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Abstract  
 

For years, scientific research has availed itself of the opportunity of using animal 

models to understand the cellular and molecular mechanisms that regulate several 

human diseases. In this thesis, I showed the great importance to employ Drosophila 

melanogaster as model organism for the study of chronic diseases. Drosophila is 

considered an excellent and innovative model thanks to its peculiar characteristics such 

as low cost, small genome size, short generation time.  

About 75% of human disease-causing genes have functional homologs in Drosophila; 

furthermore, the fruit fly shows extreme genetic flexibility and a number of genetic 

systems has been developed to answer specific biological questions, such as the UAS-

GAL4 binary system that allows the expression of target genes in a tissue-specific 

manner.  

For all these reasons, Drosophila can be used for the study of different metabolic 

diseases among which obesity. In particular, in our laboratory we created a new 

Drosophila model of obesity that shows similar characteristics as those present in obese 

people, promoting an Adipose Tissue Macrophages infiltration (ATM) phenotype.  

Using this new model of obesity, I tried to understand the role of important compounds 

like Flavonoids and Anthocyanins, both considered anti-inflammatory and antioxidant 

agents, which regular consumption reduces the risk to develop metabolic disorders.  

Anthocyanins represent the major red, purple, and blu pigment in many plants and 

fruits. I have discovered that Anthocyanin are able to rescue the ATM phenotype by 

reducing the Drosophila hemocytes (similar to human macrophages) migration in the 

larval fat body, which carries out human adipose tissue and liver functions.  

Anthocyanins also show potential health benefits by reducing ROS levels, thus acting 

as antioxidant agents. This antioxidant activity may be due to the capacity to modulate 

the expression of some redox regulators like Glutathione-S-Transferase (GST) and the 

Nuclear factor erythroid 2-Related Factor 2 (NRF2).  

 

 

 
 

 

 

 

 



 
 

Riassunto 

 

La ricerca scientifica, da molti anni, si è avvalsa dell'opportunità di utilizzare diversi 

modelli animali per comprendere i meccanismi cellulari e molecolari che regolano le 

malattie umane. In questa tesi, ho dimostrato come Drosophila melanogaster, un 

eccellente organismo modello, svolge un ruolo fondamentale nello studio delle malattie 

croniche.  

Drosophila melanogaster è considerato un perfetto e innovativo modello animale 

poiché possiede alcune peculiari caratteristiche: bassi costi di mantenimento, 

dimensioni del genoma abbastanza piccole e un tempo di generazione breve; inoltre 

circa il 75% dei geni umani associati a malattie possiede un omologo funzionale in 

Drosophila.  

Il moscerino della frutta è infine un modello genetico estremamente manipolabile, e 

l’utilizzo del sistema binario UAS-GAL4 consente l'espressione di geni bersaglio in 

modo tessuto-specifico.  

Per tali motivi, Drosophila è ampiamente utilizzata nella ricerca biologica per lo studio 

di diverse malattie metaboliche tra cui l'obesità. In particolar modo, nel nostro 

laboratorio abbiamo utilizzato animali transgenici che rappresentano un modello 

innovativo di obesità, mostrando caratteristiche simili a quelle presenti in persone 

obese, in cui è stata stimolata l’infiltrazione di macrofagi nel tessuto adiposo per 

determinare il fenotipo ATM. Utilizzando questo innovativo modello di obesità, ho 

cercato di comprendere il ruolo svolto da importanti composti, i Flavonidi e le 

Antocianine, entrambi considerati agenti antinfiammatori e antiossidanti; sembra che 

il loro regolare consumo riduca il rischio di sviluppare malattie metaboliche. 

Le Antocianine rappresentano il principale pigmento rosso, viola e blu presente in 

molte piante e frutti. Gli esperimenti condotti con Drosophila melanogaster, con 

l’utilizzo delle Antocianine, hanno messo in evidenza il loro eccezionale potere 

antinfiammatorio, essendo in grado di ridurre la migrazione degli emociti (simili ai 

macrofagi umani) nei corpi grassi, tessuti che svolgono le stesse funzioni del fegato e 

del tessuto adiposo umano. Le Antocianine, in qualità di agenti antiossidanti, 

possiedono anche potenziali effetti benefici sulla salute riducendo i livelli di ROS; la 

loro probabile attività antiossidante potrebbe essere determinata dalla capacità di 

modulare l'espressione di alcuni geni codificanti per enzimi coinvolti in meccanismi 

di ossido-riduzione, come la Glutatione-S-Trasferasi (GST) e il Fattore di 

Trascrizione Nucleare Eritroide-2 (NRF2).  
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Chapter 1 
 

 

1. General introduction 

 

1.1 Drosophila melanogaster  

Drosophila melanogaster, commonly known as “fruit fly” is considered a powerful 

model organism for the study of fundamental biological processes.   

In 2000, Drosophila genome has been completely sequenced and has been found that, 

about 75% of human genes are conserved in Drosophila (1). 

Furthermore, Drosophila is an excellent model thanks to the small genome size, high 

fecundity, low cost, short generation time and a flexible genetic background. For all 

these advantages, the fruit fly can be used for studying of many human diseases as 

metabolic disorders, but also neurodegenerative diseases such as Alzheimer, 

Parkinson and Huntington. 

 

 

1.1.1 Drosophila life cycle 

Probably, the best advantage of this model system is the short life cycle. This is 

temperature-dependent and requires about 10 days at 25° C from the egg to the adult 

fly. The life cycle consists of four distinct stages: egg, larva, pupa, and adult 

(Fig.1.1). Virgin females and males are placed in vials, within a few hours can lay 

many eggs, after 24 hours laying the eggs hatch into 1st instar larvae. The larval stage 

of this insect consists of three instars (5 days), during which the larva loses its 

spiracles, mouth, and hooks. At the fifth day after egg laying (d AEL), the larva 

encapsulates itself inside in a protective colored puparium and begins the pupariation 

process, where it happens metamorphosis, giving rise to the adult fly. During the 

pupal stage, the steroid hormone Ecdysone determines degeneration of all organs, a 

process called histolysis, to restructure them into the adult shapes. At 10 days from 

fertilization the eclosion process takes place, where the adult flies emerge through the 

operculum. Finally, sexual maturity is acquired in about 8–12 hr (2). 
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Fig. 1.1 Life cycle of Drosophila melanogaster. Drosophila life cycle consists of four distinct stages: egg, larva, 

pupa, and adult. This process is temperature-dependent; the flies are cultured in vials and are kept at 25°C to obtain 

adults after 10 days (Hales et al., 2015). 

 

 

1.1.2 Regulation of growth by ecdysone 

Ecdysone is a steroid hormone produced by the prothoracic gland (PG) Fig 1.2 (A) 

and released into the hemolymph.  

 

Fig. 1.2 A. prothoracic gland B. endocrine system in the larvae and adult. 
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Ecdysone controls animal growth and maturation since it is released from the PG 

right before the change of each instar by a complex mechanism that involves the 

coordination of secreted factors from the fat body and the presence of nutrients in 

the food (Fig.1.3). 

 

Figure 1. 3 Coordination between ecdysone, fat body, nutrients and molting during larval growth and 

maturation to pupa (modify from T. M. Lab, «The regulation of body and organ size). 
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1.1.2 UAS-GAL4 system 

The UAS-GAL4 binary system is a method to induce gene expression, primarily 

used in Drosophila, although it has also been applied to mice and zebrafish. This 

powerful genetic technique has been developed by Andrea Brand and Norbert 

Perrimon in 1993. The UAS-GAL4 is a binary system that allows the ectopic 

expression of a transgene in a specific tissue and it consists of two components: the 

first is a construct that presents a “driver” that induces the expression of the 

transcription factor GAL4, normally expressed in yeast; the second is a construct 

where the transgene of interest is placed downstream of a promoter sequence 

called UAS (Upstream Activation Sequence), that consists of GAL4-binding 

domains (Fig 1.4) (3). 

The great advantage to use Drosophila as a model to regulate the expression of 

specific genes is that the flies does not express an endogenous GAL4; in this way, 

the off-target effects are minimal. Furthermore, the transgene is only expressed 

when the two constructs are co-present in the F1 generation (2, 4).  

 

 
 

Fig. 1.4 UAS-GAL4 system. A tissue-specific promoter drives the expression of the transcription factor GAL4 that 

it binds the UAS sequence and allows the expression of the gene of interest. (from Daniel St Johnston Nature 

Reviews Genetics (2002) volume3, pages176–188). 

 

 

https://www.nature.com/articles/nrg751#auth-1
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Chapter 2 
 

2.1 General introduction on Obesity in vertebrates 

 

2.1.1 Obesity 

Obesity is defined a metabolic syndrome widely spread worldwide, often associated 

with other chronic diseases such as cardiovascular disorders, type II diabetes and 

cancer (5).  

Obesity is a public health concern, and the World Health Organization estimates that 

1.9 billion adults are overweight (BMI > 25 kg/m2), among which 600 million are 

obese (BMI > 30 kg/m2) (Fig. 2.1). Based on data reported by the World Health 

Organization (WHO), the incidence of obesity continues dramatically to grow in 

specific countries, in particular in developed and developing countries like USA, 

Europe and United Arab Emirates. The onset of obesity is the result of multifactorial 

elements, including genetic predisposition to obesity and subsequently, the impact 

of several environmental factors like sedentary lifestyle and diet rich in fat and sugar 

and poor in phytonutrients (6, 7). 

 

 
Fig. 2.1 Percent of population with obesity. Obesity rate spread in worldwide from 1980 to 2015. (ANDREW 

JACOBS and MATT RICHTEL for The New York Times SEPT. 16, 2017).  
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2.1.2 Causes that influence the insurgency of Obesity  

 

Although obesity has been associated mostly with an excess of food intake many 

other factors are known to influence its insurgency like: 

- genetics like for rare monogenic forms in many components of the 

leptin-melanocortin axis (8) (Fig. 2.2); 

- bad habits, like lack of day-night circadian sleep;  

- environmental factors like Bisphenol A that affected fatty acids synthesis; 

- health disparities in USA is higher among Afro-Americans and Native 

Americans; 

- epigenetics changes, one of the most relevant evidence that supports this 

hypothesis has been reported in the bio-sociological analysis performed on the F1 

generation from women who were pregnant during 1944 famine in the Netherlands, 

known as the Dutch Hunger Winter. Those women had children and grandchildren 

who were unusually small or prone to diabetes and obesity (9). 

 

 
Fig. 2.2 Leptin-Melanocortin system of energy balance (Ranadive, 2008). 
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2.1.3 Obesity and inflammation 

The “obesity state” triggers a low-grade chronic inflammation in metabolically 

active sites such as liver and adipose tissue (10, 11).  

The inflammation is a defense process, which comprises a series of cellular and 

humoral reactions with the aim to protect the organism from various insults among 

which infection and tissue damage leading to the rescue of the affected tissue (12, 

13). In normal conditions, the adipose tissue regulates the storing energy reserves in 

the form of triglycerides, however it also has an important functions as an endocrine 

organ, producing a variety of pro-inflammatory cytokines such as interleukin (IL-1, 

IL-6, IL-8), interferon γ (IFNγ) and tumor necrosis factor α (TNFα) (14, 15). In the 

adipose tissue of obese people, the production of these molecules by adipocytes, is 

abnormal and induces a low level of chronic inflammation that influences other 

systems by altering their functions (16) (Fig. 2.3). Furthermore, the obese adipose 

tissue diminishes its capability to store fats, leading to an increase of circulating 

free fatty acids (FFAs) that is thaught to promote insulin resistance and damage to 

the mitochondrial membrane enhancing oxidative stress caused by ROS  release (17-

19). 

The role of the inflammatory response is to combat infection and tissue injury 

through the activation of the innate immune system with recruitment of the immune 

cells, the mammalian macrophages. The principal role of macrophages is host 

defense against pathogens through their phagocytic activity, but they show also other 

important functions such as homeostasis, inflammation and repair processes (20).  

Once active, the macrophages infiltrate the adipose tissue and release further 

molecules such as NO, TNF-α, IL-6, IL-1 by increasing the serum FFA and 

triglyceride levels (21). 

http://www.sciencedirect.com/topics/medicine-and-dentistry/triacylglycerol
http://www.sciencedirect.com/topics/medicine-and-dentistry/adipocyte
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Fig. 2.3 Different mTOR levels in normal and obesity conditions. In physiological condition, the leptin and 

several stimuli activate the mTOR pathway contributing to the maintenance of the metabolic homeostasis, while in 

obese condition mTOR is overexpressed facilitating the accumulation of inflammatory cells (Matarese, Procaccini, 

& De Rosa, 2012). 

 

2.1.4 Obesity and oxidative stress 

In obese people, lipid accumulation and chronic inflammation increase oxidative 

stress with the production of high levels of reactive oxygen species (ROS) (22, 23). 

ROS are produced during mitochondrial electron transport, where the reduction of 

oxygen through the addition of electrons leads to the formation of different ROS 

species including free radicals such as superoxide anions (O2
-) hydroxyl (HO), 

perhydroxy (HO2
-) and alkoxy (RO) and non-radicals like hydrogen peroxide (H2O2) 

and molecular oxygen (O2) (24). 

In mammals, elevated ROS alterate physiological function of cellular processes 

throught damage of DNA, proteins and lipids. 

ROS can interact with DNA causing modification of the nucleotide structure, 

triggering mutations and genomic instability, they can also oxidize proteins, this 

modifications result in changes in structure compromising biological functions, 

finally they can react with the polyunsaturated fatty acids of the membranes, causing 

cell death (24-26). 

All this events can lead to many human pathologies including cancer, 

neurodegenerative disorders, cardiovascular disease, diabetes and aging. Despite 

their well-known toxic effects, it seems that at low concentrations they are involved 

in cellular signaling and defense against environmental insults (24).  
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In order to prevent excess ROS, the mammalian cells are equipped with defence 

mechanisms that comprise antioxidative compounds such as enzyme, phenolic 

compounds, vitamins and drugs, they are reducing agents able to counteract 

oxidative species formation. The enzymatic part regards the endogenous antioxidant 

activity and includes Catalase, Superoxide dismutase, Glutathione-S-Transferase 

(GST), while exogenous antioxidative compounds are vitamins A, C, E and phenolic 

compounds like Anthocyanins (27, 28).  

 

2.1.5 Signaling pathways relevant in obesity 

 

JNK pathway 
The excessive production of ROS determinates the activation of the c-Jun-NH2-

terminal kinase (JNK), member of a mitogen-activated protein kinases (MAPKs) 

[15].  

MAPK cascade consists of four major component: c-Jun N-terminal kinases (JNK), 

p38 kinase (p38), the extracellular signal-related kinases (Erk1/2) and kinase Erk5 

(29). 

These kinases are evolutionarily conserved in eukaryotes and show a key role in 

cellular processes in response to a wide variety of signals among which growth 

factors, hormones, cytokines and reactive species. In particular, JNK signaling 

pathway is involved in few biological processes such as inflammation, cell 

proliferation, differentiation and apoptosis (24).                                        

Activation of JNK can be determined by stress, inflammatory cytokines and growth 

factors and requires a cascade of phosphorylation events starting with the activation 

of the JNKKK kinases, such as ASK1, TAK1, that activate the JNKK as MKK4 and 

MKK7 (30). 

In mammals, three JNK genes have been identified (JNK 1, 2, 3) with at least 10 

different splicing isoforms. Regarding JNK 1 and 2, their expression occurs in every 

cell and tissue type, whereas JNK 3 is selectively expressed in the brain, heart and 

testis (31, 32).  

 

GST (Glutathione-S-Transferase) 

GST is one of the most efficient detoxifying enzymes, found mainly in the cytosol. 

The main biological roles of GST include detoxification and protection against 

oxidative stress by catalyzing the conjugation of electrophilic substrates to 
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glutathione (GSH), obtaining products no longer reactive and more soluble that can 

be eliminated from the organism. Over to detoxifying activity, GST presents other 

important functions: it can inhibit the activity of JNK by causing the block of 

apoptosis and promoting cell proliferation and tumor growth (33).  

GSTs existing in mammals, are generally divided into three categories: cytosolic, 

microsomal, and mitochondrial. Up to now, seven classes of mammalian cytosolic 

GSTs have been identified: Alpha, Mu, Pi, Theta, Omega, Sigma and Zeta (34, 35). 

 

NRF2 

The nuclear factor erythroid 2-related factor 2 (NRF2) is considered one of the main 

regulators of the intracellular antioxidant response both in vertebrates and 

invertrebrates. NRF2 is a member of cap’n’collar (CNC) leucine zipper (bZIP) 

family of transcription factors and it is expressed in all cell types (36).  

NFR2 is a master of redox response, but recent studies have identified other 

numerous functions, for example, NRF2 regulates lifespan extension by caloric 

restriction and it seems to prevent cancer in animal models, although in humans a 

costitutive NFR2 activation is linked to greater incidence of cancer (37-39). 

]. Studies performed in mice and human cultured cells have shown that upon 

exposure to oxidative stress and electrophilic chemical insults, Nrf2 activity 

increases. Experiments in animal models have demonstrated that, once activated, 

NRF2 translocates to the nucleus and binds the Musculo-Aponeurotic Fibrosarcoma 

oncoprotein (Maf). The NRF2/Maf dimer regulates the expression of over 200 

genes, containing antioxidant response elements (AREs), by promoting up-

regulation of few redox regulators among which Glutathione S-transferase, 

Thioredoxin, Peroxyredoxins, NAD(P)H quinone oxidase 1 (NQO1) and Heme 

oxygenase 1(HO1) (40, 41). 

In this way, NRF2 regulates many cellular responses such as homeostasis, 

proliferation, autophagy, DNA repair, and mitochondrial physiology. Under non-

stressed conditions, NRF2 protein levels are kept low through its proteasomal 

degradation. Three E3 ubiquitin ligase complexes control the ubiquitylation and 

proteasomal degradation of NRF2: Kelch-like erythroid CNC homologue (ECH)-

associated protein 1 (KEAP1), SKP1 and HRD1 (42).  

In particular, the inhibition of NRF2 is orchestrated by its cytoplasmatic negative 

regulator, Keap1, associated with Cul3-based ubiquitinligase system (43, 44).  



11 
 

The inhibitory effect of Keap1 involves the supression of NRF2 activity in the 

cytoplasm becoming target for proteosomal degradation. Furthermore, Keap 1 can 

function as a redox sensor because its cysteine residues, indeed in a stress condition, 

the oxidants bind these residues determining the disassociation between Keap 1and 

NRF2 and preventing Nrf2 ubiquitination and proteolysis by Keap1(38).  

 

2.1.6 Obesity and cancer 

Recent data have expanded the consistent evidence that connects obesity to an 

increased risk of some cancers (45, 46). 

Despite the limitations, many possible mechanisms exist that explain the obesity-

cancer link by regarding studies performed on insulin, insulin-like growth factors 

(IGFs), sex hormones, and adipokines, but other candidate process are inflammation 

and oxidative stress (47). 

In vitro and in vivo studies have shown that insulin and insulin-like growth factor 1 

(IGF-1) are connected to obesity. It has been hypothesized that hyperinsulinemia 

causes the activation of insulin and IGFs pathway, these events determine a block of 

the apoptotic process and promote tumor growth in the colon, kidney, prostate, and 

endometrium (48-50). 

Another evidence of a possible relationship between obesity and cancer has been 

found with sex hormones; in fact, they trigger cell division by promoting tumor 

progression. In particular, breast, uterine and prostate cancers are caused by sex 

steroid hormones activities (49, 51).  

Reaserches performed on Adipokines, in particular on leptin, have suggested as this 

hormone is able to have a negative role in the development of different cancers, such 

as endometrial, breast, colon, and prostate cancer (52, 53).  

Numerous cohort studies have reported that people who are overweight or obese are 

more likely to develop some cancers than normal-weight people including 

endometrial, breast, tyroid, liver, kidney and ovarian cancer (54-59). 
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2.1.7 Animal models to study obesity and related pathologies  

 

As already mentioned before, obesity is an epidemic problem, and it is associated 

with several health problems, including diabetes, cardiovascular disease and cancer. 

The precise molecular mechanisms that link obesity to these health problems are not 

yet clear. To better understand the etiology of metabolic disorders, specific animal 

models have been obtained that present all the complications linked to the human 

disease. Below are reported some animal models associated with obesity-related 

pathology (60).  

 

Most used mouse obese genetic models: 

The agouti mutation was first reported among the several obese mice used in 

research and it has become the first obesity gene characterized at the molecular level 

(61).  

Agouti is a gene that controls the distribution of the red/yellow pigment melanin in 

mammal hairs, in particular the lethal yellow mutant mouse (Ay) is a dominat 

mutation in the agouti locus and it has been considered a good obesity model. (Ay) 

mutation exhibits a typic obese phenotype associated with hyperinsulinemia, insulin 

resistance, hyperglycemia and hyperleptinemia; furthermore, agouti overexpression 

in the adipose tissue induces fat increase without alteration of food intake (62, 63). 

 

In 1994, Zhang et al. have discovered that mutation in leptin gene caused mutation 

in the mouse gene obese (ob) (Fig. 2.4) (64). Leptin is a hormone secreted by 

adipocytes, in normal condition leptin induces a reduction in body weight, food 

intake and serum insulin, instead the mutation exhibits obesity, type 2 diabetes and 

insuline resistance, therefore leptin is considered a marker of obesity (65). 
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Figure 2.4 The ob/ob mouse (right) and wt mouse (from Zhang Nature 1994 vol 372 1 Dec 425-32) 

 

Another type of obese model is LepRdb/db mouse; this time the mutation regards  

leptin-receptor gene, the metabolic profile leads to hyperphagia and obesity, with 

consequent hyperleptinemia and insulin resistance (66, 67). 

 

Also a high-fat diet (HFD) model is used for studying the obese phenotype. Different 

mouse strains respond to HFD-induced obesity; in particular, the C57BL/6J strain 

shows similar characteristics to obese people when fed with HFD, which 

corresponds to a typical diet containing 45% of calories from lipids, the same diet 

used in developed countries (68). 
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2.2 General introduction on obesity in Drosophila 
 

2.2.1 Obesity and inflammation in Drosophila 

Obesity is defined a metabolic syndrome that affects all age and each kind of social 

class, the last data published by WHO reveal that obesity is one of today’s most 

public health problems.   

Obesity is determinated by excessive fat accumulation in adipose tissue that presents 

a risk to health. That pathologic condition stimulates the activation and release of 

inflammatory mediators such as TNFα and IL-6, promoting an inflammatory process 

and subsequently oxidative stress (69-72). 

The inflammatory state induces activation of the innate immune system with 

recruitment of the immune cells, the mammalian macrophages, while in Drosophila 

it is orchestrated by hemocytes, circulating cells in the hemolymph, present at all 

stages of the life cycle and representing the fly’s innate immune system.  

The Drosophila hemocytes infiltrate the fat body, considered equivalent to the 

mammalian liver and adipose tissue, and in turn release more inflammatory 

mediators among which the TNF-α ortholog Eiger, to promote the ATM phenotype 

(71, 73). 

 

The Hemocytes 

In Drosophila melanogaster, the hemocytes, motile and phagocytic cells are 

produced in the limph gland, an hematopoietic organ and subsequently stored in 

specific sites called Hematopoietic Pockets located between epidermis and muscle 

layers (74). 

In Drosophila are present three different cell types of hemocytes are present with 

slightly different functions: 

-Plasmatocytes represent the majority of circulating hemocytes during the larval 

stage (∼95%), they show phagocytic activity like mammalian macrophages, indeed 

these cells are able to migrate to sites of infection through of the protusions of actin-

rich filopodia and lamellipodia (75). 

-Lamellocytes represent about 2,5% of total hemocytes, they are rarely present in 

larva, however these particular cells are required in case of invasion by endoparasites 

in which they are involved in pathogen encapsulation (76). 
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-Crystal cells represent the remaining 2,5% of total hemocytes, they are released 

during pupariation phase, they are characterized by the presence of cytoplasmatic 

crystal-like inclusions; they secreted specif enzymes required for the melanization 

cascade (77). 

It seems that, in response to injury or infection, the sessile hemocytes start to migrate 

to the damaged site and promote the phagocytic activity, but the specific signal that 

triggers the switch from sessile to mobile cells is still not known.  

A recent work has hypothesized that hemocytes migration is linked to ecdysone 

activity (75). 

 

The Fat body  

The human adipose tissue regulates the homeostatic metabolism, it provides an 

energy storage in form of TAG, deposited in specific cells called adipocytes. During 

starvation, the lipases break TAGs down into free fatty acids (FFAs) that are released 

in the bloodstream to produce energy (Fig. 2.5) (78, 79).  

Furthermore, the adipose tissue is also an endocrine organ, it produces several 

adipokines like leptin and adiponectin. The insect fat body is an organ analogue to 

vertebrate adipose tissue and liver, it is considered a multifunctional organ, indeed 

it regulates nutrient storage and energy metabolism, it coordinates insect growth with 

metamorphosis, it also carries out an exocrine fuction by producing several 

antimicrobial peptides (80). 

 
Figure 2.5 Photographs of larval fat body from wt animals A nuclei are stained with blue 
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Regarding the storage function, the fat body is fundamental for the life of insects, 

the energy in form of TAG is stored in adipocyte cells, characterized by the presence 

of numerous organelles called lipid droplets with metabolic activity.  

The lipolytic activity includes two lipases: Brummer and Triglyceride lipase. The 

metabolic functions conducted by the fat body are regulated by hormonal signals 

such as insulin and ecdysone. During insect metamorphosis, the fat body undergoes 

to a “remodeling” process that consists in a destruction of larval tissues and 

concurrently the determination of adult tissues (81). 

All this information indicates that Drosophila shares with mammals the same 

mechanisms of storage and mobilization of energy, so this insect becomes an 

excellent model to study lipid homeostasis (82). 

 

 

2.2.2 Obesity and oxidative stress in Drosophila 
 

In humans, the relationship between obesity and ROS production is still very 

controversial because many problems occur while using genetic models for this 

metabolic disease. However, it is very important to remember that the signals that 

trigger the increase of ROS level are highly conserved in mammals and flies, and 

this allows using Drosophila as a genetic model to analyse and find novel pathways 

involved in obesity and in other metabolic disorders. ROS production can be induced 

by different signals such as proinflammatory cytokines, UV light, radiation and 

environmental toxins (83). 

Also in Drosophila, ROS perform an essential role in maintaining homeostasis by 

triggering cellular signaling pathways and host defense mechanisms (24).  

Nevertheless, an excessive production of ROS causes an intracellular imbalance and 

determinates irreversible oxidative damage to DNA, proteins and lipids (84).  

This cell dysfunction lead to severe complications and increases the risk to develop 

diseases such as diabetes, neurodegeneration, cancer and aging (85). 

Fleming and colleagues have demonstrated that oxidative damage regulate the 

lifespan in Drosophila both in normal and stress conditions (86). 

Another work showed that unrepaired damages caused by free radicals provoke 

aging and death in Drosophila (87). 

As mentioned previously, in humans but also in Drosophila, cellular defense 

mechanisms against oxidative stress include enzymatic components like Glutathione 
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reductase (GSR), Glutathione peroxidase (GPx) and GST, and non-enzymatic 

components as vitamins and polyphenolic compounds (83). 

Further data have shown that dietary antioxidants like vitamins and polyphenols 

ameliorate the effects of oxidative stress induced by paraquat. In Drosophila 

lifespan, in particular, it has been observed a sexual dimorphism, with females 

exhibiting an increase in lifespan compared to males (88-90).  

 

 

 

 

 

 

2.2.3 Signaling pathways relevant in obesity conserved in Drosophila 

 

The TNF-α orthologue Eiger 

TNF-α belongs to a superfamily of TNF/TNFR, the name “Tumor Necrosis Factor” 

derives from its identification in hemorragic necrosis of human tumors caused by 

endotoxins (91).  

In mammals TNF-α is considered an inflammatory mediator, it promotes the 

production of prostaglandins and other cytokines.  

Furthermore, it was also reported that TNF-α is able to promote macrophages 

differentiation, proliferation and to induce programmed cell death (92, 93). 

In Drosophila, TNF-α ortholog Eiger shows similar functions, it is a regulator of the 

death signal, indeed it can induce cell death by activating the JNK pathway, 

furthermore Eiger is required for innate immune response against extracellular 

pathogens (94, 95). 
 

The JNK orthologue Basket 

JNK homolog, Basket in Drosophila 

Similar to mammals, the JNK pathway is highly conserved in Drosophila, though 

only one JNK isoform exists in Drosophila, Basket, whereas ten JNK isoforms are 

found in mammals (96). 
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Figure 2.6 The JNK signaling pathway (modified from Valenza et al, BMRI 2018). 

  

Thanks to low gene redundancy, Drosophila becomes an amazing model system to 

study JNK regulation in normal and stress conditions. ROS-induced signaling 

pathways include the activation of JNK, this event consists of a cascade of 

phosphorylation events starting with the activation of the JNKKK kinases, 

consisting of the Ask1 and Tak1, that activate MKK7, the ortholog of Hemipterous 

(Hep), and terminates with the activatioPn of the JNK kinase, encoded by the basket 

(bsk) gene in Drosophila, that is negatively regulated by Puckered (uc), a 

phosphatase, a target itself of the JNK kinase (Fig. 2.6) (97, 98).  

In Drosophila, JNK protects the cells from oxidative stress and is able to extend 

lifespan in adult flies through the activation of autophagy, in particular JNK 

regulates the expression of Atg9, a component of the autophagy complex (99). 

 

GST D1 

As already mentioned above, GSTs existing in mammals, are generally divided into 

three categories: cytosolic, microsomal, and mitochondrial. Up to now, seven classes 

of mammalian cytosolic GSTs have been identified: Alpha, Mu, Pi, Theta, Omega, 

Sigma and Zeta (34, 35). 

In D. melanogaster, the last four classes are present plus other two members, Delta 

and Epsilon, considered the most common classes of GST. In particular, in the last 

years, the Delta class is the best studied (100, 101).  
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Recently, it was reported that, four spliceforms of the Delta class of GST, like GST 

D1, D2, D3, D4, regulate in different manners JNK activity. GST D1 seems to inhibit 

JNK activity, whereas the other three isoforms activate it (102).  

 

CncC orthologue of NRF2 

The Drosophila CncC, ortholog to the vertebrate Nrf2, is a transcriptional factor, it 

is considered an important regulator of the cellular redox state both in vertebrate and 

Drosophila, whereas Keap1 is its negative regulator (103). 

In normal conditions, CncC is normally present at the cytoplasmatic level, 

sequestered by its inhibitor Keap1, that induces CncC degradation throught 

ubiquitylation, but in conditions of elevated ROS, CncC is free to translocate into 

the nucleus, bind the Antioxidant Response Element (ARE) and induce the 

expression of key factors in the antioxidant processes like GST D1 (37, 104-106). 

Previous studies have identified a number of reactive Cys residues in Keap1 which 

correspond to the sites of attack by ROS, in this way CncC is disassociated by Keap1 

and can regulate the expression of target genes (106).  

Although Drosophila is a well-known model for aging, the knowledge on NRF2 

signaling is still not clear. Bohmann and Sykiotis have demonstrated that Drosophila 

CncC/Keap1 show function similar to human NRF2/Keap1; furthermore, they have 

shown that NRF2 pathway is involved in several cellular responses, it induces the 

expression of antioxidant enzymes like GSTD1, it is able to balance the intracellular 

redox, finally it regulates intestinal stem cell proliferation by reducing the age-

related degeneration at the intestinal level. 

 

2.2.4 Obesity and cancer in Drosophila 

 

In the last years, the common fruit fly Drosophila melanogaster has become a 

predominal model system to study molecular mechanisms of human disease 

including cancer (46). Furthermore, up to 75% of  human  disease-causing  genes  

have  functional homolog in Drosophila (1) .                                                                                                           

The molecular mechanisms that regulate growth, differentiation and metabolism are 

highly conserved in mammals and Drosophila, but the fruit flies have a genome less 

redundant than human genome, this allows simplifying genetic analyses for studying 

different human diseases. In particular, Drosophila is considered a cancer research 
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model with a focus on the roles of hemocytes to explain the interplay between 

inflammation and cancer (107).  

Rudolf Virchow observed for the first time that leukocytes were associated with the 

neoplastic tissue by providing an evident link between cancer and inflammation. 

Subsequently, numerous experiments have been performed to convalided this 

discovery. Trincheri et al. proposed a possible connection of the inflammatory lesion 

that triggers cancer(108). Furthermore, it has been well-reported that the 

inflammatory process promotes tumor progression; in particular, it has been revealed 

that macrophages may be involved in cancer initiation or prevention (109, 110).                                                                         

To better understand the real role of hemocytes in tumor progression or regression, 

several studies have been performed by using Drosophila as a tumor model: for 

example, Pastor-Pareja and colleagues have demonstrated through an innovative 

cancer model that a relationship exists between tumor and hemocytes (111). 

Research in Drosophila has documented the possible protagonists involved in the 

interactions between cancer and inflammation by including the JAK/STAT, JNK, 

TNF, Toll/Imd/TLR signaling pathways (112).                                                                        

Thanks to these tools, Drosophila can be useful as a tumor model system to discover 

many signaling pathways conserved both in Drosophila and humans that regulates 

the immune system and its interactions with tumor cells. 

 

2.2.5 Drosophila models to study obesity 

 
Recently, Drosophila melanogaster has emerged as a powerful model organism to 

investigate the genetic mechanisms linked to obesity and other human metabolic 

disorders, because most of the human metabolic processes are conserved in flies. 

Furthermore, mammalian liver and adipose tissue show functionally analogies with 

the fly’s fat body, considered a dynamic tissue involved in multiple metabolic 

functions like to store and release energy in the form of lipids and glycogen (113). 

Here we report, two Drosophila established models used to study the metabolic 

changes and to chararcterize obesity-associated disorders. 

1- HFD (High-Fat Diet) model consists of flies grown on specific diet enriched 

with 30% coconut oil as a source of saturated fatty acid that has been shown to cause 

a phenotype similar to obesity in humans, indeed HFD-induced obesity in flies show 

an increased triglyceride and glucose levels, resistance to starvation but at the same 

time this diet decreased lifespan, altering the positive intake of energy balance.  
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Recent publications report that HFD model in Drosophila causes heart dysfunction, 

typically found also in obese people (114, 115). 

2- Genetic models, by genetic reduction of a key enzyme necessary for of energy 

storage, Brummer lipase1 (Bmm1). The Bmm gene encodes for a lipase, homologue 

of the human adipocyte triglyceride lipase (ATGL), that determinates the lipolysis 

of TAG stored in lipid droplets in adipose tissue. The lack or malfunction of Bmm 

activity induces a deregulation of energy stored causing the obesity in flies. In Bmm 

mutants the animal continues to store energy but is not able to mobilize TAGs (116). 

 

 

2.3 Anthocyanins 
 

During my PhD project, I investigated the function of bioactive food like Flavonoids 

polyphenolic compounds, found in fruits and vegetables, components regularly 

present in human dietary, that have been recognized to possess a protective action 

against obesity and ATM phenotype, due to their anti-inflammatory and antioxidant 

activity. Over to these proprierties, they also show anti-diabetic, anti-cancer, anti-

aging effects (117-121).  

Until now, more than 9000 flavonoids have been identified in plants (122). 

Flavonoids biosynthesis genes are conserved among various species and they are 

synthesized through the combination of aromatic amino acids like phenylalanine and 

tyrosin that linked with acetate units (123). 

The basic flavonoids structure is characterized by two benzene rings linked throught 

an oxygen-containing pyrene ring, with several costituents that allow subdividing 

them into different classes among which Flavonols, Flavonones, Flavanols, 

Flavones, Isoflavones and Anthocyanins (Fig. 2.7) (124). 

 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/anti-diabetic-medication
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Fig. 2.7 Chemical structures of Flavonoids. The basic structure is constituited by three different heterocycle rings, 

thus that Flavonoids can be divided into six major subclasses: flavonols, flavanones, flavanols, flavones, anthocyanins 

and isoflavones (Pandey KB et al., 2009). 

 

Anthocyanins’s activity 

In particular, the study has been focused on one class of flavonoids, Anthocyanins. 

Anthocyanins are the red, purple and blue pigments found in flowers and the fruits 

of many plants. Recent studies have demonstrated that Anthocyanins-rich dietary 

reduces the risk to develop chronic diseases such as diabetes, obesity, cancer and 

cardiovascular diseases (125-127). 

For what concerns the antidiabetic effect of Anthocyanins, it has been widely 

demonstrated that these bioactive molecules are able to increase insulin secretion in 

humans (128). 

Furthermore recent studies, performed on model of diabetic mice, have reported that 

Anthocyanins ameliorate hyperglycemia and insulin sensitivity via adenosine 

monophosphate-activated protein kinase (AMPK) activation in adispose tissue and 

liver (129). 

Anthocyanins also show anti-obesity proprierties. Clinical studies in humans have 

demonstrated that an higher consumption of anthocyanins, is associated with weight 

loss in both men and women (130, 131).  

In addition they prevent weight gain and reduce the fat accumulation in obese mice 
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under High Fat Diet condition and in C57BL/6 obese mice (132-135). 

Interestlingly, in our Drosophila model of obesity (described below), we find that 

anthocyanins ameliorate the obese phenotype by reducing the hemocytes migration 

and accumulation and phagocytic activity in larval fat body (136). 

How Anthocyanins rescue the obese phenotype is still not clear, of course they act 

on inflammatory and oxidant processes. 

The possible anti-inflammatory mechanism of anthocyanins, may include the 

inhibition of a several pro-inflammatory mediators like the nuclear factor-κB (NF-

κB), Relish in Drosophila that, in response to external stimuli like oxidative stress 

and inflammation, triggers a large signaling cascade that culminates with the 

upregulation of proinflammatory cytokines/chemokines including TNF-α, IL-6, IL-

1, IFN-γ, IL-8, the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 

(COX-2). At the same time, the anthocyanins are able to act concomitantly with 

detoxification enzymes such as superoxide dismutase, catalase, glutathione 

peroxidase, GST, and glutathione reductase to reduce oxidation and activate 

antioxidant detoxifycation factors such as NRF2 called CncC in Drosophila (121, 

137).  

These finding suggest that anthocyanins can regulate the inflammatory responses, 

therefore they can be considered of the anti-inflammatory agents. 

 

Many studies performed in animal models have demonstrated that Anthocyanins are 

also considered potential anticancer agents. 

Anthocyanins have been isolated for investigating their anticancer proprierties on 

several tissues and organs like esophagus, colon, breast, liver and prostate (138). 

Using mouse models, it has been discovered that Anthocyanins are able to inhibit 

angiogenesis and induce apoptosis and they possess anti-invasive proprierties by 

inhibiting the JNK pathway and Akt/mTOR signaling (139, 140). 

 

Epidemiological studies show the link between Anthocyanin-rich diet and 

cardiovascular diseases. In vitro studies have demonstrated that Anthocyanins show 

anti-thrombotic effects, also observed in rats, in which Anthocyanins intake reduces 

the infarct size and modulates the antioxidant response by increasing the myocardial 

glutathione levels (141, 142).  

Altogether, these studies confirm the beneficial effects on health of Anthocyanins. 
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2.4 Drosophila P0206-Gal; UAS-Ni obesity model 

 

In this thesis, i focused on anti-inflammatory and antioxidant activity of 

Anthocyanins using a new Drosophila model of obesity. 

In order to obtain this new model of obesity, we genetically reduced the size of the 

prothoracic gland, the endocrine organ, that produces the ecdysone hormone, that 

plays essential roles in coordinating developmental transitions such as larval molting 

and metamorphosis (143). 

The genetic manipulation of the prothoracic gland causes the reduction of ecdysone 

levels (E74b target gene), resulting in block of the development, indeed the animal 

does not complete the cycle, it remains at third larva instar and continues to feed for 

3 weeks with an increased in body weight (Fig. 2.8 A-B). 

Furthermore, Drosophila fat body functions as storage for nutrients, which regulates 

the storage and release of energy in response to demand, whereas in an obesity 

condition the fat body continues to accumulate fat and sugars, indeed in our obese 

animals we observed that the size of the fat body cells from P0206-Gal4; UAS-Ni 

larvae increased (Fig. 2.8 C) also due to the accumulation of fats in lipid droplets 

visible by Nile Red staining (Fig. 2.8 D) (136).  

In this way, P0206-Gal4; UAS-Ni animals acquired a phenotype that resembles to 

that seen in obese people, among which increased TAGs and glucose levels 

circulating in the hemolymph. 

 

 



25 
 

 
Figure 2.8 New Drosophila obese model. (A) the reduction of the prothoracic gland’s causes the block of the 

puparation, (B)this event determinates the reduction of ecdysone levels in P0206-Gal4; UAS-Ni animals, (C) the size 

of fat body cells in P0206-Gal4; UAS-Ni animals increased, indeed through (D) Nile Red staining is possible to 

observe the accumulation of lipids in larval fat body. 

 

 

Throught the binary system UAS-Gal4, we used P0206-Gal4 driver for prothoracic 

gland-targeted RNA interference (RNAi) silencing the expression of CG7839 gene, 

ortholog of yeast Nok1, a ribosomial component, UAS-Ni (144). 

In these conditions we blocked pupariation creating larvae P0206-Gal4; UAS-Ni 

with obese phenotype in the F1 generation (Fig. 2.9). 

 

 
Figure 2.9 P0206-Gal; UAS-Ni offspring. In our model, we obtained the reduction of ecdysone production 

through the binary system UAS-Gal4 by regulating the expression of UAS-Ni (ortholog of yeast Noc1) in 

the prothoracic gland (using P0206-Gal4) obtaining larvae with similar features observed in obese people. 
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Moreover, in our Drosophila model hemocyte infiltration increases in larval fat 

recalled by pro-inflammatory cytochines. During this inflammatory state, hemocytes 

surround the fat cells, mimicking a process described in the fat of obese individuals 

suffering from chronic inflammation. Furthermore, these animals exhibit significant 

increase in ROS production over time, indicating the presence of an oxidative stress 

that may be responsible for the augmented phosphorylation of the JNK kinase (136).  

All these aspects demonstrate that our model can be used to investigate the 

mechanisms involved in obesity and analyze the anti-inflammatory and anti-oxidant 

effects of bioactive food like Anthocyanins. 
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Abstract 

 

Epidemiological and preclinical studies have demonstrated that bioactive foods like 

flavonoids, polyphenolic compounds derived from fruits and vegetables, exert a 

protective action against obesity, cardiovascular disorders and Adipocyte Tissue 

Macrophage infiltration (ATM). All these pathologies are characterized by increase 

in reactive oxygen species (ROS) and in pro-inflammatory cytokines that have been 

shown to favor the migration of immune cells, particularly of macrophages, in 

metabolically active organs like the liver and adipose tissue, that in Drosophila are 

constituted by a unique organ: the fat body. This study, using a unique Drosophila 

model that mimics human ATM, reveals the beneficial effects of flavonoids to 

reduce tissue-inflammation. Our data show that anthocyanin-rich food reduces the 

number of hemocytes, Drosophila macrophages, infiltrating the fat cells, a process 

that is associated with reduced production of ROS and reduced activation of the 

JNK/SAPK p46 stress kinase, suggesting a fundamental function for anthocyanins 

as antioxidants in chronic-inflammation and in metabolic diseases. 

 

Introduction 
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Obesity is a metabolic syndrome occurring worldwide, and often associated with 

other chronic diseases such as cardiovascular disorders, type II diabetes and cancer 

[1]. 

The onset of obesity is the result of multifactorial elements, including a sedentary 

lifestyle, genetic predisposition, ethnicity and environmental factors (such as organic 

pollutants) [2], these factors with a diet rich in fats and sugars and poor in 

phytonutrients may result in weight gain and subsequently lead to metabolic 

disorders [3,4].  Obesity is known to trigger a low-grade of inflammation in 

metabolically active tissues and in organs such as the liver and adipose tissue [5-8]. 

Inflammation is the result of cellular and humoral responses with the scope to protect 

the organism from various insults, including infection and tissue damage, in attempt 

to rescue tissue homeostasis [9,10]. 

 

In humans, the adipose tissue regulates lipid homeostasis, and in normal conditions 

controls the storage of energy reserves in the form of triglycerides as well as 

functioning as an endocrine organ, producing a variety of pro-inflammatory 

cytokines such as IL-1, 6, and 8, IFNγ, TNFα [11,12]. In pathological conditions, 

such obesity or metabolic syndrome, the adipocytes start to alter the production of 

these pro-inflammatory cytokines, which results in the activation of the innate 

immune system with recruitment of immune cells including macrophages leading to 

a state of chronic inflammation or ATM [7]. In addition, lipid accumulation and 

chronic inflammation in obese people are associated with a permanent increase of 

oxidative stress and with the production of high levels of reactive oxygen species 

(ROS) [13,14], which is often associated with the activation of the c-Jun-NH2-

terminal kinase (JNK/SAPK) p46, member of a mitogen-activated protein kinases 

(MAPKs) downstream of JNK signaling [15]. This pathway is highly conserved in 

Drosophila, and consists a cascade of phosphorylation events starting with the 

activation of the JNKKK kinases, consisting of the Ask1 and Tak1, that activate 

MKK7, the orthologue of Hemipterous (Hep), and terminates with the activation of 

JNK/SAPK p46 kinase, called basket (bsk) in Drosophila, that is a negatively 

regulated by Puckered (puc), a phosphatase, which itself is a target of JNK/SAPK 

p46 kinase (see Figure 3E) [16]. 

This pathological situation influences other organs by altering their functions. 

Furthermore the adipose tissue from obese individuals exhibits a reduced capacity 

http://www.sciencedirect.com/topics/medicine-and-dentistry/triacylglycerol
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to store fat leading to an increase of circulating free fatty acids (FFAs) that promotes 

insulin resistance and damages the mitochondrial membrane thereby enhancing the 

production of ROS causing oxidative stress [17-19].  

Epidemiological evidence suggests that a high intake of bioactive food is associated 

with a lower risk of developing chronic diseases like obesity [20]. Bioactive foods 

may influence the physiological and cellular activities of oxidative pathways and in 

recent years the attention has been focused on a class of secondary metabolites 

present in plant foods called flavonoids that seem to possess beneficial properties in 

preventing chronic diseases [21,22]. The possible health benefits of flavonoids are 

linked to their potent antioxidant and free radical scavenging activities demonstrated 

in vitro and in vivo using different animal models [23]. Among the different classes 

of flavonoids, anthocyanins represent the major red, purple and violet pigment in 

many plants and fruits. In vivo studies showed that anthocyanins added to the diet 

stimulate the secretion of insulin and decrease the generation of ROS [21,24]. 

Preclinical studies performed on human demonstrate that dietary-anthocyanins have 

a positive biological effect against obesity-induced inflammation and oxidative 

stress [24,25], which is associated with a lower risk of type 2 diabetes. This 

potentially important application creates a high interest in understanding the action 

of these natural bio-products in preventing metabolic diseases. 

 

In order to study the mechanisms that control the anti-inflammatory response to 

flavonoids, we took advantage of a previously unrecognized conserved functional 

relationship between the immune cells, called hemocytes (macrophage like cells) 

and adipocytes (larval fat body, FB) [26]. Drosophila FB- a metabolic tissue with 

similar physiological functions to the mammalian adipose tissue and liver- acts as a 

functional unit to control key metabolic processes and the native immune response, 

in addition to storing fats and sugars [27]. In Drosophila the immune response is 

orchestrated by the hemocytes, that are circulating cells in the hemolymph, present 

at all stages of the life cycle and compose the fly’s innate immune system [9,28-33]. 

Hemocytes are essential mediators in the cell-cell communication process: they have 

been shown to mediate a response between the fat body and tumor cells to control 

their growth [34] and to promote proliferation of epithelial cells in response to the 

release of ROS following cell death in cells of the imaginal discs [35].  
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Using our model of obesity, we observed that hemocytes infiltrate the FB of obese 

larvae mimicking the chronic inflammation present in human obesity (manuscript in 

submission). In this study we report that treatment with anthocyanin-enriched food 

results in a significant decrease in the number of hemocytes infiltrating the FB 

concomitantly to a reduction in ROS and of the phosphorylation of JNK/SAPK stress 

kinase. 

 

Our data demonstrate that the mechanisms driving the protective role of bio-products 

like anthocyanins in vivo as anti-inflammatory and anti-oxidants are conserved in 

Drosophila. In addition, they highlight the potential use of our model to study the 

complex relationship between inflammation and obesity and corroborate the positive 

action of anthocyanins to combat chronic inflammation in humans. 

 

Materials and methods  

 

Fly stocks and husbandry. The Hml-RFP/CyO is a gift from Katja Brückner at 

UCSF.The P0206-Gal4 from [36], UAS-CG7839RNAi (BL 25992 ) is an RNA 

interference lines to reduce the expression of the  CG7839 gene, encoding for the 

orthologue of a ribosomal protein Noc1, herein the CG7839RNAi will be called Ni. 

Fly cultures and crosses were grown on standard fly food composed of yellow corn, 

sugar, yeast molasses-base at 25°C. 

  

Feeding experiment and chemical compounds. Crosses were kept in culture bottles 

perforated to provide adequate air circulation and eggs were collected on a grape 

agar plate (5%) supplemented with dry yeast every 3 hours. First instar larvae were 

collected after 24 hours AEL (after Egg Laying) and shifted into vials containing 

different food. First instar larvae were reared with 2 g of standard food, hereafter 

Normal Food (NF) and 5 ml of each flavonoid (FL) extract, one containing only 

flavonoids (NF + FL) and another extract containing flavonoids and 0.24 mg/ml 

anthocyanins (NF + FL + ACN). All these phenolic compounds were extracted from 

the cobs of yellow and purple corn (gift from Katia Petroni and Chiara Tonelli, 

University of Milan), only the purple extract is rich in anthocyanins, while the 

content of other flavonoids is the same in both extracts (the content of flavonoids 

present in the extracts are reported in [37]). 

 

Hemocytes quantification and size analysis in larval fat bodies. To label in vivo 

plasmatocytes, which comprise more than 95% of the hemocytes population in the 

Drosophila larva, we used the transgene HmlΔ-DsRed (Hml-RFP) that contains the 
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promoter for hemolectin, expressed in the hemocytes, fused with the Red 

Fluorescence Protein (RFP) [38]. Fat bodies from 20 larvae at 5 and 12 days AEL 

were dissected in phosphate-buffered saline (PBS) pH 7.4 and fixed in 4% 

paraformaldehyde (PFA) for 30 minutes. Hoechst 33258 (Sigma Aldrich) was added 

to stain DNA in a final concentration of 1 μg/ml. After washing with PBS, fat bodies 

were mounted onto slides with DABCO-Mowiol and images were acquired using an 

SP2-LEICA Lasertechnik GmbH confocal microscope. Images were analyzed with 

the ImageJ software. In the order to analyze the cell size, the larval fat bodies were 

fixed in 4% PFA, permeabilized with 0.2% Triton X-100 in PBS, rinsed in PBS 1X 

and membranes were stained with 1:100 Alexa Fluor 488 Phalloidin to visualize the 

cytoskeleton through the binding between Phalloidin and F-actin, and Hoechst 

33258 for nuclei, then mounted onto slides with DABCO-Mowiol. Photographs 

were taken using confocal microscopy and the area of adipose cells for each fat body 

was calculated with ImageJ software. In order to visualize lipids, fat bodies were 

stained with Nile-Red (Sigma Aldrich) and with Alexa Fluor 488 Phalloidin 

following the protocol in [39]. 

 

In vivo detection of ROS using Dihydroethidium (DHE). DHE is used to detect 

cytosolic superoxides and radical oxygen species (ROS). The reaction between DHE 

and superoxide anions generates a highly specific red fluorescent product 

(ethidium), which intercalates with DNA. ROS levels were detected in live tissue as 

described in [40]. Briefly, larval fat bodies at 5 and 12 days AEL were dissected in 

Schneider’s insect medium (GIBCO). After incubation in 30 μM DHE (Invitrogen) 

for 5-7 minutes in the dark at room temperature, fat bodies were washed three times 

with Schneider's medium and immediately mounted with VECTASHIELD Antifade 

Mounting Medium.  

 

RNA extraction and quantitative RT-PCR. Total RNA was extracted from 8 whole 

larvae using QIAGEN RNeasy Mini Kit. 1 μg total RNA from each genotype was 

reverse-transcribed into cDNA using SuperScript IV MILO Master Mix 

(Invitrogen). The obtained CDNA was used as the template for quantitative real-

time PCR (qRT-PCR) using SYBR Premix Ex Taq-Tli RnaseH Plus II (TaKara), 

analyzed on a RT-PCR BIORAD thermocycler machine. In these experiments, gene 

expression levels were normalized to actin mRNA, used as the internal control. The 

following primers for qRT-PCR were used: actin5c  5’- 
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CAGATCATGTTCGAGACCTTCAAC-3’ (R) and 5’-

ACGACCGGAGGCGTACAG-3’ (F) and E74B  5’-

GAATCCGTAGCCTCCGACTGT (R) and 5’- 

AGGAGGGAGAGTGGTGGTGTT (F) [39]. 

 

Protein extractions, and immunoblotting. The larval fat bodies (10 for each 

genotype) were dissected in Schneider’s medium serum-free and lysed in 80 μl of 

lysis buffer 1X (50 mM Hepes pH 7.4, 250 mM NaCl, 1 mM EDTA, 1.5% Triton 

X-100). Protease inhibitor cocktail (Sigma-Aldrich) was added to inhibit protease 

and phosphatase activities. Samples were sonicated two times for 10 seconds, and 

then centrifuged. Protein concentration was determined by Bradford protein assay 

(Bio-Rad). The samples were boiled in 1X SDS, then separated on 10% SDS-

polyacrylamide gels and blotted. Membrane was incubated with primary antibody 

anti-phospho-p46 SAPK/JNK (Cell Signaling #9521) or anti actin (Hybridoma 

Bank) overnight at 4°C in blocking buffer then washed in 0.1% Tween 20 with 

TRIS-buffered saline (TBST). Appropriate secondary antibody, was incubated for 2 

hours, followed by washing. The signal was revealed with ChemiDoc Touch 

Imaging System (Bio-Rad Lab). 

 

Immunostaining.  Dissected fat bodies from 20 larvae were fixed in a solution of 

4% PFA/PBS for 40 minutes. After permeabilization with 0.3% Triton/PBS, tissues 

were washed in a solution of Tween 0.04%/PBS, saturated with 1% BSA/PBS and 

incubated over-night with anti-SPARC antibodies (1:400), a generous gift from M. 

Ringuette [41] and visualized using anti-Rabbit Alexa555 (Invitrogen).  

 

Statistical analysis. The experiments were repeated at least three times and the 

statistical analysis among the various genotypes was examined by Student's t-test. 

Differences were considered significant if p value were less than 0.05 (*), 0.01 (**), 

0.001 (***) and 0.0001 (****). 

 

Results 

 

Obese larvae have increased size of fat cells and increased hemocytes in the fat 

body.  
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In order to study the ability of hemocytes to infiltrate the fat cells, we blocked 

pupariation (Figure 1A) creating larvae P0206-Gal4;UAS-Ni where the reduction of 

the size of the prothoracic gland, the endocrine organ that produces ecdysone, 

resulted in reduced levels of ecdysone (Figure 1B), leading to animals that develop 

at almost normal rate and continue to feed until 3 weeks with an increased body 

weight (see method). Drosophila FB-cells function as storage for nutrients, which 

synthesize and release energy, and accumulates fat and sugars; in our obese animals 

we observed that the at 12 days AEL the size of the cells from the FBs from P0206-

Gal4; UAS-Ni larvae increased (Figure 1C) due also to the accumulation of fats in 

lipid droplets visible by Nile Red staining (Figure 1D). Those P0206-Gal4;UAS-Ni 

animals acquired phenotypic characteristics of obese individuals, including 

increased triglycerides (TAGs), glucose circulating in the hemolymph, resistance of 

fat cells to stimulation with insulin and increased hemocytes in the FB (manuscript 

in submission).  

 

Chronic inflammation in the adipose tissue is characterized by the infiltration of 

macrophages in the fat cells, we therefore analyzed if a similar event was present in 

the FB of our obese animals. We labeled the hemocytes in vivo using the Hml-RFP 

reporter line that specifically expresses Red-Fluorescence protein in hemocytes and 

introduced this transgene to our genetic background. Hml-RFP positive cells were 

monitored over time to visualize and quantify the number of hemocytes infiltrating 

the FB, from control and obese animals at 5 days AEL and at 12 days AEL in the 

obese larvae. These results showed that FBs from P0206-Gal4/Hml-RFP;UAS-Ni 

animals contain at 5 days AEL a small but significant higher number of hemocytes 

in their FBs (5.2%, p<0.05) as compared to control P0206-Gal4/Hml-RFP (Figure 

1E), furthermore at 12 days the percentage of hemocytes in P0206-Gal4/Hml-

RFP;UAS-Ni animals was drastically increased to (17%, p<0.00001). Hemocytes 

are characterized by the expression of high levels of the cell adhesion protein 

SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin or 

BM 40) [41], morphological analysis of FBs from 12 days P0206-Gal4;UAS-Ni 

animals, showed the presence of crown-like structures of hemocytes, positive with 

anti-SPARC antibodies, that surrounded the fat cells, mimicking similar structures 

described in the fat of obese individuals suffering from chronic inflammation (Fig. 

1F). 
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Figure 1:  Obese larvae have increased hemocytes infiltrating the fat cells 

(A) Ecdysone regulation of larval molting and metamorphosis. Reducing the size of the ring gland 

reduces ecdysone level in P0206-Gal4; UAS-Ni animals. (B) Quantitative RT-PCR in whole larvae 

of the indicated genotype showing the relative expression of E74b mRNA. Actin5c was used as 

control. (C) Relative size of cells from the FBs from animals of the indicated genotypes, at 5 and 

12 days AEL. (D) Nile Red staining for lipids, Phalloidin for membranes, and Hoechst for nuclei, 

of FBs. (E) % of hemocytes infiltrating the FBs of animals at 5 or 12 days AEL, of the indicated 

genotype. Data are expressed as percentage of hemocytes in the cells of FBs. (F) Draw and 

confocal photographs of cell from the FB, showing hemocytes stained with anti-SPARC antibodies 

(RED), while nuclei are visualized using Hoechst (BLUE). Error bars represent SEM (standard 

error of the mean) of three independent experiments. * P < 0,05, *** P < 0,001, **** P < 0,0001. 

 

Obese larvae have increased phosphorylation of JNK/SAPK and of ROS production 

in the FB. 

 

Chronic inflammation in obese people is often associated with high levels of reactive 

oxygen species (ROS) and with the activation of the c-Jun-NH2-terminal kinase 

(JNK/SAPK) p46 [15].  
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We therefore analyzed if in our Drosophila model of chronic inflammation, if there 

was an activation of JNK signaling by looking at the levels of phosphorylation of 

JNK/SAPK p46. Western blot analysis using extracts from FBs of larvae from 

P0206-Gal4 at 5 days AEL or P0206-Gal4;UAS-Ni at 5 and 12 days AEL shows an 

increase in the phosphorylation of JNK/SAPK p46 kinase (Figure 2A). 

 

 
 

Figure 2: Obese larvae show activation of JNK/SAPK signaling and increased ROS 

production. (A) Western blot from lysates of FBs showing the level of phosphorylation of 

JNK/SAPN p46 kinase, in P0206-Gal4 (control) and P0206-Gal4;UAS-Ni animals. Actin was 

used as control loading. (B) Confocal photographs (20x) of cells from FBs stained with DHE (red) 

for ROS, and Hoechst (BLUE) for nuclei. 

 

Since ROS are known to induce the activation of the JNK pathway we then analyzed 

if in the FBs from the obese larvae there was an increase in ROS signaling, using 

DHE as a marker. These experiments show that at 5 days AEL, DHE staining 

increased in FBs from P0206-Gal4;UAS-Ni (Figure 2B, middle panel) animals as 

compared to control (Figure 2B, left panel), moreover DHE staining further 

increased at 12 days AEL (Figure 2B, right panel) suggesting that FBs form these 

animals exhibit significant increase in ROS production over time. 

 

Dietary anthocyanins reduce hemocytes infiltration in FBs and phosphorylation of 

JNKSAPK p46. 

 

Flavonoids (FL) and anthocyanins (ACN) are known to have antioxidant effects 

against inflammation-induced oxidative stress. Therefore, we analyzed if the 

presence of FL or ACN in the diet of the obese animals, had an effect on the chronic 

inflammation and stress phenotypes.  

Staged first instar larvae were transferred to normal standard food (NF) or to food 

enriched with FL only or enriched with FL + ACN, herein called ACN (Figure 3A 
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and material and methods) and their effect on the migration of hemocytes in the FBs 

was quantified by visualizing the number of HML-RFP positive cells on dissected 

FBs using a fluorescent microscope. These experiments show that after 5 days of 

feeding with the different diets, only food containing ACN significantly reduces 

from 5.7% to 3.2% the presence of hemocytes in the FBs of P0206-Gal4;UAS-Ni 

animals, while treatment with FL did not have any effect (Figure 3B). At 12 days 

instead both, FL or ACN diets were able to significantly decrease the number of 

hemocytes (Figure 3B). In addition macroscopic analysis of the shape and number 

of hemocytes showed that at 12 days AEL both FL and ACN treatments were able 

to reduce the formation of crown-like structures of hemocytes surrounding the fat 

cells in P0206-Gal4; UAS-Ni animals (middle and left panel) Figure 3C. We then 

analyzed the effect of FL and ACN diets on the phosphorylation of the stress-

response JNK/SAPK p46. FBs from animals growing in the different diets were 

dissected at 5 and 12 days AEL and phosphorylation of JNK/SAPK was analyzed 

by western blot. These experiments showed that at 5 days AEL, feeding with ACN 

significantly reduced the phosphorylation of JNK/SAPK p46 in FBs from P0206-

Gal4;UAS-Ni (Figure 3D), while after 12 days AEL both diets with FL and ACN 

were able to significantly reduce JNK/SAPK p46 phosphorylation, suggesting a 

potential role at later points for FL in reducing oxidative stress. 
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Figure 3: Anthocyanins-rich diet reduces the infiltration of hemocytes in the FBs and the 

phosphorylation of JNK/SAPK. (A) Scheme of the different diets NF: Normal Food, or enriched 

in FL: flavonoids, or ACN: anthocyanins. (B) % of hemocytes in the cells of the FBs from animals 

at of the indicated genotypes and fed with the indicated diets at 5 or 12 days AEL. (C) 

Confocal images showing hemocytes expressing Hml-RFP (RED) and nuclei stained with Hoechst 

(BLUE) from animals at 12 days AEL, upon feeding with NF, FL or ACN enriched diets. (D) 

Western blot from lysates of FBs showing the level of phosphorylation of JNK/SAPN p46 kinase, 

in P0206-Gal4 (control) and P0206-Gal4; UAS-Ni animals fed in FL or ACN enriched diets. FBs 

were taken at 5 or 12 days AEL. Actin was used as control loading. (E) Model of JNK signaling 

and potential action of anthocianins. Error bars represent SEM (standard error of the mean) of 

three independent experiments. * P < 0,05, ** P < 0,01, ***  P < 0,001, ****  P < 0,0001   

 

4. Discussion 

 

Obesity and metabolic disorders are pathological conditions associated to our diet 

enriched of fats and sugars or to a sedentary life, but also to environmental factors 

that may pollute our food with chemicals that affect lipid metabolism. As 
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consequences we are seen an increase in cardiovascular diseases, type 2 diabetes and 

a chronic inflammation of the adipose tissue (ATM) induced by the persistent 

infiltration of macrophages into the fat cells, for which the mechanisms are not 

totally understood but have been associated with an oxidative stress condition 

present between the immune cells in the metabolic tissues. In order to study in vivo 

these relationship, we have taken advantage of the conserved relationship in 

Drosophila between the immune cells (hemocytes) and the fat body (adipose tissue) 

to study how bio-products like flavonoids in particular anthocyanins, that are known 

to act as antioxidants and that are naturally present in our food, may ameliorate or 

counteract the migration of the hemocytes into the FB using our animal model that 

mimics chronic inflammation in vertebrate (ATM). 

 

Anthocyanins are a class of flavonoids classified as bioactive food have been shown 

to ameliorate hyperglycemia, insulin sensitivity and fat accumulation in obese mice 

fed to an high fat diet, while in vertebrates studies identify a beneficial effect by 

anthocyanins in combating inflammation-related diseases such as diabetes, 

cardiovascular diseases and obesity [25,42,43]. Moreover, clinical studies in humans 

demonstrate that higher consumption of anthocyanins is associated with weight loss 

in both men and women, and reduces the risk of developing chronic diseases with a 

mechanism poorly understood [24,44]. 

 

In this study, we are using our innovative model that mimic obesity in flies, where 

upon blocking growth by reducing ecdysone, the animals develop at almost normal 

rate but continue to feed with an increase in body weight and in the fat cell-size, 

these animals acquire the characteristics of obese people, with an accumulation of 

TAGs and insulin resistance (manuscript in preparation). Moreover, these animals 

present an infiltration of hemocytes (macrophage-like cells) within the cells of the 

FB that progressively increases until the formation of the typical “crown-like 

structures” described in obese patients suffering from ATM [5]. We demonstrate that 

in FBs from these obese animals there is increased production of ROS, indicating 

the presence of an oxidative stress that may be responsible to the augmented 

phosphorylation of the JNK/SAPK p46 stress kinase. Because the molecular 

mechanisms that regulate lipid metabolism are highly conserved between humans 

and flies [45,46] and hemocytes have been shown to be functionally equivalent to 

macrophages we can speculate that the mechanisms underline these humoral 
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responses are conserved also in flies. Therefore, we use our obesity model to 

investigate the antioxidant effect of flavonoids and anthocyanins to chronic 

inflammation. In our study, we find that a diet rich in anthocyanins reduces 

hemocytes migration in the larval FB and decreases the accumulation of TAGs in 

the fat cells (not shown) ameliorating several characteristics of the obese 

phenotypes. Moreover, we showed that anthocyanins reduce the production of ROS 

in cells of the FB, and significantly attenuate the phosphorylation of JNK/SAPK p46 

kinase providing evidence that may play a key role in regulating the JNK-mediated 

cellular stress responses and to control ROS signaling. 

 

The interplay of signals that regulate the non-autonomous responses between 

hemocytes and the cells of the FB is coming up as a new field for important studies, 

indeed recently hemocytes have been shown to be responsible of mediating an 

humoral immune response in a model for tumor growth, were they were shown to 

trigger signals responsible of killing the tumor cells through a non autonomous 

mechanism mediated by the activation of cytokines of the Toll and Eiger/TNFα by 

the fat body [34]. More recently, hemocytes were shown that upon stress conditions 

they are able to migrate near epithelial cells and to produce ROS to induced the 

release of Eiger/TNFα by the epithelial cells through the activation of the JNK 

signaling pathway, suggesting also in this case the presence of non-autonomous 

signals between the hemocytes and the cell of the epithelium necessary for tissue 

homeostasis [47] [35,48]. In a similar way, we can speculate that the hemocytes in 

the FB from obese animals maybe be activated by the oxidative stress signals (ROS), 

present in the FB, that trigger signals to induce the production of cytokines of the 

Toll and Eiger/TNFα that further aggravate the oxidative stress condition that attract 

the hemocytes that constitutively migrate into the fat cells causing a status of chronic 

inflammation. 

In our experiments, we show that anthocyanins are able to reduce the activation of 

JNK/SAPK p46 stress kinase. As mention before, JNK pathway is activated 

upstream by ROS and by cytokines including Eiger/TNFα, this pathway is inhibited 

by a negative regulatory feed beck that induces the transcription of the phosphatase 

puckered (Figure 3E). In our model, we can speculate that anthocyanins may either 

directly block cytokines upstream of JNK signal, for example by controlling 

Eiger/TNFα signaling or they may contribute to the activation of the negative 

feedback that involved the activity of puckered. 
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Interestingly, anthocyanins were shown to act concomitantly with detoxification 

enzymes such as superoxide dismutase, catalase, glutathione peroxidase, 

glutathione-S-transferase (GST) and glutathione reductase to reduce oxidation. In 

Drosophila Gst-D1 [49] and jafrac, an inhibitor of cell death, together with 

puckered, were shown to be transcriptional targets of jun-fos activity in response to 

the activation of JNK pathway, and these genes were shown to negatively counteract 

the oxidative stress response [50]. Our preliminary data however did not find any 

regulation in the expression of GstD1 in the fat cells from the obese animals upon 

feeding with FL or ACN anthocyanins (data not shown) suggesting that probably 

this enzyme is not involved in the regulation of JNK signaling by anthocyanins in 

these cells. 

 

In conclusion, with the present study we provide for the first time a strong evidence 

of the potential use of anthocyanins in the diet to control chronic- inflammation and 

provide a link to the oxidative stress that characterize the adipose tissue in obese 

animals. We were able to evidence the ability of anthocyanins to decrease in vivo 

the phosphorylation of JNK/SAPK p46 stress kinase, thus providing a new insight 

into the mechanism of phenolic compounds in the treatment of inflammation in 

adipose tissues, a field of currently study since the lack of a better knowledge of the 

mechanisms that regulate or control ATM in pathologies such as obesity and 

metabolic disorders. 

Acknowledgements 

We thank Sheri Zola and Maria Teresa Allocca for helpful discussion and critical 

reading of the manuscript. Miriam Ascagni for confocal facility. This work was 

supported by a Public Health Service grant from the NIH-DK085047 to PB and SZ. 

“Fondazione Cariplo 2014-0703” and “EHDN-689” to PB and AV.  

 

The authors declare that there is no conflict of interest regarding the publication of 

this paper. 

 
 

 

 

References 

 



41 
 

1. Chung, W.; Park, C.G.; Ryu, O.H. Association of a new measure of obesity with hypertension 

and health-related quality of life. PloS one 2016, 11, e0155399. 

2. Yang, C.; Kong, A.P.S.; Cai, Z.; Chung, A.C.K. Persistent organic pollutants as risk factors for 

obesity and diabetes. Current diabetes reports 2017, 17, 132. 

3. Karnik, S.; Kanekar, A. Childhood obesity: A global public health crisis. International journal of 

preventive medicine 2012, 3, 1-7. 

4. Kaila, B.; Raman, M. Obesity: A review of pathogenesis and management strategies. Canadian 

journal of gastroenterology = Journal canadien de gastroenterologie 2008, 22, 61-68. 

5. Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. The 

Journal of clinical investigation 2003, 112, 1785-1788. 

6. Mraz, M.; Haluzik, M. The role of adipose tissue immune cells in obesity and low-grade 

inflammation. The Journal of endocrinology 2014, 222, R113-127. 

7. Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011, 

29, 415-445. 

8. Lee, B.C.; Lee, J. Cellular and molecular players in adipose tissue inflammation in the 

development of obesity-induced insulin resistance. Biochimica et biophysica acta 2014, 1842, 

446-462. 

9. Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harbor 

perspectives in biology 2012, 4. 

10. Horng, T.; Hotamisligil, G.S. Linking the inflammasome to obesity-related disease. Nature 

medicine 2011, 17, 164-165. 

11. Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and 

infectious diseases. Frontiers in immunology 2014, 5, 491. 

12. Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory 

properties of the cytokine interleukin-6. Biochimica et biophysica acta 2011, 1813, 878-888. 

13. Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: 

Pathogenesis and therapeutic strategies. Life sciences 2016, 148, 183-193. 

14. Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic 

syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obesity research & 

clinical practice 2013, 7, e330-341. 

15. Kyriakis, J.M.; Banerjee, P.; Nikolakaki, E.; Dai, T.; Rubie, E.A.; Ahmad, M.F.; Avruch, J.; 

Woodgett, J.R. The stress-activated protein kinase subfamily of c-jun kinases. Nature 1994, 369, 

156-160. 

16. Martin-Blanco, E.; Gampel, A.; Ring, J.; Virdee, K.; Kirov, N.; Tolkovsky, A.M.; Martinez-

Arias, A. Puckered encodes a phosphatase that mediates a feedback loop regulating jnk activity 

during dorsal closure in drosophila. Genes & development 1998, 12, 557-570. 

17. Engin, A.B. What is lipotoxicity? Advances in experimental medicine and biology 2017, 960, 

197-220. 

18. Rosca, M.G.; Vazquez, E.J.; Chen, Q.; Kerner, J.; Kern, T.S.; Hoppel, C.L. Oxidation of fatty 

acids is the source of increased mitochondrial reactive oxygen species production in kidney 

cortical tubules in early diabetes. Diabetes 2012, 61, 2074-2083. 

19. Boden, G. Obesity and free fatty acids. Endocrinology and metabolism clinics of North America 

2008, 37, 635-646, viii-ix. 

20. Petroni, K.; Pilu, R.; Tonelli, C. Anthocyanins in corn: A wealth of genes for human health. 

Planta 2014, 240, 901-911. 



42 
 

21. Lee, Y.M.; Yoon, Y.; Yoon, H.; Park, H.M.; Song, S.; Yeum, K.J. Dietary anthocyanins against 

obesity and inflammation. Nutrients 2017, 9. 

22. Sotibran, A.N.; Ordaz-Tellez, M.G.; Rodriguez-Arnaiz, R. Flavonoids and oxidative stress in 

drosophila melanogaster. Mutation research 2011, 726, 60-65. 

23. Prochazkova, D.; Bousova, I.; Wilhelmova, N. Antioxidant and prooxidant properties of 

flavonoids. Fitoterapia 2011, 82, 513-523. 

24. Bertoia, M.L.; Rimm, E.B.; Mukamal, K.J.; Hu, F.B.; Willett, W.C.; Cassidy, A. Dietary 

flavonoid intake and weight maintenance: Three prospective cohorts of 124,086 us men and 

women followed for up to 24 years. Bmj 2016, 352, i17. 

25. Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-o-beta-d-glucoside-rich 

purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of 

nutrition 2003, 133, 2125-2130. 

26. Zheng, H.; Yang, X.; Xi, Y. Fat body remodeling and homeostasis control in drosophila. Life 

sciences 2016, 167, 22-31. 

27. Liu, Y.; Liu, H.; Liu, S.; Wang, S.; Jiang, R.J.; Li, S. Hormonal and nutritional regulation of 

insect fat body development and function. Arch Insect Biochem Physiol 2009, 71, 16-30. 

28. Buchon, N.; Silverman, N.; Cherry, S. Immunity in drosophila melanogaster--from microbial 

recognition to whole-organism physiology. Nature reviews. Immunology 2014, 14, 796-810. 

29. Ganesan, S.; Aggarwal, K.; Paquette, N.; Silverman, N. Nf-kappab/rel proteins and the humoral 

immune responses of drosophila melanogaster. Curr Top Microbiol Immunol 2011, 349, 25-60. 

30. Leulier, F.; Lemaitre, B. Toll-like receptors--taking an evolutionary approach. Nature reviews. 

Genetics 2008, 9, 165-178. 

31. Tokusumi, Y.; Tokusumi, T.; Shoue, D.A.; Schulz, R.A. Gene regulatory networks controlling 

hematopoietic progenitor niche cell production and differentiation in the drosophila lymph gland. 

PloS one 2012, 7, e41604. 

32. Lemaitre, B.; Hoffmann, J. The host defense of drosophila melanogaster. Annu Rev Immunol 

2007, 25, 697-743. 

33. Evans, C.J.; Hartenstein, V.; Banerjee, U. Thicker than blood: Conserved mechanisms in 

drosophila and vertebrate hematopoiesis. Developmental cell 2003, 5, 673-690. 

34. Parisi, F.; Stefanatos, R.K.; Strathdee, K.; Yu, Y.; Vidal, M. Transformed epithelia trigger non-

tissue-autonomous tumor suppressor response by adipocytes via activation of toll and eiger/tnf 

signaling. Cell reports 2014, 6, 855-867. 

35. Fogarty, C.E.; Diwanji, N.; Lindblad, J.L.; Tare, M.; Amcheslavsky, A.; Makhijani, K.; Bruckner, 

K.; Fan, Y.; Bergmann, A. Extracellular reactive oxygen species drive apoptosis-induced 

proliferation via drosophila macrophages. Current biology : CB 2016, 26, 575-584. 

36. Colombani, J.; Bianchini, L.; Layalle, S.; Pondeville, E.; Dauphin-Villemant, C.; Antoniewski, 

C.; Carre, C.; Noselli, S.; Leopold, P. Antagonistic actions of ecdysone and insulins determine 

final size in drosophila. Science 2005, 310, 667-670. 

37. Pilu, R.; Cassani, E.; Sirizzotti, A.; Petroni, K.; Tonelli, C. Effect of flavonoid pigments on the 

accumulation of fumonisin b1 in the maize kernel. Journal of applied genetics 2011, 52, 145-152. 

38. Makhijani, K.; Alexander, B.; Tanaka, T.; Rulifson, E.; Bruckner, K. The peripheral nervous 

system supports blood cell homing and survival in the drosophila larva. Development 2011, 138, 

5379-5391. 



43 
 

39. Parisi, F.; Riccardo, S.; Zola, S.; Lora, C.; Grifoni, D.; Brown, L.M.; Bellosta, P. Dmyc 

expression in the fat body affects dilp2 release and increases the expression of the fat desaturase 

desat1 resulting in organismal growth. Developmental biology 2013, 379, 64-75. 

40. Owusu-Ansah, E.; Banerjee, U. Reactive oxygen species prime drosophila haematopoietic 

progenitors for differentiation. Nature 2009, 461, 537-541. 

41. Martinek, N.; Zou, R.; Berg, M.; Sodek, J.; Ringuette, M. Evolutionary conservation and 

association of sparc with the basal lamina in drosophila. Dev Genes Evol 2002, 212, 124-133. 

42. Xie, B.; Waters, M.J.; Schirra, H.J. Investigating potential mechanisms of obesity by 

metabolomics. Journal of biomedicine & biotechnology 2012, 2012, 805683. 

43. Azzini, E.; Giacometti, J.; Russo, G.L. Antiobesity effects of anthocyanins in preclinical and 

clinical studies. Oxidative medicine and cellular longevity 2017, 2017, 2740364. 

44. Guo, H.; Ling, W. The update of anthocyanins on obesity and type 2 diabetes: Experimental 

evidence and clinical perspectives. Reviews in endocrine & metabolic disorders 2015, 16, 1-13. 

45. Hirabayashi, S. The interplay between obesity and cancer: A fly view. Disease models & 

mechanisms 2016, 9, 917-926. 

46. Trinh, I.; Boulianne, G.L. Modeling obesity and its associated disorders in drosophila. Physiology 

2013, 28, 117-124. 

47. Igaki, T.; Miura, M. The drosophila tnf ortholog eiger: Emerging physiological roles and 

evolution of the tnf system. Seminars in immunology 2014, 26, 267-274. 

48. Wang, M.C.; Bohmann, D.; Jasper, H. Jnk signaling confers tolerance to oxidative stress and 

extends lifespan in drosophila. Developmental cell 2003, 5, 811-816. 

49. Udomsinprasert, R.; Bogoyevitch, M.A.; Ketterman, A.J. Reciprocal regulation of glutathione s-

transferase spliceforms and the drosophila c-jun n-terminal kinase pathway components. The 

Biochemical journal 2004, 383, 483-490. 

50. Khoshnood, B.; Dacklin, I.; Grabbe, C. Urm1: An essential regulator of jnk signaling and 

oxidative stress in drosophila melanogaster. Cellular and molecular life sciences : CMLS 2016, 

73, 1939-1954. 

 

 

 

 

 



44 
 

Chapter 4 

 

 

Front. Genet., 01 March 2019 

| https://doi.org/10.3389/fgene.2019.00051 

 

Drosophila melanogaster: a model organism to study cancer 

 

 
Zhasmin Mirzoyan1, Manuela Sollazzo2, Mariateresa Allocca1, Alice Maria Valenza3,  

Daniela Grifoni2 and Paola Bellosta1-4 

 

 

1. Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 

9, 38123 Trento Italy 

2. Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna Italy 

3. Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy 

4- Department of Medicine, NYU Langone Medical Center New York, 10016 NY 

 

 

Abstract 

 

Cancer is a multistep disease driven by the activation of specific oncogenic pathways 

concomitantly with the loss of function of tumor suppressor genes that act as 

sentinels to control physiological growth. The conservation of most of these 

signaling pathways in Drosophila, and the ability to easily manipulate them 

genetically, has made the fruit fly a useful model organism to study cancer biology. 

In this review we outline the basic mechanisms and signaling pathways conserved 

between humans and flies responsible of inducing uncontrolled growth and cancer 

development. Second, we describe classic and novel Drosophila models used to 

study different cancers, with the objective to discuss their strengths and limitations 

on their use to identify signals driving growth cell autonomously and within organs, 

drug discovery and for therapeutic approaches. 
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45 
 

 

Keywords:  Drosophila cancer modeling, cancer biology, oncogene, tumor 

suppressor, tissue growth, signaling, metabolism, therapeutic approaches 

 

Introduction 

 

The fruit fly, Drosophila melanogaster, is used as a model organism to study 

disciplines ranging from fundamental genetics to the development of tissues and 

organs. Drosophila genome is 60% homologous to that of humans, less redundant, 

and about 75% of the genes responsible for human diseases have homologs in flies 

(Ugur et al., 2016). These features, together with a brief generation time, low 

maintenance costs, and the availability of powerful genetic tools, allow the fruit fly 

to be eligible to study complex pathways relevant in biomedical research, including 

cancer. Indeed, publications that use flies to model cancer have exponentially 

increased in the last 10 years, as shown in the graph of Figure 1, suggesting the 

relevance of this model to cancer research. 

 
Figure 1: Graph representing the number of publications in PubMed found with the terms 

“Drosophila cancer model”, in the last 48 years. 

 

In this review we first describe the basic biological mechanisms responsible for 

uncontrolled growth conserved between humans and flies. We placed a particular 

emphasis on the characterization of epithelial tumors from most studied models (gut 

and brain), to novel approaches for studying tumor-induced angiogenesis, prostate, 

thyroid and lung cancers, with the goal to discuss their strengths and limitations. In 

the second part, we analyze few physiological mechanisms that uncover potential 
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non-autonomous mechanisms controlling growth, including the relation between the 

immune cells (macrophages) and the growth of epithelial cells, or the function of 

lipid metabolism in cancer growth. Finally, we discuss how Drosophila models are 

used to find novel interesting therapeutic approaches. 

 

1.0 Properties of epithelial cancer cells 

Cancer cells are characterized by unrestrained proliferation that results from defects 

in signaling driving cellular growth, apoptosis and changes in metabolic pathways. 

At cellular level, the hyperproliferative status of cancer cells is mainly due to the 

activation of growth signals induced by proto-oncogenes (e.g. the RAS/RAF/MAPK 

axis), which function downstream of receptor signaling cascades, and are 

deregulated in 25% of human tumors (Samatar and Poulikakos, 2014). Tumor cells 

escape the anti-proliferative effect of tumor suppressor genes, such as RB 

(retinoblastoma-associated) and TP53 genes (Duronio and Xiong, 2013), through 

mutations in these genes, which result in uncontrolled growth (Hanahan and 

Weinberg, 2000, 2011; Hariharan and Bilder, 2006). Apoptotic cell death represents 

another physiological mechanism to maintain cellular homeostasis, and cancer cells 

have developed strategies to evade apoptosis, i.e. by increasing the activity of anti-

apoptotic genes (Bcl-2, Bcl-xL, Bcl-w) and of pro-survival factors (Igf-1, Igf-2) or by 

downregulating the action of pro-apoptotic genes (Bax, PUMA, Bin) (Hanahan and 

Weinberg, 2011). Another characteristic of cancer cells is the reactivation of 

telomerase, present in 90% of human cancers, that allows them to replicate 

unlimitedly (Kumar et al., 2016).  

Cancer cells also exhibit alterations in metabolic pathways that contribute to their 

survival. Rapidly proliferating cells have a high metabolic rate and suffer from low 

oxygen conditions (hypoxia). In epithelial tumors, this condition triggers the so-

called angiogenic “switch” where the quiescent vascular network is induced to 

proliferate by the secretion of pro-angiogenic factors, such as VEGF (Vascular 

Endothelial Growth Factor) and FGF (Fibroblast Growth Factor) (Hida et al., 2018), 

allowing for the formation of new vessels that penetrate into the tumor mass to 

supply oxygen and nutrients (Carmeliet and Jain, 2011). Cancers cells also exhibit a 

metabolic switch where they reprogram their metabolism to use an alternative and 

less abundant anabolic pathway to sustain their growth. In particular they switch 

from oxidative phosphorylation to anaerobic glycolysis, where glucose is used to 
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produce lactate, through a process called the “Warburg effect” (Pavlova and 

Thompson, 2016; Vander Heiden and DeBerardinis, 2017). This metabolic switch is 

not yet completely characterized but is supported by the activation of oncogenes, 

including Myc that also activates glutaminolysis to fuel the TCA cycle with 

anaplerotic reactions to produce the intermediates necessary for cellular biosynthesis 

(Hsieh and Dang, 2016).  

The last stage of tumorigenesis is represented by the invasive and metastatic 

capabilities of tumor cells to disrupt the apical-basal cell polarity, a process that is 

associated with the downregulation of cell-cell contact molecules and the release of 

metalloproteases (MMP1), lytic enzymes that degrade the extracellular matrix 

(ECM) allowing tumor cells to escape and colonize an environment that suites them 

and to acquire new oncogenic properties (Lambert et al., 2017; Massague and 

Obenauf, 2016). A variety of studies are now focused on how the tumor micro 

environment (TME), a specific niche composed of fibroblasts, lymphocytes and 

immune cells, that may shape pre-cancer cells for their progression into cancer cells 

and it may select the development of metastasis (Massague and Obenauf, 2016). 

Emergent evidence suggests also a key role for non-autonomous signals released by 

the cells composing the niche, particularly from cancer-associated fibroblasts 

(CAFs), that are essential to support the growth of cancer cells in this  “new” 

metabolic environment (Lambert et al., 2017). 

2.0 Cancer modeling in Drosophila  

Most of the signaling pathways controlling cell growth and invasion in mammals 

have a conserved function in flies; allowing their modulation into several models 

that mimic a tumor’s biology in a simple model organism like Drosophila (Millburn 

et al., 2016). The combination of genetic screens with the availability of powerful 

recombination techniques enabled also a rapid characterization of the primary 

function of conserved oncogenes and of tumor suppressor genes in a whole animal 

(Sonoshita and Cagan, 2017). In addition, recent studies using Drosophila imaginal 

discs explored the mechanisms that govern growth in epithelial tumors and their 

interaction with the local TME and stromal cells, including some steps in the 

recruitment of the immune cells (macrophages) to the tumor mass (Herranz et al., 

2016).  
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3.0 Epithelial tumors in Drosophila   

About 90% of human cancers are of epithelial origin (Hanahan and Weinberg, 2000). 

Epithelial tissues are characterized by a specific cell architecture composed of 

junctions and apical and baso-lateral membrane domains that are crucial for the 

maintenance of cell-physiological functions. Loss of cell adhesion and cell polarity, 

with an increase of cell motility, are indeed characteristic early cancer traits. In this 

context, Drosophila larval imaginal discs, are a monolayer epithelium that is limited 

apically by a squamous epithelium (peripodial membrane) and, basally to the notum, 

by a layer of myoblasts embedded in Extracellular Matrix, and constitute a perfect 

system in which to model the onset of epithelial cancer progression. These larval 

organs are indeed morphologically and biochemically comparable to mammalian 

epithelia (Wodarz and Nathke, 2007). Moreover, the prominent signaling pathways 

that regulate growth in humans are conserved in the fruit fly (Figure 2), allowing the 

use of this animal model to examine the hallmarks of cancer (St Johnston, 2002). 

During the last few years, the imaginal wing and eye discs have been used 

successfully to study tumor growth and invasion, to investigate the function of 

cancer genes, and to perform chemical screenings (Tipping and Perrimon, 2014). 

The imaginal discs also represent an excellent model to analyze oncogenic 

cooperation: thanks to the use of the MARCM system (Lee and Luo, 1999), it is 

feasible to induce simultaneously in single cells mutations in tumor suppressor genes 

(e.g. mutations in cell polarity genes and Hippo pathway components and 

interactors) and oncogenic activating mutations, or to overexpress specific genes 

(e.g. EGFR, Ras, Myc, Yorki), resulting in tissue overgrowth, alteration of the 

normal tissue architecture, disruption of the basement membrane, and 

invasive/metastatic behavior (Brumby and Richardson, 2003; Pagliarini and Xu, 

2003a; Wu et al., 2010). 
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Figure 2: Major pathways converging on uncontrolled growth in Drosophila epithelial cells. 

The signaling pathways outlined confer growth, migration and invasive capabilities to epithelial 

cells both in vertebrates and flies. Models that mimic the growth of epithelial cancer cells and their 

ability to undergo metastasis in Drosophila have been established by inducing the cooperation 

between oncogenes (RED) like the active form of Ras (RasV12) together with the loss of function 

of cell polarity genes (GREEN) (Brumby and Richardson, 2003; Pagliarini and Xu, 2003b). 

Alteration of cell polarity with the downregulation of the SWH (Salvador-Hippo-Warts) pathway, 

together with RasV12, triggers downstream events, including activation of the MAPK signaling that 

stabilize Myc protein (Galletti et al., 2009) resulting in robust cellular growth. Activation of the 

JNK signaling, with the concomitant loss of cell polarity, induces metalloproteases (MMP-1) and 

confers to the epithelial cells the distinct characteristics of migration and invasion, hallmarks of 

tumor growth (Igaki et al., 2006; Ma et al., 2017; Uhlirova et al., 2005). 

 

3.1 Marks of alteration in epithelial cells 

 

3.1.1 Loss of cell polarity 

 

Cellular junctions and a proper apical-basal cell polarity are fundamental for the 

maintenance of epithelial tissue architecture and function. During early cancer 

stages, tissues lose these properties and cells subvert their normal growth rate and 
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acquire invasive and migratory behaviors (Bryant and Mostov, 2008; Wodarz and 

Nathke, 2007). In Drosophila, three complexes establish and maintain epithelial 

polarity: the Crumbs/Stardust/PATJ/Bazooka, the Par6/aPKC (atypical protein 

kinase-C) and the Scrib/Dlg/Lgl (Scribble/Discs large/Lethal giant larvae) 

complexes, which are respectively placed at the apical, subapical and baso-lateral 

membrane domains. Alterations in these proteins provoke continued cell 

proliferation, loss of differentiation and complete loss of tissue architecture, 

resulting in neoplastic overgrowth (Bilder, 2004; Grzeschik et al., 2010; Johnson 

and Halder, 2014). lgl was the first neoplastic tumor suppressor gene discovered in 

Drosophila and its loss leads to an abnormal growth of the imaginal structures and 

the larval brain. In addition, lgl mutant tissues, and tissues bearing dlg or scrib 

mutation, have the ability to form secondary tumors in the thorax, brain, wings, 

muscles, intestine and ovaries (Woodhouse et al., 1998). The loss of cell polarity 

impacts cell proliferation through the deregulation of the Hippo (Hpo) pathway, a 

signaling cascade involved in organ size maintenance (Lu et al., 2010). It is not yet 

fully known how lgl activity interacts with the Hpo cascade, but it was observed that 

its downregulation up-regulates cell cycle genes (such as Cyclin E and E2F1) 

(Grzeschik et al., 2007) and permits the nuclear translocation of Yorkie (Yki), the 

downstream effector of the Hippo pathway, causing the activation of its target genes, 

including MYC, that was found to be important for the growth of lgl mutant clones 

in a competitive environment (Froldi et al., 2010). In humans, two lgl homologs have 

been discovered, HUGL-1 and HUGL-2, with HUGL-1 rescuing all the defects of 

the fly lgl mutant (Grifoni et al., 2004). HUGL-1 loss of function has been associated 

with a series of human malignancies (Grifoni et al., 2007; Lu et al., 2009; 

Schimanski et al., 2005). Finally, while the human genome encodes for only one 

homolog of the tumor suppressor scrib, a number of homologs are known for dlg 

which have been implicated in different types of cancer (Halaoui and McCaffrey, 

2015). 

 

3.1.2 Growth Signaling 

 

The Salvador-Warts-Hippo (SWH) tumor suppressor pathway was discovered 

first in Drosophila as a regulator of organ size (Pan, 2010; Yu et al., 2015) and later 

in humans, where it was found to be fundamental in the regulation of cancer growth 

(Harvey et al., 2013). The physiological activation of the Hippo (HPO) kinase, 



51 
 

(MST1/2 in human)(Harvey et al., 2003) consists in the phosphorylation of Warts 

(WTS), (LATS1/2 in human) (Genevet et al., 2010; Yu et al., 2010) and in the 

activation of the phosphorylated core complex, that includes Salvador (SAV in 

human)(Tapon et al., 2002) and Mob/MATS, that in turn, phosphorylate Yki 

(YAP/TAZ in humans)(Oh and Irvine, 2008). Phosphorylated Yki is sequestered and 

degraded in the cytoplasm, resulting in the inhibition of its nuclear transcriptional 

activity and oncogenic function (Harvey et al., 2013). Upstream, the Hippo cascade 

is regulated by components of cell junctions, including cell adhesion molecules such 

as Merlin, a homolog of the human Neurofibromatosis Type 2 (NF2) (Genevet et al., 

2010; Yu et al., 2010), which acts as tumor suppressor; the cadherin Fat in complex 

with Dachsous; and by cell polarity regulators such as Crumbs (Harvey et al., 2013; 

Robinson et al., 2010). Alterations in the composition of the core proteins (HPO, 

WTS, SAV, MATS) of the pathway trigger Yki translocation into the nucleus that 

binds tissue-specific partners and induces the expression of its target genes, among 

them: CyclinE, dIAP1 and MYC (Harvey et al., 2003; Neto-Silva et al., 2010; 

Pantalacci et al., 2003; Ziosi et al., 2010). This articulated system is also tightly 

regulated by other signaling pathways: for example, in the Drosophila imaginal wing 

disc, Lgl or aPKC deregulation results in JNK activation to promote Yki nuclear 

translocation via phosphorylation of Ajuba (Jub), an upstream regulator of the 

cascade that binds to and inhibits Wts kinase activity (Sun and Irvine, 2013). In 

addition to the regulation of cell-cell interaction signals, components of the Hippo 

pathway have been found to be sensitive to mechanical stress (Panciera et al., 2017). 

This mechanotransduction function is critical in the control of physiological 

pathways, and its deregulation may contribute to the abnormal cell behavior in 

diseases such as cancer, where the cells in the tumor have to sustain physical forces 

generated by tissue overgrowth. Interestingly, this last function has shown 

differences in the behavior of Yki between human and flies: indeed, in Drosophila 

the Yki protein does not respond to integrin stimulation, while in mammalians 

integrin signaling promotes YAP/TAZ activity. One possible explanation for this 

different behavior may be that the N-terminus of Yki is missing a domain necessary 

to bind PDZ-containing proteins, which is found in its human counterpart YAP, and 

is necessary for the activation of the integrin-Src adhesion branch of the pathway 

(Elbediwy and Thompson, 2018). However, an interesting and potential explanation 

for this difference comes from a comparative analysis of the Yki protein and the 

evolution of the different epithelia: this analysis outlines how in Drosophila the 
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apical membrane of the columnar epithelium is well differentiated in its function to 

activate the Hippo pathway, whereas in mammals the multilayer of cells lacks a 

functional apical domain, and the activation of YAP/TAZ relies on the 

activation/signal from the integrin adhesion pathways of the stem cells on the basal 

layer of the epithelium (Elbediwy and Thompson, 2018). 

 

The RAS/RAF/ERK signaling cascade is one of the most conserved pathways in all 

organisms, including Drosophila. This pathway is part of the MAP kinase signaling 

that, in addition to ERK1/2, also includes JNK1/2/3, p38/MAPK and ERK5, which 

mainly respond to stress activators (Morrison, 2012). Highly conserved in flies, 

ERK1/2 are activated by growth factors such as EGF or FGFs. These ligands bind 

to receptor tyrosine kinases (RTKs) to activate downstream signaling, in particular 

its core complex, which is represented by the guanidine exchange factor Son of 

Sevenless (SOS) that, in turn, activates the small G proteins RAS on the cell 

membrane. This leads to RAF activation and to the formation of the complex with 

the kinase D-Sor also called MAPKK or MEK that, upon phosphorylation of Rolled, 

the fly homolog of MAPK or ERK kinases, induces the activation of its final targets 

(Shilo, 2014). ERK in flies has much fewer targets than those described in 

vertebrates, the most common being the ETS-domain protein Pointed (Pnt). In 

particular PntP2, needs to be phosphorylated for its activation and is the principal 

activator of transcription downstream of many RTKs, and PntP1 is transcriptionally 

induced by MAPK (Shilo, 2014). A second transcriptional repressor is Capicua 

(Cic), an HMG box-containing protein highly conserved in vertebrates (Simon-

Carrasco et al., 2018). Interestingly, in the last couple of years, this protein was found 

to possess oncogenic properties and be overexpressed in many tumors (Simon-

Carrasco et al., 2018). In addition, Cic activity regulates co-target genes upon Yki 

activation, placing this protein at the crossroads of RTKs and SWH pathways 

(Simon-Carrasco et al., 2018). 

Even though MAPK targets in Drosophila are less abundant than in mammals, its 

activation and translocation to the nucleus results in a growth phenotype mimicking 

a few characteristic steps of growth in tumor cells (Brumby et al., 2011). Activation 

of Ras is considered a cancer distinctive trait both in Drosophila and humans, and it 

represents one of the strategies to model human cancer in flies. In Drosophila there 

are three Ras genes but only Ras1 has functional homology with mammalian RAS. 

In the epithelial cells of the wing imaginal disc, Ras1 activation triggers 
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hyperproliferation but also determines cell fate (Prober and Edgar, 2000). Ras 

activation is at the crossroads of other growth factor signaling cascades: recently, a 

link to Hpo function was shown in Drosophila epithelial cells, where Ras activation 

was able to induce the tissues to switch from a pro-differentiative to a pro-growth 

program by modulating SWH’s transcriptional output (Pascual et al., 2017). Ras 

increases cell proliferation also through the transcriptional regulation of growth 

factors and their receptors. For example, it helps promote angiogenesis-like 

mechanisms in tracheal development through secretion of the FGF/EGFR molecules 

(Grifoni et al., 2015; Petit et al., 2002); its activation stabilizes pro-growth signals 

including MYC (Prober and Edgar, 2000), and inhibits pro-apoptotic molecules like 

Hid (Bergmann et al., 1998). Because of all these functional homologies to human 

RAS, its activation in Drosophila is considered a good method to establish models 

that mimic tumor growth. 

 

The JNK Signaling Pathway is activated mainly by oxidative stress, producing 

reactive oxygen species (ROS), and by Eiger, the Drosophila homolog of TNF- . 

Its function is variable and depends also on the cellular environment: it can indeed 

induce cell proliferation and migration, but its major role is to induce apoptosis 

(Igaki, 2009). The signaling core is characterized by Hemipterus/Hep (JNKK) (Glise 

et al., 1995), Basket/Bsk (JNK) (Stronach, 2005) and the AP-1 complex, that 

functions as negative feedback by up-regulating the expression of the Puckered 

phosphatase (Martin-Blanco et al., 1998). The AP-1 complex is composed of Fra 

(Fos-Related Antigen) and dJun (Drosophila Jun) and is the final effector of the 

cascade (Kockel et al., 2001). Upstream Hep is phosphorylated by many JNKK 

kinases (Tak1-12, Mekk1, Ask1, Slpr) and can also be activated by different indirect 

stimuli (e.g. RAS, JNKKKK/Msn, and Eiger). Cell death is induced by the 

expression of the pro-apoptotic genes hid, reaper and grim, whose activity inhibits 

the pro-survival protein dIAP1 (Weston and Davis, 2007). In Drosophila cancer 

cells, the JNK pathway plays a dual role, by suppressing or promoting growth 

depending on the context (Brumby and Richardson, 2003; Cordero et al., 2010; 

Uhlirova et al., 2005). lgl, scrib and dlg mutant cells undergo JNK-mediated 

apoptosis resulting in a mechanism of tumor suppression (Brumby and Richardson, 

2003; Igaki et al., 2006; Uhlirova et al., 2005I). On the contrary, in tumor cells with 

active RAS, apoptosis is blocked and JNK signaling acts as a tumor promoter 

transcribing genes involved in growth and invasion such as MMP1 (Igaki et al., 



54 
 

2006; Uhlirova and Bohmann, 2006). The overexpression of activated RAS together 

with Hep (rasv12hepwt) gives cells invasive and metastatic abilities, highlighting how 

these pathways converge to induce transformation in epithelia. 

 

The PI3K/Target of rapamycin (TOR) signaling pathway is a highly conserved 

key regulator of growth.. The binding of insulin-like peptides (ILPs) (fly’s insulin) 

to the receptor (InR) results in the phosphorylation of chico/IRS1-4, and the 

production of phosphatidylinositol-3, 4,5-triphosphate (PIP3) by PI3K, a reaction 

that is counteracted by the lipid phosphatase PTEN (Grewal, 2009). PIP3 recruits 

several Ser/Thr kinases to the plasma membrane, including Akt/PKB and PDK1 (3’-

phosphoinosite-dependent protein kinase-1), while its activation results in the 

inhibition of Glycogen Synthase Kinase-beta (GSK3- ), a conserved kinase that not 

only controls energy metabolism by inactivation of Glycogen Synthase, but also 

regulates Wnt signaling by controlling -catenin/armadillo (Xu et al., 2009) and 

Myc stability (Bellosta and Gallant, 2010). Activation of Akt also inhibits Tuberous 

Sclerosis Complex 1 and 2 (TSC1/2), a tumor suppressor binary complex that 

negatively regulates Rheb, a GTPase upstream of TOR kinase responsible for the 

activation of TORC1. TOR is found in two complexes: TORC1, which includes 

Raptor and LST8 adaptor molecules, is sensitive to amino acids and is inhibited by 

rapamycin; and TORC2, that is composed of LST8 and Rictor adaptor molecules, 

and does not respond to amino acids or rapamycin (Saxton and Sabatini, 2017). 

Activation of TORC1 results in phosphorylation of ribosomal protein kinase p-70-

S6 (S6K) and of eukaryotic translation initiation factor 4E-binding protein 1(4E-

BP1), thereby triggering protein synthesis and initiation of translation. Insulin and 

TOR activities are also balanced by a negative feedback mechanism that is activated 

when S6K is hyper-activated to counteract insulin activity. Under this condition, 

S6K phosphorylates IRS1-4/chico triggering its internalization and subsequent 

proteasomal degradation. This feedback mechanism is reduced in pathological 

conditions, such as the Tuberous Sclerosis Complex syndrome (TSC), where cells 

carrying tsc1 or tsc2 mutations display an abnormal increase in size and exhibit 

constitutive phosphorylation of S6K (Saxton and Sabatini, 2017). As members of 

PI3Ks and TOR signaling are frequently activated in human tumors, they are 

attractive targets for cancer treatment. 

 

3.1.3 Myc and Cell Competition. 
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MYC is one of the most studied oncogenes, and its misexpression is associated with 

various tumor types including meningioma, Burkitt’s lymphoma, medulloblastoma 

and hepatocellular carcinoma (Hsieh and Dang, 2016). Drosophila Myc is the sole 

fly member of the family of transcription factors that in mammals is composed of 

three genes (N-, L-, and c-MYC) (Gallant et al., 1996; Schreiber-Agus et al., 1997). 

Hypomorphic alleles of myc in flies are developmentally delayed and show a 

reduction in cell size resulting in smaller flies (hence the name of the mutant as 

diminutive= small) (Johnston et al., 1999), while null mutants die during larval stage 

(Pierce et al., 2004). Notably, ubiquitous expression of myc increases cell mass 

resulting in enrichment of genes encoding components of the nucleolus and of the 

ribosome; this evidence, concomitantly with Myc’s ability to indirectly stimulate 

RNA pol I and III (Grewal et al., 2005; Hulf et al., 2005; Orian et al., 2005), 

contribute to revealing its role in the control of ribosomal biogenesis, thus mass and 

size. Myc activity is finely regulated, and while its expression is required at 

physiological levels during development, an excess of its activity triggers 

autonomous cell death and unbalanced growth (Grifoni and Bellosta, 2015). 

Therefore, Myc is strictly controlled both transcriptionally and post-translationally, 

where its protein stability is controlled by phosphorylation events downstream of 

RAS/ERK and GSK3  kinases with a signaling conserved in flies and mammals 

(Galletti et al., 2009; Parisi et al., 2011). Myc regulation of the cellular metabolic 

milieu is highly similar in Drosophila to the regulation found in tumor cells 

(DeBerardinis et al., 2008), indeed it was shown that in cells undergoing to a 

metabolic stress (starvation or competitive environment), expression of Myc 

switched their metabolism to increase glycolysis, glutaminolysis (de la Cova et al., 

2014; Hsieh et al., 2015; Parisi et al., 2013), or lipid metabolism to favor survival by 

inducing autophagy (Paiardi et al., 2017; Parisi et al., 2013). Fascinatingly, these 

evolutionary functions of Myc to control mass and metabolism, resulted in the 

selective advantage of growth of epithelial cells described as cell competition and 

characterized in the monolayer epithelia composing Drosophila’s imaginal discs 

Johnston, 2014). Briefly, cells expressing Myc create a competitive environment and 

they grow at the expense of wild-type cells that are killed by non cell-autonomous 

apoptosis (de la Cova et al., 2004; Moreno and Basler, 2004). Myc cells thus behave 

as “winners” and they are able to repopulate the space of the dying “loser” cells that 

are killed by unidentified Myc-dependent mechanisms (Johnston, 2014). Myc-
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induced cell competition was also shown to be necessary in vertebrates to eliminate 

unfit cells (losers) during early embryogenesis (Claveria and Torres, 2016). More 

recently, evidence that sustains a central role for Myc-induced cell competition in 

the early steps of tumor formation have shown Myc present at high levels in cells 

surrounding the tumor near dying cells, potentially allowing the winner cells to 

expand and to eliminate the surrounding wild-type cells, thus establishing the first 

evidence of Myc involved in a tumor growth competitive environment (Di Giacomo 

et al., 2017; Johnston, 2014). Another form of cell competition was shown to be 

regulated by cell polarity genes (lgl, scrib, dlg) and by endocytic genes (such as 

Rab5). Cells mutant for these genes behave as losers and were eliminated by wild-

type cells (Brumby and Richardson, 2003; Menendez et al., 2010); notably the 

expression of oncogenes in those loser clones provided them with super-competitive 

characteristics, i.e. lgl mutant cells over-expressing MYC sent death signals to the 

adjacent wild-type proliferating cells (Froldi et al., 2010), suggesting the presence of 

another mechanism of cell competition driven by different growth forces working in 

combination with cell polarity genes and oncogenic signals.  

 

4.0 Organotypic Drosophila cancer models  

 

4.1  Gut Cancer 

 

Similar to mammalian counterparts, the Drosophila adult gut is specialized in the 

digestion of food, the absorption of nutrients, and for controlling the defense 

response against infection (Tian et al., 2018). Based on these distinct functions, the 

Drosophila gut is composed of three parts: foregut, midgut, and hindgut. Among 

them, the midgut has a distinct architecture that resembles the digestive tract of 

vertebrates. The epithelium is a monolayer that is replenished by Intestinal Stem 

Cells (ISCs) that differentiate to either enteroblasts (EB) or pre-enteroendocrine cells 

(pre-EE), that then differentiate into absorptive enterocytes (EC) or secretory 

enteroendocrine cells (EE).  Thanks to significant similarities in the physiology 

between the Drosophila gut and the intestine of vertebrates (Apidianakis and Rahme, 

2011), Drosophila adult midgut epithelium has been used to study the contribution 

of signaling pathways (i.e. EGFR, Notch, Hedgehog, and Wg/Wnt) to Intestinal 

Stem Cells (ISCs) renewal (Biteau and Jasper, 2011; Jiang and Edgar, 2009; Jiang 

et al., 2011).   
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In vertebrates, the majority of sporadic cases of colorectal cancer and familial 

adenomatous polyposis (FAP) cancer syndrome are associated with activation of 

Wnt signaling (Bienz and Clevers, 2000). In humans, abnormal expression of Wnt 

in ISCs promotes adenoma formation, while deletions in mouse ISCs of the  tumor 

suppressor adenomatous polyposis coli gene APC triggers the initial step of colon-

adenoma formation (Barker et al., 2009), underlying the relevance of both mutations 

in this malignancy. In Drosophila, loss of the Apc gene, leads to the over 

proliferation of ISCs in the gut, resulting in loss of epithelial cell polarity, 

hyperplasia and epithelial overgrowth resembling that of intestinal adenomas 

induced by the loss of APC (Yu et al., 1999). Remarkably, the over-proliferation of 

the Apc -/- cells was rescued by lof mutation of Ras (Wang et al., 2013). On the 

contrary Apc-/- cells expressing an active form of Rasv12 showed a malignant 

transformation including loss of cell polarity and invasive phenotype, highlighting 

the conserved functional cooperation between RAS and APC in controlling proper 

growth in the gut. In Drosophila, intestinal progenitors mutant for the Apc gene 

expand at the expense of the surrounding wild-type cells that die by apoptosis; 

because of this behavior these cells have been defined as “super-competitors” 

(Suijkerbuijk et al., 2016). Apc mutant cells exhibit higher Yki/YAP activity and 

increased JNK signaling, that was also detected at the border between Apc-/- and 

wild-type cell;. moreover, inhibition of apoptosis prevented Apc mutant cells from 

further expansion, suggesting that a competitive behavior in these cells is controlling 

Apc dependent tumor growth (Suijkerbuijk et al., 2016).   

The JNK-Wg signaling is important to control the physiology and regeneration of 

intestinal cells, as ISCs damage leads to an overactivation of the JNK pathway and 

an increase in Wg ligand (Biteau et al., 2008; Cordero et al., 2012b).Wg activity in 

the enterocytes (ECs) indirectly drives the expansion of the ISCs by upregulating the 

JAK-STAT ligands Upd2 and Upd3, acting non-autonomously on ISCs proliferation 

(Tian et al., 2018). Moreover, activation of Wnt drives Myc upregulation in ISCs 

leading to non-autonomous upregulation of Upd3 in the ECs (Cordero et al., 2012a). 

Similarly, loss of Apc1 in the midgut (ISCs) also results in JAK-STAT and EGFR 

pathway hyper-activation, and their removal suppresses the intestinal hyperplasia 

resulting from Apc1 loss, revealing an underlying conserved signaling between flies 

and mammals that controls ISCs proliferation and gut homeostasis (Cordero et al., 

2012a). 
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Another aggressive oncogene that is hyper-activated upon Apc loss, in mouse and 

human intestinal adenomas is the non-receptor tyrosine kinase c-Src (Yeatman, 

2004). This proto-oncogene is amplified or activated in more than 20% of human 

tumors, and its activity has been demonstrated to play a central role in the formation 

of colorectal cancer (CRC). In mice, expression of c-Src increases in the proliferative 

progenitor cells of the “cripta” favoring hyperplastic adenoma formation (Cordero 

et al., 2014). In Drosophila the expression of c-Src orthologs (Src42A and Src62B) 

induces proliferation of the ISCs cells in wild-type animals, and reduction of their 

expression is sufficient to inhibit ISCs’ hyper-proliferation of Apc mutant cells 

(Cordero et al., 2014). Notably, these results recapitulate an important part of the 

function of mammalian c-Src in the progenitor cells of the intestine during 

homeostasis and adenoma formation, suggesting a conserved role of this gene in 

flies in controlling proper ISCs proliferation. 

 

Recently, Drosophila was also used to generate multigenic models of colon cancer 

using data from patients from The Cancer Genome Atlas. Interestingly, the outcomes 

of these models mimicked important properties of human cancers, and can be 

explored and used in chemical screens to find new combinations of cancer-relevant 

drugs (Bangi et al., 2016). Studies, using Drosophila models, to characterize 

intestinal human pathophysiology, revealed the high conservation between these 

species of the mechanisms underlaying colorectal tumorigenesis (Christofi and 

Apidianakis, 2013), and further revealed also the mechanisms that control the 

processes leading to bacterial-mediated inflammation  (Lemaitre and Hoffmann, 

2007). 

  

4.2 Brain cancer 

 

Meningioma are the most common intracranial tumors (Claus et al., 2005; Rogers et 

al., 2015) and frequently linked with mutations in the PI3K catalytic subunit p110α 

isoform encoded by the gene (PI3KCA), or in the v-akt murine thymoma viral 

oncogene homolog 1 (AKT1) gene. Complex interactions were found between 

members of the PI3K/AKT/mTOR pathway and MAPK-, JAK/STAT and Notch-1-

mediated pathways that contribute to meningioma progression (El-Habr et al., 2014). 

Increased risk of meningiomas was associated also with neurofibromatosis type II 

syndrome, where mutations within the tumor suppressor gene Suppressor of fused 
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(SUFU) was associated with hereditary meningiomas (Aavikko et al., 2012) and 

with medulloblastomas (Taylor et al., 2002). In Drosophila SUFU regulates 

Hedgehog (Hh) signaling (Ohlmeyer and Kalderon, 1998), with a similar function 

in humans, where loss of SUFU results in the aberrant activation of the Hedgehog 

(Hh) pathway (Aavikko et al., 2012).  

Of all glioblastomas, the glioblastoma multiforme (GBM) is the most aggressive 

form of gliomas, accounting for approximately 50% of all glial tumors (Phillips et 

al., 2006). In GBM, Notch activity is associated with the control of Glioma Stem 

Cell (GSC), since its activity regulates asymmetric cell division and Notch 

unbalanced expression leads to uncontrolled growth and high malignancy 

(Mukherjee et al., 2016), Notch is an important target for therapeutic intervention in 

brain cancer treatment (Yuan et al., 2015). Several studies in flies demonstrate also 

un important role for Notch signal in controlling growth and stem cell maintenance 

in the brain (Song and Lu, 2011). 

Moreover, the current understanding of asymmetric cell division and its relation to 

tumorigenesis is largely derived from studies on Drosophila neuroblasts (NBs), 

where mutation of a single gene, brain tumor (brat), was shown to alter asymmetric 

stem cell division in larval development, and to generate massive neoplastic growth 

and enlarged adult brain formed entirely of neoplastic NBs (Betschinger et al., 2006; 

Caussinus and Gonzalez, 2005). Suppression of brat expression was used to 

establish a model of glioma stemness in Drosophila, where the upregulation of 

Notch, induced by reducing brat, was the critical node to maintain self-renewal and 

proper stemness (Mukherjee et al., 2016). This observation was also confirmed in 

glioblastomas where the human orthologue of brat, the tripartite motif-containing 

protein-3 (TRIM3), was shown to be necessary to suppress NOTCH1 signaling and 

to control stem cell activity during development to reduce tumor growth (Chen et 

al., 2014; Mukherjee et al., 2016). Glioma stem cells divide asymmetrically under 

the guidance of cell polarity complexes that control the proper apical and basolateral 

polarization and cell division, a process that was originally identified in Drosophila 

and later confirmed for the mechanism driving differentiation in human glia for 

members of the Hugl-1/Llgl-1 complexes (Prehoda, 2009). We recently developed a 

neurogenic brain tumor model by impairing asymmetric cell division through the 

loss of function of lethal giant larvae (lgl) the Drosophila orthologue of Hugl-1, in 

the type II NBs of the central brain (Paglia et al., 2017). In our model, PI3K 

activation mimics PTEN loss of function and hampers Lgl localization at the apical 



60 
 

membrane by aPKC cortical recruitment (Paglia et al., 2017). These data connect 

the function of HUGL-1 in the maintenance of glioma stem cells with the loss of 

function of the tumor suppressor PTEN (Gont et al., 2013) and together with those 

in glioma (Read et al., 2009) show a conserved function for PI3K and EGFR 

overexpression in these tumors recapitulating many features of the neurogenic 

subtype of human glioblastoma. Inhibition of PI3K/Akt activity is currently used as 

a therapy in GBM (Zhao et al., 2017).  

Other brain tumors such as oligodendrogliomas, that account for 10% of all cancers 

of the central nervous system, are characterized by mutations in the capicua (cic) 

gene (Bettegowda et al., 2011), a conserved transcriptional repressor that regulates 

MAPK effector genes downstream of receptor tyrosine kinase (RTK) (Simon-

Carrasco et al., 2018). The development of correct animal model also for these 

tumors will be essential to develop specific treatments that can tackle these different 

brain tumors in vivo.  

 

4.3 The paradigm for angiogenesis  

 

In the fruit fly, the circulatory system is open, the heart pumps the hemolymph into 

the body cavities and the exchange of gases takes place directly within the organs 

(Medioni et al., 2009). Moreover, Drosophila is equipped with a complex branched 

system of interconnected tubules that is responsible for the oxygen transport, the 

tracheal system,  an organ that is comparable in structure and function to the 

circulatory system of mammals (Affolter et al., 2009). In Drosophila’s epithelia, the 

induction of clones bearing lgl, RasV12 mutations identified how tumors are able to 

recruit vessels to oxygenate the growing mass (Calleja et al., 2016; Grifoni et al., 

2015). These tumor cells showed ectopic expression of Bnl (branchless), the 

Drosophila homolog of Fibroblast Growth Factors (FGFs,), and suffered from 

oxygen shortage (hypoxia). In addition, it was observed a trans-differentiation of 

tumor cells into pseudo-tracheal cells with and the formation of new vessels, 

mimicking human FGF-mediated vascularization in cancer (Grifoni et al., 2015).  

Cell under hypoxia condition changes their cellular metabolism to favor growth, 

particularly in solid tumors (Pavlova and Thompson, 2016; Vander Heiden and 

DeBerardinis, 2017). Interesting studies in flies showed how reduction of the SCF 

(Skp/Cullin/F-box)-type ubiquitin ligase Ago, homolog of human Fbw7, increased 

tracheogenesis through up-regulation of the hypoxia-inducible transcription factor 
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Sima/dHIF and of its target, the FGF ligand Bnl (Mortimer and Moberg, 2013). 

Fbw7 is known to inhibit tumor growth by targeting proteins to the proteasome 

pathways, and is mutated in a wide range of primary human cancers, thus data 

suggests that its role as a tumor suppressor may be conserved also in the modulation 

of HIF-regulated angiogenesis in the tracheal system of the fly (Mortimer and 

Moberg, 2013). This process of neo-tracheogenesis is now considered a novel cancer 

hallmark in fly, which may help to explore the relation between angiogenesis and 

tumor growth in humans (Herranz et al., 2016) (Figure 3). 

                                      

  
Figure 3: Cancer cells form branched and tubule-shaped structures (reproduced from (Grifoni 

et al., 2015) with permission). (a) An imaginal wing disc bearing lgl4, RasV12 clones induced in a 

wild-type background. (b-b”) Magnifications of the central region squared in (a). Migrating tumor 

cells (GFP) are positive for the junctional marker aPKC (white) and secrete MMP1 (red). The 

reconstruction along the z-axis shown in the upper part of the magnified images reveals a tubule-

shaped structure encircling a lumen, indicating these cells are forming tracheal-like structures. 

 

 

4.4 Lung cancer  

 

Lung cancer is a major cause of death in the world, and the standard therapeutic 

strategy used is chemotherapy because target therapies only decrease tumor growth 

and result in high toxicity. Recently, a new Drosophila lung cancer model was 
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developed exploiting the tubular structure of the tracheal network (Levine and 

Cagan, 2016), and considered functionally and anatomically comparable to the 

vertebrate airways (Andrew and Ewald, 2010). Both in Drosophila and mammals, 

airways is formed by interconnected branches that depends on the secretion of 

Bnl/FGFs by the neighboring cells (Ghabrial et al., 2003; Grifoni et al., 2015). Using 

a binary system, RasV12 was ectopically expressed specifically in the tracheal cells 

while downregulating PTEN, a negative regulator of the PI3K/AKT signaling 

(Hafen, 2004; Ortega-Molina and Serrano, 2013). As a result, the cells of the tracheal 

branches over-proliferated to form tumors that ultimately killed the animals (Levine 

and Cagan, 2016). This model was successfully used in a screen for chemical 

compounds approved by the Food and Drug Administration (FDA), which resulted 

in the identification of several compounds able to reduce cell over-proliferation and 

to improve tracheal physiological functions (Levine and Cagan, 2016), further 

highlighting the strong potential of the use of fruit fly models for cancer-related 

chemical screens 

 

4.5 Prostate and thyroid cancer  

 

The prostate is an exocrine gland of the male reproductive system responsible for 

the maturation and production of the seminal fluid, with its activity depending on 

androgens mostly produced by the testis. During organogenesis, the differentiation 

of the prostate’s epithelium occurs along with that of stroma and depends on the 

complex coordination of many transcription factors and hormones that control the 

maturation of the quiescent organ (Toivanen and Shen, 2017). The adult prostate 

epithelium has a low turnover rate and its hyperplasia characterizes the majority of 

benign prostatic tumors. On the contrary, adenocarcinoma of the prostate is an 

aggressive tumor that rapidly progresses to a metastatic stage that can be partially 

blocked by androgen therapy (Shiao et al., 2016). Studies on flies’ male accessory 

gland revealed many parallels with the physiology of human prostate epithelium 

(Wilson et al., 2017), i.e. a genetic screen using the Drosophila accessory gland 

identified genes that promote growth and migration of the secondary cells as 

homologs of genes expressed in human prostate cancer (Ito et al., 2014).  

Like in human prostate, Drosophila’s accessory gland presents a secondary layer of 

epithelial cells that continue to proliferate; this homology allowed the development 

of models that mimic tumors of endocrine origin, including human prostate and 
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thyroid adenomas (Das and Cagan, 2013, 2018). For example, the multiple 

endocrine neoplasia type 2 (MEN2) syndrome, is characterized by different mutant-

translocations involving the RET genes that result in multiple cancer phenotypes, 

including pheochromocytoma, parathyroid adenoma and the aggressive medullary 

thyroid carcinoma (MTC) (Das and Cagan, 2013). A recent study demonstrated that 

the papillary carcinoma of the thyroid (PTC), also caused by another genomic 

mutations of RET gene, can be profitably studied using the accessory gland of 

Drosophila to delineate and understand the mechanisms that characterize PTC in the 

context of the whole animal, including the relationship between tumor and normal 

cells in an environment that mimics tumor of endocrine origin in humans (Levinson 

and Cagan, 2016).  

The prostate epithelium is characterized by the abundance of exosomes, 

microvesicles secreted from the endosomal multivesicular body (MVB) that fuse 

with sperm to modulate its activity  and protect its homeostasis (Wilson et al., 2017). 

The exosomes are particularly relevant in cancer biology for their implication in 

tumor progression and survival, since they deliver survival factors, metabolites and 

miRNAs, that help creating a favorable microenvironment for cancer growth; in 

addition they also favor drug-resistance by activating mechanisms that favor the 

elimination of toxic chemicals such as chemotherapeutic products (Namee and 

O'Driscoll, 2018; Ruivo et al., 2017). Since the accessory gland has a similar 

structure as the prostate epithelium, characterized by the abundance of exosomes, it 

could be an optimal model to better study exosome biology in tumors of endocrine 

origins 

 

5.0 Liquid tumors 

 

The signaling pathways regulating blood cell differentiation are conserved from 

Drosophila to humans (Jung et al., 2005; Lebestky et al., 2003). In addition, fly 

macrophages originate via self-renewal from progenitor cells localized in the lymph 

gland, a specialized hematopoietic organ that can be compared to the hematopoietic 

stem cell niche of the mammalian bone marrow (Krzemien et al., 2007; Mandal et 

al., 2007). These similarities with vertebrate hematopoiesis outline the utility of 

using fly models to elucidate the basic mechanisms of hematopoietic differentiation 

and homeostasis responsible for severe diseases, including leukemia. Drosophila has 

already been used to study Acute Myeloid Leukemia (AML), a widespread form of 
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leukemia, and to identify the genes responsible for the disease. AML1 is a 

transcription factor, responsible for activating myeloid differentiation, which has a 

counterpart in the fly (Sinenko et al., 2010). In vertebrate tumors, the fusion of 

AML1 with the repressor ETO inhibits the differentiation of the multilineage 

progenitor cells, while their proliferation is activated, leading to AML. Interestingly, 

AML1 fused with ETO in Drosophila also causes the inhibition of hematopoietic 

cell differentiation, confirming that the fly is a good genetic model to study the 

mechanisms that drive leukemia in humans (Osman et al., 2009; Sinenko et al., 

2010). Myeloproliferative neoplasms (MPNs) have also been reproduced in the fly 

through gain-of-function mutations in the JAK pathway, finding a role for the 

downstream effector of the SWH pathway Yki in priming the expansion of 

Drosophila blood cells, which undergo malignant behavior following JAK 

activation (Anderson et al., 2017). 

6.0 Cancer and immune system  

Inflammation in tumor development acts as "tug and war" since it may promote 

survival of tumor cells by favoring angiogenesis, by reducing the natural immune 

responses and by altering responses to chemotherapeutic agents (Mantovani et al., 

2008; Wu and Zhou, 2009). The inflammatory response of cancer cells has been 

attributed to a response of the immune system to eradicate the tumor, but it can also 

be seen as a way to provide growth and survival, as inflammation contributes to 

genomic instability by releasing cytokines and through production of reactive 

oxygen species (ROS) that may induce genetic and genomic alterations (Negrini et 

al., 2010). Normal cells detect and repair DNA damage, ensuring the maintenance 

of the correct number of chromosomes and tissue homeostasis, instead often cancer 

cells have increased mutation-rates leading to high chromosomal instability (CIN) 

that triggers aneuploidy and advances tumorigenesis (Negrini et al., 2010). 

Chromosomal instability is a process conserved also in Drosophila, and it was 

shown to contribute to the invasive behavior of epithelial cells, with a mechanism 

called “compensatory proliferation” activated to counteract CIN-induced cell death 

(Benhra et al., 2018; Clemente-Ruiz et al., 2016).  

The mechanisms controlling cancer immune response are somehow conserved also 

in flies as studies in Drosophila have shown that infiltration of macrophages (called 

hemocytes) in cancer cells requires the activation of the JAK-STAT, JNK, TNF-α, 

and Toll/Imd/TLR signaling pathways (Bangi, 2013). Of particular interest is TNF-
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α that plays an important role in controlling apoptosis and the inflammation 

processes (Ham et al., 2016). TNF-α in tumors has distinct and overlapping functions 

to promote tumor growth and proliferation and to activate cell death, functions that 

are mainly mediated by the activation of TNFR1 that is ubiquitously expressed while 

TNFR2, mainly expressed on immune cells, is less well understood. Thus these 

opposite signaling pathways activated by TNF signals depend on the adaptor 

complexes recruited by the receptors and by the cellular context, and they may create 

a problem for the development of therapeutic strategies that target TNF signaling in 

tumors (Ham et al., 2016). In Drosophila the sole TNF-α, called Eiger (Egr), binds 

two receptors called Wengen (Kanda et al., 2002) and Grindelwald (Andersen et al., 

2015), the latter shown necessary for the growth of RasV12/scribble-/- tumors 

(Andersen et al., 2015). An interesting mechanism links the possibility that ROS, 

induced by stress or local inflammation, triggers Egr expression in the hemocytes, 

to control JNK signaling, in a phenomenon called Apoptosis-Induced Proliferation 

(AIP), a sort of compensatory proliferative response of the epithelial cells that 

responds to cues from local “activated” hemocytes (Fogarty et al., 2016). Other 

studies highlighted the role of hemocytes in the interplay between inflammation and 

cancer, i.e. using a classic cancer model that recapitulates the hallmarks of epithelial 

cancer cells (Rasv12/scribble-/-), it was shown that cancer cells induce hemocyte’s 

recruitment and proliferation in vivo by activating JNK signaling to cause the 

expression of JAK/STAT cytokines (Pastor-Pareja et al., 2008). Using a similar 

model it was shown that Egr expression was higher in the hemocytes derived from 

cancer animals, and that its activity was necessary to stimulate invasive migration of 

tumor cells (Cordero et al., 2010). On the contrary, Egr acts as a tumor suppressor 

to drive apoptosis in cancer cells upon activation of Toll/NF-ĸB signaling by the fat 

body (adipocytes) in response to the secretion of Egr by the circulating “activated” 

hemocytes (Parisi et al., 2014). Work using allograft transplantation experiments, 

identify also a function for the hemocytes in tumor initiation, that is independent on 

Eiger, but relays rather on the activation by external stimuli (i.e. CIN, abnormal 

growth) of JNK pathway and on the complex of non-autonomous and autonomous 

signals between tumor cells and those composing the tumor microenvironment; a 

similar mechanism has been proposed in vertebrates suggesting a conserved 

response for JNK signaling in fly to control initial tumor growth  (Muzzopappa et 

al., 2017). . 
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In summary, all these data suggest the existence of conserved mechanisms between 

the immune and tumor cells in flies that may recapitulate some of the most 

evolutionary conserved aspects described in cancer cells. 

 

7.0 Cancer and lipid metabolism, obesity 

 

In tumor biology, evidences highlight the relevance of lipid metabolism in 

influencing tumor growth (Katheder and Rusten, 2017; Weber et al., 2017). In this 

context, a recent role was identified for adipose triglyceride lipase (ATGL) whereby 

it hydrolyzes triacylglycerols into fatty acids (FAs) that may act as signaling 

molecules to induce growth both cell autonomously and in neighboring cells 

(Walther and Farese, 2012). The contribution of ATGL to cancer growth is 

controversial, indeed several studies showed that its depletion reduced proliferation 

in colorectal cancer cells and in non-small-cell lung carcinoma (Ou et al., 2014; 

Zagani et al., 2015), and in breast and pancreatic carcinoma its upregulation 

contributed to tumorigenesis (Grace SA et al., 2017; Wang et al., 2017). On the 

contrary, lack of ATGL favored pulmonary neoplasia in mice and in few human 

tumors ATGL expression was found reduced highlighting the complex role of lipids 

in tumorigenesis (Al-Zoughbi Wael et al., 2016). Cancer cells activate de novo 

lipogenesis by upregulation of key enzymes in lipid metabolism, some of which, 

such as AcetylCo-A Lyase (ACLY), AcetylCo-A Carboxylase (ACC) and Stearoyl-

CoA desaturase-1 (SCD), are targets of pharmacological inhibitors to decrease 

cancer proliferation (Peck and Schulze, 2016; Stoiber et al., 2018; Zaidi et al., 2012; 

Zu et al., 2013). Recent work associated the mechanism of lypolysis with the 

induction of autophagy, a mechanism used by the cells to re-cycle part of their 

cytoplasm or cellular content to survive when nutrients are reduced (Dall'Armi et al., 

2013). The relevance in cancer of the link between lipids and autophagy was shown 

when ATGL-mediated lipolysis in a peritumoral area, increased autophagy and 

tumor survival using a non-autonomous mechanisms (Gnerlich et al., 2013; 

Martinez-Outschoorn et al., 2011). Interestingly, we observed that Myc in 

Drosophila induced autophagy in the fat body and this was enough to enhance 

survival of the whole animals upon starvation (Parisi et al., 2013). We linked this 

effect with the ability of Myc to increase desat1, a Stearoyl-CoA desaturase-1 
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(SCD1) key enzyme in the synthesis of lipids, that we found co-expressed with Myc 

in human prostatic tumors (Paiardi et al., 2017). 

Metabolic disorders and obesity are associated with cardiovascular disease and type 

II diabetes (T2D), however numerous cohort studies reported that overweight people 

are more likely to develop certain types of cancer including endometrial, breast, 

liver, and ovarian cancer (Cancer, 2012; Chen et al., 2012; Dougan et al., 2015; 

Hirabayashi, 2016; Riboli, 2014; Wang and Xu, 2014). Obese people have often 

increased levels of circulating hormones like insulin that has been associated to 

higher levels of IGF-1 in colon, kidney, prostate and endometrial cancer (Gallagher 

and LeRoith, 2015; Roberts et al., 2010). Another hormone, leptin, a cytokine 

produced by the adipocytes to control satiety in a signaling circuit of the brain, has 

also been found up-regulated in tissues from obese people, particularly in women 

post-menopause, and increased levels of leptin have been associated with higher 

incidence of breast and other tumors (Ray, 2018). The adipose tissue produces pro-

inflammatory cytokines including IL-6, IL-8, IFNγ and TNF-α among others 

(Arango Duque and Descoteaux, 2014; Scheller et al., 2011), and their over-

production in fats from obese, activates the infiltration of macrophages into the 

adipose tissue inducing a low level of chronic inflammation or adipocyte tissue 

macrophage infiltration called ATM (Kuroda and Sakaue, 2017; Lafontan, 2014). 

This low level of inflammation increases the levels of ROS and induces DNA and 

protein damage that may increase the risk of cancer (Lafontan, 2014; Mraz and 

Haluzik, 2014). The role of the inflammatory response to combact infection and 

tissue injury, through the activation of the immune cells, is conserved also in 

Drosophila’s circulating hemocytes (Lemaitre and Hoffmann, 2007), where most of 

the signals activated in the fat body results also in ROS production (Dionne, 2014; 

Vlisidou and Wood, 2015). Indeed, we showed, using a genetic model that harbors 

an inflammation state in the fat body of larvae that mimic ATM, that reduction of 

ROS, using exogenous anti-oxidants components like flavonoids and anthiocianins, 

decreased hemocyte’s migration and JNK activation in the cells of fat body (Valenza 

et al., 2018), suggesting that the converging signaling between the fat body and 

hemocytes on lipid metabolism and ROS/cytokines in response to stress is conserved 

also in Drosophila. 

 

8.0 Cancer stem cells  
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Cancer stem cells (CSCs) have more features than tissue stem cells because they are 

able to initiate the tumor growth and fuel its maintenance and metastasis (Kreso and 

Dick, 2014; Malanchi et al., 2011). In addition, CSCs are highly resistant to 

conventional therapy, both radiation and chemotherapy, and they are responsible for 

the recurrence of disease (Mueller et al., 2009). Since the mechanisms underlying 

the ability of stem cells to support cancer progression are still unclear, Drosophila 

is convenient to use as it provides many tools for genetic and molecular 

investigations. Adult stem cells are required for tissue homeostasis and repair after 

injury and in adult flies, populations of stem cells are present in the posterior midgut, 

testis, and ovarian follicle rendering it again a good system to dissect these stem cell 

programs (Hou and Singh, 2017). Drosophila was used to better understand the 

functions of the centrosome and microtubule-organizing center (MTOC) in the 

division of stem cells (Tillery et al., 2018). Drosophila and mammalian stem cells 

are similar and they are regulated by homologous signals corroborating the use of 

the fly in this field of tumor biology. CSCs can arise from normal stem cells whose 

long lifespan favors the accumulation of genetic mutations responsible for the 

malignant phenotype. The progression from normal progenitors to stem-like cancer 

cells was first explored in leukemia, although nowadays we know that several solid 

tumors such as brain, breast, lung and colon cancer originate from cells with stem 

features (Krivtsov et al., 2006). Several Drosophila models of stem cell tumors are 

now available, and a drug screening was successfully carried out highlighting several 

compounds active on the signaling promoting cancer growth (Markstein et al., 

2014).  

 

9.0 Drosophila cancer models for the identification of therapeutic drugs 

Therapeutic drug discovery requires chemical screening, a procedure allowing for 

the identification of potential new drugs. The spread of sequencing, automation, and 

miniaturization has made High Throughput Screening (HTS) the leading contributor 

to early-stage drug discovery. HTS consists of random screening of chemicals to 

find an affinity for a specific protein or biological activity characteristic of a 

disorder. Once identified in vitro, the compounds need to be validated in vivo to 

assess efficacy and toxicity during a long and expensive period of drug development. 

The high throughput assays depend on the existence of a specific target, assuming 

an in depth understanding of a disease that is not always available. Phenotype 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stem-cells
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screening is an eligible option when the knowledge about the mechanisms 

underlying a disease process is not well defined. It is a process by which small 

molecules are screened for their effect on the phenotype in cells, tissue or whole 

animals, where a more physiological environment better describes the 

pharmacokinetics and toxicological effects of a drug. The great availability of 

genetic tools and the low cost of maintenance makes the fruit fly an ideal to model 

to study human diseases including cancer, in fact the fly has considerably 

contributed to understand tumor biology.  

Chemical screens have been successfully performed in Drosophila for several 

disorders affecting the central nervous system, kidney and metabolism (Gasque et 

al., 2013; Hofherr et al., 2016; Whitworth et al., 2006), as well as for a type of thyroid 

cancer, the multiple endocrine neoplasia type 2A and 2B (MEN2) (Vidal et al., 

2005). Regarding cancer, JAK- STAT, APC, Wnt, Notch and other signaling 

molecules, deeply characterized in Drosophila and shared with humans, are precious 

for cancer drug development. The availability of Drosophila models for multiple 

cancer types makes pharmacological screens possible against several drugs that aim 

to restrict proliferation and metastasis. The identification of anticancer compounds 

is possible using the adult fly, but also larvae, embryos and cells. The combined 

effect of anti-cancer drugs with radiation has been investigated in Drosophila larvae, 

producing similar findings to those observed in human cancer cells (Edwards et al., 

2011). Moreover, Drosophila avatars, consisting of patient-specific tumors modeled 

in transgenic flies, are very promising for personalized medicine. Drosophila and 

other small model organisms are helpful to quickly analyze the mode of action of 

several active compounds in vivo, nevertheless mammalian models are indispensable 

in the successive phase of drug development to define important pharmacokinetic 

parameters such as absorption, distribution and metabolism. 

 

 

10.0 Discussion 

 

The communication between tumor cells and their microenvironment is largely 

implicated in neoplastic growth, hence the substantial difficulty to recapitulate the 

features of malignant transformation in cellular systems. Cancer research needs in 

vivo investigations, and the use of model organisms contributes to answer this 
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request. In this review we described most relevant approaches in Drosophila, used 

to explore cancer mechanisms and therapeutics that contribute to our understanding 

on tumor initiation and progression. In spite of some limitations, because of the 

anatomical differences between flies and humans, the use of Drosophila’s cancer 

models has been fundamental to understand some basic processes that regulate 

human cancers, such as the competitiveness of cancer stem cells (CSCs), the 

importance of tumor microenvironment, cancer cachexia, drug resistance and tumor-

associated vasculogenesis, which was recently found to be functionally conserved in 

fly’s cancer. Additional cancer hallmarks such as genomic instability, resistance to 

cell death, cell metabolism reprogramming, tumor-promoting inflammation and 

evasion from the immune system, have been studied and extensively characterized 

in Drosophila. Finally, although the evolutionary difference between Drosophila 

and humans certainly represents a restriction to the use of the fruit fly in drug 

discovery and development, phenotypic screenings have proven relevant to identify 

potential drugs that would elude the classic screens in the absence of targets. 

Drosophila is also offering a significant contribution to the investigation of 

organotypic cancers, since despite the evident differences at the macroscopic level, 

organ cells and functional units are usually well conserved at the biochemical and 

structural levels respectively. This conservation allowed to develop thyroid, lung, 

prostate, gut, brain and blood cancer models starting from the most characteristic 

genetic lesions found in the same human cancers. These models, as described in the 

review, are greatly helping in dissecting the contribution of specific molecular 

pathways to the final cancer phenotype. Given the heterogeneous nature of 

mammalian solid cancers, new strategies are being developed to decipher cancers at 

single-cell resolution. The international Drosophila community has always been 

engaged in the development of novel, sophisticated genetic tools, which allowed in 

the last 30 years to revolutionate functional gene analysis. For this reason, we 

anticipate that the use of the fruit fly will move fast into the field of precision 

medicine, contributing to seminal findings in this new era of cancer research. 
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Chapter 5 

 
Conclusions and future perspectives 
 

During my PhD, I worked on an innovative project using Drosophila models to study 

human diseases. 

 

The aim of this project was to characterize a new genetic model to study obesity with 

particular emphasis of the role of the hemocytes, the Drosophila’s macrophages, and 

their migration into the fat body, Drosophila’s adipose tissue, as a model mimicking 

chronic inflammation in obese people, and to analyze the effect of important 

compounds such Anthocyanins in the hemocytes infiltration in the obese Drosophila’s 

larvae fat body. 

 

The incidence of obesit drammatically grew in worldwide and it has become a global 

problem. Data reported by The World Health Organization (WHO) are alarming, in 

which the prevalence of childhood obesity increases with the risk to develop other 

pathologies (53, 145). The fruit fly, Drosophila melanogaster, is an excellent model 

for studying nutrient-sensor pathways and metabolic dysfuctions. 

Recent studies performed on Drosophila obese models show that the molecular 

mechanisms that regulates the metabolic functions and processes are conserved 

between humans and flies (78).  

Drosophila fat body is functionally analogous to the mammalian adipose tissue and 

liver, indeed the fly fat body contributes to the maintenance of energy storage in the 

form of lipids and glycogen, and it is involved in obesity-related disorders (146, 147). 

Furthermore, the Drosophila fat body is an organ that serves the roles of the immune 

system with recruitment of the hemocytes, equivalent to mammalian macrophages 

(107). 

 

In this work, I demonstrated, for the first time, a strong evidence of the potential use of 

plant’s derived Anthocyanins in the diet to control chronic inflammation and provide 

a link to the oxidative stress that characterizes the adipose tissue in obese animals. I 

was able to evidence the ability of Anthocyanins to decrease in vivo the 

phosphorylation of JNK/SAPK p46 stress kinase, thus providing a new insight into the 

mechanism of phenolic compounds in the treatment of inflammation in adipose tissues, 
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a field of current study since the lack of a better knowledge of the mechanisms that 

regulate or control ATM in pathologies such as obesity and metabolic disorders. 

At the same time, Anthocyanins are able to activate antioxidant detoxifycation factors 

such as Nrf2. These finding suggest that Anthocyanins can regulate the inflammaroty 

responses, therefore can be considered as anti-inflammatory agents.  

Furthermore, I evaluated the antioxidant power of Anthocyanins, in particular, I 

examined how the Anthocyanins extract modulates GST D1 mRNA expression level 

in our model. 

Therefore, the mainly action mechanism of Anthocyanins in the cellular defence 

against inflammation-induced oxidative stress could be the regulation of the 

CncC/Keap-1 pathway, one possible way to increase the activity of GST D1, decrease 

JNK pathway activation and to fight the excess of ROS. 

The present study confirms the great importance of Anthocyanins consumption and 

provides new insights into the mechanism through which these phenolic compounds 

regulate the specific signaling pathway involved in the different cellular processes. 

 

 

In the future, we need to continue these experiments in order to better understand the 

mechanism that links Anthocyanins to antioxidant detoxifycation factors such as Nrf2 

to discover new possible signals involved in inflammatory and oxidative process. 
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