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Abstract

This thesis involves works relating to the application and development steps within

the computer-aided drug design (CADD) process. Tackling atherosclerosis via the

path of metabolism modulation by targeting PFKFB3 is a novel idea regarding

atherosclerosis treatment. The disease has been connected to abnormal up-regulation

in the cellular metabolism process, predominantly through an elevation in glycolysis.

Part of the work elucidated here applied a multi-strategy approach targeting an im-

portant bifunctional enzyme, PFKFB3, which regulates the glycolysis process. With

the object of modulating PFKFB3 activity, multiple strategies have been attempted,

resulting in several potential hit compounds for further testing and developments.

Moreover, a virtual screening workflow was developed and tested. This workflow in-

corporated an additional rescoring procedure to re-evaluate the screening outcome. A

series of test sets were generated and used for benchmark study. The rescoring proce-

dure was further dissected, and statistical analyses were performed. Furthermore, it

was suggested that water molecules play important roles in bridging ligand-receptor

interactions. A C++ program was developed to select important binding site wa-

ter positions in both holo and apo protein structures. The program can be easily

incorporated into a virtual screening process and initial testing has shown promis-
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ing performance. Additionally, the applicability of network analysis in biomarker

detection was also preliminarily investigated. The early stage of a network analysis

workflow development was carried out and was demonstrated with promising results.

This thesis can provide further insights into, and also showed bright future prospects

of, CADD studies.
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CHAPTER 1

Computer-aided drug design

1.1 In drug development process

The process of drug discovery and development is costly; it can take an average of 10-

15 years and hundreds of millions to several billion US dollars for a new drug to reach

the markets.1–3 The developments in combinatorial chemistry and high-throughput

screening (HTS) have allowed generating and screening of large compound databases

in experimental settings.4,5 HTS, benefited from its high success rate, is one of the

most applied steps within the process of drug discovery in the pharmaceutical in-

dustries. However, it holds true under most of the circumstances that the detail

information regarding the binding mechanism and dynamics of the hit compounds

on the molecular scale are still lacking. This shortage in knowledge can easily af-

fect the later lead or drug development.6,7 Moreover, both combinatorial chemistry

and HTS require a large sum of financial input and resources and might not always

result in a satisfactory outcome. Hence, in comparison, techniques applied within
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CHAPTER 1. COMPUTER-AIDED DRUG DESIGN

computer-aided drug design (CADD) not only reduces the time and cost of the drug

development process but also provides rational information regarding molecular or

biological mechanisms from the early steps.

CADD can be involved in multiple stages that consist in the drug discovery and

development process. Cheminformatics and bioinformatics tools have shown good

potentials in target identifications and validations. Some promising outcomes have

been demonstrated with the applications of chemical structure similarity search,8

data mining,9 bioactivity spectra based algorithms,10 interaction fingerprints,11,12

and network-based methods.13–16 Moreover, CADD methods play important roles in

the hit or lead identifications. Two categories of computational approaches, ligand-

based and structure-based methods, are widely applied for early drug discovery.

Ligand-based drug design (LBDD) is mostly applied when the structural information

of the identified target is lacking. Ligand information such as binding affinities, chem-

ical structure, and physicochemical properties are frequently exploited for configuring

ligand-target interactions. Similarity search using 2D or 3D fingerprint methods is

one class of viable solutions for discovering new compounds and have been well re-

viewed elsewhere.17 Little information required for a query renders similarity search

a very useful class of methods at the very beginning of a drug discovery project,

and it is in general time/cost-efficient for huge chemical databases. The methods

are also in general diverse in implementations. Similar in concepts, pharmacophore

modelling is also frequently used for identifying molecules with similar 3D arrange-

ments of important functional groups to known active compounds.18 Furthermore,

another appealing method, namely the quantitative structure-activity relationship

(QSAR), has also gained its reputation in predicting the biological property of novel

compounds. QSAR is based on the presumption that the bioactivity of a compound

against a target is associated with its structural and molecular properties.19 This

correlation among a set of compounds can be modelled statistically and mathematics

activity predictions of novel compounds can also be derived.19

On the other hand, structure-based drug design (SBDD) benefited from the upsurging
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available structures of macromolecules with the advances in X-ray crystallography

and nuclear magnetic resonance (NMR) techniques. The number of available crystal

structures in the Protein Data Bank has almost tripled for the last decade (54479

crystal structures in 2008 and 147609 in 2018).20 Moreover, homology modelling

and molecular dynamic (MD) simulations are also valuable tools for generating the

desired macromolecule structures. Two strategies can be taken in SBDD, the de novo

design and the virtual screening (VS) approaches, both require the 3D information

from the targeted receptors.7,21 In a de novo drug design process, small fragments are

fitted into the binding site of the receptor and linked according to rules that allow

rational synthesis. This fragment-based approach has good potentials in producing

novel and potent lead compounds.22 Alternatively, libraries of small molecules can

also be virtually screened for identifying hits targeting the receptor of interests. The

prediction of binding poses and ranking of the fitness are generally accomplished by

using docking methods. Due to the application of small molecule libraries, VS can

also be combined with LBDD methods, such as similarity search and pharmacophore

modelling, to improve the efficiency of the overall CADD process.

1.2 Structure-based virtual screening

As a computational alternative to HTS, the concept of VS was established in the

1990s. Using computer programs, prediction of binding to a target macromolecule

(i.e. a receptor) can be performed for a list of compounds at a very low cost. More-

over, VS also have an advantage over HTS for that the screening compounds do not

necessarily exist. Application of VS also is not affected by factors that in general

exert circumstantial limitations on experimental techniques such as solubility and

aggregation. All these suggest VS a useful tool for discovering novel active com-

pounds.

One key prerequisite of VS is the knowledge regarding the spatial and energetic pro-

files crucial for binding. This, in general, can be achieved by using the 3D structures
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of the receptor of interest, either from X-ray crystallography, NMR, or homology

modelling. An important consideration at the beginning of a VS run is the choice of

the receptor 3D geometry that meet the circumstance of the screening. Specific cares

should be taken depending on the source of receptor structures. Resolution and the

diffraction data are crucial in determining the quality of a crystal structure, while the

strong dependence of NMR data on the local distribution of the Nuclear Overhauser

Effects along the protein chain suggest that careful examinations are also required.

Furthermore, homology models generated from crystal structures of related proteins

have also been successfully applied in multiple VS studies.23–25

Another crucial factor to be considered for VS is the quality of the screening li-

brary. There are multiple public and commercial chemical databases available, such

as ChEMBL, ZINC, and Asinex to name a few. The sizes of the libraries ranging

from tens of thousands to over a billion. Though it is possible to screen all the

compounds within a database with the gradual advancing in computer power, the

active compounds are more likely to share some common properties that span only

part of the chemical space. Excessive screening can lead to unnecessary wasting of

computational resources. A too large library is also more likely to introduce noises

that complicate later compound selection. Hence, it is always recommendable that

some pre-screening filtering to be applied. Common strategies include filters accord-

ing to Lipinski’s rules26,27 or similarity search based on known active ligands.28 More

specifically, pharmacophore filtering can also be applied if desired ligand-receptor in-

teractions are available. Multiple studies have demonstrated successful applications

of pharmacophoric constraints shrinking large compound libraries from several folds

to hundreds of folds smaller.29–31

Docking methods lie at the very core of virtual screening. The aim of a docking

program in VS is to provide accurate predictions in both the structural model and

biological activity. However, modelling of the molecular interactions is an intricate

and difficult task to allow sensitivity in biological recognition. To overcome some of

the difficulties, the simulated binding (i.e. docking) generally involves a multi-step

6.



CHAPTER 1. COMPUTER-AIDED DRUG DESIGN

process. Docking starts with the posing step, which uses algorithms to position small

molecules within the binding site. Conformational sampling is crucial to ensure ac-

curate pose predictions in this step and an ensemble of poses are first generated. The

fitness of poses is evaluated with scoring functions both during the posing simulations

and a later ranking stage.

Scoring functions are designed to estimate binding affinity between the ligands and

receptors with various assumptions and simplifications in physical phenomena and

interaction terms. During the early stages of docking runs, relatively simple scoring

schemes are applied to roughly screen the conformers at higher speeds. The selected

poses are then evaluated with more sophisticated scoring functions and ranked with

more confidence in finding meaningful conformers. The comparison and summary

of search algorithms and scoring functions in docking programs are out of the scope

of this thesis and are better reviewed elsewhere.32–34 Current scoring functions vary

in performance due to the differences their design and the accuracy is still generally

far from satisfactory.35 Hence, the development of a highly accurate scoring func-

tion of good efficiency still remains a major challenge. Efforts have been taken for

improved scoring performance by including entropic effects,36 incorporating quan-

tum mechanic calculations,37 consensus scoring,38,39 and applying machine learning

methods.40

Other environmental factors are also frequently discussed for VS applications. Most

docking process only considers one static conformation of the receptor while in the

physiological environment molecular targets are always at a dynamical equilibrium.

It has been demonstrated that consideration of receptor flexibility can potentially

improve VS outcomes.41 Docking using an ensemble of receptor conformers can par-

tially resolve the issue related to target flexibility. MD simulations42 or crystal struc-

tures43,44 can both be the source of the receptor ensembles. However, this comes

at a higher computational cost since VS about each conformer should be performed

separately.

Explicit water molecules at the binding site is another hot topic for developing better
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VS programs. Water is well-acknowledged to bridging ligand-receptor interactions

through hydrogen bonds at the binding interface.45,46 Analysis of thousands of crystal

structures have shown that in general one or more water molecules that are facilitating

ligand binding.47,48 Another study on 392 high-resolution complexes also suggested

that more than 50% of the active site water molecules are mediating ligand-target

interactions.49 This recognition is reflected by the development and adaptation of

various software to consider explicit water during docking or VS process.50–52

The thesis is mainly framed as a CADD expedition. Two major parts of the work

have involved steps within a CADD process. The first part involves the drug design-

ing process targeting a glycolytic enzyme, PFKFB3, for atherosclerosis treatment.

The SBDD methods were applied, taking advantages of mainly the VS and the MD

simulations. (Chapters 6 to 8) Different designing strategies were devised and the

molecular mechanisms of the hit compounds were investigated with the application

of CADD techniques.

On the other hand, the second part concerns the development and assessment of

computational methods and workflows that lie at the basis of the CADD techniques.

A workflow incorporating MM-PBSA rescoring to VS outcomes was also developed

and assessed. (Chapter 10 and 11) A water selection program was developed to

identify important water molecules prior to docking experiments and have shown

some potentials due to its high computational efficiency. (Chapter 12) The testing

of the workflow was carried out in-depth with several different test sets and the

outcome was analysed in detail. Moreover, the application of bioinformatic tools in

target identification was also explored.(Chapter 13)
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CHAPTER 2

Atherosclerosis

2.1 In cardiovascular diseases

Cardiovascular diseases (CVDs) are the number 1 cause of death globally.1 In 2016,

it was estimated that 31 % of all global death (about 17.9 million people) were due to

CVDs, 85 % of which are caused by heart attack and stroke.1 The low- and middle-

income countries are the most affected by CVDs (over three-quarters of the global

CVD mortalities), and CVDs are exhibiting an increase in prevalence each year.

A heavy economic burden from CVDs treatment impacts heavily on the low- and

middle-income countries. Moreover, pressing demands of better CVD management

is also called for in the developed countries.

CVDs can occur without symptoms and remain undiagnosed for a long period. The

first warning, however, are in general severe - such as a heart attack or stroke -

is can lead to irrevocable consequences. The main causations of heart attacks and

strokes are blockages obstructing blood flow to the heart or brain, commonly started
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from the accumulation of lipids on the inner walls of the blood vessels. The term

plaque, or atheromatous plaque, refers to the abnormal material accumulation on the

blood intima, most commonly arteries. The formation of plaque is closely connected

to the development of atherosclerosis, a disease depicts the luminal narrowing of

arteries.

Atherosclerosis can happen at arbitrary arteries in the body, and disrupt circula-

tion to the heart, brain, or peripheral parts. It is generally developed as a chronic

inflammatory process that leads to lipid-rich plaque formation (also containing cell

debris and calcium) within the layer of the arterial wall. The plaque typically has

a lipid core and a fibrous cap, which are elements defining the vulnerability status

of the plaque. A thick fibrous cap and a small lipid core represent a low risk or

stable plaque. A vulnerable plaque, on the other hand, is prone to rupture due to the

thinner fibrous cap and the larger lipid-rich necrotic core. Both types of plaques can

lead to artery stenosis (the narrowing of the artery) or occlusion through different

mechanisms.

Figure 2.1: Atherosclerosis. From: Atherosclerosis. Britannica Online Encyclopaedia.
By courtesy of Encyclopaedia Britannica, Inc., copyright © 2010 Encyclopaedia Britannica,
Inc; used with permission.2
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2.2 Pathogenesis

One key element in the development of atherosclerosis is the lipid contents in the

bloodstream. One major cause of atherosclerosis is related to the increase in the

concentration of apolipoprotein B (apoB) containing lipoproteins in the plasma and

their accumulation the arterial intima.3 However, other risk factors can also come

into play, such as smoking, hypertension, and diabetes mellitus.

The atherosclerotic lesions, in general, are triggered by inflammatory responses ini-

tialised by the retention of atherogenic lipoproteins within the walls of blood ves-

sels.4,5 These lipoproteins attach to the proteoglycans in the extracellular matrix

mostly through electrostatic interactions.6 ApoB 100 has multiple sites responsible

for proteoglycan binding with site B playing the major role.7 Lipoproteins other than

apoB, such as apoE and serum amyloid A, are also capable of binding to proteogly-

cans.8–10 Lipoprotein retention in the intima can lead to the oxidisation and aggre-

gation of low-density lipoprotein (LDL). Physical alterations of LDL (change in both

configuration and lipid organisation) can occur after binding to proteoglycans, which

evokes macrophage engulfment.11–13 The structural change also further accelerates

LDL oxidation and aggregation.14,15 Moreover, it has been suggested that lipopro-

tein retention is a self-accelerating process; retained LDL triggers cellular responses

that facilitate additional entrapment of LDL.16–18 Overall, lipoprotein retention is

the initiating step of developing atherosclerotic lesions.

Inflammation responses is another important process during atherosclerotic progres-

sion. The aggregated LDL particles are pro-inflammatory and can activate the en-

dothelium on the vessel inner walls. The activated endothelial cells can result in the

recruitment of blood-borne monocytes into sub-endothelial space, which is an impor-

tant early inflammatory response.19,20 Once entered the intima, the monocytes further

promote the accumulation of modified LDL by secreting lipoprotein binding proteo-

glycans, sustaining the inflammation process.4,21 Monocytes can also transform into

macrophages or dendritic cells under the influence of monocyte colony stimulating
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factor.22 During the ingestion of lipoproteins by macrophages, the balance between

uptake and efflux can be easily disrupted, leading to lipid accumulation forming the

foam cells. In established lesions, the growth of plaque is promoted by foam cells,

which is also accelerated by increased retention of lipoproteins.10

In atherosclerosis, adventitial and intimal angiogenesis can be considered as responses

to the hypoxic environment due to the thickening of the intima and progressive growth

of plaque.23–25 The intimal hyperplasia progression and necrotic core development are

also facilitated by angiogenesis, which is also likely one of the risk factors of plaque

rapture.26 Evidence, including the observation of intra-plaque angiogenesis, support

the connection between hypoxia-inducible factor (HIF) and atherosclerosis.27–29 Cor-

relation between hypoxia, the presence of macrophages, and the expression of HIF

and VEGF in advanced human atherosclerosis has also been demonstrated.30 The

new micro-vessels allow the migration of inflammatory cells to the deeper areas of

advanced plaques, perpetuating the chronic inflammation process.32 These inflam-

matory cells can also induce intra-plaque haemorrhage by means of neovessel rup-

ture.32

The rupturing risks of a vulnerable plaque are controlled by micro-vessel structure and

endothelial integrity. Thin-walled micro-vessels are prone to collapse and leakage and

are frequently observed in the atherosclerotic plaque, indicating that the angiogenesis

here is likely pathological.33–35 Additionally, studies have also shown that endothelial

integrity of micro-vessels within atherosclerosis is compromised, likely related to the

constant expression of VEGF during atherogenesis.30,36,37 Due to the above distinc-

tions to the physiological angiogenesis, the plaque is also related to bio-mechanical

destabilisation. High wall stresses and plaque strains are two key elements leading to

the rupture of plaque; the former can be induced by lumen narrowing, resulting in in-

creased local blood pressure and pulsate flow.38,39 Plaque characteristics and arterial

wall remodelling, on the other hand, determine the status of plaque strains.40,41
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2.3 Treatments and prospectives

Current treatment for atherosclerosis include lifestyle changes, medicines to lower

risks of heart attacks and strokes, and medical procedures and surgeries.42 Different

medicines can be prescribed to slow down the progress of atherosclerosis. Controlling

plasma cholesterol level and platelet clumping are the viable resolutions. Other treat-

ments include administration of beta blocker, angiotensin-converting enzyme (ACE)

inhibitors, calcium channel blockers, and diuretics.43 For severe symptoms, surgi-

cal procedures are also recommendable, such as angioplasty and stent placement or

bypass surgery.

Recent studies related to pathogenesis and diagnosis of cardiovascular diseases has

also provided further implications into atherosclerosis treatments. Promising out-

comes have been demonstrated in targeting vascular dysfunction, inflammatory pro-

cesses, angiogenesis, and metabolism.44–47 In this thesis, the modulator design target-

ing PFKFB3, an important regulator in glycolytic metabolism, has been attempted

in the context of modulating atherosclerosis metabolism. The connection of the en-

zyme to atherosclerosis will be elaborated in Chapter 3. Using novel design strategies

of modulations will likely provide additional insights into the field of atherosclerosis

therapy.
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CHAPTER 3

PFKFB3 and its relation to atherosclerosis

3.1 PFKFB3: an overview

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3 hereafter) enzyme

is one of the four known PFKFB isozymes found in humans.1,2 PFKFB3 is the gene

that encodes the human enzyme iPFK2 however it is also frequently been referred to

the enzyme itself. The first crystal structure of the enzyme was resolved in 20063 but

relevant studies had already commenced as early as 1982.4,5 From 2012, it underwent

an increase as reflected by the increasing numbers of publications and the number of

the times the articles have been cited during more recent years (Figure 3.1). This

is likely due to the increased input into researches within the field of cancer and

cardiovascular diseases, and the advances in biotechnology. This allowed a better

understanding of PFKFB3’s biological and structural properties, hence highlighted

the important connection of the enzyme to health and disease-related issues.

The PFKFB family is responsible for modulating the intracellular level of fructose-2,6-
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bisphosphate (F2,6BP);1,7,8 the latter is an important activator of the rate-limiting

glycolytic enzyme 6-phosphofructo-1-kinase (PFK1).9,10 PFBFKs are bifunctional

and catalyse the phosphorylation of fructose-6-phosphate (F6P) to F2,6BP and also

the reversed reaction.1,7,8 Four isozymes of the family have been so far determined

(PFKFB1-4), and are expressed in different tissues.1,2 More than 85% similarities

were observed within catalytic domains between different isozymes. However, the

high divergent in amino acid sequences at the termini likely provided much different

isozyme properties. Originally discovered to be expressed in the cells of liver/muscle,

heart, and testes, respectively, the PFKFB1, PFKFB2, and PFKFB4 all display al-

most equivalent activity between kinase and phosphatase.7 PFKFB3, on the other

hand, was demonstrated with an exceptionally high kinase activity with the kinase-

to-phosphatase ratio around 700:1.11 Initially isolated from cells of the brain and

human placenta,12 the gene expression of the 3 isozyme was later discovered ubiqui-

tous and inducible.13,14 Some transformed cells, whole organs, and primary human

epithelial cells were suggested to co-express all four PFKFBs.15,16 However, the sig-
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Figure 3.1: Statistics of PFKFB3 related studies. Data retrieved from Web of Science.6
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nificantly high kinase activity of PFKFB3 is likely to play a major role in determining

the intracellular level of F2,6P.16

3.2 Biological pathways and relevant diseases

PFK-1 catalyses an irreversible phosphorylation reaction converting F6P to fructose-

1,6-bisphosphate (F1,6BP), an early step of glycolysis.17,18 F2,6BP can inhibit fructose-

1,6-bisphosphatase (F1,6BPase) and activating PFK-1.9,10 More remarkably, F2,6P

exhibits much higher positive effect on glycolysis than F1,6BP, and is still by far

the most potent PFK-1 activator and an important regulator of glycolysis or gluco-

neogenesis.19,20 Upon binding, it also alters the conformation of PFK-1 to acquire

an increased affinity for F6P,10 and weakened negative feedback from ATP.21 Hence,

PFKFBs, especially the 3 isozyme, is closely connected to the up-regulation of cellular

glycolytic flux through regulating the intracellular F2,6BP concentration.

Cancer cells are known for abnormally up-regulated aerobic glycolysis, as described

Figure 3.2: PFKFB3 regulates glycolysis pathway through F2,6P and PFK-1.
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by the Warburg effect.22 The increased rate of glycolysis also provides precursors

for molecules necessary for cell growth and proliferations.23 A significantly elevated

amount of F2,6BP during steady state was discovered for multiple transformed cell

lines.2,24,25 The expression of PFKFB3 mRNA has been determined in HeLa, breast

cancer, leukaemia, colon and colorectal adenocarcinoma, lung carcinoma, gastric can-

cer, and pancreatic cancer cell lines in vitro.14,25–30 Moreover, in situ studies also

confirmed that PFKFB3 is over-expressed in multiple tissues isolated from tumours

comparing to normal controls.31 These findings constitutionally confirmed the con-

nection of PFKFB3 to abnormal cancer metabolism.

One extensively studied factor leading to PFKFB3 over-expression in cancer cells is

its connection to hypoxia.15,32–36 It has been well established that the HIF-1 complex

is a key mediator of the hypoxia response and highly expressed in cancers.37–40 It can

recognise two transcription factor binding sites that are close to each other, consist-

ing in the namely hypoxia-response elements (HREs).37,38 Studies have revealed that

PFKFB3 is induced by hypoxia to a greater extent than the other isozymes.15,32,34

Like other glycolytic enzymes promoted by hypoxia, expression of PFKFB3 is stim-

ulated through HREs in its promoters.32,34,41 To enhance the activity of PFKFB3

under hypoxia, the AMP-activated protein kinase (AMPK) is also involved. AMPK

is activated by an elevated cellular AMP/ATP ratio and phosphorylates PFKFB3,

increasing the enzymatic Vmax.42,43 Emerging evidence suggested the connection be-

tween phosphorylated PFKFB3 to tumour cells.44 The hypoxic over-expression and

activation of PFKFB3, hence, lead to the accumulation of glycolytic stimulating

F2,6BP within the cytosolic environment.

More recent studies have also revealed the relation between PFKFB3 to obesity and

diabetes.45–48 Insulin can increase intracellular F2,6BP concentration by activating

PFKFB3 through phosphorylation in adipocytes.45,49 Moreover, in vivo study us-

ing PFKFB3+/- mice developed more severe insulin resistance, decreased insulin sig-

nalling, and increased adipose tissue inflammatory response when put on a high-fat

diet (HFD).46 On the other hand, over-expression of PFKFB3 in the transgenic mice
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under HFD displayed decreased adipose inflammatory response, and improved insulin

sensitivity.47 A kinome screen study further determined that PFKFB3 is associated

with the insulin/insulin-like growth factor (IGF)-1 signalling pathway.48 The multi-

directional studies show that PFKFB3 is a crucial regulatory node in glycolysis and

cellular metabolism. The involvement in multiple biological processes renders it an

important therapeutic target.

3.3 Connecting PFKFB3 and atherosclerosis

A decade after the new millennium, a collection of studies have focused on connect-

ing angiogenesis to the metabolism profile, especially to PFKFB3.50–55 PFKFB3 has

been reported to relate to vessel sprouting and angiogenesis in both endothelial cells

and tumours.50,51 Tumour angiogenesis is proven relating to cancer proliferation and

metastasis.56–58 Tumour endothelial cells (TECs) supplies the fundamental structural

and functional abnormality of tumour vessels.59 Moreover, normal endothelial cells

(ECs), though more regular in shape and size, have also higher dependence on gly-

colytic metabolism.50,60–62 It was suggested that the EC glycolytic level is comparable

to that of cancer cells, generating >85% of the total cellular ATP.50,62 Silencing and

knockdown of PFKFB3 impair both vessel sprouting and angiogenesis.50–52

As early as 1936, microvessels were observed in atherosclerotic plaques.63 Mainly

originated from the adventitia (the connective tissue outside the blood vessels), these

micro-vessels appears with more disorganised and excessive networks accompanied by

enlarged and irregular vessel diameters and prone to inflammation.64,65 The plaque

vessels also gradually increase with lesion progression and hypoxia, presented in ad-

vanced atherosclerotic lesions, also stimulate angiogenesis.66 HIF, with the potential

promoting PFKFB3 transcription and translation, is also associated with vascular

endothelial growth factor(VEGF), endothelin-1, and matrix metalloproteinase-2 in

atherosclerosis.67–69 Direct evidence has confirmed in advanced human atherosclero-

sis that the expression of HIF and VEGF is correlated to hypoxia and the presence
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of macrophages.70 VEGF/VEGF receptors (VEGFRs) signalling pathway is closely

related to angiogenesis; in atherosclerotic mice models, administration of VEGF or

anti-VEGF antibody can promote or decreases angiogenesis and macrophage infiltra-

tion.68,71,72 Hence, the connection between angiogenesis and atherosclerosis has been

well established.

Only recently PFKFB3 starts to be relating to atherosclerosis.73–76 Doddaballapur

et al. discovered that fluid shear stress quiesce EC metabolism through inducing the

transcription factor Krüppel-like factor 2 (KLF2).73 KLF2, as a known inhibitor of

HIF-1 and VEGF,77,78 can thus indirectly suppress the expression of PFKFB3; this is

reflected by the significant decrease in PFKFB3 expression induced by laminar flow.73

Baek et al. suggested a flow-mediated VEGFR-PKC(protein kinase C)�-PFKFB3

signalling; both pulsatile shear stress and oscillatory shear stress regulate glycolytic

metabolism through PKC�-dependent endothelial PFKFB3 expression.76

On the other hand, a key study by Tawakol et al. demonstrated that both HIF-1 and

PFKFB3 relate closely to pro-inflammatory and metabolic activity of macrophage

within atherosclerosis.74 Both in vitro and in vivo, silencing HIF-1 or PFKFB3

down-regulate glycolysis and pro-inflammatory activation.74 Moreover, in a clinical

setting, PFKFB3 showed higher expression level in symptomatic atherosclerotic pa-

tients when compared to control.75 Though more studies should be expanded in the

context of atherosclerosis, PFKFB3 is emerging as a potential therapeutic target for

atherosclerosis treatment.
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CHAPTER 4

PFKFB3: Previous studies on structures and drug designs

4.1 Knowledge from crystal structures

PFKFBs are homodimeric and bifunctional; each monomer contains a kinase (PFK-2)

and a bisphosphatase (FBPase) active sites(Figure 4.1). Functionally, each polypep-

tide chain of PFKFB can be divided into two halves. The N terminal half is re-

sponsible for the kinase reaction, catalysing F6P to F2,6BP. The sequence close to

the C-terminus, on the other hand, is forming the enzymatic active half responsible

for dephosphorylation of F2,6BP. Structural properties of PFK-2 is more connected

with the mononucleotide-binding protein family, in which ras and adenylate kinase

also belong, whereas the FBPase domain is similar to the phosphoglycerate mutase

family.1

In 2006, Kim and co-workers resolved the first crystal of PFKFB3 with enzymatic

products incorporated within the active sites.2 A β-hairpin structure at the N-

terminus in proximity to the FBPase site, differing from other forms of PFKFBs,
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Figure 4.1: The structure of PFKFB3 as a monomer (A) and a dimer (B). The kinase
and bisphosphatase halves are as indicated. The termini are also marked.

was observed the first time.2 The interactions from the N-terminus could cause an

increase in affinities for both substrate (F2,6BP) and product (F6P). In addition, an

alteration of an arginine in the FBPase active site of the liver isozyme to serine in

PFKFB3 further promote the binding preferring the F6P, hence, impairing product

releasing.2 Moreover, N-terminal splicing forms of liver PFKFB can achieve near 10-

fold increase of bisphosphatase/kinase activity ratio.3 This suggests that perturbing

the N terminal β-hairpin can be a viable way for phosphatase activation, indirectly

lowering PFKFB3 kinase activity.

Three more crystal models were generated later to further investigate the enzymatic

mechanism of bisphosphatase.4 Though lacking the arginine at position 302 compar-

ing to the liver PFKFB, the PFKFB3 is still able to partially transfer the phosphate

group from F2,6BP.4 Nonetheless, the conserved arginine among other isozymes pro-

vides higher bisphosphatase activity than in PFKFB3,5–7 supporting the observation

of the exceptionally high kinase-to-bisphosphatase activity ratio in the PFKFB3.

However, potential interference from C-terminus has also been suggested as it has a

unique conformation in PFKFB3.4
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On the other hand, differences in amino acid sequence in the kinase site contribute

to a conformational alteration compared to the other isozymes, providing improved

substrate affinities.2 In a later study, Kim et al. suggested an associative enzymatic

mechanism for the PFKFB3 kinase, assisted by Lys168.8 This was based on the

observation that the two kinase substrates, F6P and ATP, have direct interactions

through multiple hydrogen bonds.8

4.2 Drug design targeting PFKFB3

Due to the close connection of PFKFB3 to cancer cell metabolism, multiple studies

have been devoted to kinase inhibitors targeting PFKFB3. One of the most historical

but controversial study is the discovery of 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-

one (3PO, compound 1 in Figure 4.2).9 The virtual screening method was applied

using a PFKFB3 homology model based on the rat testes PFKFB4. 3PO was tested

both in vitro and in vivo. later, a novel 3PO derivative was also developed, namely

PFK15 (compound 2), with improved pharmacokinetic properties.10 However, a test

of 3PO on cellular lactate production showed no difference to control, i.e. 3PO failed

to inhibit glycolysis in the cell line tested within the non-cytotoxic concentration.11

PFK15 also showed IC50 > 1000 µM when tested in vitro on PFKFB3, inconsistent

to the previous studies. Boyd et al. also challenged the validity of 3PO to effective

PFKFB3 inhibition.12 Using a kinase kit different from the original testing method

by Clem et al., they demonstrated that 3PO was inactive with a IC50 > 100 µM.12 A

more recent study also failed to determine the IC50 for 3PO.13 Moreover, no crystal

structures are yet resolved for 3PO or PFK15, further mystifying the mechanism of

3PO activities discovered along its development and validation.

Within the current MOGLYNET programme in which the author is a member, we

also determined that 3PO is somehow a non-effective compound in PFKFB3 kinase

inhibition. Mixed effects on different cell lines have also been observed. However,

these assessments are still under investigation and are also out of the scope of this
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thesis. Hence, the detailed information is not elucidated herein.

Other classes of compounds other than 3PO have also been determined using PFKFB3

as the therapeutic target. Targeting the F6P kinase pocket, Seo et al. devised a work-

flow combining virtual screening, experimental validation, and structural similarity

search for developing novel PFKFB3 inhibitors. N4A, YN1 and YZ9 (compound 3-5

in Figure 4.2) from ZINC database were determined inhibiting PFKFB3 with low

µM IC50 with complex crystal structures resolved for N4A and YN1.14 In another

study, a series of triazolophenylpyridazinone compounds were synthesised and tested

on PFKFB3.11 Compound 6 (in Figure 4.2) was first identified with 12 µM IC50 using

a library of 87,500 compounds in HTS.11 Multiple derivatives were also synthesised

and the best compound (compound 6) achieved a IC50 of 6.1 µM.11 The high po-

1. 3PO (2008)
IC50 = 22.9 μM

2. PFK15 (2013)
IC50 = 0.207 μM

3. N4A (2011)
IC50 = 3.13 μM

4. YN1 (2011)
IC50 = 0.75 μM

5. YZ9 (2011)
IC50 = 0.18 μM

6. (2014)
IC50 = 12.2 μM

7. (2014)
IC50 = 6.1 μM

8. AZ33 (2015)
IC50 = 0.003 μM

9. AZ67 (2015)
IC50 = 0.011 μM

10. AZ26 (2015)
IC50 = 0.023 μM

3-5: F6P kinase pocket, 8-10: ATP pocket

Figure 4.2: The PFKFB3 inhibitors published before the commence of MOGLYNET
programme. IC50 for kinase activity are as indicated.
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11. (2017)
IC50 = 0.371 μM

13. (2018)
IC50 = 0.014μM

12. KAN0438241 (2018)
IC50 = 0.019 μM

Figure 4.3: The PFKFB3 inhibitors published after the commence of MOGLYNET pro-
gramme (2016-2018). IC50 for kinase activity are as indicated.

tential of targeting PFKFB3 as a therapeutic strategy for cancer has also drawn the

attention of pharmaceutical industries. In 2015, a group of scientist from Oncology

Innovative Medicines Unit, AstraZeneca in collaboration with other institutes pub-

lished multiple indole and indazole derivatives with up to low nM PFKFB3 kinase

IC50.12 The compounds (examples include 8-10 in Figure 4.2) show some selectivi-

ties against PFKFB1 and PFKFB2, and down-regulation of F1,6BP and inhibition

of cellular lactate production were also demonstrated.12

During the recent 3 years during which this work has been carrying out, more

PFKFB3 kinase inhibitors have been discovered and developed. As a separate series

from those discovered by Boyd et al. in 2015, 6 more PFKFB3 inhibitors (com-

pound 11 as an example, Figure 4.3) were published with the HTS workflow ap-

plied.15 These compounds, less potent than the previous series, also shown worse

selectivity among the PBKFBs tested.15 Using also HTS, Gustafsson et al. discov-

ered KAN0438241 (compound 12) and its ester derivative KAN0438757 as effective

PFKFB3 with low µM IC50 and cellular responses.13 Compound 13 and others were

developed by Boutard et al. with nM PFKFB3 inhibition both on the recombinant

enzyme and in cells.16 All the studies above provided evidence of binding using the

crystallography techniques and structures have been deposited in the Protein Data

Bank (PDB bank).17

In this thesis, two strategies have been taken to lower up-regulated PFKFB3 activ-

ity under pathological conditions. In one attempt, we attempted activating bisphos-

phatase by perturbing the interaction from the auto-regulatory domain. By targeting
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at the auto-regulatory domain binding site directly and an alternate allosteric site

discovered in this study, libraries of compounds were virtually screened and then

tested in experimental settings. In the second approach, the kinase inhibition was

also carried out. We targeted at the bigger F6P and ATP pocket and selected com-

pounds with the preference towards F6P binding site. The compounds were screened

for interference in kinase activity and preliminarily tested in cell viabilities. The

studies can provide some further insights into modulator designs for PFKFB3.
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CHAPTER 5

PFKFB3 starting structures

5.1 Choice of crystal structure

A good starting structure of the targeted protein is crucial for in silico molecular

studies. Using a monomeric structure of PFKFB3 can be problematic. On single

monomer, the auto-regulatory domain is only interacting with the C-terminal half

of PFKFB3 through the loop of the hairpin structure. It seems an odd scenario

that the non-interacting part of the domain is actually forming a stable β-structure

(Figure 5.1A). The dimeric structure revealed that the stable secondary structure

is probably contributed by the other monomer providing an interacting surface for

stabilising the β-hairpin structure (Figure 5.1B). Hence, to target the binding site

of the auto-regulatory domain requires a relatively intact structure of the homo-

dimeric PFKFB3. This intact structure is also important for a correct performance

in MD simulations. A relatively large interacting surface between the two monomers

suggests a very stable dimeric structure. A large continuous β-sheet connecting the
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Figure 5.1: The position of the β-hairpin on PFKFB3 in the monomer and the dimer. The
hairpin is highlighted as red. In the dimeric form, the β-hairpin is located at the interface
of the two monomers, likely stabilising the dimeric structure of PFKFB3. Structure with
the PDB ID 2i1v1 is displayed.

Table 5.1: The 18 crystal structures of PFKFB3 available in the PDB bank. The selected
crystal structure for PFKFB3 for this work is highlighted in green. The ligand ID for
natural substrates / products: ATP (ACP is with one of the connecting oxygens between
phosphates replaced by a carbon atom), ADP, FDP (fructose-2,6-bisphosphate), and F6P
(fructose-6-phosphate).

PDB ID Resolution R-value R-value Ligand Info.(ID) Length Biological Assembly (Source)(Å) Free Work Kinase Phsphotase (monomer)
2axn 2.10 0.233 0.209 ADP, EDT F6P 451/520 Monomer (Author)
2dwo 2.25 0.243 0.214 ADP, PEP F6P 456/520 Dimer (Author, PISA)
2dwp 2.70 0.264 0.224 ACP, F6P F6P 431/520 Dimer (Author)
2i1v 2.50 0.262 0.214 ADP, FDP F6P, PHS 449/520 Dimer (Author, PISA)
3qpu 2.30 0.236 0.184 EDO, 2×POP POP, SRT 439/520 Dimer (Author)
3qpv 2.50 0.248 0.194 ADP, FDP F6P, PHS 440/520 Dimer (Author)
3qpw 2.50 0.248 0.194 ADP, PEP ALF 431/520 Dimer (Author, PISA)
4d4j 3.00 0.207 0.190 BKI, PO4 F6P, PHS 442/449 Dimer (Author, PISA)
4d4k 3.24 0.210 0.199 BKE, PO4 F6P, PHS 439/449 Dimer (Author, PISA)
4d4l 3.16 0.219 0.207 BKS, PO4 F6P, PHS 442/449 Dimer (Author, PISA)
4d4m 2.32 0.209 0.191 BKV, 2×PO4 F6P, PHS 439/449 Dimer (Author, PISA)
4ma4 2.23 0.242 0.199 ADP, MLA F6P 444/520 Dimer (Author, PISA)
5ajv 3.01 0.225 0.182 8R2, PO4 FDP 435/520 Dimer (Author, PISA)
5ajw 2.50 0.223 0.199 S6L, PO4 F6P, PHS 439/520 Dimer (Author, PISA)
5ajx 2.58 0.206 0.198 FD9, PO4 F6P, PHS 441/520 Dimer (Author, PISA)
5ajy 2.37 0.212 0.198 87T, PO4 F6P, PHS 439/520 Dimer (Author, PISA)
5ajz 2.35 0.220 0.183 MJP. PO4 F6P, PHS 440/520 Dimer (Author, PISA)
5ak0 2.03 0.204 0.179 8V1, PO4 F6P, PHS 442/520 Dimer (Author, PISA)

two kinase half of PFKFB3 further confirm that the dimeric form is more closely to

the natural structure under the actual physiological conditions. Therefore, in this
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thesis, a dimeric PFKFB3 structure is essential for accurate in silico modelling.

Multiple crystal structures in the dimeric form are available in PDB bank2 (Table 5.1).

The structures were all obtained through X-ray diffraction method. However, all of

the structures have certain parts of the protein missing, mainly around both termini.

Some further processes are required for generating the intact structure. To select

the most suitable crystal structure for later studies, multiple criteria were taken

into account. Firstly, the resolution of the crystal structure should be acceptable,

as a poor resolution suggests an increased likelihood of wrong directions of amino

acid side chains. Therefore, the structures with a resolution higher than 3.0 Å were

excluded. Secondly, we consider the reproduction of the PFKFB3 structure under the

natural condition as the priority for later computational investigations. Therefore,

this implies that the crystal structure should be either in the apo state or, with

the natural substrates or products bound at the active sites. Hence, this further

narrowed the choices to two crystal structures with the PDB ID 2i1v1 and 3qpv3

respectively.

Furthermore, ensemble docking is excluded as a viable solution for the VS studies in

this thesis. Perturbing the auto-regulatory domain in terms of modulating PFKFB3

kinase activity was never been attempted before. Hence, very little structure infor-

mation is available other than the existing crystal structures with the same β-hairpin

domain bound. For the kinase inhibition study discussed in a later chapter (Chap-

ter 7), multiple crystal structures with inhibitors binding at the ATP binding site

are available? ? . However, all available non-natural crystal ligands bound in F6P

binding site are much smaller in size than F2,6P. Thus, it is also unreasonable to

use starting structures with much narrower binding space than the natural product,

which will likely hamper the performance of VS investigations. However, the possi-

bility should not be excluded in a later study if more structural information becomes

available.

Moreover, the flexible parts of the protein should be at a minimum, i.e. the resolved

length of the protein should be as long as possible. Therefore, the structure with
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the PDB ID 2i1v1 stands out among the list of candidates. It contains the natural

products of the enzyme in both of the binding sites and an especially extended loop

region adjacent to the auto-regulatory domain. The numbers of missing residues

are minimised to 5 on the N-terminus. Additionally, it also includes part of the C-

terminus up to 8 resolved residues, which is missing in most of the other structures

in the selection list. Therefore, by using this structure, it will greatly simplify our

later modelling of the missing parts, which only requires a direct and standardised

loop building process.

5.2 Loop building and structural preparation

The MOE software package4 was applied for the structure preparations. All crystal

water and the phosphoric acid are deleted from the structure. The missing loops (P28-

N32 and S445-N453) of the crystal structure were constructed through a standard

loop building procedure included in the “Structure Preparation” functionalities of

MOE.4 The absence of the longer sequence on the C-terminus was not included in

the modelling. Both N- and C-termini were capped to prevent terminal artefacts. All

Figure 5.2: The processed structure for PFKFB3. The auto-regulatory domains are shown
in red. A: monomer, B: homo-dimer. The arrows indicated the loops built using MOE.4
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missing hydrogens are added using Protonate 3D method provided in MOE. Charges

are assigned using Amber10:EHT force field. The resulted structure is illustrated in

Figure 5.2.

For VS studies on phosphatase modulators, the generated structure with the natural

products within the active sites was used. The auto-regulatory domain was modi-

fied according to the strategies specified in the later section. The model for kinase

inhibitor design had the ligands within the kinase active sites removed, leaving the

binding sites vacant for docking experiments. The detailed preparation of starting

structures for MD simulation are elucidated in the later chapter as more conditions

of PFKFB3 were considered and more specific steps were required.
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CHAPTER 6

Design of PFKFB3 phosphatase modulator

6.1 Screening strategies and libraries

Limited information is available regarding strategies for activating bisphosphatase

activity. To increase the success rate of the VS, two strategies for PFKFB3 bispho-

sphatase activity modulation were devised. One strategy is by targeting directly at

the binding site of the β-hairpin. Majority of the crystal structures available all have

the β-hairpin in-place, occupying the binding site to be targeted. Hence, to fully ex-

pose the binding site to allow protein-restrained docking or VS, the β-hairpin and the

additional connecting loop were stripped (Leu2-Pro28), and a representation of the

binding site surface is shown in Figure 6.1A. This structure was applied for virtual

screening (the apo PFKFB3 hereafter).

Some initial concerns regarding the above VS strategy were noted during structural

inspections. Firstly, this binding site has a relatively large and flat interaction surface.

The lacking in concavity is likely due to the structure of β-hairpin that is relatively
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Figure 6.1: The molecular surfaces of the targeted binding sites for PFKFB3 bisphos-
phatase modulator screening in this thesis. The surfaces are shown in pink. Each monomer
is shown in different colour (grey and blue). The auto-regulatory domains are shown in
red. A: targeting the auto-regulatory domain binding surface. B: targeting the secondary
binding site close to the auto-regulatory domain.

sheet-like. This site bears some characteristics of the interface for protein-protein

interaction and can be a site difficult to tackle. Secondly, the targeted site, in this

case, is pre-occupied with the auto-regulatory domain under the physiological con-

ditions. The actual process of ligand binding would require the displacement of the

β-hairpin. However, no definite information is yet available that the auto-regulatory

domain is in an ”on-off” dynamic, i.e. it is not yet determined the β-hairpin is in a

relatively loose bound-unbound equilibrium in solution. Hence, it is also dangerous

to target this site solely as it is already implying a high off-target rate. Moreover,

even if the β-hairpin dynamic equilibrium exists, the site would suffer from a high

solvent exposure that would likely disrupt the hydrophobic interactions for ligand

binding. Therefore, it is rational to use a secondary allosteric site with a different

modulating mechanism targeting PFKFB3 FBPase activity.

During some initial VS tests using a larger docking sphere, we noticed that most of the

high scored ligands moved into a secondary pocket close to the intended β-hairpin

binding site (Figure 6.1B). This site is right at the interface of the two PFKFB3

monomers. Further analysis and visual inspection suggested this secondary binding

site have the potential to stabilise the binding of ligands in close vicinity to the
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β-hairpin region. It provides a channel-like space to accommodate ligands and is

decorated by multiple negatively charged and polar amino acid residues (such as

Lys318, Glu360, Asp364, Gln367, and Arg368). Furthermore, the insertion of a ligand

at this side can potentially lead to binding destabilisation of the �-hairpin domain and

even further delocalisation. It will likely further merit the FBPtase activation if the

ligand is also capable of binding at the exposed β-hairpin binding site due to the

delocalisation. Additionally, an intact PFKFB3 structure will be used for VS for

targeting at this secondary side. No parts of the protein would be virtually spliced.

Hence, less biased factors will be introduced and the complete form of PFKFB3 was

adapted for this strategy (the holo PFKFB3 hereafter).

Two screening libraries were derived from ZINC database1 with the sizes of 644

and 4819 compounds, respectively. The smaller library was manually collected from

the active compounds with ADMET information on certain targets. The second li-

braries are selected from the subsets shown functional activities less than 10 µM.

Both libraries have excluded kinase targets as the ligands can potentially interact

with PFKFB3 kinase. This may mask the experimental testing targeting the bispho-

sphatase half. Repetitions were removed by screen out the compounds with the same

ZINC ID and the 3D structures were generated and minimised using MOE.2

6.2 Virtual screening

Each of the derived ZINC libraries was screened using both the apo and holo structures

of PFKFB3 focusing on different docking centres. The radius for docking was set as 15

Å for both, chosen based on the longest inter-atomic distance found in the screening

libraries. Different ring conformations were generated and evaluated by SPORES

included in the PLANTS docking package.3,4 SDWASH2 was applied to determine

reasonable tautomerism states of the ligand and stereoisomers were evaluated using

SDSTEREO.2 The structures were minimised briefly using the db_Minimize function

within the MOE package.2 The docking of the generated conformers was performed
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14. Kd = 18 ± 6 μM

15. Kd = 44 ± 14 μM

16. Kd = 3 ± 1 μM

Vmax � S.E. Khalf � S.E. h � S.E. Approx. substrate Kd
blank 0.16 � 0.03 21.51 � 5.57 2.03 � 0.66 507.29
14 0.18 � 0.04 26.54 � 5.71 2.39 � 0.68 2530.01
15 0.81 � 0.29 58.42 � 25.88 1.50 � 0.21 446.52
16 0.91 � 0.43 71.72 � 44.97 1.30 � 0.20 258.42

Enzymatic kinetic measurements fitted to Hill equation: 

! = !#$%×[(]*
+*$,-* + [(]*

The approximate +/ of substrate (F6P) is calculated as:

011234.+/ = 6789(+*$,-)<=$>(*).

Figure 6.2: Experimental measurements and fitting results for the discovered hits. Data
provide by Macut5 and Regazzoni.6

using PLANTS with default settings and search speed set to 1.3,4 The ligands were

ranked according to the score using PLANTSchemplp scoring method.4

The ligand-receptor interaction was then used to select the list of compounds to be

tested experimentally. Score cut-offs were applied to select the better-ranked ligands

for further interaction analysis. Due to differences in properties of the two targeted

sites, the score cut-offs were set differently for the two strategies adapted; the total

PLANTSchemplp cut-off of -110 for the screening using the holo receptor and -100

for the apo receptor. The selected compounds from each library underwent a further

selection step according to their interactions to the receptor. This interaction analyses

were performed and visualised using ligand interactions analysis included within the

MOE package.2

Separate lists of testing compounds were generated for each library per receptor

structure, and the selected compounds were firstly screened with Nanotemper Mi-

croscale Thermophoresis (MST) and the dissociation constants (Kd) were then mea-

sured with a gradient of concentrations. 3 compounds belong to the peptide cate-

gory were determined with sub-µM Kd (compound 14-16 in Figure 6.2).5 The enzy-

matic kinetics of PFKFB3 were measured using liquid chromatography tandem mass

spectrometry(LC-MS/MS) with a Surveyor HPLC system connected to a TSQ Quan-
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tum Ultra triple quadrupole mass spectrometer by a Finnigan IonMax electrospray

ionisation (ESI) source assembled with a high flow stainless steel emitter (Thermo Sci-

entific, Rodano, Milan, Italy).6 Two out of the three peptide hits provided improved

PFKFB3 bisphosphatase activity and, likely, substrate affinity (Figure 6.2).

6.3 Binding mode prediction using MM-PBSA rescoring

The workflow discussed in Chapter 10 was developed at a later stage of this project.

It is hence only applied to determine the in silico binding modes of the hit peptides to

PFKFB3. Moreover, in the computational studies, all three peptides were predicted

capable of binding at both the β-hairpin binding site and the secondary allosteric

site. However, this VS was performed considering all the stereoisomers. In the

experimental setting, all stereoisomers of compound 16 were tested, and only the

isomeric form shown in Figure 6.2 were determined with micro-molar binding affinity.5

More interestingly, visual inspection of binding poses showed that in the secondary

binding site the stereoisomer in the form of the compound 16 was determined binder

in silico. Other stereoisomers of peptide Trp-Gly-Tyr were not binding to PFKFB3

under experimental conditions. Hence, it is safe to suggest that the hit peptides are

probably interacting with PFKFB3 at the secondary allosteric site and only these

binding poses were further analysed using MM-PBSA rescoring method.

The docking and rescoring experiments were performed in 12 replicates. Compound

16 gave the best reproducibilities in predicted binding modes, probably due to its

smaller size and lower number of rotatable bonds. Eleven out of twelve repeats

resulted in the binding pose represented in Figure 6.3A from the initial VS. The in-

teractions stabilising the binding include two hydrogen bonds to backbones of Arg368

and Ala319 on the other monomer (Ala780 indicated on the graph). Moreover, three

CH-π interactions are also contributing to the binding (Figure 6.3A). After MM-

PBSA rescoring, which allows slight ligand and receptor positional re-adjustment,

one additional ligand-to-backbone hydrogen bond established to the lysine next to
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Figure 6.3: The predicted poses of compound 16 before (A) and after (B and C) MM-
PBSA rescoring. The rescoring process adjusted the original poses to have one additional
hydrogen bond between C-terminus of peptide 16 to Lys779 backbone. Each monomer
of the applied PFKFB3 structure contains 461 amino acid residues. Hence, the residues
numbered from 462 and up are amino acids from the second chain in the structure.

the Ala780. Some dynamic in binding was also implied from the rescoring outcomes.

The charged N-terminus of compound 16 alternates its interaction between Arg368

and Gln828, and 11 out of 12 replicates were populated with the two conformations

illustrated in Figure 6.3B and C.

Compound 15, on the other hand, adopted poses with much higher variations. This

is likely due to the larger amount of rotatable bonds within the longer peptide. How-

ever, interaction analysis revealed that the binding-contributing amino acid residues

are backbone hydrogen bonds from Gln367 (10/12), Lys318 (9/12), Ala319 (8/12),
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and Gln828 (8/12). One additional electrostatic interaction from the Arginine in

peptide 15 to Glu315 was also frequented at 9 out of the 12 repeats. Additionally,

from the enthalpic perspective, compound 15 is more likely to have a better bind-

ing affinity against PFKFB3 due to the size and the charge of the arginine residue.

Indeed, compound 15 scored higher than 16 both in VS and MM-PBSA rescoring.

However, the lower Kd exhibit by the shorter peptide 16 suggested that the entropic

contribution is one of the determinant factors when considering ligand binding at

the allosteric site. The binding site lies in-between the two monomers of PFKFB3,

making it a highly restrained place for ligand positioning. Larger compounds may

suffer much larger entropic penalties than smaller binders. Hence, peptide 16 could

be a better scaffold for later hit-to-lead development.

Some features of hit peptide binding can be summarised about the allosteric site.

The peptide poses, under most of the circumstances, are contributed by hydrogen

bonding to the receptor backbone. This indicates a good potential of targeting this

allosteric site since the more stable backbone structure is contributing to the inter-

acting framework. The binding of compound 15 also suggesting that the site can

also accommodate larger molecules, though at the cost of higher entropic penalties.

To further investigate the dynamic properties of the allosteric site, MD simulations

were also performed and are discussed in Chapter 8.
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CHAPTER 7

Design of novel PFKFB3 kinase inhibitors

7.1 Design strategy

Previous kinase inhibitor designs have been mainly focused on the ATP binding

pocket of PFKFB3.1–4 The reason for this trend is likely to be historical; ATP as

a universal substrate for kinase has been the major blocking point. Moreover, a

larger category of kinases undergo auto-phosphorylation or phosphorylating a down-

stream protein for the signalling cascade. The difficulties related to protein-protein

interactions make the drug design targeting a small molecule binding pocket (i.e.

ATP binding site) a more appealing approach, even though at the cost of a higher

off-target rate. Larger ”kinase-ready” compound libraries are also available from

various databases, designed for ATP binding sites.

PFKFB3 is, on the other hand, a non-classical case of kinases. The enzyme is bi-

functional, with the additional phosphatase activity counteracting the kinase reac-

tion. More importantly, the kinase catalyses phosphorylation of fructose-6-phosphate
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F6P

ATP

Figure 7.1: The active site of kinase on PFKFB3. The F6P molecule is coloured in green
and ATP in cyan. The meshed surface shows the interface between the bound ligands to
PFKFB3 kinase.

(F6P), an additional small molecule with a well-defined binding site (figure 7.1). It is

likely this additional site of interest could provide improved inhibition specificity for

PFKFBs. Moreover, the proximity of ATP and F6P active sites forms a larger chan-

nel that can comfortably accommodate larger molecules. The depth of this channel,

though potentially increasing the entropic penalty upon ligand binding, can also pro-

vide stronger enthalpic contributions with a larger protein-ligand interface. Targeting

F6P pocket has been attempted before, Seo et al. has discovered three molecules with

low µM IC50. In this thesis, both F6P and ATP binding sites are taken into consid-

eration. By considering both binding sites, the ligands can have a free choice of their

enthalpic preference between the two sites. Moreover, this can also introduce better

ligand adaptability within a larger binding space. Combining the properties of both
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pockets would likely provide improved affinity.

7.2 Methods and materials

7.2.1 Screening library preparations

Two ligand libraries from Asinex were applied for virtual screening.6 The kinase

pre-plate set and the ”lead-like” set (Elite and Synergy libraries) were downloaded

from Asinex website. The libraries were processed using MOE and 3D-structures of

ligands were generated and minimised briefly. The kinase library was then applied

directly to the later virtual screening (a total of 6502 ligands). However, the ”lead-

like” set contains a total of 103325 compounds, which is too many to be handled

using the computational resources available. Hence, further criteria were applied to

shrink the library further. All compounds with a molecular weight bigger than 350

and smaller than 250 were excluded from the library. Since the purpose was to find

hit compounds for further structural modifications later, the relatively low molecular

range was considered reasonable. Moreover, compounds with hydrogen bond donors

less than 5 and rotatable bonds less than 10 were retained and a logP cut-off at 3 was

also applied. These selection steps shrank the size of the library to 6354 compounds.

Multiple tautomerisms and protonation states were also considered for each ligand.

Different states were generated and evaluated using the UNICON program7 and only

the top-scored were preserved.

7.2.2 Virtual screening and MM-PBSA rescoring

The screenings of the kinase set and lead-like set were carried out separately due to

the different nature of the ligands. With the concerns that the ligands potentially

targeting kinase were designed primarily for ATP/ADP binding site, the docking

region was defined as including both F6P and ATP binding site on PFKFB3 to allow

the open choices for ligands during the docking process. Later, after ranking with
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MM-PBSA score, the poses were visually inspected and any ligands with interactions

concentrated within the ATP binding site were excluded. This strategy is considered

reasonable since it will provide in silico filtering of the screening ligands to exclude

the potential hits at the ATP binding site. On the other hand, the docking of lead-like

compounds was restricted to F6P binding sites.

The PLANTS docking software8,9 was applied for the docking process. To improve

the pose sampling, parameters were re-adjusted in PLANTS.8,9 The evaporation fac-

tor was set to 0.15 and iteration scaling factor was changed to 7.0. Moreover, the

RMSD similarity threshold for clustering was adjusted to 1.0 Å. Other parameters

were applied as default settings. The final outcomes were evaluated using the total

PLANTSchemplp scoring function with the un-normalised scores (TOTAL_SCORE).8,9

The top 1000 ranked ligands are passed to the MM-PBSA rescoring as detailed in

Chapter 10. The solute (internal) dielectric value 3 was applied for the calcula-

tion.

The virtual screenings were performed in three replicates for each library. Consortium

selections were performed for the top 50 ranked ligands for each replica per library

and the poses were also visually inspected. A total of 12 compounds were purchased

from Asinex, among which 6 were from the kinase set and 6 were from the lead-like

set. All 12 compounds were screened using Promega ADP-Glo™ Kinase Assay and

showed more than 80% of PFKFB3 kinase inhibition at 10 µM, comparable to the

inhibition activity by AZ33.1(Figure 7.2A)

7.2.3 Experimental testing: iDiBAPS, Hospital Clinic Barcelona

Three of the hit ligands (shown in Figure 7.2B-D) were tested preliminarily in Hos-

pital Clinic Barcelona, iDiBAPS, on human pathological endothelial cells (EC). Two

diseases related to the cell lines applied in this work are pulmonary arterial hyperten-

sion (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Both

diseases belong to the category of pulmonary hypertension and defined by a mean

pulmonary artery pressure above 25 mmHg.11 The disease-specific lesions within the
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Figure 7.2: The PFKFB3 kinase inhibition level of the selected Asinex compounds (A) and
compounds been tested on human or patient EC cell lines (B-D). Result for AZ33 inhibition
at 10 µM is also shown. (Data provided by Macut10) B: Asinex ID BDE324968822. C:
Asinex ID AEM11794304. D: Asinex ID BDE33512289.

smaller pulmonary arteries (<500 µm in diameter) is an important determinant of

PAH.11 On the other hand, CTEPH is characterised by prominent unresolved thrombi

obstructions in the main pulmonary arteries.12,13

The prevalence of aerobic glycolysis has been observed among PAH patients.14 Some

signs of increased aerobic glycolysis were also observed in human pulmonary mi-

crovascular endothelial cells transfected with bone morphogenic protein receptor type

2 (BMPR2) vector.15 Mutations in BMPR2 has been well-acknowledged relating to

PAH.16–20 However, glycolysis up-regulation is not the only deranged metabolic path-

ways in PAH.21 Studies in mice and PAH patients demonstrate that the disease is also

associated with normoxic activation of HIF-1α.15,22,23 Thus, as a downstream factor of

HIF-1α activation, it can be inferred that PFKFB3 is also likely up-regulated in PAH.

On the other hand, the connection between PFKFB3 and CTEPH disease is scarcely

61.



CHAPTER 7. DESIGN OF NOVEL PFKFB3 KINASE INHIBITORS

Figure 7.3: The plate layouts for MTT assays performed in this work. Negative control
indicate that the normal media was applied. Blank controls (Blnks) were wells with MTT
reagents but no cells were seeded.
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explored. The implications on metabolism are mainly from studies on PAH.24–26

PFKFB3 is a potential new target for CTEPH treatment as currently available ther-

apies for CTEPH are mainly focused on symptom management. Inhibiting PFKFB3

activity can potentially modulate the activation of glycolysis cascade and decrease

cell proliferation or viability. Hence, MTT test was chosen for determine the effects

of compounds 17, 18, and 19 on the selected cell lines. A positive control using 3PO,

the known glycolysis inhibitor, was also included.

Two types of human pathological endothelial cell lines were adopted for the exper-

iment and compared with healthy human pulmonary artery ECs (HPAE, healthy

control cell lines). EC cells from pulmonary artery of subjects undergoing lung trans-

plant were also used as another healthy control (labelled as NR). Cell lines labelled

with RS and TEP are patient cell lines; RS is a cell line isolated from lung transplant

tissue of PAH patients by Dr D. Szulcek27 (VU University Medical Center Amster-

dam, Department of Pulmonary Diseases, Amsterdam Cardio-vascular Science, the

Netherlands). TEP cells were isolated from endarterectomy tissue extracted from

pulmonary arteries of CTEPH patients provided by Dr O. Tura28 (Hospital Clinic

Barcelona, iDiBAPS, Spain).

The cells were seeded onto 0.2% gelatine-coated T25 flasks in EGMTM-2 phenol-red-

free endothelial cell growth medium supplemented with 10% of fetal bovine serum.

The cells were cultivated until confluence at 37 °C. The cells were then trypsinised and

transferred onto 0.2% gelatine-coated 96-well plate. EGM2 + 10% FBS media with

or without testing compounds were added to form the control and experiments set

and are cultivated at 37 °C for 48 hrs in a 5%-CO2 environment. The concentrations

of compounds in media were 20 µM for 3PO, and 50 µM for 17, 18, and 19. The

plate layouts are as shown in Figure 7.3. The Vybrant®MTT Cell Proliferation

Assay Kit (Thermo Fisher Scientific Inc.) was applied and the standard protocol

was followed using the SDS-HCl solution. The media were firstly exchanged for fresh

EGM2 + 10% FBS phenol-red-free media with or without testing compounds before

the experiments. The absorbance signals were recorded at 570 nm (Synergy).
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7.3 Results and discussions

7.3.1 Virtual screening

The predicted binding poses from the two Asinex library sets were illustrated in

Figure 7.4A and C. Multiple amino acid residues interacting with the hit ligands are

preserved for both library sets. These residues are Arg98, Arg132, and Tyr193, all

three are presented within the F6P binding sites. In comparison to the binding pose

of F6P, Arg132 also interact closely with the phosphate group while Arg98 could be

the alternative binding candidate in case of dynamic pose adjustment.

More interestingly, the two types of hit ligands provide different binding modes within

A B

C D

Figure 7.4: The binding poses and the involved amino acid interactions. Figure A rep-
resents the favourable binding poses of the 6 tested ligands selected from Asinex kinase
set. Figure B shows how the interacting amino acids from A interacting with F6P and
ATP. Figure C represents the favourable binding poses of the 6 tested ligands selected
from Asinex lead-like set. D gives the relevant amino acid interactions to F6P and ATP in
connection to C.
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the joint F6P-ATP active site. Ligands from the lead-like set concentrate their in-

teractions to PFKFB3 mostly within the F6P binding site; lacking interactions other

than the potential non-polar interactions were observed on the ATP side of the pocket.

However, the ligands from the kinase set have more extensive interaction modes. Both

F6P and ATP binding pockets were perturbed upon ligand binding and larger num-

bers of amino acid residues are involved. Other than the three pre-mentioned residues

within F6P site, 5 more from the ATP sites were also observed (Ala44, Arg45, Lys47,

Thr48, and Lys168). Moreover, the backbone secondary amine groups from Ala44,

Arg45, Lys47, and Thr48 forming a hub of hydrogen bond donors, which can comfort-

ably accommodate electro-rich functional groups. These imply that the hit ligands

from kinase set could have higher ligand-efficiency targeting the F6P-ATP binding

site, likely resulting in higher binding affinity. However, this presumption is yet to

be determined using experimental binding assays.

7.3.2 MTT assay

To directly compare the cell viability responses after different treatment to control,

the relative response was calculated by normalising over the absorbance signal from

the control wells with testing-compound-free media. The results are shown in Fig-

ure 7.5. All signals from treatments with PFKFB3 hit compounds were similar to

3PO treatment for all pathological cell lines. This indicates the hit compounds im-

pair cell viability on a scale similar to 3PO, which was demonstrated with biological

activity in vitro in previous studies. More interestingly, 3PO in one set of experi-

ments seems to affect the viability of the healthy cell lines (Figure 7.5A for NR66).

However, future studies should be performed to confirm the above observations.

Additionally, both RS and TEP cells were observed with higher responses to hit

compound treatments to control. It was suggested that RS and TEP cells possess an

elevated level of cell proliferations in vitro (unpublished data29). This up-regulation

requires that more active metabolism processes should incur. This is likely accompa-

nied by an upturn in the glycolysis process through increased expression or activity
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Figure 7.5: The cell viability level using different treatment in different human endothelial
cell lines. HPAE and NR are healthy pulmonary artery endothelial cells. TEP samples are
pulmonary artery ECs from CTEPH patients. RS are ECs isolated from pulmonary arteries
of PAH patients. Error bars are represented as the standard deviations between the three
replicates of each experiment. The null hypothesis testing p-values were calculated when
comparing to controls.

of PFKFB3. Hence, inhibiting glycolysis using 3PO or inhibiting PFKFB3 kinase

activity would likely provide a higher response in RS and TEP cells, as shown in

Figure 7.5.

However, some further studies should be carried out in the future to confirm the bio-

logical activities of the hit compounds. This can be accomplished by using more sets

of healthy and patient cell lines for testing in MTT assays. Moreover, the relatively

weak responses of the cell lines to the hit compounds implied that a higher compound

concentration should also be assessed. Other experimental methods for assessing cell

growth and proliferation can also be tested for the hit compounds. Limitations still

remain that small sample size was applied in this thesis. Nonetheless, the prelim-

inary tests included in this thesis have shown some promises of the novel hits and

have shed lights on targeting PFKFB3 for metabolism modulation in treatment for

cardiovascular diseases.
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CHAPTER 8

MD simulations of PFKFB3

8.1 Methodology

To investigate the dynamic behaviours of PFKFB3, MD simulations were carried out

for a total of 3 forms of the enzyme. In Chapter 5, the choice of PFKFB3 from the

hub of crystal structures available in PDB bank has been elucidated in detail. The

chosen structure, PDB ID 2i1v,1 contains the natural enzymatic products present

within the kinase and phosphatase active sites. However, both apo (i.e. structure

with empty binding sites) and substrate-bound crystal structures of PFKFB3 were

unavailable. Hence, some pre-processing based on the product-bound PFKFB3 was

required.

The apo structure was generated by deleting the bound ligands from the modified

structure of 2i1v1 from Chapter 5. The substrate-bound PFKFB3 was generated

by modifying the structure of the bound products in the starting structure. In the

kinase active site, the phosphate group presented at 2-position of F2,6BP was deleted
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and an additional phosphate was added on the phosphate end of ADP structure. The

F6P ligand within the FBPase active site was modified to F2,6BP. The bound ligands

in the kinase/bisphosphatase active sites were adjusted and local brief minimisations

were carried out using MOE (Amber10:EHT, Born implicit solvation, and gradient

cut-off at 0.1 RMS kcal·mol-1·Å-2).2

Moreover, the foreign ligands (ATP, ADP, F2,6BP, and F6P) were not included

within the standard AMBER parameter sets. Thus, re-parameterisation was also re-

quired. ATP and ADP parameters compatible with AMBER simulation package were

published elsewhere3 and were downloaded from Ref. 4. The re-parameterisations

of F2,6BP and F6P were performed with the RESP ESP charge Derive program

(R.E.D.)5 and antechamber.6,7 The R.E.D. program was applied to assign partial

charges to atoms presented within F2,6BP and F6P. The structures of F2,6BP and

F6P were first submitted to conformational search in MOE2 using the default set-

tings. The two conformations with the lowest calculated conformational energies were

saved for partial charge assignment. For each conformer, two orientations were also

adopted during the charging process by rotating the molecule by 180°. The terminal

oxygens within the same phosphate groups in both F2,6BP and F6P were forced to

be equivalently charged within each functional group. The atom types of gaff were

assigned using antechamber.6,7

The ff14SB 8 and the gaff 6 force field were applied for PFKFB3 protein and the

ligands, respectively. The topology and coordinates files required for MD simulation

were generated using tleap.9 The protein / complexes were firstly neutralised with

sodium or chloride ions; 6 Cl- were added for the apo PFKFB3 and 10 Na + were

added for the product- and substrate-bound structures. The protein or complexes

were then solvated within TIP3P explicit water molecules in a cubic box 12 Å from

protein surface to the barrier. The neutralised and solvated structures were used as

the starting structures for MD simulations.

MD simulations were run for apo, product-bound, and substrate-bound PFKFB3

structures, 3 replicates for each state. The pmemd.MPI module was applied for all
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the simulations.9 The energy minimisation, heating, and equilibration procedures

prior to MD simulations were all performed in multi-step manners, with the same

procedures for every run. A non-bonded cut-off of 8 Å was applied throughout.

Energy minimisation started with relaxing hydrogen positions with other atoms re-

strained (100 kcal·mol-1·Å-2) with 1000 steepest-decent (SD) followed by the conju-

gate gradient (CG) method to a maximum cycle of 5000. This step is followed by a

5000-max-cycle minimisation (2000 SD+ CG) of only water and ions (other atoms re-

strained at 50 kcal·mol-1·Å-2). The minimisation was then extended onto side chains

of amino acid for another 5000 maximum cycles (2500 SD + CG, 25 kcal·mol-1·Å-2

restraints).

The system then underwent 6 steps of heating steps to a final temperature of 300 K

under the NVT condition (constant volume and temperature with the total number of

atoms unchanged). From this step on, the SHAKE algorithm is applied to constrain

bonds involving hydrogen atoms and Langevin dynamics was applied for temperature

scaling. Each heating step was performed with controlled heating of 50 K gap over

5 ps with a 0.0005 ps time step, while protein backbone was weakly restrained (10

kcal·mol-1·Å-2). After each 50 K heating process, the system was equilibrated for an

additional 5 ps at the targeted temperature.

After the temperature of the simulated system reached 300 K, a 200-ps equilibra-

tion was firstly performed under NVT condition with weak backbone restraints (5

kcal·mol-1·Å-2). The simulation condition is then switched to NPT (constant pressure

and temperature with the total number of atoms unchanged) and equilibrated for an-

other 200 ps with the 5 kcal·mol-1·Å-2 constraints still applied for protein backbones.

Following this, 5 steps of 500-ps equilibration runs were performed to reduce the

constraint weight on protein backbones gradually. Each step reduces the constraint

by 1 kcal·mol-1·Å-2 until the constraint was completely removed.

Lastly, MD simulations were performed under NPT condition at 300 K for 200 ns for

each PFKFB3 state. The hydrogen-involved bond SHAKE constraint and Langevin

temperature scaling were applied. The non-bonded cutoff was continued as 8 Å and
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the simulation time step was set to 0.002 ps. Frames were recorded at a 1-ps frequency

and the trajectories were written in the binary NetCDF format. The MD simulations

of each PFKFB3 were performed for 3 replicates.

8.2 Results and discussions

The trajectories from the 9 MD simulations were firstly assessed with root-mean-

squared displacement (RMSD) analysis. The RMSD was calculated about the back-

bone atoms (C and N within the peptide bond, and Cα) of the protein to evaluate

the time period when the dynamic of the structure reached equilibrium. The plot of

RMSD over simulation time showed that all trajectories reached equilibrium roughly

after 100 ns (Figure 8.1). Hence, 100 - 200 ns was the time range chosen for further

atomic correlation analysis.

Atomic correlation analysis was performed in a per-residue manner with both the

backbone and side chain atoms included. The analysis was performed with cpp-

traj 9 and heat map plots were generated using gnuplot.10 This analysis evaluates the

average correlations between the motions of residues about the input trajectories.

The plots of the 9 MD trajectories were shown in Figure 8.2 and 8.3. Since the

dimeric form of PFKFB3 applied in this thesis contains a total of 922 amino acid,

each PFKFB3 monomer contains 461 residues. Thus each correlation graph can be di-

vided into two parts: inter- (between residue 1-461 and 462-922) and intra-monomeric

(among residue 1-461 or 462-922) correlations. Moreover, the intra-monomeric corre-

lation can be further separated to the correlation between kinase and bisphosphatase

halves and correlation among different functional half of the PFKFB3.

The inter-residual correlation between kinase and bisphosphatase halves of the PFKFB3

was of particular interest for the studies related to this thesis. The auto-regulatory

domain interfering with FBPase activity was based on the interaction between the

N-terminus to the bisphosphatase half of the enzyme. Moreover, activity test of FB-

Pase using the strong kinase inhibitor, AZ33, also shown around a 6-fold increase
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in bisphosphatase activity (unpublished data provided by Regazzoni),11 similar to

the FBPase activators discovered (Figure 6.2, Chapter 6). These experimental ob-

servations imply that perturbing the ATP binding site through kinase inhibitors and

binding of the modulator at the allosteric site for bisphosphatase result in the same

Figure 8.1: RMSD plots of the trajectories from the MD simulations. A: The three
repeats of MD simulations using the apo PFKFB3 structure. B: The three repeats of MD
simulations using the product-bound PFKFB3 structure. C: The three repeats of MD
simulations using the substrate-bound PFKFB3 structure.
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Figure 8.2: Atomic correlation plots of the last 100 ns MD simulations of the three repeats
using the apo PFKFB3 structure. A, C, and D are the plots considering the complete
homodimer. B is the zoomed-in plot of one of the monomers shown in the red box. In
B, the box and the zoomed-in sub-plot show the three weakly correlated �-helices – α1,
α17, and α18. The two arrows in B show the stronger correlations of the auto-regulatory
domain (�-hairpin) to the E322-A325 loop (shown in yellow) through part of the �17-helix
(Y362-E370).

outcome of FBPase activation.

The trajectories from MD simulation provide a possible explanation regarding the

underlying molecular mechanisms. A weak correlating zone that connects the ATP

binding site to the bisphosphatase active site was observed for all the simulated

trajectories analysed. This is through the chained interactions between three α-helices

– α1, α17, and α18. Moreover, α17 is the essential element to perturb activity of

the bisphosphatase (Figure 8.4A); part of the helix lies parallel to the Glu322-Ala325

loop flooring the bisphosphatase site. More interestingly, this loop region is also
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Figure 8.3: Atomic correlation plots of the last 100 ns MD simulations of the three
repeats using the the product-bound and the substrate-bound PFKFB3 structures. A-
C: MD simulations using the product-bound PFKFB3. D-F: MD simulations using the
substrate-bound PFKFB3.

indirectly correlated to the auto-regulatory domain that modulates bisphosphatase

activity(Figure 8.4B). The similar fold-changes in the activity due to perturbation

from AZ33 and by removing the auto-regulatory domain also support that the crucial

connection point is through α17.
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Figure 8.4: The highlights of different mechanisms discussed in this section. The loop
affected within the FBPase pocket is highlighted as yellow in A-C. In A, the three weakly
correlated �-helices connecting ATP binding site to FBPase active site are highlighted as
green. The �-hairpin-to-phosphatase correlated regions are illustrated in B. The green region
shows the stronger correlations of the auto-regulatory domain (�-hairpin) to the E322-A325
loop (show in yellow) through part of the �17-helix (Y362-E370). In C, the docked pose
of HM22 indicates that the peptide is interfering with E322-A325 loop directly through
�17-helix.

On the other hand, compound 15 and 16 (Figure 6.2, Chapter 6) took a more direct

approach by affecting the conformation of the α17 helix directly. However, this in-

terference required a more well-adapted binding pose. Both 15 and 16 adapted more

kinked binding poses after docking, suggesting that much more volume of the binding

space is occupied. This leads to the similar activation outcome as was accomplished

by ATP and the β-hairpin region. Compound 14, however, adopted a more extended

and relaxed binding pose, likely resulting in the un-perturbed FBPase activity while

still capable of binding to PFKFB3.
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CHAPTER 9

Conclusions and prospects

In this thesis, the two strategies adopted have shown good initial results in terms of

PFKFB3 activity modulation. The design of FBPase modulators resulted in 2 hit

compounds with low µM binding affinity. The compounds also achieved a similar

outcome in activity fold change as N-terminus spliced PFKFB.1 Moreover, a novel

allosteric site for activating bisphosphatase was also discovered.

However, it is still a long way to achieve a satisfactory influence on the biological

behaviours of the PFKFB3. The hit compounds still require structure optimisations

to further improve affinity, as some later attempts by modifying the amino acids

within the hit peptides were unfruitful (results not shown). This is likely due to

the fact that the binding of the hit peptides was mainly contributed by backbone-

to-backbone hydrogen bonds; changes in the peptide side chains would have likely

resulted in disruptions of binding poses. More crucially, the influences of FBPase

activation on the kinase activity are yet to be confirmed. As PFKFB3 bears an ex-

ceptionally high kinase-to-bisphosphatase activity ratio, it is possible that the effects
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of FBPase activation remain inconspicuous. However, the finding can still provide

insights in PFKFBs with a lower kinase-to-bisphosphatase ratio (such as the liver

isozyme, PFKFB2).

The hit molecules discovered for PFKFB3 kinase inhibition also require further op-

timisations. The IC50 in kinase inhibition is yet to be determined and the binding

affinity testing is also recommendable. Moreover, the choice of the biological assay

can also be expanded to other more metabolism related experiments. Intracellular

F1,6BP or F2,6BP level can be good indicating parameters to be tested for PFKFB3

inhibition in cells. Nonetheless, the good success rate of the VS method applied to

render it a decent protocol for future hit discovery targeting PFKFB3 kinase.
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CHAPTER 10

Workflow for MM-PB/GBSA rescoring

10.1 Workflow overview

The workflow was designed as a single bash script incorporating multiple software in-

cluding Open Babel,1 UNICON,2 AutoDock,3 PLANTS4,5, and AMBER packages.6

The overall workflow is illustrated in Figure 10.2. In brief, the script starts with

generating reasonable tautomerism and protonation states of the ligands within the

screening library. Each state is then passed to VS procedures targeting receptor of

interest by PLANTS using an adjusted procedure. The top 3 ranked conformers per

state are saved and ligand parameters are generated. Combined with receptor struc-

tures, the final complexes firstly undergo a brief energy minimisation of the binding

site while other parts of the structure restrained. The adjusted poses are then submit-

ted for the MM-PB/GBSA re-evaluations and outcomes are analysed with statistical

methods. The detailed procedures are elucidated in the following sections of this

chapter.
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Figure 10.1: A graphic overview of the MM-PB/GBSA rescoring workflow.

10.2 Virtual screening

This part includes the initial screening library processing and docking experiments

for each ligand. The screening libraries were firstly split into separate docking jobs for

individual ligands. The jobs were then run with gnu parallel7 on multiple-core CPU

processors. Each job contains steps as specified as follow. The UNICON program2

was applied to generate reasonable tautomeric and protonation states of ligands (the

top scored ones defined within the program) for VS. The docking procedures of each

determined state were then carried out using PLANTS.4,5 The ligand atoms were

kept flexible while the ones for receptors were fixed. The cluster RMSD was adjusted

to 1.0 and the sampling factor σ to 7.0 in the PLANTS configure files to improve

numbers of poses searched. The poses were initially scored with the PLANTSchemplp

scoring function.4,5 The three top-ranked docking poses were saved for each tau-

tomeric and/or protonation state to be input into later MM-PBSA rescoring. In

Chapter 11, all virtual screening and rescoring were initially performed in triplicate.

However, negligible differences between replicates were observed. Hence, the results

of MM-PBSA rescoring assessment are shown for only one replicate.

10.3 Energy minimisation

The energy minimisation was introduced for occasional minor structural clashes were

observed in some of the docked poses. These clashes were likely due to the empirical
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nature of the PLANTSchemplp scoring function4,5 and would have resulted in errors

in MM-PBSA rescoring. Moreover, the fixed receptor structures would possibly in-

troduce errors to the final pose accuracy. Thus, the brief energy minimisation of the

binding poses was included for structure relaxation prior to the MM-PBSA single-

frame calculation. The minimisation was performed using the AMBER simulation

package.6 The ligands were assigned with the AM1-BCC partial charges8 using an-

techamber9 or the Gasteiger charges from Autodock.3 The ff14SB force field10 was

applied to the proteins and gaff 9 to the ligands.

The minimisation was performed in a modified GBn implicit solvent model (igb =

8).11 The recommended mbondi3 radii11 were applied during the preparation with

tleap. The maximum number of minimisation cycles was set to 5000 and the method

switched from steepest descent to conjugate gradient after 500 cycles. The conver-

gence criterion was relaxed to 0.1 kcal·mol-1·Å-1. A positional restraint with a weight

of 100 kcal·mol-1·Å-2 was exerted onto atoms with a distance of more than 4.5 Å away

from the ligand. These procedures were carried out for all the saved poses from the

docking procedures.

10.4 MM-PBSA rescore

The binding free energy score was calculated using the MM-PB/GBSA (molecular

mechanics (MM) with Poisson-Boltzmann (PB) or generalized Born (GB) and surface

area solvation) methods. The method was developed by Kollman et al. and the

binding free energy,14 ∆Gbinding, is estimated as below:

∆Gbinding = Gcomplex −Greceptor −Gligand

The free energies of complex (Gcomplex), receptor (Greceptor), and ligand (Gligand) are

calculated by a summation of multiple energy terms:

Gx = EMM +GPB-polar +GPB-nonpolar − TS
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The EMM represents the gas phase molecular mechanic contributions calculated using

force field definition. Gpolar is the polar solvation term obtained by numerically solv-

ing either the Poisson-Boltzmann or the generalised Born equations. The non-polar

solvation term (Gnon-polar), on the other hand, is calculated using a linear relation

involving solvent accessible surface area (SASA) in the form as

GPB-nonpolar = γ ∗ SASA+ b

with γ and b taking different values according to radii applied to atoms within the

system.

The entropic contribution (−TS) has been suggested important for estimating the ab-

solute affinities. However, it has also been a debatable element to be included within

the MM-PB/GBSA calculation. It was suggested that similar entropic contributions

would likely result from similar ligand structures targeting the same receptor.14–16

Oehme et al., in a later study, further confirmed this entropic indiscrimination also

extended to ligand with big structural variations.17 Moreover, the high computational

expenses will very likely impair the efficiency of virtual screening. Hence, the entropic

term is not included in this work.

The Perl script mm_pbsa.pl provided by AMBER suite was applied for MM-PB/GBSA

single-framed calculation.6 The sander pbsa program was used to calculate the elec-

trostatic contribution by solving the Poisson-Boltzmann equation. The external di-

electric value was set to 80.0. The rescoring processes were carried out with multiple

internal/solute dielectric values as 1, 2, 4, and 6, respectively. Dielectric value for

molecular mechanic (MM) part of energy evaluation was also adjusted accordingly.

The ionic strength of 150 mM was used. The Bondi radii were applied for MM-PBSA

calculation and missing or wrong radii were added or corrected.18,19 The mbondi2 set

of radii were applied for the MM-GBSA calculations using the GBOBC model (igb =

5).20 The γ and b values were selected as 0.00542 and 0.92 for PB and 0.005 and 0.0

for GB.
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10.5 Data analysis

For VS experiments performed for PFKFB3 study in Chapter 7, data analysis only

included the final ranking of ligands according to the lowest calculated binding free

energy scores from all the rescored poses. However, for VS assessment performed

in Chapter 11, multiple analysis were included after VS and MM-PBSA rescoring

steps.

Receiver operating characteristic area under curve(ROC AUC) value is one common

type of parameter to assess the enrichment performance of a VS method. The ROC

curve is widely applied for estimate diagnostic ability of a binary classifier system. It

is generated by plotting the true positive rate (TPR) against the false positive rate

(FPR) at continuous threshold settings, where

TPR =

∑
True Positive∑

Condition Positive

and

FPR =

∑
False Positive∑

Condition Negative

In ROC plots, a random guess with no discrimination between true positive and

true negative would give a diagonal line from left bottom to the top right corner.

(Figure 1) The best (or perfect) prediction of the classifier system is the (0,1) point,

representing no false positives and no false negatives were detected. Points above

the diagonal lines suggesting a better classification than random guess while below

indicate a worsened performance. Accordingly, the area under curve (AUC) of the

ROC can be classified as perfect (when ROC AUC = 1), better (ROC AUC > 0.5),

or worse (ROC AUC < 0.5) than a random guess.

The ROC AUC calculation was programmed both in C++11 and python3 standards

depending on application scenario. In both versions, the TPR and FPR were calcu-

lated by moving down one at each threshold in the final ranking list of the screened

ligands. The ROC AUC values were then derived by calculating the total area of
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Figure 10.2: A graphic representation of the ROC space.

trapezoids, each formed by the two TPR values enclosing FPR step. This AUC cal-

culation was considered accurate and efficient since only relatively small numbers of

ligands in the screened libraries were involved. No curve fitting was performed in the

AUC calculation to introduce additional errors. Moreover, no differences in values

were observed between the two programmed versions. Hence, the ROC AUC analysis

was applied consistently in all the testing systems.

Furthermore, the enrichment performance of total non-polar and polar calculated en-

ergies consisting in the total MM-PB/GBSA calculated energies were also considered

separately. The total MM-PB/GBSA calculated energies can be represented as:

∆Gtotal = ∆Gpolar +∆Gnon-polar

where

∆Gpolar = ∆Gele(gas phase) +∆Gpolar(PB/GB)
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∆Gnon-polar = ∆Gnon-polar(gas phase) +∆Gnon-polar(PB/GB)

The energies were calculated by combining the gas phase and the corresponding

PB/GB terms. This decomposition process gives the non-polar, electrostatic-polar,

and total calculated energies from MM-PBSA estimation in the later enrichment

analyses.

To estimate the distributions of calculated energies among active and inactive/decoy

ligands, the kernel density estimation (KDE) was adopted. KDE provides a non-

parametric estimation of the probability density function based on a finite data

sample. This renders the method suitable to represent a rough binding free energy

score distribution of the finite numbers of actives and inactives/decoys in this thesis.

One parameter within KDE, called the bandwidth h, is important in the estimation

process and in general, should be optimised. Too small or too big the bandwidth

would lead to an undersmoothed or oversmoothed outcome in density estimation

(Figure 10.3). However, in this thesis, the accuracy of the KDE method was not

desired as the analysis was applied to provide a more graphical illustration of bind-

Figure 10.3: Kernel density estimation of 100 normally distributed random numbers
using different smoothing bandwidths. When bandwidth h=0.05, KDE provides an un-
dersmoothed estimation (orange). While h = 1.5, an oversmoothed density estimation is
shown in blue. The optimal bandwidth is 0.337 as the estimation is close to the true density
(green).
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ing free energy score distribution differences between actives and inactives/decoys.

Hence, an oversmoothed bandwidth (0.5) was applied throughout. The analysis was

performed using seaborn.kdeplot function included in seaborn python data visualiza-

tion library.21
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CHAPTER 11

MM-PBSA rescoring assessment and potential issues

11.1 Rescoring with MM-PBSA method

The MM-PB/GBSA free energy calculation, in essence, was not developed for evalu-

ating docking performance but relative binding free energies of ligands. However, the

concept is in principle similar. The method was designed with more complicated pa-

rameterisations for molecules, plus the conventional application on trajectories from

MD simulations. Hence, it is much more computationally expensive than traditional

scoring functions but compensated by improved ranking accuracy.

Since its early debut,1,2 the method has undergone validations using a wide variety

of biomolecular systems.3–16 The studies were mainly involved binding assessment

correlations to experimental data such as binding affinity or IC50. Moderate to good

outcomes were recorded for both MM-PBSA and MM-GBSA methods. However, the

overall performance still varies among different type of receptors. Hou et al. compared

the MM-GBSA model to 11 scoring functions, and the model was demonstrated with

95.



CHAPTER 11. MM-PBSA RESCORING ASSESSMENT AND POTENTIAL ISSUES

improved Spearman correlation coefficients to experimentally determined IC50.7

Despite the original designing purpose of the MM-PB/GBSA model, its performance

in virtual screening has also been investigated in multiple studies.3,4,11,13,15 The sig-

nificant improvements in enrichment was determined with dihydrofolate reductase,4

tyrosine kinases,11,15 aldose reductase, and factor X11 comparing to virtual screening

using Autodock program.17,18 In multiple DUD-E19 protein receptors, the MM-GBSA

method also outperforms Autodock Vina (vina hereafter).13 More interestingly, in a

separate study using mineralocorticoid receptor from DUD data set20, Thompson and

co-workers showed that rescoring using molecular mechanic (MM) part of the energy

achieved very similar enrichment outcome to using MM-PBSA.3

Conventionally, MM-PB/GBSA calculations are carried out by averaging the esti-

mated binding free energy of multiple conformations, typically from an MD simula-

tion trajectory. However, several studies have also suggested that the improvements

from calculations on short MD simulation trajectories, comparing to single-framed

calculation, was marginal. These works have shown that similar outcomes can be

provided by energy minimisation to including short MD simulation in both docking

and virtual screening.4,14,15 It was also suggested that short time-scale MD simula-

tion is required for some systems where the docking process failed to determine the

correct binding poses.7,12

In addition, as the parameterisation of molecules in MM-PB/GBSA method take into

consideration of charging, different partial charge models have also been investigated

and some dependency was demonstrated. Multiple atomic partial charge methods

(including empirical (Gasteiger), semi-empirical (AM1-BCC), and various restrained

electrostatic potential (RESP) charges) were assessed by Oehme et al.. The MM-

PB/GBSA binding free energies were calculated for 6 HIV protease inhibitors and the

Gasteiger, HF/STO-3G, and B3LYP/cc-pVTZ charging methods provided the best

correlations to experimental data.10 In addition, similar predicted relative affinity

using AM1-BCC, RESP, and xAvESP methods was shown with MM-GBSA rescoring

in cucuerbit[8]uril and α-cyclodextrin systems.9 The RESP charges with HF-SCF/6-
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31G* level of calculation was also resulted as the optimal method across 5 different

biomolecular systems, while AM1-BCC and ESP also performed competently.12

One parameter within the MM-PB/GBSA model, the solute dielectric constant, has

also drawn some attention. Using ligands targeting 7 classes of proteins, Yang and

co-workers showed that increasing internal dielectric value can lead to improved cor-

relations to experimental data.8 Agreeable results were also demonstrated by Sun

et al. in a work later in both docking and virtual screening among three tyrosine

kinases.15 However, different systems were suggested to have a varied preference of

optimal internal dielectric values.15

Considering explicit solvation has also become a more recent attempt to improve

MM-PB/GBSA calculations. Maffucci and co-workers developed a workflow, namely

Nwat-MM/GBSA, by including water molecules close to the ligands in short MD sim-

ulation trajectories of ligand-receptor complexes.16,21 The assessment included several

systems, such as penicillopepsin, HIV1-protease, BCL-XL, Rac1, and β-lactamase.

The studies demonstrated improvements in both experimental correlations and vir-

tual screening using Nwat-MM/GBSA to standard MM-GBSA rescoring.16,21

In this chapter, 3 test sets were firstly generated to assess the performance of MM-

PB/GBSA method included in the AMBER package in VS rescoring. To ensure a

relatively thorough assessment, the test sets consist of protein receptors from dif-

ferent categories and ligand libraries of different sources. Some receptors were also

repeatedly appeared in the test sets to assess variation caused by using different li-

braries. The test set underwent VS and the generated poses were rescored using MM-

PB/GBSA with the applications of different internal dielectric values. The quality of

VS performance was evaluated according to the capability of the rescoring method

to distinguish actives from inactives or decoys. Comparisons in enrichment outcomes

were performed for the polar-electrostatic contributions, the non-polar energetics,

and the total binding free energy. Two popular and computationally efficient charg-

ing methods (Gasteiger and AM1-BCC) were also investigated for their influences on

the electrostatics. The outcomes provide further insights in applications using the
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MM-PB/GBSA model for VS rescoring.

11.2 Methodology

11.2.1 Test set preparations

Test sets used for different assessments in this chapter are listed in Table 11.1. Since

previous studies regarding MM-PBSA rescoring were mainly compared to Autodock11,15

or vina,26 the comparison in performances of the docking program used in this the-

sis, PLANTS24,25, and vina was performed. The purpose was to guarantee that

PLANTS should at least perform as good as vina in reproducing crystal poses of a

set of benchmarked complexes. The test set adopted, the test set 0, was derived from

the CCDC-Astex “clean” set.22 The MOE software23 was used to pre-process all the

complexes. Missing loops with more than 4 amino acids were capped with acetyl or

N-methyl amide groups. Otherwise, the loops were rebuilt using MOE software23

during the structure preparation process. The missing loops were visually inspected

to ensure the capping would not affect the binding site. All spliced termini were also

capped to avoid effects from artificial charges. The part of the complexes within 4.5 Å

range from the ligand was minimised briefly with MOE (AMBER 10EHT force field

and the Born implicit solvent).23 The ligands were then stripped from the binding

sites. Using PLANTS24,25 or vina26, the original ligands were docked back into the

pockets for 12 repeated experiments and the binding poses were analysed according

to its RMSD to the original crystal poses.

The rest 3 test sets were generated for virtual screening assessments. In the test set 1,

the receptors were selected from DUD-E database19 according to the number of true

inactive ligands available; if there are more than 100 inactive ligands available (except

HIVPV which have an inactive count of 96) the receptor is included. Moreover,

membrane proteins or receptors have metal presented within the binding pocket were

excluded. The ligand libraries consist of the active and inactive compounds from

DUD-E database19. The SMILES format were downloaded. 3D structures were
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generated and minimised using MOE.23

The ChEMBL database29 is the source of active and inactive ligands of the receptor

proteins in the test set 2. Actives and inactives were both extracted according to

the experimental data. The inhibition constant (Ki) values are more connected to

the binding affinities of the compounds to the receptors thus were considered as the

priority factor. Some compounds are flagged as inactive or the results were shown

as too large that exceeds the typical detectable range of the experimental method

of choice. These are evidence showing they are likely not binders to the receptor of

interest. Hence, they are categorised as inactives in the ligand libraries. Furthermore,

the total number of inactive compounds for each receptor was one of the criteria

for receptor selection in the test set 2 and was set at a minimum of 200 inactive

ligands after clustering processing of the library with MOE.23 This is to allow a

statistically meaningful active-to-inactive ratio no larger than 1:10 and at least 10 and

no more than 20 active compounds can be considered in the final library. However,

for some receptors, such as CTSD and PPARG, the inactives derived from the Ki

lists has less than 200 compounds. Thus for these two receptors, the ligands with

Table 11.1: Test sets applied for the MM-PBSA rescoring assessment.

Index Size Source Protein contained (PDB ID/gene name)
0 73 The CCDC-Astex “clean”

set for pose prediction val-
idation

1a28, 1a4q, 1abe, 1abf, 1aoe, 1apu, 1aqw, 1atl, 1bma,
1byb, 1c5c, 1c5x, 1c83, 1cbs, 1cil, 1cle, 1d0l, 1d3h, 1ejn,
1eta, 1f3d, 1flr, 1glp, 1glq, 1hfc, 1hpv, 1hsb, 1hsl, 1hvr,
1hyt, 1ida, 1jap, 1kel, 1lcp, 1lic, 1lst, 1mld, 1mmq,
1mrg, 1mrk, 1mts, 1nco, 1ppc, 1pph, 1qbr, 1rnt, 1rob,
1slt, 1snc, 1srj, 1tmn, 1tng, 1tnh, 1tni, 1tnl, 1tyl, 1ukz,
1xid, 1xie, 2ak3, 2cmd, 2ctc, 2fox, 2gbp, 2h4n, 2qwk,
2tmn, 3cla, 3ert, 4dfr, 5abp, 6rnt, 7tim

1 18 Active and inactive ligands
from DUD-E

ACES, CDK2, DPP4, EGFR, ESR1, FA10, FGFR1,
FNTA, GRIA2, GRIK1, HIVPR, KPCB, LCK, PTN1,
SRC, THRB, TRY1, VGFR2

2 19 Clustered active and inac-
tive ligands from ChEMBL

ACES, ADORA1, AURKA, CA1, CASP1, CDK2,
CTSD, EGFR, ELANE, ESR1, FGFR1, GSK3B, LCK,
MAPK1, MMP1, NTRK1, PPARG, SRC, VGFR2

3 18 Same proteins as in test set
1 but using the 50 best ac-
tive compounds and a drug-
like 1000 decoys seta

Same as test set 1

a A decoys set from previous studies27,28.
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determined IC50 were also considered. All ligand libraries were filtered with molecular

weights between 250 and 550. Clustering of the compound libraries was performed to

remove repetitions and compounds that are too similar to each other. The clustering

procedures were carried out using the Tanimoto superset/subset similarity metrics on

the bit-packed MACCS structural fingerprints included in the MOE package.23

Same receptors from the test set 1 were included in the test set 3 as well. Libraries

in this test set included a 1000-decoy set with an average molecular weight of 400

from PDB bank applied in a previous study27,28, plus the 50 most active compounds

of each receptor from DUD-E database19. The decoys from the DUD-E database19

was not considered due to the size of the libraries require more computational time.

Moreover, the universal decoy application across different receptors would emphasise

more on the scoring performance under a more generalised circumstance.

The active ligands, on the other hand, were all selected as the n-most active com-

pounds of the receptor of interest from the processed active ligand list. The n here

should satisfy the active-to-inactive ratio accordingly. The 3D structures were gen-

erated from SMILES and minimised using MOE.23

All receptor crystal structures were downloaded from the Protein Data bank.30 Any

water molecule, salt, and co-crystal reagent were removed for all test sets. Addition-

ally, test set 1-3 contains receptors without metals participating in ligand binding.

Hence, all metals were also removed for receptors included in these three test sets.

Through visual inspection, all post-translational modifications were determined far

from the binding site to be participating in direct ligand-receptor interaction. Hence,

all PTMs were also removed. With the concerns of compatibility with AMBER

package31, some amino acid residue names were also corrected. The Protonate 3D

function within the MOE package23 was applied to add hydrogen atoms to the recep-

tor structures. The binding sites were also visually inspected to confirm the corrected

placement of the hydrogens. The PLANTS program24,25 was used to determine the

centres of the binding sites. An additional 2 Å was added to the half of the longest in-

tramolecular atom-to-atom distance determined from the processed screening library
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and applied as the radii of the docking search sphere.

11.2.2 Molecular weight adjustment procedures

In a later analysis of the rescoring results, the molecular weight (MW) composition

of the test set 2 and 3 were adjusted. This process is to lower the biases caused by

the differences in molecular size distribution between the active and inactive ligands

(or decoys). The bias was not initially excluded since assessing MW-biased systems

is also important. Combining both biased and unbiased studies can provide a more

complete picture of different scenarios in virtual screening. Additionally, this pro-

cessing procedure was not applied to test set 1 since the sizes of the libraries are

relatively small. The further shrinking of the library would make the statistical anal-

ysis meaningless. Some receptors form test set 2 were also not included for a similar

reason.

The procedure focused on lowering the ROC AUC values of the high-to-low MW

ligand rankings to about 0.5 or lower. Firstly, the active ligand MW range was

determined. The 30 and 100 percentiles of this range were used as the lower and

upper bound of the MW cut-offs for inactive ligands. The inactive ligands with MW

outside of the cut-offs were then excluded in the new adjusted library. The size of the

new inactive list was then determined. Receptors with the inactive ligand size less

than 70 were not included in later analysis. The sizes of the active ligands in the new

MW-unbiased lists were then determined according to the size of the new inactive

lists to give active-to-inactive ratios around 1:10 or 1:20. From the original active

list, random active ligands with the determined sizes were selected. Final results in

a later section have shown that this procedure can effectively reduce the MW ROC

AUC to about 0.5 or less.
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11.3 Results and discussions

11.3.1 Validation of PLANTS performance

It is a crucial requirement for the docking software to be able to provide satisfactory

binding poses for MM-PBSA rescoring. Hence, PLANTS program24,25 was firstly

assessed for pose sampling in terms of reproducing experimental binding poses. 73

crystal complexes from the CCDC-Astex “clean” set22 were used as the test set

and the performance was tested against vina.26 Some crystal structure also contains

multiple monomers. The monomers were also considered separately. This resulted in

a total of 97 binding sites for the test set 0. Moreover, exhaustiveness values at both

10 and 12 were also tested.

Results have shown that overall PLANTS performs significantly better than vina in

reproducing crystal poses. When considering the top-ranked conformation, PLANTS

can reproduce 87.2% of the crystal ligand binding conformations (RMSD < 2.0 Å).

Vina,26 one the other hand, provided the same 62.9% success rate for both exhaus-

tiveness 10 and 12. The detailed per-receptor comparisons are shown in Figure 11.1.
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Figure 11.1: Comparison of pose predictions between PLANTS and vina (with exhaus-
tiveness = 12 and 10). Only the top 1st ranked poses were considered. The error bars were
shown as the standard deviation between the 12 docking experiments.
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PLANTS also gave an impressive 95.1% reproducibility when including the top-three

conformations. Hence, in the following rescoring assessments the top three poses gen-

erated by PLANTS for each protonation or tautomerisation states were applied.

11.3.2 Rescoring using different energy compositions from MM-PBSA

Previous studies have suggested that solute dielectrics could have an impact on es-

timated binding free energies using MM-PB/GBSA methods; increasing the value

could improve the outcome likely due to the change in electrostatic calculations.8,15

To investigate the influence of solute / internal dielectrics on virtual screening per-

formance in this study, the calculated MM-PBSA score was evaluated according to

total electrostatic-polar energies, total non-polar energies, and total MM-PBSA ener-

gies and the ROC AUC values were considered separately. By changing the internal

dielectric values, the effects on ROC AUC values were demonstrated in the form of

squared Pearson correlation coefficient (rp2) and linear fitting of higher internal dielec-

tric values to internal dielectric equals 1 (Figure 11.2A-F). Both electrostatic-polar

and non-poler energies provide near perfect linear correlations across different solute

dielectric values. However, the correlations drastically worsen when considering the

total MM-PBSA score between different internal dielectrics(Figure 11.2G-I).

Further information can be interpreted from direct comparisons of the ROC AUC

values.(Tables 11.2 to 11.4) Non-polar interactions give over-0.7 ROC AUC at 61.1 -

66.7% rate across all the internal dielectric tested (Table 11.2), much better compar-

ing to the 44.4% when using PLANTSchemplp scoring methods.24,25 A better perfor-

mance of non-polar energies was observed for test set 2, 73.7 - 78.9% of the libraries

resulted in ROC AUC over 0.7. This rate is 47.4% using PLANTSchemplp in test set

2(Table 11.3). However, the over-0.7 ROC AUC rates are much worse when only

consider electrostatic and polar interactions; the rates are merely 5.6% and 15.79%

for test set 1 and 2, respectively. This trend does not vary when change the in-

ternal dielectric values. Furthermore, the ROC AUC results remain similar among

non-polar or electrostatic-polar energies even different solute dielectric values were
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applied.

As for the total MM-PBSA scores, the variations increase when different internal

dielectrics were applied. For the test set 1 and 2, the results are much worse when

solute dielectric equals to 1. When the internal dielectric increases, the ROC AUC
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Figure 11.2: The correlations of ROC AUC values using internal dielectrics 2, 4, and
6 to the ones calculated with the internal dielectric value of 1 with outcomes from all
test sets combined. Results from different energy compositions of MM-PBSA calculations
are shown in separate rows. AM1-BCC was the charging method. A-C: the ROC AUCs
calculated from non-polar energies. D-F: the ROC AUCs calculated from electrostatic and
polar energies. G-I: the ROC AUCs calculated from total MM-PBSA binding free energies.
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Table 11.2: The ROC AUC results using different internal dielectric values with MM-
PBSA virtual screening on test set 1 (DUD-E test set). Squared Pearson correlation coef-
ficients to results from internal dielectric = 1 are also shown. AM1-BCC was the charging
method.

Gene ID ROC AUC ROC AUC, internal dielectric = 1 ROC AUC, internal dielectric = 2 ROC AUC, internal dielectric = 4 ROC AUC, internal dielectric = 6
(PLANTS) non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total

ACES 0.8656 0.9209 0.2008 0.4384 0.9175 0.2464 0.8284 0.9253 0.3071 0.9172 0.9283 0.3730 0.9300
CDK2 0.3931 0.5136 0.5068 0.5707 0.5000 0.5170 0.5419 0.4949 0.4881 0.4836 0.4921 0.5130 0.4802
DPP4 0.6807 0.7756 0.4684 0.5704 0.7873 0.4676 0.6766 0.7929 0.4657 0.7688 0.7877 0.4736 0.7877
EGFR 0.6883 0.6361 0.5403 0.7052 0.6408 0.5506 0.7262 0.6500 0.5375 0.7049 0.6562 0.5177 0.6833
ESR1 0.5498 0.4050 0.9282 0.9180 0.4191 0.9338 0.6793 0.4123 0.9480 0.5600 0.4202 0.9446 0.5181
FA10 0.6149 0.8185 0.5128 0.7867 0.7904 0.5467 0.8820 0.7705 0.5683 0.8611 0.7657 0.5920 0.8367
FGFR1 0.8009 0.9364 0.1487 0.4281 0.9320 0.1531 0.8704 0.9271 0.1791 0.9344 0.9247 0.2167 0.9340
FNTA 0.6049 0.6603 0.3380 0.3945 0.6404 0.3508 0.4930 0.6428 0.3351 0.5962 0.6387 0.3304 0.6235
GRIA2 0.7128 0.8498 0.3940 0.6073 0.8417 0.4485 0.7330 0.8455 0.4972 0.8192 0.8578 0.5455 0.8440
GRIK1 0.4840 0.6026 0.4019 0.4287 0.5935 0.4137 0.4867 0.5694 0.4454 0.5327 0.5572 0.4778 0.5473
HIVPR 0.7766 0.8760 0.1771 0.4281 0.8813 0.1604 0.8281 0.8906 0.1573 0.8854 0.8802 0.1656 0.8896
KPCB 0.7394 0.6858 0.5965 0.7586 0.6880 0.6200 0.8231 0.6802 0.6658 0.7913 0.7246 0.5817 0.7651
LCK 0.9105 0.8811 0.5313 0.7705 0.8762 0.5705 0.9139 0.9026 0.5841 0.9188 0.8992 0.6448 0.9207
PTN1 0.6649 0.7197 0.5145 0.5724 0.7224 0.5184 0.6044 0.7281 0.5272 0.6496 0.7241 0.5333 0.6851
SRC 0.5334 0.7744 0.3477 0.5630 0.7648 0.3743 0.7602 0.7637 0.4219 0.7929 0.7682 0.4289 0.7894
THRB 0.8819 0.8206 0.5750 0.7741 0.8126 0.5915 0.8479 0.8231 0.5619 0.8598 0.8354 0.5455 0.8538
TRY1 0.3860 0.4059 0.5662 0.4841 0.4370 0.5303 0.4498 0.4043 0.5909 0.4338 0.3971 0.6132 0.4226
VGFR2 0.7983 0.7797 0.5629 0.7862 0.7706 0.5900 0.8853 0.7762 0.5865 0.8617 0.7827 0.6051 0.8330

% (> 0.7) 44.44 61.11 5.6 38.89 61.11 5.6 61.11 61.11 5.6 66.67 66.67 5.6 61.11
rp2 to data from ROC AUC, internal dielectric = 1 0.9941 0.9860 0.1962 0.9886 0.9539 0.0214 0.9811 0.8944 0.0029

Table 11.3: The ROC AUC results using different internal dielectric values with MM-
PBSA virtual screening on test set 2 (ChEMBL test set). Squared Pearson correlation
coefficients to results from internal dielectric = 1 are also shown. AM1-BCC was the
charging method.

Gene ID ROC AUC ROC AUC, internal dielectric = 1 ROC AUC, internal dielectric = 2 ROC AUC, internal dielectric = 4 ROC AUC, internal dielectric = 6
(PLANTS) non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total

ACES 0.7934 0.7762 0.2904 0.3824 0.7720 0.3194 0.5533 0.7575 0.3749 0.6651 0.7721 0.3909 0.6929
ADORA1 0.7117 0.6334 0.6180 0.7560 0.6618 0.5896 0.7733 0.6432 0.6008 0.7263 0.6436 0.6068 0.7005
AURKA 0.4995 0.7273 0.5685 0.7724 0.7320 0.5740 0.8558 0.7672 0.5065 0.8371 0.7854 0.4280 0.8242
CA1 0.4385 0.5865 0.5362 0.5680 0.6247 0.5102 0.6199 0.6481 0.4700 0.6433 0.6594 0.4594 0.6645
CASP1 0.9250 0.8580 0.9186 0.9919 0.8557 0.9148 0.9945 0.8860 0.9485 0.9837 0.8848 0.9640 0.9710
CDK2 0.6915 0.4792 0.5712 0.5607 0.4714 0.5662 0.5336 0.4491 0.5789 0.4930 0.4424 0.5707 0.4702
CTSD 0.9270 0.9067 0.7076 0.8013 0.9139 0.7190 0.9070 0.9060 0.7555 0.9652 0.9053 0.7462 0.9532
EGFR 0.6780 0.7270 0.4228 0.5832 0.7220 0.4383 0.6837 0.7301 0.4528 0.7280 0.7264 0.4843 0.7418
ELANE 0.8623 0.8230 0.4557 0.8376 0.8361 0.4597 0.8924 0.8340 0.5002 0.8742 0.8347 0.5056 0.8620
ESR1 0.5635 0.5437 0.7971 0.8781 0.5381 0.8057 0.8154 0.5204 0.8181 0.6847 0.5174 0.8064 0.6286
FGFR1 0.5270 0.8731 0.3271 0.5169 0.8942 0.2704 0.7862 0.8967 0.2566 0.8895 0.8947 0.2815 0.8986
GSK3B 0.7151 0.7402 0.3997 0.5497 0.7186 0.4204 0.6370 0.7148 0.4503 0.6698 0.7281 0.4536 0.7160
LCK 0.5812 0.8637 0.4596 0.8697 0.8665 0.5046 0.9040 0.8620 0.5496 0.8952 0.8644 0.5487 0.8847
MAPK1 0.7449 0.8244 0.2564 0.3799 0.8250 0.2590 0.6791 0.8680 0.2397 0.8285 0.8666 0.2706 0.8577
MMP1 0.8578 0.8119 0.4775 0.5836 0.8002 0.4787 0.6514 0.7851 0.4692 0.7132 0.7804 0.4130 0.7204
NTRK1 0.2840 0.7916 0.3353 0.5206 0.7918 0.3437 0.7710 0.8120 0.3245 0.8258 0.8144 0.3374 0.8269
PPARG 0.9202 0.8073 0.5774 0.7129 0.8315 0.5726 0.8823 0.8081 0.6169 0.9089 0.8089 0.6234 0.8984
SRC 0.5956 0.7819 0.4383 0.6790 0.8358 0.3750 0.8657 0.8275 0.4527 0.8561 0.8214 0.5039 0.8444
VGFR2 0.6354 0.6200 0.6411 0.7365 0.6759 0.5810 0.7436 0.7167 0.4916 0.7377 0.7167 0.4929 0.7320

% (> 0.7) 47.37 73.68 15.79 47.37 73.68 15.79 63.16 78.95 15.79 73.68 78.95 15.79 78.95
rp2 to data from ROC AUC, internal dielectric = 1 0.9838 0.9853 0.8025 0.9627 0.9446 0.4606 0.9599 0.9165 0.3299

in overall improves. This observation indicates that the variation is likely due to the

change in electrostatic and polar energy estimations. However, the universal poor

performance of electrostatic-polar energies in distinguishing actives from inactive lig-

ands is demonstrated by the almost perfect linear correlations of ROC AUC values

between different internal dielectric values. Hence, the change in electrostatic and

polar energy estimations are less likely to provide qualitative improvement that con-

tributing to the better performance in total MM-PBSA score when increasing the
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Table 11.4: The ROC AUC results using different internal dielectric values with MM-
PBSA virtual screening on test set 3 (decoy test set). Squared Pearson correlation coeffi-
cients to results from internal dielectric = 1 are also shown. AM1-BCC was the charging
method.

Gene ID ROC AUC ROC AUC, internal dielectric = 1 ROC AUC, internal dielectric = 2 ROC AUC, internal dielectric = 4 ROC AUC, internal dielectric = 6
(PLANTS) non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total

ACES 0.7934 0.8414 0.3996 0.5611 0.8339 0.4319 0.7610 0.8278 0.4728 0.8420 0.8339 0.5035 0.8497
CDK2 0.7117 0.5148 0.6910 0.7605 0.4955 0.7058 0.7353 0.4927 0.6993 0.6241 0.4849 0.7051 0.5751
DPP4 0.4995 0.5278 0.7542 0.7939 0.5369 0.7655 0.8080 0.5305 0.7802 0.7605 0.5362 0.7825 0.7140
EGFR 0.4385 0.5576 0.6932 0.8026 0.5633 0.6865 0.7797 0.5780 0.6692 0.6935 0.5776 0.6692 0.6550
ESR1 0.9250 0.6303 0.7971 0.8687 0.6282 0.8145 0.8231 0.6243 0.8423 0.7502 0.6244 0.8506 0.7181
FA10 0.6915 0.9466 0.3157 0.7850 0.9311 0.4109 0.9269 0.9260 0.5122 0.9467 0.9995 0.4063 0.9990
FGFR1 0.9270 0.7190 0.4526 0.6305 0.7261 0.4678 0.7597 0.7604 0.4469 0.7907 0.7561 0.4822 0.7929
FNTA 0.6780 0.7940 0.3391 0.5799 0.8146 0.3389 0.7393 0.8177 0.3525 0.8001 0.8244 0.3718 0.8135
GRIA2 0.8623 0.3792 0.7900 0.7579 0.3743 0.7894 0.6703 0.3754 0.7771 0.5794 0.3818 0.7699 0.5470
GRIK1 0.5635 0.1130 0.9584 0.9460 0.1145 0.9569 0.7680 0.1017 0.9578 0.3480 0.0975 0.9577 0.2391
HIVPR 0.5270 0.8914 0.2496 0.6165 0.8875 0.2613 0.8163 0.8922 0.2719 0.8890 0.8978 0.2705 0.8978
KPCB 0.7151 0.7330 0.7240 0.8577 0.7247 0.7541 0.8743 0.7308 0.7530 0.8368 0.7266 0.7545 0.8094
LCK 0.5812 0.8281 0.5679 0.8323 0.8368 0.5912 0.8939 0.8345 0.6746 0.8915 0.8342 0.7336 0.8809
PTN1 0.7449 0.8117 0.7114 0.7898 0.8171 0.7166 0.8574 0.8103 0.7311 0.9079 0.8076 0.7537 0.9314
SRC 0.8578 0.7942 0.4562 0.7124 0.7950 0.4908 0.8458 0.7954 0.5579 0.8471 0.8007 0.5847 0.8407
THRB 0.2840 0.9001 0.5860 0.8539 0.8974 0.6280 0.9361 0.8939 0.6771 0.9394 0.9009 0.6742 0.9330
TRY1 0.9202 0.8716 0.3527 0.6916 0.8603 0.3962 0.8837 0.8628 0.4206 0.8926 0.8681 0.4268 0.8889
VGFR2 0.5956 0.8206 0.5467 0.7738 0.8158 0.5620 0.8775 0.8282 0.5617 0.8801 0.8297 0.5760 0.8694

% (> 0.7) 77.78 66.67 33.33 72.22 66.67 38.89 94.44 66.67 33.33 77.78 66.67 44.44 77.78
rp2 to data from ROC AUC, internal dielectric = 1 0.9980 0.9881 0.1120 0.9948 0.9281 0.1169 0.9936 0.9387 0.1528

internal dielectric values.

Test set 3 was adopted as an additional set to confirm that the above observations are

also true when decoys are included in a library. The electrostatic and polar estima-

tions perform better than the other two test sets, resulted in 33.33 - 44.44% above-0.7-

ROC-AUC rate across all the internal dielectrics applied(Table 11.4). This is likely

due to the more distinct chemical properties of the actives to decoys. Nonetheless,

the non-polar energies still give better outcomes; the ROC AUCs calculated above

0.7 still give a rate at 66.67%. The data further confirmed the observations in the

other two test sets.

11.3.3 Rescoring using theMM-GBSA, and an alternative chargingmethod

To determine whether the observations in the previous section was singular to for the

MM-PBSA method or not, the MM-GBSA method was also tested on the test set

1. Similar results were shown in this assessment,(Tables 11.5 to 11.7) which further

confirmed that the different behaviours of the decomposed energies are universal

among the MM-PB/GBSA models. Both non-polar and polar energies gave close to

one ROC AUC rp2 across the tested internal dielectric values in test set 1 VS. Once
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Table 11.5: ROC AUC correlation data for MM-GBSA energy compositions with different
internal dielectrics (2, 4, and 6) to results using internal dielectric = 1. The AM1-BCC
charging method was applied.

MM-GBSA energy Internal dielectric = 2 Internal dielectric = 4 Internal dielectric = 6
compositions rp2* m** b** rp2* m** b** rp2* m** b**
Ele + GB polar 0.9996 1.0019 0.0014 0.9951 1.0040 0.0011 0.9870 1.0154 0.0020
VDW + GB non-polar 0.9981 1.0168 -0.0141 0.9924 1.0111 -0.0090 0.9857 1.0140 -0.0124
Total MM-GBSA 0.9061 0.8523 0.1214 0.3562 0.4572 0.4060 0.0685 0.2127 0.5775

‚

* Pearson correlation coefficient squared
** m and b are the fitted parameter to a linear equation of the form y = mx + b

Table 11.6: The ROC AUC results using MM-PB/GBSA methods and different partial
charges when internal dielectric equals to 1.

Gene ID ROC AUC ROC AUC (MM-PBSA, AM1-BCC) ROC AUC (MM-GBSA, AM1-BCC) ROC AUC (MM-PBSA, Gasteiger)
(PLANTS) non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total

ACES 0.8656 0.9209 0.2008 0.4384 0.9088 0.4445 0.6322 0.9190 0.1799 0.4434
CDK2 0.3931 0.5136 0.5068 0.5707 0.4762 0.4400 0.4429 0.5074 0.3507 0.3546
DPP4 0.6807 0.7756 0.4684 0.5704 0.7654 0.5380 0.5806 0.7590 0.5019 0.5904
EGFR 0.6883 0.6361 0.5403 0.7052 0.6402 0.5270 0.5609 0.6485 0.5883 0.7523
ESR1 0.5498 0.4050 0.9282 0.9180 0.4293 0.8399 0.8066 0.4163 0.8201 0.8360
FA10 0.6149 0.8185 0.5128 0.7867 0.7995 0.7360 0.7819 0.8046 0.4439 0.7262
FGFR1 0.8009 0.9364 0.1487 0.4281 0.9286 0.0861 0.1248 0.9320 0.1781 0.4604
FNTA 0.6049 0.6603 0.3380 0.3945 0.6445 0.6020 0.6171 0.6404 0.4073 0.4714
GRIA2 0.7128 0.8498 0.3940 0.6073 0.8645 0.6690 0.7095 0.8608 0.3443 0.5197
GRIK1 0.4840 0.6026 0.4019 0.4287 0.5896 0.5684 0.6026 0.5792 0.4300 0.4420
HIVPR 0.7766 0.8760 0.1771 0.4281 0.8396 0.7906 0.8479 0.8844 0.2021 0.5625
KPCB 0.7394 0.6858 0.5965 0.7586 0.7194 0.4854 0.5403 0.6719 0.5769 0.6850
LCK 0.9105 0.8811 0.5313 0.7705 0.8704 0.3728 0.4638 0.8792 0.4428 0.6531
PTN1 0.6649 0.7197 0.5145 0.5724 0.7399 0.6211 0.6289 0.7197 0.5465 0.5934
SRC 0.5334 0.7744 0.3477 0.5630 0.7642 0.3295 0.4004 0.7753 0.3500 0.5591
THRB 0.8819 0.8206 0.5750 0.7741 0.8201 0.5039 0.6330 0.8232 0.5110 0.7791
TRY1 0.3860 0.4059 0.5662 0.4841 0.4027 0.3931 0.3541 0.4330 0.4984 0.3533
VGFR2 0.7983 0.7797 0.5629 0.7862 0.7842 0.5900 0.6569 0.7882 0.5226 0.7470

% (> 0.7) 44.44 61.11 5.56 38.89 66.67 16.67 22.22 61.11 5.56 27.7
rp2 to data from ROC AUC, internal dielectric = 1 0.9932 0.3891 0.3231 0.9968 0.9451 0.8555

Table 11.7: The ROC AUC results using different internal dielectric values with MM-
GBSA virtual screening on test set 1. Squared Pearson correlation coefficients to results
from internal dielectric = 1 are also shown. AM1-BCC was the charging method.

Gene ID ROC AUC ROC AUC, internal dielectric = 1 ROC AUC, internal dielectric = 2 ROC AUC, internal dielectric = 4 ROC AUC, internal dielectric = 6
(PLANTS) non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total

ACES 0.8656 0.9088 0.4445 0.6322 0.9117 0.4488 0.7528 0.9265 0.4183 0.8491 0.9274 0.4392 0.8842
CDK2 0.3931 0.4762 0.4400 0.4429 0.4695 0.4429 0.4570 0.4893 0.4140 0.4406 0.5085 0.3784 0.4395
DPP4 0.6807 0.7654 0.5380 0.5806 0.7700 0.5335 0.6284 0.7643 0.5384 0.6958 0.7741 0.5192 0.7417
EGFR 0.6883 0.6402 0.5270 0.5609 0.6350 0.5295 0.5940 0.6437 0.5299 0.6369 0.6460 0.5314 0.6552
ESR1 0.5498 0.4293 0.8399 0.8066 0.4265 0.8456 0.6895 0.4253 0.8439 0.5837 0.4219 0.8569 0.5402
FA10 0.6149 0.7995 0.7360 0.7819 0.7965 0.7404 0.8032 0.7816 0.7512 0.8212 0.7728 0.7630 0.8134
FGFR1 0.8009 0.9286 0.0861 0.1248 0.9295 0.0837 0.2554 0.9281 0.0890 0.6228 0.9291 0.0890 0.8288
FNTA 0.6049 0.6445 0.6020 0.6171 0.6288 0.6049 0.6294 0.6206 0.6078 0.6317 0.6101 0.6107 0.6311
GRIA2 0.7128 0.8645 0.6690 0.7095 0.8640 0.6682 0.7405 0.8590 0.6700 0.7855 0.8500 0.6720 0.8085
GRIK1 0.4840 0.5896 0.5684 0.6026 0.5750 0.5712 0.5996 0.5726 0.5748 0.5962 0.5605 0.5865 0.5853
HIVPR 0.7766 0.8396 0.7906 0.8479 0.8396 0.7958 0.8833 0.8583 0.7917 0.9073 0.8719 0.7896 0.9115
KPCB 0.7394 0.7194 0.4854 0.5403 0.7085 0.4911 0.5943 0.7011 0.5046 0.6941 0.6858 0.5268 0.7359
LCK 0.9105 0.8704 0.3728 0.4638 0.8713 0.3801 0.5479 0.8669 0.3977 0.6800 0.8792 0.3958 0.7573
PTN1 0.6649 0.7399 0.6211 0.6289 0.7601 0.6145 0.6430 0.7579 0.6189 0.6623 0.7482 0.6224 0.6890
SRC 0.5334 0.7642 0.3295 0.4004 0.7632 0.3304 0.4759 0.7536 0.3463 0.5926 0.7530 0.3547 0.6633
THRB 0.8819 0.8201 0.5039 0.6330 0.8256 0.5050 0.6974 0.8482 0.5108 0.7733 0.8411 0.5255 0.8073
TRY1 0.3860 0.4027 0.3931 0.3541 0.4019 0.3995 0.3278 0.4131 0.3828 0.3341 0.4107 0.3780 0.3541
VGFR2 0.7983 0.7842 0.5900 0.6569 0.7736 0.5981 0.7369 0.7671 0.6061 0.8003 0.7651 0.6117 0.8350

% (> 0.7) 44.44 66.67 16.67 22.22 66.67 16.67 27.78 66.67 16.67 33.33 61.11 16.67 55.56
rp2 to data from ROC AUC, internal dielectric = 1 0.9988 0.9998 0.9477 0.9955 0.9971 0.5971 0.9914 0.9923 0.2934

combining the two energy components, the total MM-GBSA scores provide worsened

correlation between different solute dielectrics.
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Table 11.8: ROC AUC correlation data for MM-PBSA energy compositions with different
internal dielectrics (2, 4, and 6) to results using internal dielectric = 1. The Gasteiger
charging method was applied.

MM-GBSA energy Internal dielectric = 2 Internal dielectric = 4 Internal dielectric = 6
compositions rp2* m** b** rp2* m** b** rp2* m** b**
Ele + PB polar 0.9870 0.9954 0.0180 0.9386 0.9598 0.0501 0.8742 0.9152 0.0769
VDW + PB non-polar 0.9952 0.9982 -0.0033 0.9869 1.0098 -0.0078 0.9854 1.0194 -0.0114
Total MM-PBSA 0.3728 0.6109 0.3293 0.0628 0.2598 0.5636 0.0228 0.1595 0.6261

* Pearson correlation coefficient squared
** m and b are the fitted parameter to a linear equation of the form y = mx + b

Table 11.9: The ROC AUC results using different internal dielectric values with MM-
PBSA virtual screening on test set 1. Squared Pearson correlation coefficients to results
from internal dielectric = 1 are also shown. Gasteiger charges were applied.

Gene ID ROC AUC ROC AUC, internal dielectric = 1 ROC AUC, internal dielectric = 2 ROC AUC, internal dielectric = 4 ROC AUC, internal dielectric = 6
(PLANTS) non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total non-polar Ele + polar total

ACES 0.8656 0.919 0.1799 0.4434 0.9182 0.2205 0.8398 0.9265 0.2929 0.9178 0.9283 0.3568 0.9309
CDK2 0.3931 0.5074 0.3507 0.3546 0.5068 0.336 0.3614 0.5034 0.3569 0.4084 0.4949 0.3818 0.4282
DPP4 0.6807 0.759 0.5019 0.5904 0.7632 0.4989 0.6657 0.7669 0.4838 0.7233 0.7869 0.436 0.7549
EGFR 0.6883 0.6485 0.5883 0.7523 0.6537 0.586 0.7475 0.6631 0.5665 0.7308 0.6594 0.5656 0.7083
ESR1 0.5498 0.4163 0.8201 0.836 0.414 0.8529 0.6239 0.4191 0.9095 0.5345 0.4197 0.9304 0.5074
FA10 0.6149 0.8046 0.4439 0.7262 0.7667 0.4959 0.8205 0.7677 0.5118 0.8012 0.7654 0.5338 0.7904
FGFR1 0.8009 0.932 0.1781 0.4604 0.9242 0.1947 0.7652 0.9271 0.2114 0.9286 0.9261 0.2383 0.9344
FNTA 0.6049 0.6404 0.4073 0.4714 0.6463 0.3875 0.5321 0.6457 0.3829 0.6171 0.6439 0.3625 0.6305
GRIA2 0.7128 0.8608 0.3443 0.5197 0.8505 0.3808 0.682 0.8455 0.4458 0.7762 0.8615 0.4722 0.8155
GRIK1 0.4840 0.5792 0.43 0.442 0.5758 0.4441 0.4665 0.556 0.4635 0.4988 0.5537 0.4722 0.5166
HIVPR 0.7766 0.8844 0.2021 0.5625 0.8833 0.199 0.8552 0.8885 0.1844 0.8875 0.8792 0.1875 0.8948
KPCB 0.7394 0.6719 0.5769 0.685 0.6806 0.5996 0.7695 0.7142 0.5542 0.7717 0.7237 0.556 0.7638
LCK 0.9105 0.8792 0.4428 0.6531 0.888 0.454 0.8777 0.9056 0.4667 0.9139 0.9017 0.5391 0.9173
PTN1 0.6649 0.7197 0.5465 0.5934 0.7285 0.5333 0.6132 0.7351 0.5412 0.6702 0.7281 0.5579 0.7022
SRC 0.5334 0.7753 0.35 0.5591 0.7537 0.3841 0.7453 0.7638 0.4153 0.7836 0.7651 0.4316 0.7853
THRB 0.8819 0.8232 0.511 0.7791 0.8112 0.5445 0.84 0.813 0.5467 0.8446 0.8477 0.4675 0.8474
TRY1 0.3860 0.433 0.4984 0.3533 0.4155 0.5335 0.3852 0.3947 0.5845 0.4083 0.4035 0.5686 0.4043
VGFR2 0.7983 0.7882 0.5226 0.747 0.7842 0.5458 0.8194 0.7782 0.5775 0.8456 0.7857 0.5372 0.833

% (> 0.7) 44.44 61.11 5.56 27.78 61.11 5.56 55.56 66.67 5.56 66.67 66.67 5.56 72.22
rp2 to data from ROC AUC, internal dielectric = 1 0.9971 0.9912 0.5962 0.9925 0.9587 0.3615 0.9917 0.9099 0.2979

Different to the MM-PBSA model, the total MM-GBSA rescoring VS with internal

dielectric equals 2 still provide a good correlation to the internal dielectric 1. This

good correlation, however, did not extend to the other VS runs using solute dielectric

values equal to 4 and 6. More importantly, this seemly improved robustness does not

indicate that the MM-GBSA method performs better than MM-PBSA in ranking

ligands. It only shows that the performance of the total MM-GBSA score when

slightly increase the internal dielectric constant to 2 is as bad as when the value is

set to 1.

The MM-GBSA rescoring also performs marginally better than MM-PBSA when

comparing the ROC AUCs provided by using the electrostatic and polar estimations;

1 more library (3 out of 18) give an electrostatic-polar ROC AUC above 0.7 across the

solute dielectrics tested. Moreover, poor ROC AUC correlations to the MM-PBSA

results in electrostatic-polar estimations reflect the differences between the GB/PB
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solver.

An alternative charging method was also tested for potential improvement or worsen-

ing of results. Gasteiger partial charges are used in the Autodock package18 and also

a popular and efficient method applied in virtual screening. When incorporating this

type of partial charge into the MM-PBSA rescoring, the ROC AUC outcomes and

the correlations between different internal dielectric choices were similar to the results

using the AM1-BCC method (Table 11.8 and 11.9). Hence, it seems reasonable to

suggest that the universal poor performance of electrostatic and polar energies is less

likely related to the charging method but the calculating method of choice.

11.3.4 KDE probability density of different energy compositions

The results so far demonstrated that the MM-PB/GBSAmethods give unbalanced VS

rescoring performance between non-polar and electrostatic-polar calculations. The

poor discrimination power of electrostatic-polar estimations is obviously affecting the

total MM-PB/GBSA scores. Increasing internal dielectric values also weakens the ef-

fect on the total estimations. To further investigate the underlying reason for such

behaviour kernel density estimation (KDE) on the probability density of non-polar,

electrostatic-polar, and total estimated energies. In test set 1, there are 13 systems

show trends of decreasing in deteriorating effects when increasing the internal dielec-

tric values. However, the enrichment of each energy components remain in the same

range(Figures 11.3 and 11.4). Same trends were observed for test set 2 (13 systems,

Figures 11.5 and 11.6) and test set 3 (11 systems, Figures 11.7 and 11.8).

Moreover, the KDE analysis outcomes also confirm that the quantitative shifting in

the densities of the electrostatic-polar interactions when increasing the internal di-

electric values might provide a facade of beneficiary outcome in the final MM-PBSA

evaluation. However, the quality of the electrostatic/polar estimations is not im-

proved. More interestingly, the electrostatic-polar energies can be further separated

into the gas phase and the PB/GB parts. Further analysis of the gas phase elec-

trostatics revealed that this part performs better than the total electrostatic-polar
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Figure 11.3: The KDE plots of different energy compositions of the first 9 receptors
from test set 1 (DUDE test set) with internal dielectric values of 1, 2, 4, and 6 applied.
ACES, DPP4, EGFR, FA10, FGFR1, FNTA, and GRIA2 were demonstrated with better
VS enrichment using non-polar energies than electrostatic/polar energies among the tested
libraries. A relatively over-smoothed bandwidth (0.5) was chosen for demonstration purpose
as the plots were not intended for the accurate estimation of densities.
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Figure 11.4: The KDE plots of different energy compositions of the last 9 receptors
from test set 1 (DUDE test set) with internal dielectric values of 1, 2, 4, and 6 applied.
All except TRY1 were demonstrated with better VS enrichment using non-polar energies
than electrostatic/polar energies among the tested libraries. A relatively over-smoothed
bandwidth (0.5) was chosen for demonstration purpose as the plots were not intended for
the accurate estimation of densities.
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Figure 11.5: The KDE plots of different energy compositions of the first 10 receptors
from test set 2 (CHEMBL test set) with internal dielectric values of 1, 2, 4, and 6 applied.
ACES, ADORA1, AURKA, CA1, CTSD, EGFR, and ELANE were demonstrated with
better VS enrichment using non-polar energies than electrostatic/polar energies among the
tested libraries. A relatively over-smoothed bandwidth (0.5) was chosen for demonstration
purpose as the plots were not intended for the accurate estimation of densities.
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Figure 11.6: The KDE plots of different energy compositions of the last 9 receptors from
test set 2 (CHEMBL test set) with internal dielectric values of 1, 2, 4, and 6 applied. All
receptors were demonstrated with better VS enrichment using non-polar energies than elec-
trostatic/polar energies among the tested libraries. A relatively over-smoothed bandwidth
(0.5) was chosen for demonstration purpose as the plots were not intended for the accurate
estimation of densities.
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Figure 11.7: The KDE plots of different energy compositions of the first 9 receptors from
test set 3 (decoys test set) with internal dielectric values of 1, 2, 4, and 6 applied. ACES,
FA10, FGFR1, and FNTA were demonstrated with better VS enrichment using non-polar
energies than electrostatic/polar energies among the tested libraries. A relatively over-
smoothed bandwidth (0.5) was chosen for demonstration purpose as the plots were not
intended for the accurate estimation of densities.
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Figure 11.8: The KDE plots of different energy compositions of the last 9 receptors
from test set 3 (decoys test set) with internal dielectric values of 1, 2, 4, and 6 applied.
HIVPR, LCK, PTN1, SRC, THRB, TRY1, and VGFR2 were demonstrated with better
VS enrichment using non-polar energies than electrostatic/polar energies among the tested
libraries. A relatively over-smoothed bandwidth (0.5) was chosen for demonstration purpose
as the plots were not intended for the accurate estimation of densities.
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estimations in terms of ROC AUC values (Table 11.10). The outcome implies that

it is likely the PB model of choice contributing to the worsening effect on the MM-

PBSA enrichment most significantly at low solute dielectric values for the libraries

tested.

11.3.5 Considering effects from molecular weight

The distribution of the MW within the screening library is closely related to the final

enrichment for most of the scoring methods. In general, larger molecules tend to

have higher scores. Most libraries in test set 1-3 provide good MW overlay between

actives and inactives/decoys. However, ROC AUC analysis has revealed to be a more

direct assessment to determine biases from MW (Figure 11.9). Thus the ROC AUC

analysis was performed and compared to the other ROC AUCs calculated in the

previous sections.

Within the accessed databases (both DUD-E and ChEMBL) for the receptors se-

Table 11.10: The ROC AUC outcomes of virtual screening using different gas phase
energies. Internal dielectric equals 1.

Panel A: Test set 1

Gene ID ROC AUC Gas Phase ROC AUC
(PLANTS) VDW ELE total MM

ACES 0.8656 0.9191 0.6558 0.8325
CDK2 0.3931 0.5181 0.5017 0.5147
DPP4 0.6807 0.7715 0.4740 0.4876
EGFR 0.6883 0.6409 0.6751 0.6953
ESR1 0.5498 0.4027 0.7421 0.7313
FA10 0.6149 0.8208 0.6109 0.7072
FGFR1 0.8009 0.9364 0.8973 0.9320
FNTA 0.6049 0.6702 0.5361 0.5804
GRIA2 0.7128 0.8500 0.5947 0.6150
GRIK1 0.4840 0.6108 0.4661 0.4762
HIVPR 0.7766 0.8760 0.4698 0.7073
KPCB 0.7394 0.6946 0.6266 0.6392
LCK 0.9105 0.8772 0.9496 0.9555
PTN1 0.6649 0.7088 0.5623 0.5706
SRC 0.5334 0.7693 0.7442 0.7837
THRB 0.8819 0.8264 0.5559 0.6169
TRY1 0.3860 0.4139 0.5622 0.5646
VGFR2 0.7983 0.7736 0.6781 0.7641

% (> 0.7) 44.44 61.11 22.22 44.44

Panel B: Test set 2

Gene ID ROC AUC Gas Phase ROC AUC
(PLANTS) VDW ELE total MM

ACES 0.7934 0.7718 0.5114 0.568
ADORA1 0.7117 0.6408 0.4400 0.5225
AURKA 0.4995 0.7226 0.5974 0.6444
CA1 0.4385 0.5850 0.5020 0.5035
CASP1 0.9250 0.8436 0.9477 0.9563
CDK2 0.6915 0.4887 0.2885 0.2727
CTSD 0.9270 0.9019 0.8106 0.8905
EGFR 0.6780 0.7239 0.6919 0.7109
ELANE 0.8623 0.8202 0.5554 0.6394
ESR1 0.5635 0.5394 0.5735 0.5703
FGFR1 0.5270 0.8675 0.7420 0.8134
GSK3B 0.7151 0.7420 0.5391 0.6009
LCK 0.5812 0.8617 0.6330 0.6718
MAPK1 0.7449 0.8148 0.7590 0.7989
MMP1 0.8578 0.8032 0.4841 0.5087
NTRK1 0.2840 0.7852 0.6508 0.7092
PPARG 0.9202 0.7992 0.6968 0.8379
SRC 0.5956 0.7782 0.6972 0.7287
VGFR2 0.6354 0.6111 0.5970 0.6251

% (> 0.7) 47.37 73.68 21.05 42.11
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Figure 11.9: Comparison between average MW and ROC AUC using MW rankings to
determine MW biases. ROC AUCs are the more direct reflection of MW distribution among
a library. Libraries assessed are A: test set 1, B: test set2 and C: test set 3.

lected, the results show that good correlations do exist between ROC AUCs calcu-

lated from MW and non-polar interactions; the rp2 are 0.939, 0.877, and 0.984 for

the test set 1, 2, and 3, respectively(Table 11.11). On the other hand, negative cor-

relations were observed between the electrostatic-polar and the MW results for all

the test sets assessed (-0.583, -0.264, and -0.803 for the test set 1, 2, and 3). This

indicates that the different active and inactive MW distributions could be causing

the out-performance of non-polar interaction in the original test sets.

To expose the relation between electrostatic-polar and non-polar calculated energies

among molecules of similar sizes, it is essential to remove the MW bias in the original

testing libraries. Hence, the ligand libraries from test set 2 and 3 were processed to

lower the ROC AUCs of MW scores. If non-polar interactions are closely connected to

the molecular size, this step was expected to lower also the ROC AUC of non-polar

estimations. The effects of polar-electrostatic interactions can thus be unmasked

under MW-unbiased circumstances.

The ROC AUCs of all the evaluated ranking methods were plotted (Figure 11.10).
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Table 11.11: Comparing ROC AUC outcomes rescoring using MW and MM-PBSA cal-
culated energy compositions. Internal dielectric equals 1.

Panel A: Test set 1

Gene ID ROC AUC MM-PBSA, internal dielectric = 1
MW non-polar Ele + polar total

ACES 0.8876 0.9209 0.2008 0.4384
CDK2 0.5051 0.5136 0.5068 0.5707
DPP4 0.8387 0.7756 0.4684 0.5704
EGFR 0.6645 0.6361 0.5403 0.7052
ESR1 0.4632 0.4050 0.9282 0.9180
FA10 0.8252 0.8185 0.5128 0.7867
FGFR1 0.8943 0.9364 0.1487 0.4281
FNTA 0.6585 0.6603 0.3380 0.3945
GRIA2 0.8348 0.8498 0.3940 0.6073
GRIK1 0.5183 0.6026 0.4019 0.4287
HIVPR 0.9146 0.8760 0.1771 0.4281
KPCB 0.6004 0.6858 0.5965 0.7586
LCK 0.8924 0.8811 0.5313 0.7705
PTN1 0.8584 0.7197 0.5145 0.5724
SRC 0.7784 0.7744 0.3477 0.5630
THRB 0.7929 0.8206 0.5750 0.7741
TRY1 0.4802 0.4059 0.5662 0.4841
VGFR2 0.75 0.7797 0.5629 0.7862

rp2 to MW ROC AUC 0.9393 -0.5833 -0.1372

Panel B: Test set 2

Gene ID ROC AUC MM-PBSA, internal dielectric = 1
MW non-polar Ele + polar total

ACES 0.7765 0.7762 0.2904 0.3824
ADORA1 0.5881 0.6334 0.6180 0.7560
AURKA 0.8357 0.7273 0.5685 0.7724
CA1 0.5879 0.5865 0.5362 0.5680
CASP1 0.925 0.8580 0.9186 0.9919
CDK2 0.4569 0.4792 0.5712 0.5607
CTSD 0.7693 0.9067 0.7076 0.8013
EGFR 0.7186 0.7270 0.4228 0.5832
ELANE 0.9072 0.8230 0.4557 0.8376
ESR1 0.5587 0.5437 0.7971 0.8781
FGFR1 0.8883 0.8731 0.3271 0.5169
GSK3B 0.6293 0.7402 0.3997 0.5497
LCK 0.8835 0.8637 0.4596 0.8697
MAPK1 0.8551 0.8244 0.2564 0.3799
MMP1 0.8102 0.8119 0.4775 0.5836
NTRK1 0.917 0.7916 0.3353 0.5206
PPARG 0.8339 0.8073 0.5774 0.7129
SRC 0.8765 0.7819 0.4383 0.6790
VGFR2 0.6857 0.6200 0.6411 0.7365

rp2 to MW ROC AUC 0.8767 -0.2639 0.1029

Panel C: Test set 3

Gene ID ROC AUC MM-PBSA, internal dielectric = 1
MW non-polar Ele + polar total

ACES 0.7738 0.8414 0.3996 0.5611
CDK2 0.5169 0.5148 0.691 0.7605
DPP4 0.5637 0.5278 0.7542 0.7939
EGFR 0.5286 0.5576 0.6932 0.8026
ESR1 0.6269 0.6303 0.7971 0.8687
FA10 0.8923 0.9466 0.3157 0.7850
FGFR1 0.6890 0.7190 0.4526 0.6305
FNTA 0.7987 0.7940 0.3391 0.5799
GRIA2 0.4114 0.3792 0.7900 0.7579
GRIK1 0.1760 0.1130 0.9584 0.946
HIVPR 0.8962 0.8914 0.2496 0.6165
KPCB 0.6989 0.7330 0.7240 0.8577
LCK 0.7590 0.8281 0.5679 0.8323
PTN1 0.8173 0.8117 0.7114 0.7898
SRC 0.7976 0.7942 0.4562 0.7124
THRB 0.8839 0.9001 0.5860 0.8539
TRY1 0.8426 0.8716 0.3527 0.6916
VGFR2 0.6988 0.8206 0.5467 0.7738

rp2 to MW ROC AUC 0.9843 -0.8026 -0.4722

These include the adjusted and the original MW, non-polar, electrostatic-polar, and

total MM-PBSA enrichments for the selected receptors for this part of the analysis.

Firstly, the decrease in the MW ROC AUCs does impair the performance of cal-

culated non-polar energies, further confirm the close relationship between the two.

Nonetheless, for most of the receptors, the non-polar estimations still provide better

enrichment than using MW due to the additional ”fitness” factor that is considered

in non-polar calculations.
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In addition, the performance of the calculated electrostatic-polar energies improved

for the majority of the receptors, comparing to the original test sets. The change in

trends can be better observed in the differential ROC AUC plot (Figure 11.11). The

impaired non-polar performance due to the change in molecular size composition is

compensated by the enrichment improvement of the electrostatic-polar estimation.

This compensation safeguards the total MM-PBSA score from severe deteriorating

(Figure 11.11A and C). Under this situation, increasing the solute dielectric values
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Figure 11.10: The bar charts illustrating ROC AUC results for both the virtual screening
using the original libraries and the libraries with adjusted molecular weight. A, C, and E
are results for the original libraries, while B and D are for the molecular-weight-adjusted
libraries. A and B are data generated from the test set 2 (ChEMBL test set). C and D are
data generated from the test set 3 (decoy test set). For comparison purpose, the result from
the test set 1 (DUD-E test set, shown as E) is also included. Internal dielectric constant =
1.

119.



CHAPTER 11. MM-PBSA RESCORING ASSESSMENT AND POTENTIAL ISSUES

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

ACES ADORA1 AURKA CA1 CDK2 EGFR ESR1 GSK3B LCK MMP1 NTRK1 VGFR2

Δ(
R

O
C

 A
U

C
)

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

ACES ADORA1 AURKA CA1 CDK2 EGFR ESR1 GSK3B LCK MMP1 NTRK1 VGFR2

Δ(
R

O
C

 A
U

C
)

molecular weight nonpolar Ele + polar total

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

ACES CDK2 DPP4 EGFR ESR1 FA10 FGFR1 FNTA GRIA2 GRIK1 HIVPR KPCB LCK PTN1 SRC THRB TRY1 VGFR2

Δ(
R

O
C

 A
U

C
)

A

B

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

ACES CDK2 DPP4 EGFR ESR1 FA10 FGFR1 FNTA GRIA2 GRIK1 HIVPR KPCB LCK PTN1 SRC THRB TRY1 VGFR2

Δ(
R

O
C

 A
U

C
)

C

D

test set 2, interal dieletric = 1

test set 2, interal dieletric = 6

test set 3, interal dieletric = 1

test set 3, interal dieletric = 6

Figure 11.11: The differential ROC AUC of the MW-adjusted virtual screening to the
original libraries. Different rescoring method are plotted using different greyscale colours
and markers as illustrated. A and B are the outcomes calculated for receptors from test
set 2 (ChEMBL test set) using internal dielectric values of 1 and 6, respectively. C and D
are the same plots for receptors from test set 3 (decoy test set). Lower internal dielectrics
show a better safeguarding effects from electrostatic-polar interactions when impairments
to the non-polar energies are caused by the change in MW distribution within the tested
library.

would quantitatively weaken the safeguarding effects provided by the electrostatic

and polar estimations (Figure 11.11B and D). Thus, it seems a harmful approach to

increase internal dielectric values with MW-unbiased libraries.
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A previous study evaluated the performance of MM-GBSA among proteins from

different categories.13 The study suggested a target-dependent performance of MM-

GBSA model.13 However, in this thesis by using ligand libraries of different nature,

the same receptors have given very different outcomes. Comparing the outcomes of

test set 1 and 3 in which the same receptor structures were applied, CDK2, DPP4,

EGFR, GRIA2, GRIK1, and TRY1 have shown inverted behaviours of non-polar and

polar-electrostatic calculated scores (Table 11.2 and 11.4), likely due to the differences

in active/inactive ligand molecular size distributions (Figure 11.9). Furthermore, in

test set 3, more receptors were observed with alteration in trends of the outcomes

for rescoring assessment (FA10, FGFR1, FNTA, KPCB, LCK, PTN1, THRB, and

TRY1). This provides evidence for the library-dependent performance of the MM-

PBSA method.

Taken together, the analyses indicate that in MM-PBSA rescoring, the relationship

between the non-polar and electrostatic-polar interactions is to some extent compen-

sating. When the receptor prefers large molecules as binders, the calculated non-polar

energies ensure that these ligands are ranked higher during the scoring process. How-

ever, the electrostatic and polar part of the MM-PBSA score is more crucial when

the library consists of ligands of similar sizes.

And yet the compensating effect between the two parts of the MM-PBSA score is

limited. It has been shown in this thesis that the compensating effect can also switch

to cancelling of the beneficiary scores that each part is contributing. The cancelling

effect is particularly severe when using an MW-biased library with a low internal

dielectric constant or an MW-unbiased library with high internal dielectric values.

In the worst scenario, the MM-PBSA rescoring can even end up much worse than a

simpler scoring function such as PLANTS.

This work further confirmed that increasing internal dielectric value should not be the

universal solution for improved MM-PBSA rescoring. From the results reported here,

some improvement caused by increased solute dielectrics was fundamentally a quan-

titatively weakening of the worsening effect that the calculated electrostatic-polar en-
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ergies are contributing to the MM-PBSA total score. The quality of the electrostatic-

polar estimations, however, are not improved. Moreover, blindly increasing internal

dielectric constants could be dangerous. In a library where molecules are of similar

sizes, this can lower the beneficiary performance provided by the electrostatic-polar

part of MM-PBSA score.

11.4 Conclusions

In this chapter, the in-depth effects by changing the solute dielectric constants virtual

screening rescoring using MM-PB/GBSA model were investigated. The performance

was assessed under different virtual screening scenarios using larger test sets con-

taining various receptors and ligand libraries with different molecular weight com-

positions. The results have shown some characteristic behaviours of MM-PB/GBSA

model when used as a rescoring method in virtual screening.

Firstly, the initial test sets were mostly biased by MW distributions of the lig-

and libraries. The active ligands, though have some overlay to the inactive or

decoy molecules, are on average larger. Under this scenario, the calculated non-

polar interaction would play a dominant role for enrichment within the total MM-

PB/GBSA score. Increasing the solute dielectric energy, i.e. lowering the effect

from electrostatic-polar energies, would improve the overall performance of the MM-

PB/GBSA rescoring.

Secondly, after modulating the MW distributions to a more balanced level, i.e. that

active compounds are of similar sizes to the inactives or decoys, the electrostatic

and polar interactions become very important in preventing the smaller actives from

ranked lower due to worsened non-polar energy contributions. Hence, lowering the

contribution of electrostatics and polar energy estimations by increasing internal di-

electric constants can impair the enrichment of the MM-PB/GBSA model.

Furthermore, using the alternative Gasteiger charges did not seem to affect the overall

trends of MM-PBSA in this study. More interestingly, when only considers the MM
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contributions of MM-PB/GBSA calculations, the electrostatic contributions seem less

destructive in the original test sets.

The investigations carried out in this work indicate that increasing internal dielectric

values could be dangerous. the dependency on library MW distributions suggests

that in scenarios where molecules are pre-processed with similar molecular weight,

increasing solute dielectric value is not recommended. It will impair the selectivity

of active molecules contributed by the electrostatic-polar interactions, likely resulted

in an unsuccessful virtual screening experiment.

However, future work should still be considered for using other PB solvers to con-

firm the universal behaviour of MM-PB/GBSA rescoring. It is still possible that

using a different solver might result in a different outcome. However, the comparison

between PB and GB involved calculations imply that the underlying theory might

be the essential determinant of the observation. Variations between the two solvers

still exist, however, the distinction behaviours of electrostatic-polar interactions were

similar.
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CHAPTER 12

WSELECT - a program for hydration site selection

12.1 Project background

Docking or virtual screening with explicit hydration has become more widely applica-

ble within the field of drug design and discovery. The positions of the water molecules

can be either derived from experimental data, i.e. X-ray crystallography or NMR,

or computational methods that have become prevalent in recent years. Especially,

in silico method can provide efficient prediction of water positions with acceptable

accuracy using multiple methods, such as 3D-RISM,1–3 WaterMap,4,5 JAWS,6 and

SZMAP.7 However, water selection according to the importance is inevitably required

after positioning. This importance is in general determined by the bridging ability of

the water molecules through visual inspection.8 Inevitably, human bias can be easily

introduced in this step, which could possibly affect later performance.

Alternatively, the water molecules can be selected through a distance cut-off to both

receptor and a known active ligand.9 This distance cut-off is in general narrow (<3
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Å) which is required to exclude water been selected on the solvent side of the lig-

and. Additionally, AMBER cpptraj package10 provides an option selecting molecules

according to ranking in closeness to the targeted molecule(s) or residues. Such se-

lections, in general, come with a sharp cut-off on one or several static structures,

completely excluding the minor displacements of water in solution. Furthermore,

these methods require a known active molecule in place to facilitate the selection.

This could potentially bias the following virtual screening, since the selected hy-

dration centres are characteristic for one or few active ligands, and potentially share

certain chemical or structural properties. These can lead to an increase in the number

of false negatives, which do not necessarily share these properties.

In this thesis, a simple and quick command-line based method, namely WSELECT,

was developed to perform the selection step automatically. It selects water positions

in terms of surrounding solvation importance and can also be performed on apo struc-

tures. Softness is also considered at the cut-off interface considering water positional

adaptability.

12.2 Implementation

WSELECT is written in C++ with C++11 standard. The pseudocode of the essential

algorithms are elucidated as in Algorithm 1 and 2 - separated based on holo or apo

structures. The program uses PDB input files with the AMBER naming standard

for amino acids, for both complex or receptor (e.g. complex.pdb or receptor.pdb).

An additional file providing the positions of water oxygens (e.g. water_O.pdb) is

also required. Multiple input parameters are user adjustable, which also come with

default values. The selection performs on either holo or apo structures depending on

user specifications.

For holo complexes, the name of the ligand within the complex.pdb needs to be pro-

vided. Otherwise, the program automatically determines the selection to be per-

formed on an apo structure. As for the latter, the centre of the docking site shall be
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Algorithm 1 Water selection with holo structures. Output selected water position
into WS vector.
Require: Cpdb, complex file. W pdb, file for water centre oxygens. cutoffdis, distance cut-

off (default 4.0 Å). cutoffhydp, cut-off for hydropathic value (default -3.9). Recommend:
cutoffdis ≥ 3, cutoffhydp < 0 or default.

1: Cinput ← read_pdb(Cpdb) ▷ read pdb file into vector of atom object
2: W ← read_pdb(W pdb)
3: L← lig(Cinput)
4: R← rec(Cinput)
5: for w ←W (first to last) do
6: for r ← R(first to last) do
7: for l← L(first to last) do
8: ldis ← min_distance(l to w) ▷ minimum distance from water centre to

ligand atom
9: rdis ← min_distance(r to w) ▷ minimum distance from water centre to

receptor atom
10: if ldis ≤ cutoffdisandrdis ≤ cutoffdis then
11: if w is close to backbone and interaction angle > cutoff then
12: WS.append(w)
13: else
14: if rdis ≤ 3 then
15: w.hydp← w.hydp+ r.hydp
16: else if 3 < rdis ≤ cutoffdis then
17: w.hydp← w.hydp+GAUSS_MOD(r.hydp, rdis)
18: else
19: skip()
20: end if
21: end if
22: end if
23: end for
24: end for
25: end for
26: function GAUSS_MOD(hydp, dis)
27: frac← −exp((dis− 3)2/(2× 0.6672))
28: return hydp× frac
29: end function

specified. In the case of ligand in situ, WSELECT first screen out water positions

based on distances (default: 4.0 Å) from oxygen to both ligand and protein. The

calculated distances should be smaller than the provided cut-off for the water oxygen

to be preserved for further screening.

When the site of interest is vacant, only the distances to the receptor and a volume
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Algorithm 2 Water selection with apo structures. Output selected water position
into WS vector.
Require: Cpdb, complex file. W pdb, file for water centre oxygens. cutoffdis, distance cut-

off (default 4.0 Å). cutoffhydp, cut-off for hydropathic value (default -3.9). rad, radius
from the centre of the binding site (default 7.0 Å). center, centre coordinates of the
binding site in the form of x y z. Recommend: cutoffdis ≥ 3, cutoffhydp < 0 or
default.

1: Cinput ← read_pdb(Cpdb) ▷ read pdb file into vector of atom object
2: W ← read_pdb(W pdb)
3: L← lig(Cinput)
4: R← rec(Cinput)
5: rad← 7.0
6: center ← x y z
7: minrad← find_min_rad() ▷ detailed in implementation section
8: for w ←W (first to last) do
9: for r ← R(first to last) do

10: for l← L(first to last) do
11: cdis ← min_distance(l to center) ▷ minimum distance from water centre to

ligand atom
12: rdis ← min_distance(r to w) ▷ minimum distance from water centre to

receptor atom
13: if min_rad < cdis ≤ radandrdis ≤ cutoffdis then ▷ hollow spherical region
14: if w is close to backbone and interaction angle > cutoff then
15: WS.append(w)
16: else
17: if rdis ≤ 3 then
18: w.hydp← w.hydp+ r.hydp
19: else if 3 < rdis ≤ cutoffdis then
20: w.hydp← w.hydp+GAUSS_MOD(r.hydp, rdis)
21: else
22: skip()
23: end if
24: end if
25: end if
26: end for
27: end for
28: end for

around the centre are considered for first step selection. Since a certain volume

of space at the specified site centre is more likely to be occupied by ligand, water

molecules presented within such space shall be considered highly displaceable. Thus

we introduce the selection space to be hollow-spherical according to further criteria

(illustrated in Figure 12.1), and all water centres within this region are passed onto
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Figure 12.1: A representation of the concept of the hollow-spherical space for WSELECT
performed on apo structures. The space is defined by two radii and the hollow space is
reserved for ligand binding.

later selections. Such treatment not only reserves space for the ligand to occupy but

also improves computational efficiency during the docking process. Two radii around

the site centre define this hollow-spherical space: a maximum and a minimum. The

maximum is the input radius for the search space (default: 7 Å). The minimum radius

cut-off is determined with the consideration of binding site geometric properties. A

part of the receptor close to the binding site is considered. This part consists of

receptor atoms within the radius 2 Å larger than the maximum radius. The middle

points between every two atoms are determined within the selected region. The

distance from each middle point to the binding site centre is calculated and the

mid-point furthest away from the centre is determined. Additionally, the minimum

distance from protein to the site centre is also calculated. Thus, the minimum radius

cut-off is calculated by averaging the values of the minimum protein-to-centre distance

and the furthest mid-point distance to the centre. In this way, both the input radius

and the rough shape of the binding site are considered to generate the hollow-spherical
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region. Using the default radius (7 Å), the minimum radii vary from 4.6-5.48 Å in the

apo test set (specified in later sections) using the above method, allowing variation

between different receptors.

After the initial distance-based selection, the environment of the water centre is then

considered. If the water oxygen is in proximity to a backbone peptide bond entity

with a good angular directionality the water is prioritised for selection. The decent

angular directionality is based on the O· · ·H-N or O· · ·O=C angles bigger than 120°

and 115° respectively, with the latter smaller angle cut-off taken the potential water

hydrogen into account.

For water centres left out after the backbone cycle of selection, the effects of sidechain

are then evaluated. We adopted a series of values, namely hydrophatic characters,11

for different amino acids to further score the importance of water centres based on

their sidechain environments. The hydrophatic characters are derived from the water-

vapour transfer free energies and the interior-exterior distribution of amino acid side-

chains and have previously demonstrated with the capability to distinguish buried

and solvent-exposed regions of proteins.11 It was also adapted to select surface water

molecules from 3D-RISM calculations.12 These studies have provided inspiration in

this work to apply such values to the WSELECT program. In addition to consider

hydropathic values of the surrounding amino acids, a modulation according to dis-

tance on top of these values was also introduced, to allow certain softness in the

cut-off. The modulation is implemented in the manner of a Gaussian function to the

hydropathic contribution from the proximate amino acid side chains. This strategy

can be represented as below:

ha.a.→water = γ × ha.a. (12.1)

where

γ =

1, if r ≤ 3

e−
(r−3)2

2σ2 , if 3 < r ≤ rmax
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The ha.a.→water is the hydropathic contribution from each amino acid to the designated

water centre and the ha.a. is the original hydropathic character of the amino acid. The

γ is the correcting factor if the distance to side-chain (r) falls within the defined range.

The σ is set to 0.667 for providing the optimised results in the final selection. The

hydropathic value for each water centre is calculated in an accumulative manner. The

default hydropathic value cut-off is set to -3.9 but can be also adjusted by the user,

the same for distance cut-off.

12.2.1 Input files

Complex or receptor PDB file - The PDB files with amber residue naming custom

are preferred, though normal PDB residue names are also accepted. However, non-

standard residues have no supported hydrophathic values. The values can be added

through modifying the std::map included in the wsdelcare.cpp source file, though this

is not recommended. Metal ions are not considered in the case of hydrophatic eval-

uation. The complex/receptor input should not include any water molecules.

PDB file for water centres - The file should strictly include water oxygen centres

only.

Reference PDB file - WSELECT can optionally output comparison information

to a reference file, most likely crystal reference, under the condition that a pdb file

is inputted with -cpdb option. The output file of comparison lists the distances from

the selected water centre to the closest reference. The RMSD to the reference, as

well as the count of numbers water centre close to the reference (< 2 Å) are also

included.

12.2.2 Output files

Prefix - A prefix of the output files can be defined using –o option. Default:

WS.
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Selected water molecules - The program will generate a PDB file containing se-

lected water molecules. The two columns representing occupancy and temperature

factor are replaced by the criteria that the water molecule has passed during the se-

lection. “1.00 0.00” suggesting that the water molecule was determined to be close to

the backbone. “0.00 x.xx” with x.xx a value suggesting the selected water molecule

satisfies the hydropathic cut-off at a value of x.xx.

Miscellaneous files (WS can be replaced by -o input)

WS_cmd_input - Since the program was initially developed for the following appli-

cation of the PLANTS docking software, a partial PLANTS configure input file is

also automatically generated for the water in the required format for docking.

WS_selected_info.dat - Only generated if reference -cpdb option is on. This file in-

cludes information of input options for selection, distances of each water centre to

the reference structure, RMSD to the reference structure, and the number of water

centre selected that are close to the reference (distance < 2 Å).

12.3 Test set preparations

The same test set as the test set 0 in Chapter 11 was applied as the holo test set in

this work. The preparations of the receptor and ligand were carried out in the same

procedures. For 3D-RISM calculation included in AMBER simulation package,10

the ligands were prepared with antechamber using AM1-BCC partial charges.13 The

ff03 14 and gaff 13 force fields were applied for protein and ligand, respectively. The

topology files were generated using tleap.10

The apo test set was generated based on the holo test set (Table 12.1). It consisted

of apo structures published along with the complexes presented within the holo test

Table 12.1: Test sets applied for the WSELECT testing

Class Size Protein contained (PDB ID)
holo test set 73 (97 binding sites) Same as in test set 0, Table 11.1, Chapter 11
apo test set 12 (31 binding sites) 1bya, 1c5b, 1c5v, 1htd, 1kem, 1mri, 1ttb, 1ttc, 1xib,

2ctb, 2lao, 2qwa
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set. Since not all structures were published with an apo complement, the size of

this test set is significantly smaller. However, each binding site presented with the

structures were considered separately. Thus, the test set resulted in 31 binding sites.

The structure preparation was the same as the holo test set only that the ligand-

concerned procedures were excluded.

12.4 Testing methodology

WSELECT was tested both on experimentally determined and in silico calculated wa-

ter positions. The standard procedures of 3D-RISM calculation in AMBER10,15 was

followed using TIP3P water, Na+, and Cl- with concentrations of 55.5M, 0.15M, and

0.15M, respectively. The Kovalenko-Hirata closure relation16 was also applied.

Between the water positions selected from crystal structures or calculated results,

the performance of WSELECT was challenged by counting correlations, true positive

rate (TPR), and docking experiments. Additionally, WSELECT was also compared

to the selection by using only distance cut-offs at 3 and 4 Å. The water selected

through distance cut-off was defined as the selected water molecules are closer than

the cut-off to both of the ligand and the receptor in the holo test set or to only the

receptor in the apo test set. The docking procedures were performed as same as

depicted in Chapter 10 except in the PLANTS configure file, where the information

of the water coordinates are added accordingly.

12.5 Results and discussions

The correlation of selected water position counts between WSELECT selections using

crystal structures and 3D-RISM-placevent calculated data was performed for the

holo test set. A poorer Pearson correlation coefficient (0.59) was observed if the

total selected water positions were considered. However, if only consider the ones

that are closed to the crystal structures (distance < 2 Å), the Pearson correlation
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coefficient improved to 0.75. The average counts of water positions selected from

crystal structures (2.49) is also similar to those reproduced positions selected from

3D-RISM results (2.82). The same correlation behaviour was also observed for the

holo test set; Pearson correlation coefficient improved from 0.50 to a good 0.78 when

considering the reproduced water positions between the two WSELECT testing on

Figure 12.2: Bar chart histograms of numbers of water molecules selected using different
methods and on different test sets. A: selections performed on the crystal structures of the
holo test set. B: selections performed on the 3D-RISM calculated water positions from holo
test set. C: selections performed on the 3D-RISM calculated apo test set. Means of selected
waters using each method are shown in boxes.
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Table 12.2: The information including TPR regarding selected water positions in the holo
and apo test set

Panel A: the holo test set
WSELECT distance

cut-off 3 Å
distance
cut-off 4 Å

Total Selected 369 284 1294
Total Reproduced* 276 182 686
TPR 0.748 0.641 0.530

Panel B: the apo test set
WSELECT WS

sphere**
distance
cut-off 3 Å

distance
cut-off 4 Å

Total Selected 172 355 421 649
Total Reproduced* 137 288 327 457
TPR 0.797 0.811 0.777 0.704

* The selected water positions close to crystal water centres
** The WSELECT method on an apo structure in a spherical space in the binding site

Figure 12.3: RMSD bar charts of complexes with improved crystal pose reproducibility
when explicit hydration was included. Both experimental-derived and calculated water
positions were tested.

crystal structures and calculated position respectively. These suggest that the water

positions selected using WSELECT program provide some false positives, but the

majority of the experimental water positions within the binding sites were reproduced

by 3D-RISM calculation and WSELECT selection.

Moreover, performance comparison was carried out between WSELECT to distance

cut-off water selections on the 3D-RISM-placevent calculated water positions in the

holo test set. WSELECT tends to provide a lower number of selected positions from

the count histogram analysis (Figure 12.2), especially when comparing to the selection

using distance cut-off of 4 Å. Furthermore, the TPR analysis (Table 12.2 Panel A)

reflects that significant higher false positives were selected when using distance cut-off

methods.
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As for the apo test set, an additional comparison was performed with a spherical se-

lection space around the binding site centre (WS-sphere), to validate the effectiveness

of the hollow sphere strategy adopted by WSELECT. From histogram analyses, only

the WSELECT method provides a condensed distribution of numbers of selected wa-

ter molecules around 4-12 water molecules. This observation suggests the robustness

of WSELECT when performing selections on both holo and apo structures. However,

the TPR analysis showed a different trend as in the holo test set; the WSELECT

failed to provide a much better TPR than other method applied (Table 12.2 Panel

B). It is likely that without a ligand occupying a big part of the binding site, the

3D-RISM-placevent calculation provided a very condensed water density within the

binding sites. Multiple water centres resulted in close proximity to each crystal re-

solved water centre, leading to higher TPR values.

Initial tests on docking performance also shown some promising results. Multiple

systems within the holo test set provided binding poses closer to the crystal pose

once explicit waters are included (Figure 12.3). Interestingly, one among them is

1hpv, the structure of HIV-1 protease complexed with its inhibitor, VX-478.17 It

was suggested that one water is important to bridging the ligand to the receptor.

This water was selected by WSELECT suggesting that WSELECT is likely able to

determine the important water within the binding site. However, this is yet to be

confirmed with a larger test set consisting of receptors with known important bridging

waters upon ligand binding.

12.6 Conclusion

WSELECT provides an effective and efficient water selection on a single-frame basis.

It considers not only the chemical environment of each water molecule presented but

also the geometric property of the binding site when an apo structure is considered.

It demonstrated good improvements in two decent test sets under both holo and apo

scenario to traditional distance cut-offs. The algorithm, as demonstrated, is simple
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and straightforward, and is not computationally expensive. With implementation in

C++11 standard, depending on the size of the system, the selection time is within the

range of seconds. Additionally, it can also be easily incorporated into other software

packages as intended.

However, the method still requires further testing and adjustment. The selection

performance should be compared to more available software and more docking val-

idations should also be carried out. It also worths to assess the WSELECT when

incorporated into a virtual screening workflow. Technically, the water selection on an

apo structure should be further optimised. It remains challenging for the WSELECT

program to work in a significantly larger binding site due to the smaller default radii

applied. One approach can be outlining the surface of the receptor to introduce more

geometric specificity of each receptor. Nonetheless, WSELECT can be a useful tool

when a relatively enclosed binding site is considered, or in a ligand-bound complex

structure.

12.7 Example commands

holo structure with regular ligand (ligand name in pdb is LIG):

wselect -pdb complex.pdb -opdb water_O.pdb -t l LIG

wselect -pdb complex.pdb -opdb water_O.pdb -cpdb crystal.pdb -t l LIG

holo structure with peptide (peptide sequence from residue 1 to 10):

wselect -pdb complex_pep.pdb -opdb water_O_pep.pdb -t p 1 10

wselect -pdb complex_pep.pdb -opdb water_O_pep.pdb -cpdb crystal_pep.pdb -t p 1 10

apo structure:

wselect -pdb complex_apo.pdb -opdb water_O_apo.pdb -center x y z

wselect -pdb complex_apo.pdb -opdb water_O_apo.pdb -cpdb crystal_apo.pdb -center x y z
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CHAPTER 13

Workflow for network analysis

13.1 RNA-sequencing and differential gene expression

RNA-sequencing (RNA-seq) method has become an essential tool to identify and

quantify gene expression in a high-throughput manner. The technique applies the

next-generation sequencing to detect and quantify RNA of a biological sample at a

given state.1? The complete process has been well reviewed elsewhere.1–3 Supported

by the deep sequencing techniques, it allows accurate sequencing and counting of

a library of fragmented RNA or cDNA. The reads are then aligned to a reference

genome or transcriptome, or undergo a de novo assembling process to construct a

transcription map.

Several essential steps should be taken into consideration for a complete RNA-seq

pipeline to ensure successful assessments. The pre-analysis steps include experimental

design, sequencing design, and quality control.3 The highly abundant ribosomal RNA

(rRNA) should be removed prior to analysis to ensure only the more important

143.



CHAPTER 13. WORKFLOW FOR NETWORK ANALYSIS

messenger RNAs (mRNA) are sequenced. The sequenced RNA library size is related

to the precision of the quantification and multiple replicates should also be performed

for determining the statistical significance.

The analysis steps start with the quality control of the sequencing data. The raw

reads are checked for multiple properties including sequence quality, GC content,

and the presence of adaptors using popular toolkits such as FastQC,4 NGSQC5,

and FASTX-Toolkit6. The alignment quality of the RNA fragments should also be

assessed. A uniformed coverage on the exons the RNA fragments mapped to are

expected for valid RNA-seq analyses.

In general, the reads are mapped to a reference genome or transcriptome. The results

can also be used for novel transcripts discovery or even assembled de novo into a new

transcriptome. The quantifications of transcripts are determined by counts accom-

panied by appropriate sample normalisation methods, such as reads per kilobase of

exon model per million reads (RPKM) and fragments per kilobase of exon model

per million mapped reads (FKM). These normalisation methods generally involve

the correction for gene length since longer genes tend to have more fragments, i.e.,

more reads. However, it is not always necessary for comparing differences in gene

expression among the same genes, for example, the application in differential gene

expression (DGE) analysis.

In DGE analysis, the gene expression values are compared between samples. The

analysis relies on test statistics to determine which genes have statistically signifi-

cant changes in the expression. Non-parametric methods, in theory, are applicable

accounting for gene expression probability distributions. However, this would require

a larger number of replicates to reach acceptable detection sensitivity. Hence, most

of the DGE analyses involve the application of discrete probability distributions, for

instances, the Poisson or negative binomial,7,8 to compute differential expression.

The popular tool, edgeR, takes in the raw count data and integrated normalisation

modelling negative binomial (NB) distributions along with the DGE analysis.9

In this work, the standardised edgeR differential expression analysis pipeline has
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been characterised for the current DGE analysis between drug-responsive and non-

responsive gastric cancer cell lines. Multiple certain steps were automated for compar-

isons between various samples and some quality controls are also included. Moreover,

multiple output files were also generated automatically for further data analysis and

inspections. The workflow is also applicable for smallRNA-sequencing analysis and

can be pipelined to network analysis.

13.2 Network between gene expression and cellular phenotypes

Genes rarely work alone. The observable characteristics, namely phenotypes, are

determined by a network of co-regulated genes. Though in the past years a large

amount of information regarding individual genes and their ontology relationships,

it remains a challenge to establish an integrated and accurate network between cel-

lular phenotypes and gene expressions. Recent years multiple approaches have been

developed to facilitate producing gene regulatory networks (GRNs) with genes as ver-

tices connected by edges defined by different criteria. Multiple approaches have been

proposed such as Bayesian Networks, Relevance Networks, and Graphical Gaussian

Models.10–12

One recent approach, ARACNE (Algorithm for the Reconstruction of Accurate Cel-

lular Networks), was introduced as an information-theoretic algorithm with the edges

defined as irreducible statistical dependencies between gene expression profiles.13

Essentially similar to Relevance Networks10, the algorithm infers the dependencies

(edges) by removing the indirect candidate interactions based on the data processing

inequality (DPI) theory. It has been shown with a generalised application in combina-

tion with mutual information (MI) ranking and provides good resilience to estimation

errors.13,14 Multiple studies have shown promising applications of the method, such

as GRNs and miRNA cross-talks in multiple cancer cell lines.15–19 Moreover, Tu-

ran et al. have explored the usefulness of ARACNE in investigating the statistical

relationship between whole-body systemic variables to expression profiles and have
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derived a relatively accurate network of muscles from the chronic obstructive pul-

monary disease on a systemic level.20 All have proven that ARACNE in combination

with MI is an efficient and powerful tool for inferring large networks.

With the objective of investigating the connections between cellular phenotype mea-

surements to changes in genomic expression, the initial steps of interaction network

inference and analysis have been assessed using DGE and differential microRNA ex-

pression (DME) data of gastric cancer cell lines. The method was expected to be able

to identify biomolecular markers for drug-responsive or non-responsive cell lines. The

workflow can be extended to include phenotype measurements once available and is

expected to provide complete and unbiased information regarding cross-talk between

genome and phenotype properties.

13.3 Methodologies

13.3.1 The briefer overview

The workflow consists of two separate stages: the DGE/DME analysis step followed

by the network inference. The DGE/DME analysis takes in the raw counts from

RNA-seq or small RNA-seq experiments and automatically output results for each

comparison (for example between drug-treated and negative control for one specific

cell line). The output results in this step include one .cvs file including all the

statistical data and a summary of DGE information. Additionally, three more figures

were also generated for data visualisations for each comparison. Following this, the

DGE/DME statistical data were used as inputs to the second stage of the workflow.

The logFC outcomes were combined, after steps of filtering and transformation, for

network inferences. Only genes or miRNAs with significant differential expressions

in certain comparisons were included in the analysis. Data regarding the degree of

connectivity of each node (representing genes) are saved into an output file. Each

network was also plotted for visualisation and a preliminary gene ontology analysis

was also included in the workflow. A brief outline of the overall workflow is illustrated
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in Figure 13.1 and the detailed information regarding each step inside the workflow

are elucidated in the following sections.

13.3.2 DGE and differential microRNA analysis

The RNA-seq and smallRNA-seq raw count data of gastric cancer cell lines were

provided by Biomax Informatics AG, Munich, Germany. The cell lines included

are Hs746T (gastric adenocarcinoma), MKN1 (gastric adenosquamous carcinoma),

MKN7 (gastric tubular adenocarcinoma), and NCI-N87 (gastric tubular adenocarci-

noma). The cell lines were treated by cancer drugs in a series of experiments. The

drugs included are Afatinib (tyrosine kinase inhibitor), Cetuximab (EGFR inhibitor,

a monoclonal antibody), and Trastuzumab (a monoclonal antibody for breast can-

cer). The responsive and non-responsive cell lines were determined through certain

criteria and RNA-seq and smallRNA-seq information were also collected.

RNA-seq raw counts

DGE

Statistic outputs (.cvs)
DGE summary outputs (.cvs)

Mean-difference plots
Volcano plots

Top DGE heat maps

Total DGE logFC matrix

make Z-score

Transformed DGE logFC matrix

FDR filtering

Filtered DGE logFC matrix

Small RNA-seq raw counts

DME

Statistic outputs (.cvs)
DME summary outputs (.cvs)

Mean-difference plots
Volcano plots

Top DGE heat maps

Total DME logFC matrix

make Z-score

Transformed DME logFC matrix

FDR filtering

Filtered DME logFC matrix+

Network matrix

parmigene (knnmi.all + aracne.m)

logFC filtering & analysis

Gene vetices degree and logFC outputs (.cvs)
Network plots

Gene ontology information (.cvs)

DGE/DME 
analysis script

Network 
analysis script

Figure 13.1: The flow chat for the DGE/DME-network workflow.
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The DGE and DME analyses were performed using edgeR package9 in R.21 The raw

count data include three replicates of each experiment. The column name of the ex-

perimental data are characterised by the cell line name, treatment time length, type

of treatment, and repeat index. For example, ”Hs746T_24h_Afa_1” represents that

the HS746T cells were treated with Afatinib for 24 hrs and this is the first replicate of

the experiment. Hence, initial steps within the DGE/DME analysing script are data

managements by grouping the three replicates and recording with the same experi-

ment name, as this grouping information is also required for edgeR analysis. For ex-

ample, for the three columns named ”Hs746T_24h_Afa_1”, ”Hs746T_24h_Afa_2”,

and ”Hs746T_24h_Afa_3”, after data processing, will be grouped under the name

”Hs746T.24h.Afa” in the group vector as one of the edgeR inputs. An additional

design matrix (a template matrix for contrast matrix construction) is also generated

automatically at this step.

One additional feature of the script is that it can automatically generate the list of

contrast for drug treatment against control according to column name pattern of

the data. Contrast matrix is an additional parameter that is required for gene-wise

statistical tests in edgeR.9 It defines the relation of experiments to be retrieved for

statistical comparisons. The auto-generated contrast list only considers the com-

parisons to controls. However, the user can also define a customised list for more

complicated comparison. One useful feature included in edgeR is that it has incor-

porated the possibility of performing the non-pairwise comparison, as long as the

corrected contrast matrix is provided. For example, one auto-generated contrast can

be comparing 24hrs Afatinib treatment of Hs746T to control (i.e. the RNA-seq ex-

periment performed without treatments). In this work, however, it is also interesting

to investigate the DGE between Hs746T (non-responsive) and NCI-N87 (responsive)

under Afatinib treatment. Hence, the contrast can be depicted in the way that the

treatment of the individual cell line to control will be considered plus the comparison

between different cell lines. The contrast list is also saved in an additional file for

data verifications.
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Figure 13.2: The output files for each contrast experiment using the DGE/DME analysis
script. A: MD plot. B: Volcano plot. C: Heat map of top differentiated genes of the
contrast. D: the summary file of up- or down-expressed genes using the contrast. E: The
file including the detailed statistic data for each gene, ranked according to FDR.

The complete raw data were read from a .csv file, underwent the above-mentioned

data processing, and were converted to a DGEList object in edgeR. Genes with a

minimum count of 10 and a minimum total count of 15 for each group are initially

filtered out. Then the normalisation factors for scaling the raw library sizes were

calculated using the weighted trimmed mean of M-values.22

The DGE/DME analysis was done on a per-contrast basis. The data retrieved for

each contrast were undergone gene-wise statistical tests by fitting to a quasi-likelihood

negative binomial generalised log-linear model included in the edgeR package. The

empirical Bayes quasi-likelihood F-tests was applied. A file summarising the logFC,

logCPM (count-per-million), F-test, p-value, and false discovery rate (FDR) of all
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the genes after count filtering was generated. Moreover, an additional summary file

of the numbers of up- or down-regulated genes was also among the outputs. For

data visualisation, three types of plots are also included inside the script. A mean-

difference plot was generated for each contrast with the up- and down-regulated genes

highlighted in red and blue respectively. The same type of colouring was also adopted

in a volcano plot. Furthermore, a heat map illustrating the expression levels of the top

FDR-ranked genes across all the related experiments (i.e. experiments performed on

the same cell line(s)) of the contrast is also included in the outputs. A demonstration

of the output files for each contrast is shown in Figure 13.2.

13.3.3 Network inferences combining DGE and DME

Network analysis was performed on the DGE and DME logFC data generated from

the previous step. Since the RNA-seq and small RNA-seq experiments were per-

formed with the same set of drug treatments, this resulted in the sets of output files

from DGE and DME analysis have the same name patterns. This provided conve-

nience in file management prior to network inferences. However, other analysis can

also be included within the file with proper adaptations, though within the scope of

this thesis data other than (small) RNA-seq experiments were not considered.

Some initial testings were performed on the complete DGE and DME including all

the genes and miRNAs. However, this leads to the universal identification of the

category of chaperone proteins as the most connected nodes among all the experi-

ments. Moreover, these identified genes were not statistically differentially expressed,

i.e. the FDR values of these tested genes were all larger than 0.05. This is a reason-

able outcome since chaperones are responsible for protein folding, which would likely

have the best connectivity to other genes in network analysis. However, they proba-

bly have the same expression level across all gastric cancer cell lines. Moreover, the

high connectivities of chaperones or other generally highly recruited proteins would

mask the more significantly differentially expressed genes (but less connected genes)

between drug treating experiments. Hence, it is essential to include FDR filtering
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prior to network inference for more accurate analysis. The DGE results were firstly

filtered with a more strict 0.01 FDR cut-off; any genes with an FDR larger than 0.01

were not included in the later analysis. Due to the nature of the small RNA-seq data

provided, none of the miRNA tested has shown any significant differential expression

in any contrast experiment analysed. Hence, for testing purpose, only the 20 miRNA

with the lowest FDR were included in the network inference.

The network analysis R script consists of two loops. The first loop works to record

the list of DGE contrasts that have more than 1000 genes with an FDR less than

0.01 as the looping criteria for the second loop. Furthermore, the loop also collects

all the logFC information from each DGE and DME statistics files and forming two

matrices for DGE and DME, respectively. Combining two datasets from different

types of experiments (RNA-seq and small RNA-seq in this case), it requires them

to follow the same statistical characteristics, i.e. they should be fitted to the same

probability density function to allow further data comparison. Hence, both DGE and

DME logFC matrices underwent Z-score transformation (the data mean was adjusted

to 0 and the standard deviation to 1). This step forms the transformed matrices for

DGE and DME analysis and the second loop starts.

The second loop goes through the list of comparisons (contrasts) recorded in loop one

and performs network inference and analysis for each contrast. For each contrast, the

significantly differentially expressed genes (FDR < 0.01) or miRNAs (the 20 miRNA

with the lowest FDR values) were first identified and selected for further analysis. A

new matrix was formed by retrieving information of the selected genes and miRNAs

from the transformed logFC matrices for DGE and DME analysis. This matrix then

underwent parallel mutual information estimation between all matrix rows using the

knnmi.all function with default settings included within the parmigene package.14

Following this, the gene interaction network was reconstructed using the ARACNE

algorithm implemented by parmigene package14 using the multiplicative model. The

recommended settings specified in Ref. 14 were applied (τ = 0.15). The network was

then further filtered with an absolute logFC cut-off at 2; this ensures that not only the
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differential expression of the selected genes are statistically significant, but also the

fold change in expression levels are more than 4-fold differences. This cut-off value

can be lowered down if required in other analysis. The connectivity degrees were

Figure 13.3: The output files for each contrast experiment using the neetwork analysis
script. A: gene interaction network plot. B: data for gene (node) connectivity degree and
logFC. C: preliminary gene ontology information.
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then summarised along with logFC of each selected gene or miRNA and written into

a .cvs file. The network was plotted using the ggnet2 function included in the ggplot2

package23 with the eigen mode. A preliminary consensus gene ontology analysis was

also included, which requires the loading of a file mapping each gene to its gene

ontology at the start of the network analysis. The data were retrieved from GO.db

package.24 An example of the output files from network analysis script is shown in

Figure 13.3.

13.4 Discussions and future prospects

Turan et al. have demonstrated the usefulness of ARACNE in connecting phenotypes

to a list of targeted genes. This application provided a much clearer interaction

network with a much well-defined pathway. In this study, the genes or miRNAs

of interest were left to be identified by the network analysis. This complicates the

connectivity to a much greater extent thus leading to a series of filters being applied

in the process.

Much work is still needed for the improved performance of the workflow. For ex-

ample, the network analysis stage should be adapted to use other experimental data

(such as motility or protein phosphorylation assays) as input. Moreover, on the tech-

nical term, it is more practical and less error-prone if an S3 or S4 class object can

be designed to hold the network related data and functions. The visualisation of the

network requires more testings in customisation for getting the most suitable plot-

ting method. Gene ontology analysis should incorporate improved automatisation in

data reading and enrichment testing. Furthermore, issues have remained within the

initial raw count data, especially for small RNA-seq experiments. No significantly

differentially expressed miRNA were detected in any of the contrast. Some cell lines

were determined responsive to one drug, however, were not responsive on the gene

level. All these imply that the data might require better quality controls or more

experimental repeats should be performed to confirm.
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Despite all the required improvements and issue related to the raw data, promis-

ing outcomes were still observed by applying the workflow. The interaction network

analysis using parmigene package14 was capable of identify multiple cancer/tumor-

involved genes as important nodes. Moreover, though some low-quality DME data

were included, several miRNAs were identified as well connected nodes. For example,

hsa-mir-125b-1 miRNA, identified in Cetuximab treatments comparing MKN1 (re-

sponsive) and Hs746T (non-responsive) cell lines, (Figure 13.3A) is one of the impor-

tant miRNAs related to cancer (entries for ”MicroRNAs in cancer” on PathCards25).

It was ranked the 38th most connected nodes in overall 579 selected genes/miRNAs.

Though more detailed analyses should be performed in the future after improving the

performance of the workflow, it has demonstrated good indications in constructing

accurate interaction networks.
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Final remarks

The second part of the work involved multiple designs and developments that can be

implemented within a CADD project. The MM-PBSA rescoring workflow provides

a complete package for carrying out virtual screening using a better-parameterised

scoring method. The MM-PBSA rescoring assessment covered the common validation

steps of developing a VS method from generating the test sets, procedure optimisa-

tion, and final data analysis and interpretation. The design and development of the

WSELECT program suggested that even a small additional step within the VS pro-

cess requires detailed validations and performance comparisons. Lastly, the network

analysis workflow, though yet to be further improved, indicated bioinformatics as a

powerful tool in making connections between experimental data.

The future prospects and improvements are better summarised by the end of each

part of the works. Though in general much further investigations and adjustments

are still required, each study has achieved some initial success or in-depth knowledge.

This thesis still left an enormous CADD space unexplored. However, it took peeks at

157.



CHAPTER 14. FINAL REMARKS

the space from multiple perspectives and is expected to provide insights into future

expeditions into the field.
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Abbreviations

3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

AMPK, AMP-activated protein kinase

apoB, apolipoprotein B

CADD, computer-aided drug design

CVDs, cardiovascular diseases

DGE, differential gene expression

DME, differential microRNA expression

DPI, data processing inequality

ECs, endothelial cells

F1,6BP, fructose-1,6-bisphosphate

F1,6BPase, fructose-1,6-bisphosphatase

F2,6BP, fructose-2,6-bisphosphate

F6P, fructose-6-phosphate

FDR, false discovery rate

FKM, fragments per kilobase of exon model per million mapped reads

GRNs, gene regulatory networks

HFD, high-fat diet
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HIF, hypoxia inducible factor

HREs, hypoxia-response elements

HTS, high-throughput screening

IGF, insulin/insulin-like growth factor

KDE,kernel density estimation

KLF2, Krüppel-like factor 2

LBDD, ligand-based drug design

LDL, low density lipoprotein

MD, molecular dynamic

MI, mutual information

MM, molecular mechanics

MM-GBSA, molecular mechanics generalized Born surface area

MM-PBSA , molecular mechanics Poisson-Boltzmann surface area

mRNA, messenger RNA

MW, molecular weight

NB, negative binomial

NMR, nuclear magnetic resonance

PFK1, 6-phosphofructo-1-kinase

PFKFB, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase

PKC, protein kinase C

QSAR, quantitative structure–activity relationship

RMSD, root-mean-squared displacement

RNA-seq, RNA-sequencing

ROC AUC, receiver operating characteristic area under curve

RPKM, reads per kilobase of exon model per million reads

rRNA, ribosomal RNA

SBDD, structure-based drug design

TECs, tumour endothelial cells

VEGF, vascular endothelial growth factor

vina, Autodock Vina
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