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ABSTRACT: A new gold-catalyzed reaction of ynamides with 3-substituted indoles as nucleophiles is 

reported. The reaction allows for the synthesis of a new class of 2-vinylindole derivatives in good yields 

via the intermediacy of a cyclopropyl gold-carbenoid species. 

Over the past twenty years, among unsaturated compounds, ynamides have emerged as simple, small 

and versatile building blocks in organic synthesis.1 Ynamides are structurally characterized by the pres-

ence of an electron donor nitrogen atom directly connected to a Csp atom of an alkyne. Subsequent strong 

polarization of the triple bond enhances alkyne reactivity towards electrophiles and the resulting 

keteniminium ions can be trapped by suitable carbon- and hetero-nucleophiles and/or involved in cy-

cloaddition and cyclization reactions. Moreover, the disclosed high reactivity is often accompanied by 

high level of regio- and/or stereo-control in the reaction products.2 As additional advantages, these com-

pounds are more stable than the corresponding ynamines,3 owing to the presence of an electro-withdraw-

ing group on the nitrogen atom, and, lastly, they can be synthesized by newly introduced and straightfor-

ward methodologies. 

More recently, several gold complexes have been employed as electrophilic metal catalysts in reactions 

involving ynamides in inter4 and intramolecular reactions.5 In particular, after activation of the triple 

bond by the gold species, nucleophilic attack on the Cα is favored leading to the formation of vinyl-gold 

intermediates that can take part in other transformations (Scheme 1a). Gold mediated reactions involving 

ynamides have been often used for the synthesis and functionalization of heterocyclic compounds. In 

particular, C3 functionalization of C3 unsubstituted indoles via intermolecular alkyne oxidation4m and 

intramolecular cyclization of indoles bearing C3 tethered ynamides5b result in the synthesis, respectively, 

of linear and polycyclic derivatives (Scheme 1b, 1c). 
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Scheme 1. Gold-catalyzed Inter- and Intramolecular Reactions of Indoles with Ynamides 

 

Taking these remarks into account and in accordance with our previous results in gold mediated syn-

thesis and functionalization of indoles,6 we decided to test the reactivity of indoles as nucleophiles in the 

gold catalyzed intermolecular reaction with ynamides under non-oxidative conditions. Reactions of 

C2/C3 unsubstituted indoles and of 2-substituted indoles with ynamides have been reported to occur 

under Brønsted acid catalysis affording regioselectively C3-cis-hydroarylated compounds.7 Thus, in a 

preliminary set of experiments we tested the efficiency of [Au(JohnPhos)NTf2] [JohnPhos = (2-bi-

phenyl)di-tert-buthylphosphine] in the same reactions and the corresponding hydroarylated compounds 

were regioselectively obtained in moderate yields and in E/Z mixtures.8 Thus, we turned our attention to 

C3 substituted indoles as they could react with ynamides through new reaction paths (Scheme 1d). Thus, 

3-methylindole (1a) was reacted with an equimolecular amount of N-tosylynamide 2a in the presence of 

[Au(JohnPhos)NTf2] (5 mol %) in DCM at room temperature. After 24 h, compound 3a was isolated as 

single stereoisomer in 35% yield, beside unreacted 1a (Table 1, entry 1). The formation of compound 3a 

is notable as indoles of general formula 3, bearing an -amidovinyl substituent at C2, have not yet been 

described in literature. Moreover, they pertain to the class of 2-vinylindoles, high valuable substrates for 

the synthesis of more complex derivatives via cycloaddition/cyclization reactions.9 The novelty of the 

achieved transformation and the remarkable structure of the obtained compound prompted us to search 

for the best catalyst/solvent system for the synthesis of 3a and to study the scope and the mechanism of 

the reaction. Therefore, using 1a and 2a in a model reaction, we optimized the conditions for the synthesis 

of 3a. The obtained results are summarized in Table 1. 
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Table1. Screening of the reaction conditions for the synthesis of 3a. 

 

entrya cat. (5 mol %) solvent t (°C) Time (h) Yield (%)b Z/Ec 

1 Au(JohnPhos)NTf2 DCM rt 24 35 >20:1 

2 Au(JohnPhos)NTf2 DCE 80 6 72 >20:1 

3 Au(IPr)NTf2 DCE 80 6 57 >20:1 

4 Au(PPh3)NTf2 DCE 80 6 58 1.4:1 

5 Au(JohnPhos)SbF6 DCE 80 6 56 >20:1 

6 Au(JohnPhos)NTf2 toluene 80 6 65 >20:1 

7 Au(JohnPhos)NTf2 toluene 110 6 59 >20:1 

8 Au(JohnPhos)NTf2 DCE 120, mw 0.5 69 >20:1 

9 Au(JohnPhos)NTf2 DCE 120, mw 0.25 75d >20:1 

10 Au(JohnPhos)NTf2 toluene 120, mw 0.25 70d >20:1 

11 AuCl3 DCE 80 6 5 >20:1 

12 AgNTf2 DCE 80 6 15e >20:1 

13 PtBr2(cod) DCE 80 6 – – 

14 HNTf2 (10 mol %) DCE 80 5 59 2.5:1 

a Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), catalyst (5 mol %), in the stated solvent (0.1 M). b Isolated yield.  
c Measured via 1H-NMR. d1.1 equiv of 2a were used. eIn mixture with an unidentified side-product. JohnPhos = (2-bi-

phenyl)di-tert-buthylphosphine. IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene. 

 

Starting from the preliminary result reported in entry 1, by increasing the temperature to 80 °C, in DCE, 

3a was formed in 72% yield, in a reduced reaction time of 6 h (entry 2). We next evaluated the influence 

of gold(I) species on the reaction outcome. Neither the use of carbenic [Au(IPr)NTf2] or of 

[Au(PPh3)NTf2] had positive effect on the reaction yield. In addition, using PPh3 as gold ligand, the 

reaction was not stereoselective and 3a was isolated as an inseparable mixture of Z/E isomers with a ratio 

of 1.4/1 (entries 3, 4). Similarly, the use of [Au(JohnPhos)SbF6(CH3CN)] bearing a different counterion 

than triflimidate, was not leading to any improved result (entry 5). To evaluate the effect of both solvent 

and temperature, the reaction was conducted in toluene at 80 or 110 °C. Under these conditions, 3a was 

isolated in 65% and 59% yield, respectively (entries 6, 7). To improve the efficiency of the reaction, we 

decided to modify the heating source by employing a microwave reactor.10 Thus, the reaction conducted 

in the presence of [Au(JohnPhos)NTf2] in DCE at 120 °C for 0.5 h, was leading to 3a in 69% yield (entry 

8). A shortened reaction time was even giving better results, 3a was in fact formed in 0.25 h with 75% 

yield (entry 9). Similar results were obtained using toluene as solvent (entry 10). Besides gold(I) com-

plexes, the activity of other metal catalysts was then evaluated. The use of both AuCl3 and AgNTf2 was 
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less effective and 3a was isolated in poor yield (entries 11, 12). The reaction conducted under Pt(II) 

catalysis did not give rise to any product and both starting materials were recovered after 6 h at 80 °C 

(entry 13). Finally, we conducted the reaction in the presence of a Brønsted acid such as HNTf2. In this 

case, product was isolated but in a lower yield of 59% and as E/Z isomer mixture with a ratio of 2.5:1 

(entry 14).  

Having the best reaction conditions in hands (Table 1, entries 2 and 9), we next explored the scope of 

the transformation (Scheme 2). 

 

Scheme 2. Scope of the reaction between 1 and 2a, b 

 

aReaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), catalyst (5 mol %), in DCE (0.1 

M). bIsolated Yield. cReaction performed on 1 mmol scale.  
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At first, we focused our attention in the modification of the ynamide. The use of different substituents 

on the alkyne moiety was tolerated but the best results were obtained when R4 was an aromatic ring. In 

those cases, the employment of electron-poor or electron-rich arenes was not particularly affecting the 

reaction outcome and products 3b-3d were isolated in good yields. On the contrary, when R4 was substi-

tuted with an alkyl group, the yield of the reaction decreased. Products 3e, bearing an aliphatic alkyl 

chain and 3f substituted with a secondary alkyl group, were in fact isolated in lower yield and required a 

prolonged reaction time. Next, the methyl group on the amide moiety was replaced by a n-butyl chain, 

affording 3g in 55% yield. Furthermore, we used a cyclic aliphatic sulfonamide as electrowithdrawing 

substituent than the tosyl group, enabling the synthesis of 3h, when R4 is a phenyl ring, with high yield. 

Not only the ynamide 2 but also the nature of indole 1 could be varied. The reaction proceeded well by 

using N-benzylated or N-methylated 3-methylindole and the corresponding products 3l and 3m were 

obtained with good yield. Importantly, the synthesis 3m was performed on 1 mmol scale without any 

significant variation on the formation of the final product. We evaluated the effect of various substituents 

on the benzene indole ring and when R1 = 6-F the resulting fluorinated derivative 3n was isolated in high 

yield. Similarly, when R1 = Me, we got 3o in 66% yield. Finally, we varied the substituent on C-3 of the 

indole (R2≠ Me). The use of a TIPS-protected tryptophol was allowed yielding 3p efficiently, while 3-

allyl led to the formation of 3q. We investigated also the possibility of employing 4-(1H-indol-3-yl)bu-

tan-2-one as starting material. In this case we were able to isolate 3r, even if in a 14:1 mixture with the 

E isomer. These last indole derivatives were reacted with a cyclic aliphatic sulfonamide as well. Thus, 

TIPS-protected 3i and allyl derivative 3j, were synthetized with 61% and 55% yield, respectively. In 

addition, the reaction could also tolerate the presence of a ketone group, yielding 3k in 57% yield but in 

9:1 mixture with the E isomer. Finally, the reaction between 1a and 2a was repeated under conventional 

heating (table 1, entry 2) on multigram-scale (5 mmol of 1a) and 3a was obtained in comparable 76% 

yield. 

The mechanism we propose for this transformation is reported in Scheme 3. Anti-addition of indole 1 

and gold over the activated triple bond11 of ynamide 2 give rise to intermediate I occurring in resonance 

with cyclopropyl gold-carbenoid Ia. Starting from Ia, concurrent loss of proton and cyclopropane ring 

opening followed by protodeauration step could give rise to 3 and restore the catalyst. The greater im-

portance of structure resonance Ia compared to I is supported by the evidence that an alternative reaction 

path involving, starting from I, the intermediacy of a formal [2+2] cycloadduct II can be ruled out as it 

cannot give rise to 3. Moreover, the proposed reaction mechanism is in accordance with literature data 

for similar processes.11,12 In particular, the mechanism is in accordance with the proposal of Liu and 

coworkers for the gold-catalyzed intermolecular reactions of ynamides with electron-rich alkenes.12a 

Also in their experiments they did not find any evidence of the intermediacy of a [2+2] cycloadduct and 

the obtained products account for the intermediacy of a gold carbenoid specie. 
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Scheme 3. Proposed Reaction Mechanism 

 

In summary, a new and straightforward synthesis of an original class of 2-vinylindoles was developed. 

As demonstrated by us and by others, 2-vinylindoles are particularly useful as inner-outer ring dienes in 

[4+2] (dearomative) cycloaddition/cyclization reactions.9 In particular, compounds 3 present distinct 

electronic properties with respect to their well established and studied congeners and could be tested in 

dearomative [4+2] cyclization/cycloaddition reactions for the synthesis of polycyclic indoles.13 
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