
The Cimaganda landslide (SO): 
hydro-mechanical numerical 

modelling

Morcioni Andrea1, Bajni Greta1, Apuani Tiziana1

XIV Convegno Nazionale GIT 
17-19 Giugno 2019

Melfi (Pz)

(1) Dipartimento di Scienze della Terra “A. Desio” Università degli Studi di Milano



Cimaganda landslide
27th September 2012
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Total amount of water cumulated in 4 days: 267,8 mm 

Triggering factor: 

Source: www.fraciscio.it
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Rock volume involved: 20.000 m3 
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• Suretta nappe (Upper Pennidic unit)

‘’Complesso stella timun’’

Permo-mesozoic cover unit

• Tambò nappe (Middle Pennidic unit)

‘’Zona del Corbet superiore’’

Main structural elements:

o Engadina line (NE-SW)
o Forcola line (NW-SE)

o San Giacomo Valley allignment (N-S)
o Tambò-Suretta contact (N-S/ NW-SE)

Study area
Ortogneiss – Tambò nappe

Paragneiss – Tambò nappe

Bregaglia valley

Chiavenna valley

San Giacomo 
valley
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Schists – cover unit

Cimaganda landslide
Geological framework



The 2012 event represent the recent evolution of the historical
Cimaganda rock avalanche which mobilized about 7.5 Mm3 of material
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Ancient rock 
avalanche

2012
event

Cimaganda village

 Steep slopes with high sub-vertical rock cliffs
 Frequent rockfalls and instability events

Cimaganda landslide
Geomorphological features



Case study approach
Working flowchart

OBJECTIVE: 
ANALIZE SLOPE 

EVOLUTION USING 
NUMERICAL 

MODELS 
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MECANICHAL PROPERTIES:
• Geological factors

• Rock material properties
• Joints features

• Rock mass quality

Field surveys + 
laboratory tests

HYDROLOGICAL PROPERTIES:
• Hydrogeological conditions

• Pluviometrical data

Numerical 
modelling: back 
analysis of the 

2012 event

1. Geomorphological map
2. Geomechanical map

CONCEPTUAL 
MODEL

Geomechanical 
characterization

Hydrogeological
imput data

Field surveys + 
data analysis

What I 
needed?

Today main
purpose



SET Type Dip direction [°] Dip [°]

K1 Schistosity 34 27

K2 Joint 287 78

K3 joint 222 79

RGM1 site

K3 K2 K1

N S

1. Joints distribution

2. Geomechanical rock mass 
classifications

o Intact rock strength (Due to different txtural
features and weathering degree)

o Intesity of fracturing

o Persistency, aperture and rugosity of discontinuity

Variability in geomechanical properties:

- RMR: 75
- GSI: 50-65

1m3 <  VRU < 10m3

2 <  JRC < 12
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Main discontinuity sets

Rock mass 
quality indexes

Data collection: Geomechanical surveys

Surveys Laboratory Modelling

Hoek&Brown



Predisposition elements to rockfalls 

and slope instability events

W E

W E
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K3 set:
1. Joint orientation parallel to the main valley axis
2. High degree of linear and areal persistency
3. Apertures even greater than 10 centimeters

Surveys Laboratory Modelling



Parametr SC1_M1 SC1_M2 SC1_M3 SC2_M1 SC2_M2

sf 60.26 75.30 36.61* 60.00 49.00

Et50% 14.50 26.40 10.50 13.40 22.80

n 0.30 0.22 0.22 0.33 0.24

o Compressive strength (σc) of 61 MPa and elastic module (Et50)
of 19.7 GPa.

o Different strength behaviour due to textural rock features and
micro preexisting fractures

o Previous tests conducted on the material of the landslide
deposith had shown an higer compressive strength and
stiffness (σc = 175 MPa and E= 35 GPa) due to different degree
of weathering and textural features

Data collection: Intact rock strength
Uniaxial compression tests (ASTM D4543-08)

5 tests contucted on specimen from ancient landslide 
crowning (SC1 and SC2 sites)
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Surveys Laboratory Modelling
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1. Field geological sampling (3 joints → 6+3 samples)

2. Laboratory analysis of joint surfaces (Barton N., 2002) 

ID Set
Tilt angle 

(α)
JRC JCS [MPa]

SC1 K2 44.81° 2.5 72.42

SC4_A K3 49° 9 57.65

SC4_B K3 52.6° 10 59.64
Rough surfaces

Smooth surfaces
JRC JCSφb

3. Shear tests

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Sh
e

ar
st

re
ss

 [
M

P
a]

Shear displacements [mm]

Phase 2

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000

N
o

rm
al

st
re

ss
 [

M
P

a]

Time [s]

Phase 1

Data collection: Joint shear strength
Shear tests (ASTM D5607-08)
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Not conventional phase

• Five cycles for K3 joints coming
from SC4 site

• Three cycles for K2 joints coming
from SC1 site

p

Surveys Laboratory Modelling

PHASE 1: normal load (1-6 MPa)  PHASE 2: shear load PHASE 3: multiple cycles

r

Dh - sN Ds - 
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2012 landslide site (SC4): K3 set
• Rough and fresh surfaces

Before testing 5th cycle
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Surveys Laboratory Modelling

Peak behaviour
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Parameter Value

ФP 48°

Фr 27°

Cp 0,2 MPa

Cr 0 MPa

Mohr-Coulomb parameters

Bilinear Patton strength criteria



Ancient landslide site (SC1): K2 set
• Weathered and soft surfaces

Before testing 3rd cycle
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Surveys Laboratory Modelling

NO peak behaviour
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Linear strength criteria

Ƭmax at 1st cycle of K2 set= Ƭres at 5th cycle of K3 set



Normal and shear

stiffness
y = 0.1167e4.0859x

R² = 0.9977
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Shear stiffness (Ks)

SC1 site (K2 set)SC4 site (K3 set)

𝐾𝑛 = 4.08 ∗ 𝜎𝑛 (K3)

𝐾𝑠 = 0.9 + 0.55 ∗ 𝜎𝑛 (K3)

𝐾𝑛 = 1.5 ∗ 𝜎𝑛 (K2)

𝐾𝑠 = 0.7 + 0.31 ∗ 𝜎𝑛 (K2)

Stiffness= [Loading/displacement]
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Surveys Laboratory Modelling



Geometrical parameters describing joint network

SET TIPO Imm. [°] dip [°] Mean length [m] Intensity of fracturing

K1 Shistosity 34 27 / /

K2 Joint 287 78 58.2 0.00013

K3 Joint 222 79 34.3 0.00013

IMPLICIT

EXPLICIT

Numerical code: Finite element
(RS2, Rocscience)

Morphology:
DTM Regione Lombardia (20x20), 2002

Material properties:
HB parameters, E0 as function of depth; 
Anisotropy behaviour.

Joint network: 
Intensity of fracturing as function of depth;
MC parameters/equivalent MC parameters

Boundary conditions: 
Auto restrain surface (pins)

Mesh:
Uniform 6 noded triangles
Number of elements: 4301
Numer of nodes: 8299

Image analysis

Joint network: ‘’Beacher’’ model

Statistical distribuction from surveys data

Surveys Laboratory Modelling
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Conceptual model

X

Y

250 m

2
5

0
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2012 landslide scarp

IMPUT 
DATA

MODELLING
SETTINGS



Model 2: Introduction of a piezometric 
surface, corresponding to the hypothesized

ordinary hydrogeological conditions

Model 3: reduction of the rock mass 
quality index

Model 4: reduction of the material
and joints mechanical strength

GSI: 60       55

σc: 175       61  [MPa]

E: 35        20 [GPa]

The Cimaganda landslide (SO): hydro-mechanical numerical modelling

Back analysis
Progressive failure

Surveys Laboratory Modelling

2012 landslide scarp

LIRO TORRENT

Model 1 – Starting point: Best 
mechanical properties detected

Progressive failure mechanism



Model 1 – Dry
Results: vertical displacement

+

-

2012 landslide scarp

The distribution and entity of 
the simulated displacements 
are suitable with the direct 

measurements and 
observations carried out 
during geological surveys
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X
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Surveys Laboratory Modelling
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Preparatory factors

Maximum shear strain distribuction at the 2012 landslide scarp

• The hypothesized piezometric surface does not alter the displacements distribuction
(mod 1mod 2)

• The decrement of mechanical properties to the lowest detected, led to a significant
increase in the yielded elements and slightly in displacements modulus. Focusing on
the part of the slope where the event occurred, a shear strain surface begins to
develop (mod 2mod 3mod 4)

The Cimaganda landslide (SO): hydro-mechanical numerical modelling

Surveys Laboratory Modelling

Models 2 to 4 
results



Triggering factor

The Cimaganda landslide (SO): hydro-mechanical numerical modelling

27th september26th september25th september24th september

Stazione ARPA di “San Giacomo Filippo – Lago 

del Truzzo”

Data mm di pioggia accumulati in 24h

21/09/2012 0

22/09/2012 0

23/09/2012 1

24/09/2012 84.2

25/09/2012 32

26/09/2012 113.4

27/09/2012 37.2

28/09/2012 0

Totale accumulato 267.8 mm

Surveys Laboratory Modelling

Triggering factor: Rainfall
infiltration, accompanied 

by a restricted and 
temporary rising of 
piezometric level

To consider this is
necessary to improve a 

transient analysis

Imput data: 
vertical infiltration
varying with time 
according to the 

rainfall data
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27th september26th september25th september24th september

A CB ED

!! Assumption: the total amount of water will infiltrate in the slope!!

1.5x10-6 m/s 7.5x10-7 m/s 2.6x10-6 m/s 1x10-6 m/s0 m/s

Vertical 
infiltration

data

57600
sec

249200
sec

162800
sec

119600
sec

Transient finite element

analysis

Surveys Laboratory Modelling

• On the base of the precipiation data
pattern five different steps (A to E)
were identified

• Different vertical infiltration input
values were calculated considering the
total amount of water at each step

• The effects of the pore pressure
increment, was analyzed using a semi-
coupled hydro-mechanical analysis

0
sec

315000
sec

Landslide 
event
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Transient finite element

analysis

Surveys Laboratory Modelling

Hydraulic parameters

Rock masses principal hydraulic conductivities were calculated
considering joint orientation, JRC, aperture and fracture
frequency of each discontinuity set (i); (Coli S. et al; 2008).

Where ‘’e’’ is the effective hydraulic opening defined as:

Mechanical aperture

Roughness

Boundary conditions

Starting
piezometric level

Vertical 
infiltration

Liro torrent

Costant head of 
907 m

From collecting data was calculated a value of K1 ϑ angle of 80°
ANISOTROPY

K1

K2
𝐾1 = 1.26x10−5 m/s

𝐾2 = 2.21x10−9 m/s



Transient analysis results: excess of pore pressure



Transient analysis results: excess of pore pressure



Transient analysis results: maximum shear solid strain



Transient analysis results: maximum shear solid strain



Transient analysis results: maximum shear solid strain



• The introduction of rainfall infiltration, accompanied
by a restricted and temporary rising of piezometric
level, develops a localized excess of pore pressure
sufficient to lead the slope to a critical state.

• The maximum shear solid strain and total
displacement distribution (in the order of 5x10-1 m)
clearly show the presence of a critical composite
shear sliding surface roughly coincident with the
observed one.

Shear solid strain and total displacements distribution in 
corrispondence of the 2012 landslide scarp

Model 5
Results

The Cimaganda landslide (SO): hydro-mechanical numerical modelling

Surveys Laboratory Modelling

Critical state



• An accurate geomechanical characterization of the 2012 landslide slope was carried out. This led to
implement a numerical model through which was possible to simulate the general evolution of the slope
considering the predisposing and preparatory factors;

• Only considering a semi-coupled hydro-mechanical analysis, a critical state was reached an thus the recent
instability event was reproduced;

FUTURE PLAN

• This model clearly represent a great strating point to improve the simulation of the ancient rockslide and to
study future evolutions of the slope;

• The FEM analysis and the use of a semi-coupled hydro-mechanical modelling, does not reproduce the natural
groundwater flow along the fracture network and consequently imply an overestimation of the landslide
triggering factors. The use of a distinct element model approach could be thus explored in order to overcome
the hydrogeological simplifications of FEM approach.

The Cimaganda landslide (SO): hydro-mechanical numerical modelling

Conclusions
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