. In 

addition to the detection of surface species formed during the photoreaction, time resolved FT-IR 

spectroscopy proved to be a powerful tool to distinguish between photogenerated electrons in the 

form of free conduction band (CB) and shallow trapped (ST) electrons and to evaluate their lifetime 

[8,16–18]. 

In this work, we investigate the behaviour of TiO2 and of two Pt/TiO2 by in situ ATR-IR 

spectroscopy during the photo-steam reforming of methanol in order to get a deeper insight into the 

origin of their photoactivity difference. The two Pt/TiO2 were selected because of their different Pt 

particle size of ca. 5 nm (i.e. Pt nanoparticles) and below 2 nm (i.e. Pt clusters because their size is 

comparable to the Fermi wavelength of an electron [19]). In particular, we studied: i) CO, methanol 

and water/methanol adsorption in the dark in a pulsed mode to follow the corresponding surface 

interaction dynamics; ii) the effect of UV-vis irradiation on the reactivity of the surface species 

formed after methanol adsorption in the dark (i.e. post-irradiation); and iii) the effect of UV-vis pre-

irradiation on methanol adsorption and reactivity under irradiation.  
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2.  Experimental 

2.1. Photocatalysts preparation and characterisation 

The two 0.5 wt% Pt modified TiO2 samples were prepared by two different methods as already 

described [1]. FP-Pt/TiO2 was synthesized in continuous and single step by flame spray pyrolysis 

(FP) [20] by burning an organic solution prepared by mixing 10 mL of titanium(IV)-isopropoxide 

with 35 mL of xylene and 5 mL of acetonitrile. The proper amount of platinum acetyl acetonate as 

the Pt precursor was added to the solution. 

RM-Pt/TiO2 was prepared by deposition of preformed Pt nanoparticles on commercial TiO2 P25 

(Evonik), according to the reverse micelle (RM) method [22]. The colloidal suspension of 

surfactant-stabilized Pt nanoparticles was obtained by adding NaBH4 (NaBH4:Pt 4:1 molar ratio) to 

a n-dodecyl-trimethylammonium chloride aqueous solution containing platinum acetyl acetonate 

(surfactant:Pt 40:1 molar ratio). The P25 powder was ultrasonically dispersed in water and then 

mixed to the Pt colloidal suspension under vigorous stirring. The precipitated grey powder was 

separated by centrifugation, thoroughly washed with water, and dried overnight in oven at 70 °C 

[5]. All chemicals were purchased from Aldrich and used as received.  

The two photocatalysts were characterised by N2 adsorption/desorption at 77 K in a Micromeritics 

ASAP 2010 apparatus to determine their BET specific surface area. The morphology was 

investigated by high angular annular dark field–scanning transmission electron microscopy 

(HAADF-STEM) on a JEOL FS2200-FEG instrument, operated at 200 kV. The crystal structure 

was determined by X-ray diffraction, by recording the XRD patterns with a Philips PW3020 

powder diffractometer using the Cu K-α radiation. 

 

2.2. Infrared spectroscopy investigation 

In situ attenuated total reflection infrared (ATR-IR) spectroscopy measurements were performed 

during CO adsorption and methanol photo-steam reforming using an infrared spectrometer (Vector 
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22, Bruker Optics) equipped with a liquid-N2 cooled MCT detector and a homemade ATR cell (Fig. 

1). The cell allowed irradiation of UV-vis light through two sapphire windows connected to a 

deuterium and halogen lamp (DH-2000, Ocean Optics) via a bifurcated optical fibre (Ocean 

Optics). For CO adsorption experiments in the dark, ca. 5 mg of the sample were deposited on the 

ZnSe internal reflection element (IRE, 45°, 50 x 20 x 2 mm) after drying of an aqueous suspension 

in ambient air. The resulting coating covered an area of 5 cm
2
. For the photocatalytic experiments, 

the catalyst layer (ca. 1 mg) was prepared by depositing a 2x100 l aliquot of an aqueous 

suspension of the catalyst on two spots (d = 5 mm each) over the IRE using a Teflon mask and was 

left drying in air overnight. The two spots represent the area irradiated by the bifurcated optical 

fibre. 

CO adsorption from the gas phase was followed while flowing 10 vol% CO/N2 (30 mL/min) for 30 

min, followed by purging with N2 (30 mL/min) for 20 min. Methanol and methanol/water vapour 

adsorption experiments were performed by bubbling 30 mL/min of N2 in a x vol% CH3OH/H2O 

solution (x = 100, 80, 20 or 1%) at 30°C. Spectra were typically collected at 4 cm
-1

 resolution by 

co-adding 20 scans while the catalyst coating was kept at 30°C.  

The main characteristic absorption bands of all detected species during this infrared investigation 

are summarised in Table 1. 

 

3. Results and discussion 

3.1. Photocatalyst characterisation  

One step FP-made Pt/TiO2 exhibits ca. 53% anatase and 47% rutile crystal phase composition and a 

70 m
2
 g

-1 
BET specific surface area. HAADF-STEM analysis (Fig. 2A) shows that the powder 

consisted of micro-aggregates of TiO2 single crystal nanospheres, 10-25 nm in diameter. RM-

Pt/TiO2 maintains the structure typical of commercial P25 TiO2 consisting of widely irregularly 

shaped, ca. 20 nm in size crystalline aggregates, composed of ca. 80% anatase and 20% rutile with 

a specific surface area of 48 m
2
 g

-1
.   
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HAADF-STEM is a powerful technique to distinguish nanoparticles of heavy elements, because 

they appear as bright dots due to their different Z-contrast with respect to the lighter metal oxide 

support. The comparison of the HAADF-STEM images of the two Pt decorated samples (Fig. 2) 

reveals a significantly different particle size distribution. The analysis of the FP-made evidences the 

presence of well-dispersed, ca. 1.5-2 nm-sized Pt clusters. By contrast, the sample prepared by 

deposition of preformed Pt nanoparticles exhibits larger (5-6 nm) and partially aggregated Pt 

nanoparticles. The FP method confirmed to be an effective method to directly produce well 

dispersed and ultrafine noble metal nanoparticles deposited on a metal oxide support. 

3.2. CO adsorption  

The interaction of the hydrated surface of TiO2 P25 as well as of the two Pt modified samples with 

flowing 10% CO/N2 led to the transient formation of an intense band at 1640 cm
-1

 followed by a 

shoulder at 1586 cm
-1

 within the first 10 min (Fig. 3). These bands are attributed to the (C=O) 

stretching mode of adsorbed formic acid and to the antisymmetric stretching (AS(OCO)) of 

adsorbed formate in the bridging bidentate mode [21–25], respectively. These transient species are 

the intermediates of the surface oxidation of CO to CO2 through the reaction with adsorbed water 

and hydroxyl groups on the titania surface. This reaction proceeded up to the consumption of the 

active hydroxyl groups, conferring the transient behaviour to these species. Moreover, in the spectra 

of RM-Pt/TiO2 a transient band also appears at 1723 cm
-1

 attributed to the (C=O) mode of 

adsorbed formaldehyde [21,25,26]. 

The ATR-IR spectra of adsorbed CO recorded at 30°C on the two Pt/TiO2 samples (Fig. 4) exhibit 

at least four signals in the Pt-CO region (2200-1800 cm
-1

): i) a weak and broad signal at 2180 cm
-1

 

attributed to CO adsorbed on Ti
4+

 cations [27]; ii) bands at 2070 cm
-1

 and iii) 2054 cm
-1

 attributed 

to adsorbed CO on Pt atoms located at terrace and edge sites, respectively [28,29]; iv) a broad and 

weaker signal at 1820 cm
-1

 due to bridge adsorbed CO on the Pt–Pt and Pt–Ti sites [30]. As shown 

in Fig. 3, a significantly different CO adsorption kinetics is observed on the two samples: a fast 
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saturation (within the first 30 s) of the defect sites of RM-Pt/TiO2 (2054 cm
-1

) is followed by a 

slower intensification of the band at 2070 cm
-1

. Similar behavior was reported by Leibsle, et al. 

[28]. The spectrum recorded after saturation with CO (Fig. 4) shows a single band centred at 2070 

cm
-1

. By contrast, both signals grow simultaneously on the FP-made sample, the signal at 2054 cm
-1

 

being always more intense than that at higher wavenumbers, and the intensity remained unperturbed 

under flowing nitrogen. 

A comparison between the spectra recorded on the two Pt-containing samples after saturation with 

CO and purging with N2 (Fig. 4) reveals that a greater fraction of Pt-defect sites (edges and corners) 

is present in the FP-Pt/TiO2, whereas terrace sites prevailed on the RM-Pt/TiO2. Moreover, FP-

Pt/TiO2 shows a two-fold more intense band, i.e. a higher CO adsorption capability. These results 

confirm the higher Pt dispersion of the FP sample. The smaller the Pt particles, the higher the 

surface Pt atoms accompanied by an increase of the edge to terrace atoms ratio. This is consistent 

with the particle size distribution observed by HAADF-STEM analysis (Fig. 2) and represents a 

significant difference between Pt nanoparticles in RM-Pt/TiO2 and Pt clusters in FP-Pt/TiO2. 

Reducing the Pt size from nanoparticles to clusters not only increases the number of surface active 

sites for hydrogen reduction, but also affects their nature in favor of the lower coordinated surface 

atoms. It is nowadays widely accepted that edges are more efficient active sites for several catalytic 

applications [31]. The predominance of Pt edge sites in FP-Pt/TiO2 therefore contributes to explain 

its significant higher photocatalytic activity in hydrogen production. 

Formaldehyde also forms on RM-Pt/TiO2, as indicated by the band at 1720 cm
-1

, but not on TiO2 or 

on FP-Pt/TiO2. We can therefore tentatively suppose that it is produced by reduction of CO on the 

Pt terrace sites. 

 

3.2. Methanol adsorption  

The ATR-IR spectra recorded on RM-Pt/TiO2 and on TiO2 after consecutive pulses of methanol 

vapours at 30°C are shown in Fig. 5. While FP-Pt/TiO2 was saturated already after five pulses, 
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saturation of RM-Pt/TiO2 occurred more slowly and was reached only after 15 consecutive pulses, 

indicating a faster absorption kinetics over the flame made material. Various signals appear upon 

contact of methanol vapours with the samples. Several authors reported, based on IR spectroscopy 

experiments [6–10] and theoretical calculations [32–34], that methanol adsorbs on TiO2 both 

molecularly (CH3OHads) and dissociatively with the formation of surface methoxy groups 

(CH3Oads). The former species displays C–H antisymmetric (νas,C-H) and symmetric (νs,C-H) 

stretching modes at 2950 and 2845 cm
-1

 (b and c in Fig.5), respectively, and C–O stretching (νC-O) 

at 1048 cm
-1

 (i in Fig. 5). The corresponding signals of the methoxy species are slightly shifted 

towards lower energy, i.e. at 2925, 2821 and 1033 cm
-1

 (b’, c’ and i’ in Fig. 5). The C-H bending 

(C-H) mode is found in the 1480-1340 cm
-1

 region for both species (f in Fig. 5). Moreover, mono 

and bidentate bonding geometries for the methoxy group on TiO2 have been reported [7,22,32,35]. 

The two modes can be distinguished by the position of νC-O at 1126 cm
-1

 (h in Fig. 5) for the 

monodentate and at 1033 cm
-1

 in the bidentate species. 

The appearance of signals due to adsorbed methanol was accompanied by both the displacement of 

water (negative signals at 3400 and 1625 cm
-1

, g in Fig. 5) and by the consumption of surface 

hydroxyl groups (negative bands at 3691 and 3623 cm
-1

, a and a’ in Fig. 5) [10,18,36–38]. At 

saturation, the signals of adsorbed methanol on RM-Pt/TiO2 were slightly less intense than those on 

TiO2, as observed also by Chen et al. [10], due to partial surface coverage by the noble metal. In 

contrast, the flame made photocatalyst, possessing a higher surface area, displayed more intense 

signals and therefore improved methanol adsorption capability (Fig. 6). 

A noticeable difference between RM-Pt/TiO2 and FP-Pt/TiO2 consists in the broad band centred at 

2028 cm
-1

 (d in Fig. 5) in the Pt-CO region, which intensified with increasing number of methanol 

pulses. This band can be attributed to the formation of CO adsorbed on Pt. The formation of this 

band was already observed [26] also upon ethanol adsorption [15].  

The in situ ATR-IR spectra recorded during the first pulse of methanol vapours on the three samples 

are shown in Fig. 6. The upper curve of each group of spectra corresponds to the transit and 
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diffusion of methanol vapours into the pores of the catalyst layer. Three transient bands (arrows in 

Fig. 6) can be distinguished at 1640, 1586 and 1360 cm
-1

 especially in the case of RM-Pt/TiO2, 

which are ascribed to the (C=O) mode of adsorbed formic acid and to the AS(O-C-O) and S(O-C-

O) modes of adsorbed formate or methyl formate [21–24], respectively. The faster methanol 

adsorption over the FP-made material, as observed during the pulsed experiments, can reasonably 

lead to a higher turnover frequency (TOF), i.e. a superior catalytic efficiency compared to RM-

Pt/TiO2 in agreement with the results of our photocatalytic tests [1].  

The ATR-IR spectra recorded under flowing methanol vapour (instead of successive pulses) 

presented in Fig. 7 show that the intensity of the two signals at 1640 and 1586 cm
-1 

slightly 

decreased within 400 s before steady state conditions were attained, which was accompanied by the 

parallel increase of the signals at 1033 cm
-1

 of the (C-O) mode of methanol and at 1170 cm
-1

 of the 

AS(C-O-C) mode of dimethyl ether [39]. In our previous work, dimethyl ether was found to be a 

major by-product of the photo-steam reforming of methanol [1]. Based on these observations we 

can conclude that adsorbed methanol undergoes the following surface reactions in the dark at 30°C: 

CH3OH(g) + OHads → CH3Oads+ H2O(g)    (2) 

CH3OH(g) + □ → CH3OHads      (3) 

CH3Oads + OHads 
   
      HCO2H(g) + 2□    (4) 

CH3Oads + OHads 
   
      HCO2H(ads) + □    (5) 

2CH3Oads 
   
       HCO2CH3ads       (6) 

CH3Oads + CH3OHads → CH3OCH3(g) + OHads   (7) 

where □ indicates an adsorption site. Moreover, the oxidative dehydrogenation of methanol to CO 

occurs on Pt: 

CH3Oads   
   
      H2COads   

   
      COads     (8) 

The initial decrease of the signals (within 400 s) is attributed to the consumption of surface 

hydroxyls (reaction 4). Moreover, at least two different types of reactive surface hydroxyls may be 

present on the surface: weakly bonded hydroxyls accounting for the formation and desorption of 
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formic acid (reaction 4) and more strongly bonded ones responsible for the residual adsorbed formic 

acid and formate. Because the production of molecular hydrogen is expected to occur on Pt, 

reactions (4)-(6) take place very likely at the PtTiO2 interface. This explains why these surface 

reactions are not observed with TiO2. 

 

3.3. Methanol/water co-adsorption 

As mentioned above, methanol adsorption is accompanied by the displacement of water, i.e. 

methanol and water adsorb competitively on the same sites. Fig. 8 shows that this phenomenon is 

reversible. When the methanol saturated TiO2 surface was exposed to consecutive 1 mL pulses of 

water vapour, the bands characteristic of adsorbed methanol progressively decreased 

simultaneously to the increase of those of adsorbed water and hydroxyl groups. Interestingly, the 

displacement of methanol by water was faster on both Pt-loaded samples. In this case, the negative 

bands at 3691 and 3623 cm
-1

 and the bands in the C–H stretching region fully disappear already 

after the first pulse of water vapours. This result is consistent with the faster methanol 

adsorption/desorption kinetics observed on FP-Pt/TiO2. 

The effects of different methanol to water molar fraction in the pulses, x, are presented in Fig. 8. 

When the catalyst was saturated under flowing methanol/water vapours for 30 min followed by 

purging with N2, the intensity of the characteristic bands of adsorbed methanol increased with 

increasing x in the feeding vapour mixture parallel to the decrease (negative bands) of those of 

water and hydroxyls. Noteworthy, the spectra also show the appearance of intense bands in the C=O 

stretching region due to the formation of surface adsorbed formate and formic acid. These bands are 

significantly more intense than those recorded in the presence of methanol vapours due to the larger 

abundance of surface reactive hydroxyl groups supplied by the presence of water in the gas phase. 

The intensity of these bands also increased with increasing methanol-to-water partial pressure ratio. 

Furthermore, compared to TiO2, both Pt modified samples show the appearance of intense bands at 

1458 cm
-1

 and at 1640 cm
-1

 characteristic of dimethyl ether and formic acid, respectively. Thus, the 
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presence of Pt nanoparticles strongly affects the adsorption/desorption properties and the reactivity 

of the TiO2 surface, a result that was predicted by DFT calculations. For example, Han et al. [34] 

reported that Pt clusters enhance both molecular methanol adsorption and methanol dissociation via 

C-O scission on the anatase surface by introducing new active sites at the PtTiO2 interface 

characterised by a lower activation energy. Moreover, the energy difference between different 

bond-breaking modes depends on the size of Pt clusters. 

 

3.3. Effect of UV-vis irradiation  

Two types of experiments were performed in order to study the effect that UV-vis irradiation has on 

methanol adsorption and reactivity: i) saturation in the dark in flowing methanol vapours followed 

by irradiation in N2 atmosphere; ii) saturation under UV-vis irradiation in flowing methanol or 

methanol/water vapours followed by purging in the dark in flowing N2. By the first type of test we 

investigated the photocatalytic reactivity of residual surface adsorbed species after methanol 

saturation. The second type of test allows following the photocatalytic activity under flowing 

methanol or methanol/water vapours and, after purging in N2, to evaluate the effect of UV-vis 

irradiation on the adsorption properties of the photocatalyst. In both types of experiments, FP-

Pt/TiO2 and RM-Pt/TiO2 behaved similarly (unless specified). Thus, for simplicity, we will focus 

the discussion on the comparison between TiO2 and RM-Pt/TiO2. 

 

3.3.1 Effect of UV-vis irradiation on pre-adsorbed methanol in the dark 

As shown in the previous section, prolonged exposure to methanol vapours in the dark leads to the 

formation of surface formate along with adsorbed methanol and methoxy groups. These species are 

stable in the dark under N2 flow. As the photocatalyst layer was irradiated with UV-vis light an 

absorption-shift of the spectra was observed (Fig. 10). This absorption shift is attributed to the 

formation of both photopromoted conduction band (CB) and shallow trapped (ST) electrons [8,16–

18]. In particular, CB electrons provoke a distinct exponential absorption growth of the IR baseline 
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while ST electrons give rise to broad bands due to the optical excitation of electrons from the ST 

states into the CB. Thus, the exact position of these bands depends on the energy difference 

between ST and CB and are usually located around 1600 cm
-1

 (ca. 0.2 eV below the CB). As shown 

in Fig. 10, the IR absorbance at 1900 cm
-1

 (i.e. where no other species are expected to absorb) in the 

case of TiO2 increased to a larger extent than for the Pt-modified catalysts, indicating a lower 

concentration of CB and ST electrons in the absence of Pt. In the presence of Pt, the majority of 

photopromoted electrons are transferred to and trapped by the Pt nanoparticles. This confirms the 

capability of Pt to increase the charge carriers separation, with the consequent enhancement of the 

photocatalytic efficiency. Fig. 10a shows that, as the UV-vis light was switched on, the intensity of 

all the characteristic bands of adsorbed methoxy species (2925, 2821, 1425 and 1033 cm
-1

) 

decreased. These signals fully disappeared after 80 min irradiation on TiO2 and after 30 min 

irradiation on RM-Pt/TiO2. Comparing the blue curves of Fig. 11, it is evident that no bands of 

adsorbed formaldehyde (1727 and 1502 cm
-1

), formic acid (1710 cm
-1

) or dimethyl ether (2733 and 

1710 cm
-1

) remained in the spectra after UV-vis irradiation, contrarily to the spectra recorded in the 

dark. Thus, these species either fully desorbed or reacted under irradiation, leading to the gaseous 

products of the photosteam reforming reaction reported in our previous work [1,2]. In contrast, 

residual bands of formate (2865, 1586, 1383 and 1360 cm
-1

), methylformate (2970 cm
-1

), and 

adsorbed CO on Pt at 2010 cm
-1

 persisted on the photocatalyst surface, proving the accumulation of 

oxidative products with a high bonding energy (spectator species). Particularly detrimental is the 

persistence of CO adsorbed on Pt for its poisoning effect that very likely contributes to the lower 

photocatalytic activity of RM-Pt/TiO2 compared to FP-Pt/TiO2. Some relevant difference between 

RM-Pt/TiO2 and TiO2 arises when comparing the C-H stretching region (Fig. 10a). After exposing 

TiO2 to UV-vis light, residual bands of unreacted methoxy groups persisted and the bands of 

methylformate and formates were significantly weaker, confirming the superior photoactivity of the 

Pt containing photocatalyst in the complete photo-assisted oxidation of adsorbed methanol.  
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3.3.2 Methanol and methanol/water adsorption on UV-vis irradiated TiO2 surface 

These experiments were performed under constant UV-vis irradiation of the photocatalyst layer. In 

particular, the photocatalyst was pre-irradiated for 30 min under N2 flow, and then the IR 

background was recorded. Methanol or methanol/water adsorption was first performed (five 

consecutive pulses) and then the photocatalyst was exposed to a continuous flow of methanol or 

methanol/water vapours for 30 min, followed by 30 min purging with N2. Some remarkable 

differences arise when comparing the same experiments in dark (blue curves of Fig. 11) and under 

UV-vis irradiation (red curves of Fig. 11), namely: 

i) Surface methanol saturation occurred faster on all pre-irradiated samples. 

ii) No negative bands appear in the 3750-3550 cm
-1

 region indicating no consumption of surface 

hydroxyl groups during methanol adsorption, i.e. these species were very likely removed during 

pre-irradiation. 

iii) Contrarily to the experiment performed in the dark, in the ATR-spectra recorded in situ under 

flowing methanol and methanol/water vapours, the transient bands of adsorbed formic acid 

(1640 cm
-1

) and formates (1586 and 1360 cm
-1

) completely disappear after purging with N2. 

Thus, formates did not accumulate on the TiO2 surface upon UV-vis irradiation of the 

photocatalyst, even after prolonged exposure to methanol vapours. 

iv) The bands of adsorbed methanol were more stable after purging with N2 under UV-vis light 

than those formed in the dark. Thus, these methanol species are slowly photo-oxidised. 

v) The band at 2028 cm
-1

 due to CO adsorbed on Pt was weaker when methanol or methanol/water 

were adsorbed under UV-vis light.  

UV-vis pre-irradiation is known to affect the surface properties of TiO2, e.g. by inducing TiO2 

surface hydrophilicity [40]. Photopromoted electrons can be transferred to surface Ti
4+

, forming 

Ti
3+

 sites, whereas holes can create oxygen vacancies. These two phenomena very likely consume 

hydroxyl groups and adsorbed water and increase the surface concentration of free sites for faster 

methanol adsorption. Moreover, UV-vis irradiation increases the surface reactivity of TiO2, i.e. 
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methanol is oxidised to formate (as shown in the spectra recorded during methanol vapours 

exposure), but they do not accumulate on the surface (as occurs by contrast in the dark), because 

they desorb or are further oxidised up to CO2. Thus, present results suggest that pre-irradiation of 

the photocatalysts, prior to the photocatalytic tests, might increase their performance. 

 

 

4. Conclusions 

In situ ATR-IR investigation of methanol photo-steam reforming on Pt/TiO2 demonstrated that the 

promoting effect of Pt on photocatalytic performance is not only limited to its ability to enhance the 

charge carrier separation by trapping the CB electrons. The presence of Pt introduce new active 

sites at the PtTiO2 interface that strongly affect the adsorption/desorption dynamics and reactivity 

of methanol and water. Pt particle size also plays a crucial role. Pt clusters (i.e. with size < 2 nm) on 

titania, produced in single step by flame spray pyrolysis, proved to be co-catalysts more effective 

than Pt nanoparticles. Reducing the Pt particle size below 2 nm not only increases the surface to 

bulk Pt atom ratio, but also the edge and corners to terrace Pt atoms ratio. The lower coordinated Pt 

atoms located at edges and corners are expected to be more reactive and to prevent the formation of 

poisoning CO adsorbed on Pt after exposure to methanol vapours. 

Finally, the adsorption/desorption dynamics and reactivity are also affected by the UV-vis 

irradiation that prevents the formation of unreactive formate.  
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Tables 

Table 1: Main IR absorption bands of the identified species adsorbed on TiO2  

Specie Absorption mode Wavenumber / cm
-1

 Ref. 

Molecular methanol 

(CH3OHads) 

νas,C-H 2950 [6–10] 

νs,C-H 2845  

νC-O 1048  

C-H 1480-1340  

Monodentate methoxy 

(CH3Oads) 

νas,C-H 2925 [6–10] 

νs,C-H 2821  

νC-O 1128  

C-H 1480-1340  

Bidentate methoxy 

(CH3Oads) 

νas,C-H 2925 [7,22,32,35] 

νs,C-H 2821  

νC-O 1033  

C-H 1480-1340  

Physisorbed water 

(H2Oads) 

νH-O-H 3400 [10,18,36–38] 
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Figure captions 

Fig. 1: Sketch of the homemade in situ ATR-IR cell. The IR beam is reflected towards the ZnSe 

crystal, while the sample thin film is irradiated on top with UV-vis light through two sapphire 

windows connected to the bifurcated optical fibres. 

Fig. 2: HAADF-STEM images of FP-Pt/TiO2 (A) and MR-Pt/TiO2 (B). Pt nanoparticles appear as 

bright spots on the titania support because of their higher Z-contrast. 

Fig. 3: (a) In situ ATR-IR spectra and (b) time on stream evolution of selected signals recorded at 

30°C during exposure to flowing 10% CO/N2 for 30 min followed by purging with N2 for 20 min. 

Symbols: () 2180 cm
-1

 of TiO2-CO, (●) 2070 cm
-1

 of Pt-COterrace, (▲) 2054 cm
-1

 of Pt-COedge, (x) 

1720 cm
-1

 of formaldehyde, () 1640 cm
-1

 of formic acid, and (+) 1586 cm
-1 

of formate. The arrow 

indicates the beginning of N2 purging.  

Fig. 4: Comparison of in situ ATR-IR spectra in the Pt-CO region recorded with the two Pt 

modified TiO2 samples after saturation in flowing 10% CO/N2 for 30 min followed by purging with 

N2 for 20 min.  

Fig. 5: Comparison of in situ ATR-IR spectra recorded at 30°C on hydrated bare and Pt modified 

TiO2 after 1, 2, 3, 10 (grey lines) and 15 (black bold line) consecutive pulses of 1 mL N2 saturated 

with methanol vapours at 30°C, followed by N2 purging for 10 min. Peaks attribution is reported in 

Table 1 and in the text. 

Fig. 6: Evolution of in situ ATR-IR spectra during the first pulse of methanol vapours on the three 

investigated samples. The spectrum of pure methanol is reported on top for comparison. 

Fig. 7: In situ ATR-IR spectra in the C–O stretching region recorded over hydrated RM-Pt/TiO2 

under flowing N2 saturated with methanol vapours at 30°C. The arrows indicate the behavior of the 



 17 

peak intensities. Inset: temporal dependence of the signals at (□) 1641 cm
-1

, (●) 1586 cm
-1

 and (▲) 

1033 cm
-1

 (scaled by a factor 10). 

Fig. 8: ATR-IR spectra recorded at 30°C under flowing N2 for 10 min on TiO2 and RM-Pt/TiO2 

after consecutive exposure to (a) methanol vapours, (b) water vapours, and (c) again methanol 

vapours. 

Fig. 9: Effect of increasing methanol-to-water molar fraction x on the in situ ATR-IR spectra 

recorded with TiO2 and RM-Pt/TiO2 after N2 purging. The labelled bands are assigned to Pt-CO 

(2020 cm
-1

), formaldehyde (1727 cm
-1

), formic acid (1640 cm
-1

), formate (1586 and 1360 cm
-1

) and 

dimethyl ether (1548 cm
-1

). 

Fig. 10: (a) Effect of UV-vis irradiation under flowing N2 on the ATR-IR spectra of TiO2 and RM-

Pt/TiO2 pre-saturated in methanol in the dark (blue curves before UV-vis irradiation and red curves 

after 2 h irradiation). (b) Teime dependence of the IR baseline due to the formation of 

photopromoted CB and ST electrons in TiO2 and RM-Pt/TiO2. The baseline is represented by the 

signal at 1900 cm
-1

. 

Fig. 11: Effect of UV-vis irradiation on the ATR-IR spectra of RM-Pt/TiO2 after methanol 

saturation and on the reactivity of the surface species after 2 h irradiation in N2 flow. The blue 

curves were recorded after methanol saturation in the dark (upper panel), followed by UV-vis 

irradiation under in flowing N2 (lower panel). The red curves were recorded with the same sample 

under constant UV-vis irradiation also during saturation with methanol.  
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Figure 11  

 

 

3500 3000 2000 1500 1000

0.00

0.01

0.00

0.01

After 2h UV-vis irradiation under N
2
 

A
b

s
 /

 a
.u

.

Wavenumber / cm
-1

1586 1360

20212865

1502

 in dark

 in UV-vis

After saturation in methanol
1425

2029

1128

1048

1727



 24 

References 

[1] G.L. Chiarello, M.H. Aguirre, E. Selli, Hydrogen production by photocatalytic steam 

reforming of methanol on noble metal-modified TiO2, J. Catal. 273 (2010) 182–190. 

doi:10.1016/j.jcat.2010.05.012. 

[2] G.L. Chiarello, D. Ferri, E. Selli, Effect of the CH3OH/H2O ratio on the mechanism of the 

gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2, J. Catal. 280 

(2011) 168–177. doi:10.1016/j.jcat.2011.03.013. 

[3] G.L. Chiarello, A. Di Paola, L. Palmisano, E. Selli, Effect of titanium dioxide crystalline 

structure on the photocatalytic production of hydrogen, Photochem. Photobiol. Sci. 10 (2011) 

355–360. doi:10.1039/C0PP00154F. 

[4] M.V. Dozzi, G.L. Chiarello, M. Pedroni, S. Livraghi, E. Giamello, E. Selli, High 

photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2, Appl. Catal. B Environ. 

209 (2017) 417–428. doi:10.1016/j.apcatb.2017.03.007. 

[5] G.L. Chiarello, M.V. Dozzi, M. Scavini, J.-D. Grunwaldt, E. Selli, One step flame-made 

fluorinated Pt/TiO2 photocatalysts for hydrogen production, Appl. Catal. B Environ. 160–161 

(2014) 144–151. doi:10.1016/j.apcatb.2014.05.006. 

[6] E.A. Taylor, G.L. Griffin, Product Selectivity during CH3OH Decomposition on TiO2 

Powders, (1988) 477–481. 

[7] W.-C. Wu, C.-C. Chuang, J.-L. Lin, Bonding Geometry and Reactivity of Methoxy and 

Ethoxy Groups Adsorbed on Powdered TiO2, J. Phys. Chem. B. 104 (2000) 8719–8724. 

doi:10.1021/jp0017184. 

[8] A. Yamakata, T.A. Ishibashi, H. Onishi, Electron- and hole-capture reactions on Pt/TiO2 

photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption 

spectroscopy, J. Phys. Chem. B. 106 (2002) 9122–9125. doi:10.1021/jp025993x. 

[9] C. Wang, H. Groenzin, M.J. Shultz, Surface Characterization of Nanoscale TiO2 Film by 

Sum Frequency Generation Using Methanol as a Molecular Probe, J. Phys. Chem. B. 108 

(2004) 265–272. doi:10.1021/jp0356463. 

[10] T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, et al., Mechanistic studies of photocatalytic 

reaction of methanol for hydrogen production on Pt/TiO2 by in situ fourier transform IR and 

time-resolved IR spectroscopy, J. Phys. Chem. C. 111 (2007) 8005–8014. 

doi:10.1021/jp071022b. 

[11] P. Pichat, Representative examples of infrared spectroscopy uses in semiconductor 

photocatalysis, Catal. Today. 224 (2014) 251–257. doi:10.1016/j.cattod.2013.11.036. 

[12] L. Mino, IR spectroscopy as a tool to investigate photocatalytic reactions at oxide surfaces, 

Rend. Lincei. 28 (2017) 143–149. doi:10.1007/s12210-016-0592-9. 

[13] H. Belhadj, S. Melchers, P.K.J. Robertson, D.W. Bahnemann, Pathways of the photocatalytic 

reaction of acetate in H2O and D2O: A combined EPR and ATR-FTIR study, J. Catal. 344 

(2016) 831–840. doi:10.1016/j.jcat.2016.08.006. 

[14] D. Gong, V.P. Subramaniam, J.G. Highfield, Y. Tang, Y. Lai, Z. Chen, In Situ Mechanistic 

Investigation at the Liquid/Solid Interface by Attenuated Total Reflectance FTIR: Ethanol 

Photo-Oxidation over Pristine and Platinized TiO2 (P25), ACS Catal. 1 (2011) 864–871. 

doi:10.1021/cs200063q. 

[15] M. El-Roz, P. Bazin, M. Daturi, F. Thibault-Starzyk, Operando Infrared (IR) Coupled to 

Steady-State Isotopic Transient Kinetic Analysis (SSITKA) for Photocatalysis: Reactivity 

and Mechanistic Studies, ACS Catal. 3 (2013) 2790–2798. doi:10.1021/cs4006088. 

[16] A. Litke, E.J.M. Hensen, J.P. Hofmann, Role of Dissociatively Adsorbed Water on the 

Formation of Shallow Trapped Electrons in TiO2 Photocatalysts, J. Phys. Chem. C. 121 

(2017) 10153–10162. doi:10.1021/acs.jpcc.7b01151. 

[17] J. Liu, L. Zhang, X. Yao, S.S.C. Chuang, Photo-generated conduction-band and shallow-trap 

electrons from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2: an in situ infrared 



 25 

study, Res. Chem. Intermed. 43 (2017) 5041–5054. doi:10.1007/s11164-017-3038-9. 

[18] A. Yamakata, T. Ishibashi, H. Onishi, Effects of water addition on the methanol oxidation on 

Pt/TiO2 photocatalyst studied by time-resolved infrared absorption spectroscopy, J. Phys. 

Chem. B. 107 (2003) 9820–9823. doi:10.1021/jp034997e. 

[19] Y. Attia, M. Samer, Metal clusters: New era of hydrogen production, Renew. Sustain. Energy 

Rev. 79 (2017) 878–892. doi:10.1016/j.rser.2017.05.113. 

[20] G.L. Chiarello, I. Rossetti, L. Forni, Flame-spray pyrolysis preparation of perovskites for 

methane catalytic combustion, J. Catal. 236 (2005) 251–261. doi:10.1016/j.jcat.2005.10.003. 

[21] C.-C. Chuang, W.-C. Wu, M.-C. Huang, I.-C. Huang, J.-L. Lin, FTIR Study of Adsorption 

and Reactions of Methyl Formate on Powdered TiO2, J. Catal. 185 (1999) 423–434. 

doi:http://dx.doi.org/10.1006/jcat.1999.2516. 

[22] F. Boccuzzi, A. Chiorino, M. Manzoli, FTIR study of methanol decomposition on gold 

catalyst for fuel cells, J. Power Sources. 118 (2003) 304–310. doi:10.1016/S0378-

7753(03)00075-2. 

[23] F.P. Rotzinger, J.M. Kesselman-Truttmann, S.J. Hug, V. Shklover, M. Grätzel, Structure and 

Vibrational Spectrum of Formate and Acetate Adsorbed from Aqueous Solution onto the 

TiO2 Rutile (110) Surface, J. Phys. Chem. B. 108 (2004) 5004–5017. 

doi:10.1021/jp0360974. 

[24] A. Lukaski, Photocatalytic oxidation of methyl formate on TiO2: a transient DRIFTS study, 

J. Catal. 223 (2004) 250–261. doi:10.1016/j.jcat.2003.12.015. 

[25] M.D. Hernández-Alonso, I. Tejedor-Tejedor, J.M. Coronado, M.A. Anderson, J. Soria, 

Operando FTIR study of the photocatalytic oxidation of acetone in air over TiO2–ZrO2 thin 

films, Catal. Today. 143 (2009) 364–373. doi:10.1016/j.cattod.2009.02.033. 

[26] J.G. Highfield, M.H. Chen, P.T. Nguyen, Z. Chen, Mechanistic investigations of photo-

driven processes over TiO2 by in-situ DRIFTS-MS: Part 1. Platinization and methanol 

reforming, Energy Environ. Sci. 2 (2009) 991. doi:10.1039/b907781m. 

[27] F. Boccuzzi, A. Chiorino, M. Manzoli, FTIR study of the electronic effects of CO adsorbed 

on gold nanoparticles supported on titania, Surf. Sci. 454 (2000) 942–946. 

doi:10.1016/S0039-6028(00)00160-6. 

[28] F.M. Leibsle, R.S. Sorbello, R.G. Greenler, Coupled harmonic oscillator models of carbon 

monoxide adsorbed on stepped, platinum surfaces, Surf. Sci. 179 (1987) 101–118. 

doi:10.1016/0039-6028(87)90122-1. 

[29] R.K. Brandt, M.R. Hughes, L.P. Bourget, K. Truszkowska, R.G. Greenler, The interpretation 

of CO adsorbed on Pt/SiO2 of two different particle-size distributions, Surf. Sci. 286 (1993) 

15–25. doi:10.1016/0039-6028(93)90552-U. 

[30] H. Gao, W. Xu, H. He, X. Shi, X. Zhang, K. ichi Tanaka, DRIFTS investigation and DFT 

calculation of the adsorption of CO on Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2, Spectrochim. 

Acta - Part A Mol. Biomol. Spectrosc. 71 (2008) 1193–1198. doi:10.1016/j.saa.2008.03.036. 

[31] B. Ni, X. Wang, Face the Edges: Catalytic Active Sites of Nanomaterials, Adv. Sci. 2 (2015) 

1500085. doi:10.1002/advs.201500085. 

[32] S. Bates, M. Gillan, G. Kresse, Adsorption of methanol on TiO2 (110): A first-principles 

investigation, J. Phys. Chem. 2 (1998) 2017–2026. doi:10.1021/jp9804998. 

[33] A. Tilocca, A. Selloni, Methanol Adsorption and Reactivity on Clean and Hydroxylated 

Anatase(101) Surfaces, J. Phys. Chem. B. 108 (2004) 19314–19319. doi:10.1021/jp046440k. 

[34] Y. Han, C. Liu, Q. Ge, Effect of Pt Clusters on Methanol Adsorption and Dissociation over 

Perfect and Defective Anatase TiO2 (101) Surface, J. Phys. Chem. C. 113 (2009) 20674–

20682. doi:10.1021/jp907399j. 

[35] A. Nuhu, J. Soares, M. Gonzalez-Herrera, A. Watts, G. Hussein, M. Bowker, Methanol 

oxidation on Au/TiO2 catalysts, Top. Catal. 44 (2007) 293–297. doi:10.1007/s11244-007-

0302-z. 

[36] G. Busca, H. Saussey, O. Saur, J.C. Lavalley, V. Lorenzelli, FT-IR characterization of the 



 26 

surface acidity of different titanium dioxide anatase preparations, Appl. Catal. 14 (1985) 

245–260. doi:10.1016/S0166-9834(00)84358-4. 

[37] F. Guzman, S.S.C. Chuang, Tracing the reaction steps involving oxygen and IR observable 

species in ethanol photocatalytic oxidation on TiO2, J. Am. Chem. Soc. 132 (2010) 1502–

1503. doi:10.1021/ja907256x. 

[38] Z. Yu, S.S.C. Chuang, In situ IR study of adsorbed species and photogenerated electrons 

during photocatalytic oxidation of ethanol on TiO2, J. Catal. 246 (2007) 118–126. 

doi:10.1016/j.jcat.2006.11.022. 

[39] G.A. Flores-Escamilla, J.C. Fierro-Gonzalez, Infrared spectroscopic study of dimethyl ether 

carbonylation catalysed by TiO2 -supported rhodium carbonyls, Catal. Sci. Technol. 5 (2015) 

843–850. doi:10.1039/C4CY00912F. 

[40] L. Zhang, R. Dillert, D. Bahnemann, M. Vormoor, Photo-induced hydrophilicity and self-

cleaning: models and reality, Energy Environ. Sci. 5 (2012) 7491–7507. 

doi:10.1039/c2ee03390a. 

 

 


