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Abstract

In the commodity-constrained split delivery vehicle routing problem (C-SDVRP), customer demands are composed
of sets of different commodities. The C-SDVRP asks for a minimum-distance set of routes such that all customer
demands are met and vehicle capacities are respected. Moreover, whenever a commodity is delivered by a vehicle to a
customer, the entire amount requested by this customer must be provided. Different commodities demanded by one
customer, however, can be delivered by different vehicles. Thus, the C-SDVRP is a relaxation of the capacitated vehicle
routing problem and a restriction of the split delivery vehicle routing problem. For its exact solution, we propose a
branch-price-and-cut algorithm that employs and tailors stabilization techniques that have been successfully applied
to several cutting and packing problems. More precisely, we make use of (deep) dual-optimal inequalities which are
particularly suited to reduce the negative effects caused by the inherent symmetry of C-SDVRP instances. One main
issue here is the interaction between branching and cutting decisions and the different classes of dual inequalities.
Extensive computational tests on existing and extended benchmark instances show that all stabilized variants of our
branch-price-and-cut are clearly superior to the non-stabilized version. On the existing benchmark, our algorithm
is significantly faster than the state-of-the-art algorithm and provides several new optima for instances with up to
60 customers and 180 tasks. Lower bounds are reported for all tested instances with up to 80 customers and 480 tasks,
improving the bounds for all unsolved instances and providing first lower bounds for several instances.

Key words: routing, vehicle routing, dual-optimal inequalities, column generation, discrete split delivery

1. Introduction

The commodity-constrained split delivery vehicle routing problem (C-SDVRP) was introduced by Archetti
et al. (2016) to implement one of the possible distribution policies applicable when different commodities have
to be distributed to customers. The underlying idea was to study the impact on variable routing costs from
adopting different distribution policies, i.e., from using vehicles dedicated to a single commodity compared
with using flexible vehicles capable of carrying any set of commodities, and from allowing or forbidding split
deliveries of individual commodities. The policy associated with the C-SDVRP allows the vehicles (which
are homogeneous) to visit customers several times, but when a commodity is delivered by a vehicle to a
customer, the entire amount requested by the customer has to be provided. No compatibility restrictions
exist so that vehicles can carry any subset of commodities. Thus, the number of commodies requested by a
customer is an upper bound on the number of visits to this customer. Overall, the C-SDVRP is a relaxation
of the classical capacitated vehicle routing problem (CVRP) and a restriction of the split delivery vehicle
routing problem, see the book by Toth and Vigo (2014), in particular chapters (Semet et al., 2014; Poggi
and Uchoa, 2014; Irnich et al., 2014).

In order to evaluate the proposed distribution policies, Archetti et al. (2016) carried out worst-case as
well as experimental analyses. In particular, they devised exact and heuristic algorithms. The tests were
run on 64 small instances, with 15 customers and up to three commodities, 80 mid-size instances with 20,
40, 60, or 80 customers and up to three commodities, and large instances with 100 customers. One of the
main conclusions drawn is that the delivery policy associated with the C-SDVRP is almost the best option
w.r.t. to costs and, at the same time, it is likely more acceptable to customers than allowing splitting all the
deliveries.
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A straightforward approach for modeling and solving the C-SDVRP is to reduce it to a standard CVRP,
as done in (Archetti et al., 2016) to solve the C-SDVRP heuristically. The authors duplicated each customer
vertex as many times as the number of commodities requested by the customer, associating with each
duplicated vertex the customer’s demand for the corresponding commodity. Nevertheless, in order to limit
the size of the model and mitigate symmetry issues, the branch-and-cut proposed by the authors is based
on a direct model for the C-SDVRP.

Archetti et al. (2015) focused on the exact solution of the problem. While the branch-and-cut algorithm
proposed in Archetti et al. (2016) was able to solve only 25 out of the 64 small instances, the branch-price-
and-cut (BPC) algorithm proposed in Archetti et al. (2015) was able to solve all the small instances within
the same time limit, and other instances with up to 40 customers and three commodities.

Under the name discrete split delivery vehicle routing problem, the C-SDVRP had already been introduced
in the literature by Nakao and Nagamochi (2007) to model a specific practical routing problem as a variant
of the SDVRP. The authors proposed a fast heuristic based on dynamic programming to solve real-world
instances.

Another related problem is the discrete split delivery vehicle routing problem with time windows (DSD-
VRPTW) proposed by Salani and Vacca (2011), where the demand of a customer consists of several items.
The authors assumed that demand can be split in orders, i.e., feasible combinations of items, that each
vehicle can serve at most one order per customer and that service time at a customer’s location depends on
the delivered combination of items. The problem is solved by means of a branch-and-price algorithm. The
DSDVRPTW can indirectly model the C-SDVRP by defining the set of orders to associate with a customer
as the set of all possibles subsets of commodities to deliver to him.

In this paper, we focus on the exact solution of the C-SDVRP via column-generation techniques (Lübbecke
and Desrosiers, 2005; Desaulniers et al., 2005). We enhance the above-mentioned BPC algorithm of Archetti
et al. (2015) in several aspects. First, we integrate powerful techniques such as implicit bidirectional labeling
for solving the column-generation subproblem (Righini and Salani, 2006; Bode and Irnich, 2012) and addi-
tional cuts to strengthen the linear relaxation of the master program (Jepsen et al., 2008). Second and more
importantly, we tailor recent stabilization techniques originally suggested for bin-packing and vertex-coloring
problems to the C-SDVRP (Ben Amor et al., 2006; Gschwind and Irnich, 2016). Here, the stabilization of the
column-generation process is achieved by the addition of (deep) dual-optimal inequalities, i.e., inequalities
known to hold for (some) optimal dual solutions. We show that stabilization with dual inequalities is partic-
ularly suited to reduce the negative effects caused by the inherent symmetry of C-SDVRP instances. Indeed,
when the number of tasks, i.e., the number of commodities to deliver to all customers, is kept constant, the
most symmetric instances are those that have the largest number of commodities per customer, and these
instances become less difficult to solve when dual inequalities are added. From a methodological point of
view, the challenge is to correctly handle the impact that branching and cutting have on the solution of the
subproblem and the validity of different classes of dual inequalities used for stabilization. The paper puts
specific emphasis on these interdependencies.

The remainder of the paper is structured as follows. The C-SDVRP is formally defined in Section 2.
Details on the new BPC algorithm including the generation of route variables, stabilization techniques,
strengthening of the linear relaxation by adding valid inequalities, and branching are provided in Section 3.
The results of our computational studies are provided in Section 4, before the paper closes with conclusions
drawn in Section 5.

2. Problem Definition

Let K = {1, . . . , κ} be the set of commodities that has to be distributed from the depot to the customers.
Let N = {1, . . . , n} be the set of customers. The demand of commodity k ∈ K to deliver to customer i ∈ N
is denoted by dik. The set Ki = {k ∈ K : dik > 0} comprises the commodities to be delivered to customer
i ∈ N . A delivery task (i, k) is characterized by a customer i ∈ N and one of its demanded commodities
k ∈ Ki. The overall number of delivery tasks is m =

∑
i∈N |Ki|. Customers are served by means of a fleet

of F homogeneous vehicles, each of which with a capacity of Q. Vehicles are flexible and can deliver any
subset of commodities. Each customer may be visited more than once. At each visit to customer i ∈ N ,
one of the possible non-empty subsets Si ⊆ Ki of commodities has to be delivered to the customer. When
a commodity is delivered by a vehicle to a customer, the entire amount of the commodity requested by the
customer has to be provided.

Let G = (V,A) be a directed graph with vertex set V = N ∪ {0, n+ 1}, and arc set A. Vertices 0 and
n+ 1 represent the depot where vehicle routes start and end, respectively. Each arc (i, j) ∈ A, with i 6= n+ 1
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and j 6= 0, represents the possibility for the vehicles to travel from the location of i to the location of j, and
it is associated with nonnegative variable routing costs cij . In the following, the term route is used for the
combination of

(i) an elementary 0-(n+ 1)-path representing the sequence in which customers are visited by the vehicle,
(ii) and the selection of commodities Si delivered to each visited customer i ∈ N .

Let Ω be the set of all feasible routes. For each r ∈ Ω, the routing costs are cr =
∑

(i,j)∈A(r) cij , and route r

is feasible if the total demand delivered does not exceed the vehicle capacity, i.e.,
∑
i∈N(r)

∑
k∈Si(r)

dik ≤ Q,

where N(r) ⊆ N is the set of customers visited along route r, A(r) ⊆ A is the set of arcs defining the path
associated with route r, and Si(r) is the selection of commodities delivered to visited customer i in route r.

The C-SDVRP is the problem of determining a set of least-cost feasible routes to be associated with the
vehicles such that all customers’ demands are met.

3. Branch-Price-and-Cut

In order to solve the C-SDVRP, we adopted the same set-partitioning formulation as proposed by Archetti
et al. (2015). The formulation has, for each route r ∈ Ω, one binary variable λr that assumes a value equal
to 1 if route r is performed, and 0 otherwise. Moreover, the non-negative integer variable φ models the
number of routes performed (i.e., number of vehicles used), and xij and zi are non-negative integer variables
representing the number of times that an arc (i, j) ∈ A is traversed and a customer i ∈ N is visited,
respectively. The formulation is as follows:

min
∑
r∈Ω

crλr (1a)

s.t.
∑
r∈Ω

arikλ
r = 1 i ∈ N, k ∈ Ki (1b)∑

r∈Ω

λr − φ = 0 (1c)

⌈∑
i∈N

∑
k∈Ki

dik

Q

⌉
≤ φ ≤ F and integer (1d)

λr ∈ {0, 1} r ∈ Ω (1e)∑
r∈Ω

eriλ
r − zi = 0 i ∈ N (1f)

1 ≤ zi ≤ min{|Ki|, F} and integer i ∈ N (1g)∑
r∈Ω

brijλ
r − xij = 0 (i, j) ∈ A (1h)

0 ≤ xij ≤ min{|Ki|, |Kj |, F} and integer (i, j) ∈ A (1i)

The objective function (1a) calls for the minimization of the total variable routing costs. Constraints (1b)
ensure that all m customers’ demands are met (i.e., tasks are fulfilled), where arik is a binary coefficient
indicating that task (i, k) is performed, i.e., commodity k ∈ Ki is delivered to customer i ∈ N , by route r.
Constraints (1c) and (1d) limit the number of vehicles to use, and (1e) are domain definition constraints for
variables λr.

The number of times a customer i ∈ N is visited and an arc (i, j) ∈ A is traversed is limited due to
constraints (1f)–(1i). For this purpose, the binary coefficients eri and brij are equal to 1 if customer i ∈ N is
visited and arc (i, j) ∈ A is traversed by r, respectively, and 0 otherwise. Note that constraints (1f)–(1i) are
redundant. They may only be added when violated by a fractional solution to the linear relaxation of (1)
and for branching, see Section 3.4.

For many VRP variants, BPC is the most successful and leading exact solution approach (Costa et al.,
2018). Hence, we solve formulation (1) with BPC. The starting point is a restricted master program (RMP)
which is the linear relaxation of formulation (1) defined over a small subset Ω′ ⊂ Ω of the route variables
λr. Column generation alternates between the optimization of the RMP and the solution of the column-
generation subproblem that generates negative reduced cost route variables λr if they exist (Desaulniers
et al., 2005). Archetti et al. (2015) have shown that this subproblem can be formulated and solved as a
variant of the shortest-path problem with resource constraints (SPPRC, Irnich and Desaulniers, 2005). If no
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negative reduced cost routes exist, a solution to the linear relaxation of (1) is found. The corresponding lower
bound can be strengthened by the addition of valid inequalities. Finally, branching is required to ensure
integer solutions.

3.1. Column Generation

In this section, we sketch the SPPRC-based solution approach of Archetti et al. (2015) for the column-
generation subproblem. In addition, we refine parts of this approach by introducing another representation
for the knapsack problem associated with each customer and further exploiting the inherent symmetry of
the subproblem.

Recall that an instance of the column-generation subproblem is defined by the dual prices πik, i ∈
N, k ∈ Ki associated with constraints (1b), σ associated with (1c), µi, i ∈ N associated with (1f), and ρij ,
(i, j) ∈ A associated with (1h). The reduced cost of a route r that delivers commodities Si(r) ⊆ Ki to
customers i ∈ N(r) is given by

c̃r =
∑

(i,j)∈A(r)

cij −
∑

i∈N(r)

∑
k∈Si(r)

πik − σ −
∑

i∈N(r)

µi −
∑

(i,j)∈A(r)

ρij .

Archetti et al. (2015) have shown that the combined problem of determining the path and the com-
modities to deliver can be formulated as an SPPRC over a multi-graph. Slightly differing from their work,
we define the multi-graph as an undirected graph (but otherwise identical) as follows: The vertices of the
multi-graph comprise two copies 0′ and 0′′ of the depot as well as two copies i′ and i′′ for each customer
i ∈ N . Moreover, for all original arcs (i, j) ∈ A, there are two edges (i′, j′′) and (i′′, j′) in the multi-graph for
modeling the movement of the vehicle. Finally, for all non-empty subsets Si ⊆ Ki, i ∈ N , there are parallel
edges between i′ and i′′, denoted as (i′, i′′)Si , that represent the respective deliveries made to customer i.
An example of the multi-graph for an instance with three customers is depicted in Figure 1.

0′′

1′ 1′′

3′ 3′′

2′ 2′′ 0′

{1}

{2}

{1, 2}

{2}

{3}

{2, 3}

{1}

{2}
{3}
{1, 3}
{2, 3}

Figure 1: SPPRC pricing network for a C-SDVRP with three customers {1, 2, 3}; K1 = {1, 2},K2 = {2, 3}
and K3 = {1, 2, 3}; for the customer i = 3 only the subsets S3 = {1}, {2}, {3}, {1, 2}, and {2, 3} are feasible
as we assume d3,1 + d3,2 + d3,3 > Q.

Any 0′′-0′-path in the multi-graph in which edges of the form (i′′, j′) with i 6= j alternate with edges of
the form (j′, j′′) corresponds with a route, and vice versa. Defining demands of zero on the edges (i′, j′′) for
i 6= j as well as demands

dSi

i′,i′′ :=
∑
k∈Si

dik (2)

on edges (i′, i′′)Si , such a 0′′-0′-path represents a feasible route if it is elementary and the demands ac-
cumulated over its edges do not exceed Q. Obviously, edges (i′, i′′)Si with a demand exceeding Q can be
eliminated from the multi-graph.
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With the following definitions, the multi-graph has a completely symmetric reduced-cost structure if the
original instance is symmetric (cij = cji):

c̃i′,j′′ = c̃i′′,j′ := cij − (µi + µj + ρij + ρji)/2 ∀(i, j) ∈ A (3a)

c̃Si

i′,i′′ := −
∑
k∈Si

πik ∀i ∈ N,Si ⊆ Ki (3b)

where we additionally define µ0 := σ. Note that the benchmark instances for the C-SDVRP are all symmetric,
see Section 4.1.

The solution approach of Archetti et al. (2015) proceeds in two phases as follows:
Phase 1: Pre-computation of all Pareto-optimal pairs (cSi

i′,i′′ , d
Si

i′,i′′) for each customer i ∈ N ;
Phase 2: Solution of an SPPRC defined over a reduced multi-graph containing only Pareto-optimal edges

between i′ and i′′ for all customer i ∈ N .

Pareto-optimal Deliveries. In principle, Pareto-optimal commodity combinations Si ⊆ Ki could be effi-
ciently determined via enumeration when the number of commodities per customer is small (i.e., less than
ten). However, in order to deal with sets Ki of arbitrary size, we present here an SPPRC-based technique
that is also beneficial for separating violated dual-optimal inequalities (see Section 3.2) when non-robust
cuts are added to (1) (see Section 3.3) and when branching constraints must be taken into account (see
Section 3.4).

For each customer i ∈ N , first we arbitrarily order the commodities to deliver at i so that Ki =
{k1, k2, . . . , k|Ki|} (for the sake of convenience, we omit an extra index i). We define the customer network
as a digraph (Ni, Ai) with |Ki| + 1 vertices given by Ni = {0, 1, 2, . . . , |Ki|}. For each index j ∈ Ni, j 6= 0,
there are two arcs (j − 1, j)0 and (j − 1, j)1 between j − 1 and j. The arc (j − 1, j)0 models that the jth
commodity kj is not selected, while arc (j− 1, j)1 models the selection of kj . Accordingly, arc (j− 1, j)0 has
zero weight and zero profit, and arc (j − 1, j)1 has weight dikj and profit πikj . Figure 2 displays an example
of such a customer network.

0 1 2 3 4 5 6

(πi,k1
, di,k1

)

(0, 0)

(πi,k2
, di,k2

)

(0, 0)

(πi,k3
, di,k3

)

(0, 0)

(πi,k4
, di,k4

)

(0, 0)

(πi,k5
, di,k5

)

(0, 0)

(πi,k6
, di,k6

)

(0, 0)

Figure 2: Customer network (Ni, Ai) for a customer i ∈ N with six commodities K = {k1, k2, k3, k4, k5, k6}

Each 0-|Ki|-path in digraph (Ni, Ai) is in one-to-one correspondence to a (possibly empty) subset Si of
Ki. If the weight of the 0-|Ki|-path is positive and does not exceed Q, the corresponding subset Si represents
a feasible delivery. Hence, solving an SPPRC with resources profit (to maximize) and weight (constrained
by Q) produces all Pareto-optimal sets Si. Note that dominance between SPPRC labels must be slightly
modified: as Si = ∅ is not allowed (at least one commodity must be delivered), labels (0, 0) must not
dominate and eliminate other labels.

SPPRC over the Multi-Graph. The reduced multi-graph changes from one column-generation iteration to
the next because all edges (i′, i′′)Si whose subsets Si are not Pareto-optimal are temporarily removed.
The actual SPPRC is then solved using the following resources: (i) accumulated reduced cost according to
(3); (ii) accumulated demand according to (2); and (iii) visit indicators for each customer i ∈ N . Define
V ′ := {0′} ∪ {n′ : n ∈ N} and V ′′ := {0′′} ∪ {n′′ : n ∈ N}. In monodirectional forward labeling, labels at a
vertex i′ ∈ V ′ are only propagated towards i′′ ∈ V ′′ (same i), while labels at i′′ ∈ V ′′ are only propagated
to vertices j′ ∈ V ′ (with different j 6= i).

All resources are initially set to 0. While reduced costs are unconstrained, the accumulated demand is
bounded from above by Q. The visit indicator of customer i ∈ N is increased when one of the arcs (i′, i′′)Si

is traversed, and it is bounded from above by 1.
As this elementary SPPRC is NP-hard in the strong sense, relaxations are typically employed. We use the

ng-path relaxation of Baldacci et al. (2011), in which a cycle over a customer i ∈ N is possible if i is not in
the neighborhood of a vertex of the cycle. Neighborhoods must be pre-defined, and in most implementations
reported in the literature a global number controls the maximum size of all neighborhoods. The larger the
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neighborhoods, the fewer cycles are possible, but on average the computational difficulty increases. Good
tradeoffs were often obtained with neighborhoods of size between 5 and 20.

Bidirectional labeling for SPPRCs was coined by Righini and Salani (2006) in order to mitigate the
explosion of labels typically observed when partial paths grow longer. In bidirectional labeling, both forward
partial paths and backward partial paths are created, but processed only up to a so-called half-way point. In
VRP variants with only capacity constraints, the termination criterion is often that the accumulated demand
has reached or exceeded half of the vehicle’s capacity, i.e., the half-way point is Q/2. When forward and
backward labeling terminates, suitable forward and backward labels must be merged to obtain a complete
feasible route. Several subsequent works have shown that bounded bidirectional labeling algorithms are
usually superior to their monodirectional counterparts.

If the SPPRC is completely symmetric, e.g., guaranteed by definitions (3), the computational effort can
be further reduced by using an implicit bidirectional approach. Note that forward and backward propagation
produce essentially identical partial paths, since forward partial paths start at 0′′ and always traverse edges
(i′, i′′)Si in the given direction, while backward partial paths start at 0′ and traverse edges (i′, i′′)Si in
backward direction (from i′′ to i′). Hence, swapping all i′ and i′′, respectively, allows to produce backward
partial paths out of forward partial paths, and vice versa. Thus, label propagation in one direction can
be omitted, so that, e.g., only forward partial paths are combined in the merge procedure. This implicit
bidirectional techniques has already been successfully implemented and applied in (Bode and Irnich, 2012;
Goeke et al., 2018).

3.2. Stabilization and Dual Inequalities

In this section, we describe the key innovation of this research: the use of dual inequalities for the
stabilization of the column-generation process. For a general introduction to the topic we refer to (Ben
Amor et al., 2006; Gschwind and Irnich, 2016).

Dual Inequalities. We start with some basic definitions. For the C-SDVRP, any linear inequality in the
dual variables is a dual inequality (DI). The DIs that we will consider in the following refer to the dual
variables (πik) for i ∈ N, k ∈ Ki associated with the m partitioning constraints (1b). Recall that these
constraints model the fulfillment of the tasks (i, k) for all i ∈ N, k ∈ Ki. Let D∗ be the dual-optimal space,
i.e., the set of optimal solutions of the dual model to the linear relaxation of (1). Following Ben Amor et al.
(2006), a DI t>π ≤ t (with t ∈ Zm and t ∈ Z) is a dual-optimal inequality (DOI) if D∗ ⊆ {π : t>π ≤ t}. A
set of DIs comprises deep dual-optimal inequalities (DDOIs) if at least one π∗ ∈ D∗ fulfills all inequalities.
Hence, DOIs are always DDOIs, but the reverse is not necessarily true.

A trivial but already effective stabilization happens when the partitioning constraints (1b) are replaced
by covering constraints. This is a valid replacement (preserving the linear relaxation bound) if the cost
matrix fulfills the triangle inequality. We assume that the triangle inequality is fulfilled for the C-SDVRP
instances. Note that this replacement is equivalent to the DIs πik ≥ 0 for all i ∈ N, k ∈ Ki.

The constraint matrix of (1) does also possess the following row replacement property. For a fixed
customer i ∈ N and two different commodities k, k′ ∈ Ki with demands fulfilling dik′ ≤ dik, a route serving
customer i and delivering k and not k′ can always be feasibly replaced by an otherwise identical route that
delivers k′ and not k. For the sake of simplicity, we assume that all commodities delivered to customer i ∈ N
are sorted by non-decreasing demand, i.e.,

Ki = {ki1, ki2, . . . , ki|Ki|} with diki1 ≤ diki2 ≤ · · · ≤ diki|Ki|

holds for all i ∈ N . With this sorting, the DIs

πi,kp − πi,kq ≤ 0 for p ≤ q

in the following denoted as pair inequalities, are DDOIs, as formally shown in (see Gschwind and Irnich, 2016,
Section 3.3, Definition 2, and Property 5). In the primal model, these pair inequalities are extra columns
with exactly two entries/non-zero rows, −1 representing the removal of task (i, kq) and +1 representing the
addition of task (i, kp), i.e., the replacement of commodity kq by commodity kp for customer i. The pair
inequalities result from the subset of |Ki| − 1 so-called ranking inequalities

πi,k1
≤ πi,k2

≤ · · · ≤ πi,k|Ki|
, (4)

which are as powerful as the pair inequalities. Hence, the |Ki| − 1 ranking inequalities can be used instead

of all
(|Ki|

2

)
pair inequalities.
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Note also that if two commodities k, k′ of a customer i ∈ N have identical demand, the two pair
inequalities result in the equality πikp = πikq , which is equivalent to replacing the two corresponding covering
constraints (1b) by an aggregated ≥ 2 constraint. For more details on the relationship between constraint
aggregation and dual equalities we refer to (Gschwind and Irnich, 2016, Property 6). We do not apply
aggregation here, because typical C-SDVRP instances have different demands for all commodities delivered
to a customer, see Section 4.

As known from bin packing, the pair inequalities can be generalized in the following way: consider a
customer i ∈ N , one of its commodities k′ ∈ Ki, and a subset S ⊆ Ki with

di,k′ ≥
∑
k∈S

di,k,

i.e., the amount to deliver of k′ is not smaller than the amount for the commodities k ∈ S. Then,

πi,k′ −
∑
k∈S

πi,k ≥ 0 (5)

is a so-called subset inequality (SI). Pair inequalities are subset inequalities for singleton sets S = {k}. For
|S| > 1, SIs are no DDOIs for the C-SDVRP.

Static versus Dynamic Addition of Dual Inequalities. The most general form of DIs we use is the SIs (5),
defined by the triple (i, k′, S) with i ∈ N , k′ ∈ Ki, and S ⊂ Ki. Let Θ be the set of all active DIs (at some
point in time). For the primal model (1), each DI for (i, k′, S) ∈ Θ is implemented as a DI column with entry
−1 for the row (i, k′) and entries +1 for all rows (i, k), k ∈ S of the constraints (1b). With non-negative
variables yi,k,S ≥ 0 for (i, k, S) ∈ Θ, constraints (1b) are replaced by∑

r∈Ω

arikλ
r −

∑
(i′,k′,S′)∈Θ:

(i′,k′)=(i,k)

yi′,k′,S′ +
∑

(i′,k′,S′)∈Θ:

i′=i,k∈S′

yi′,k′,S′ = 1 i ∈ N, k ∈ Ki.

Moreover, there are several possible strategies to add DIs. We describe three straightforward strategies now:
Static: Right from the initialization of the master program, the DI columns are added to (1).

The advantage is that the stabilization effect happens from the first iteration on. However, more
columns in the RMP make the re-optimization slower.

Dynamic: Only DIs that are violated may be added to the master problem (1).
The advantage is a generally smaller RMP with a faster re-optimization, but a less stabilized column-
generation process. Moreover, the identification of violated DIs, i.e., their separation, may impose
additional effort.

Mixed: Obviously, both strategies can be mixed if a subset of DIs is added a priori and other violated DIs
are separated and added dynamically.

In all three cases, we do not remove non-binding DI columns even though such a clearance step would be
possible. Different strategies for the addition of DIs are presented and analyzed in Section 4.2.

Separation of Violated Dual Inequalities. The separation of violated SIs is a by-product of Phase 1 of the
two-phase pricing approach described above. Indeed, forward labeling in the customer network (Ni, Ai) (see
Figure 2) produces labels at each vertex j ∈ Ni, j 6= 0. Recall that each such vertex j is associated with the
jth commodity k′ in Ki. One of the labels at j is L′ = (πi,k′ , di,k′), which results from the path that only
includes the jth commodity but no other commodity. Any other non-zero label at j must have included one
other or several commodities S ⊆ Ki so that it is identical to L = (

∑
k∈S πik,

∑
k∈S dik). If L dominates L′,

in the SPPRC sense of Phase 1, this implies
∑
k∈S πik ≥ πi,k′ and

∑
k∈S dik ≤ di,k′ . If the first inequality

is strict, the violated SI for (i, k′, S) has been identified. This procedure finds a most violated SI (i, k′, S)
because commodities are sorted by non-decreasing demand so that any subset S ⊂ Ki with

∑
k∈S dik ≤ di,k′

comprises only commodities with an index smaller than j.

Primal Solutions. If additional variables yi,k′,S for SIs are added to the RMP, the solution to the master
program may consist not only of columns of routes but of a mixture of these and DI columns. Such a solution
can however be transformed into a pure route-columns solution if the DIs are DDOIs. Both statements are
in fact equivalent as proven by Gschwind and Irnich (2016, Proposition 1). The authors also describe an
iterative transformation procedure. We summarize its basic ideas now: In each iteration, the algorithm
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chooses from the current (partly transformed) solution a route column with coefficients ar for a route r ∈ Ω
and a compatible SI column (i, k′, S), i.e., one that fulfills arik′ = 1 and arik = 0 for all k ∈ S. Let λ̄r and
ȳi,k′,S be the solution values of the chosen columns, respectively. Then, a new solution is constructed from
the current one by decreasing the solution values of the chosen route and SI columns by min{λ̄r, ȳi,k′,S}
and increasing the solution value of the column corresponding to a new route with coefficient a + eiS − eik′ ,
where the latter are the incidence vectors of {i} × S and (i, k′), respectively. The procedure continues until
no more compatible routes and SI columns exist. If all SIs that have been added are DDOIs, it is guaranteed
that none of them has positive value in the last transformed solution so that a pure route-columns solution
is finally found.

Overstabilization and Recovery Procedure. Recall that, in general, SIs are neither DOIs nor DDOIs for the
C-SDVRP. However, they may in fact be DDOIs for many C-SDVRP instances. Even if not, their addition
does have a stabilizing effect on the column-generation process. Moreover, this possible overstabilization can
be remedied typically without significant additional computational effort. Indeed, if the added inequalities
are no DDOIs for the given instance, i.e., all dual-optimal solutions are cut-off, a recovery procedure can be
used to detect and handle overstabilization. For the C-SDVRP, the recovery procedure first tries to build
from the RMP solution a pure route-columns solution. If this is not possible the RMP has been overstabilized.
In this case, there exists an SI column with positive value, but no compatible route column. Let (i, k′) be the
task whose commodity k′ is replaced by other commodities in the SI column. The recovery procedure then
eliminates all SIs that replace this task (i, k′) from the RMP, forbids their re-generation in the separation
routine, and restarts the column-generation process to optimize the RMP. The process iterates until a pure
route-columns solution is found.

3.3. Valid Inequalities and Cutting Strategy

We use three types of valid inequalities, namely capacity cuts, subset-row inequalities, and strong-degree
constraints.

For any subset of customers C ⊂ N , C 6= ∅, let δ−(C) denote the arcs of the digraph G = (V,A) with
i /∈ C and j ∈ C. The associated capacity cut (CC) is

∑
r∈Ω

 ∑
(i,j)∈δ−(C)

brij

λr ≥
⌈∑

i∈C
∑
k∈Ki

dik

Q

⌉
.

For any CC added to the RMP of (1), let γC be the corresponding dual price. Then, the value γC/2 can be
distributed symmetrically on the edges (i′, j′′) and (i′′, j′) for all (i, j) ∈ δ−(C) of the undirected SPPRC
pricing network. Hence, CCs are robust cuts (Fukasawa et al., 2006).

The second family comprises subset-row inequalities (SR inequalities), first introduced for the VRPTW
by Jepsen et al. (2008). According to the definition of rows for partitioning constraints in (1b), the variant of
the SR inequalities for the C-SDVRP is defined for subsets of tasks, i.e., R ⊂ {(i, k) : i ∈ N, k ∈ Ki} ⊂ N×K.
As in several other works, we restrict ourselves to subset R of cardinality three. The associated SR inequality
for R is ∑

r∈Ω

⌊∑
(i,k)∈R a

r
ik

2

⌋
λr ≤ 1.

For elementary routes, the SR inequality for R ensures that at most one route that fulfills at least two of
three tasks is part of a feasible solution. We assume that the active SR inequalities are given by the sets
R ∈ R. For any R ∈ R, let βR be the corresponding dual price. To correctly incorporate the dual price βR,
a binary resource has to be added to the labels of both the customer networks and the SPPRC multi-graph.
The labeling algorithms are modified as explained by Jepsen et al. (2008).

The third family of strong-degree constraints (SD constraints) was introduced by Contardo et al. (2014).
For the C-SDVRP, there is one SD constraint per task (i, k) with i ∈ N and k ∈ Ki ensuring that (i, k) is
served by at least one route, may this route be elementary or not. Formally, the SD constraint is∑

r∈Ω

ξrikλ
r ≥ 1,

where the coefficient ξrik indicates whether or not route r delivers commodity k to customer i. Hence, ξrik ≤ arik
with equality for elementary routes. Strictly less occurs, when a non-elementary route r delivers (i, k) twice
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or even more often. For any SD constraint added to the RMP of (1), let ηik be the corresponding dual price.
As explained by Contardo et al. (2014), one binary resource per active SD constraint must be added to the
SPPRC multi-graph.

Impact of Cutting on Dual Inequalities. SR inequalities and SD constraints have an impact on the SI. For
a specific SI defined by (i, k′, S), we define for each set R ∈ R the coefficient

uRi,k′,S =

⌈(
|{(i, k) : k ∈ S} ∩R| − δ(i,k′),R

)+
2

⌉
, (6)

where δ(i,k′),R = 1 if (i, k′) ∈ R and zero otherwise. This coefficient is only positive if some tasks that define
the SR inequality also occur in the SI. More precisely, the inner non-negative part in (6) counts the surplus
of tasks added and removed by the SI that occur in R. An even inner part exactly gives the difference in
reduced cost of a route when the respective replacement is performed, while for odd values the difference is
possibly overestimated. Therefore, the SI for (i, k′, S) is now:

πi,k′ −
∑
k∈S

πi,k −
∑
R∈R

uRi,k′,S · βR + ηik′ ≥ 0, (7)

where the last term on the left-hand side is the correction for the SD constraint for (i, k′).

Overall Cutting Strategy. The overall cut-generation strategy is the following: For branch-and-bound nodes
up to level 10, we separate violated CCs, SR inequalities, and SD constraints in this order. To avoid the
introduction of too many resources, we limit the number of SR inequalities to 30 in total and ten in each
round of separation. Moreover, for each task (i, k) we limit the number of SR inequalities defined by R with
(i, k) ∈ R to a maximum of two per round.

For branch-and-bound nodes deeper in the tree, we only separate violated SD constraints as they are
required to guarantee the completeness of the branching rule described in the following section.

3.4. Branching

We apply a similar five-level branching strategy as already applied in (Archetti et al., 2015). We briefly
summarize this strategy. At the first level, we branch on the number of vehicles. At the second level, we
branch on the number of visits to each customer. Here, the branching decision can make some subsets Si
of commodities of customer i infeasible. In this case, we eliminate them from the customer network. For
example, a single visit allows only the subset Si = Ki. When forcing at least two visits, the subset Si = Ki

becomes infeasible. At the third level, we branch on the flow on each edge. All these branching rules are
implemented by adding inequalities to the RMP. The only exception is the zero-flow decision on edges which
is implemented by removing the edge.

Integer flows on all edges are however not sufficient to guarantee integer routes. Therefore, at the fourth
and fifth level, we use the Ryan and Foster branching on the tasks. For two tasks (i, k) and (i′, k′), let
fi,k,i′,k′ =

∑
r∈Ω a

r
ika

r
i′k′λ

r be the information if (i, k) and (i′, k′) are served by the same route. At the fourth
level, we branch on pairs (i, k) and (i, k′) of tasks of the same customer i for which fi,k,i,k′ is fractional. For
fi,k,i,k′ = 0 (separate branch), we modify the pre-computation of the Pareto-optimal deliveries Si ⊆ Ki by
introducing an additional binary resource into the SPPRC. Once that k or k′ is reached in the customer
network of i the resource is set to one and the visit to the other commodity becomes impossible. The result is
that all Pareto-optimal sets Si do not contain both k and k′. For fi,k,i,k′ = 1 (together branch), the vertices
k and k′ are merged together into one vertex of the customer network.

At the fifth level, we consider pairs (i, k) and (i′, k′) for two different customers i and i′. Both branches
(separate and together) are implemented by introducing binary resources into the SPPRC multi-graph. The
separate branch uses a single binary resource as described for the separate branch before. The together
branch requires two binary resources indicating the service of (i, k) and (i′, k′), respectively. The extension
to the destination depot 0′ and the merge of two labels are only allowed if both resources have identical
value.
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Completeness of Branching Scheme. The validity of the branching scheme relies on the use of the SD
constraints that guarantee elementary routes. Otherwise, a minimum example with two customers 1 and 2
and tasks (1, k1), (1, k2), and (2, k) uses the following two non-elementary routes (0, (1, k1), (2, k), (1, k1), 0)
and (0, (1, k2), (2, k), (1, k2), 0) exactly 0.5 times each. The result is that overall one vehicle is used, customer 1
is visited twice and customer 2 is visited once, and all edge flows and all f -values are integer. Therefore,
none of the branching rules is applicable, but the introduction of the SD constraints for the tasks (1, k1)
and (1, k2) cuts off this fractional solution.

Impact of Branching on Dual Inequalities. The branching decisions at the levels two, four, and five can have
an impact on the validity of the DIs.

Branching decisions of level two can make some subsets Si of commodities of a customer i infeasible. In
this case, we eliminate all SIs that can produce such infeasible Si. For example, in a branch that requires at
least three visits to a customer i who has three commodities, any SI that replaces one commodity by two
others is infeasible.

Branching decision using the Ryan and Foster branching at levels four and five impose the elimination
of some SIs. In the together branch, the only valid SIs are those that either refer to none of the two tasks
or SIs where the set S includes both. In the separate branch, again SIs that do not refer to either of the
two tasks are valid. Moreover, SIs that replace one task by the other are also valid. All other SIs must be
eliminated.

Tree Exploration and Variable Selection Strategy. We use a best-bound first tree exploration strategy in
order to improve the dual bound as fast as possible. On all five levels, the specific branching variable is
selected as one where the fractional part is closest to 0.5.

3.5. Acceleration Techniques

To accelerate the column-generation process, we use two types of reduced networks to solve the SPPRC
pricing problem heuristically. The first one includes only one Pareto-optimal commodity set Si for each
customer i in the SPPRC multi-graph. More precisely, we use the commodity combination S∗i with the best
reduced cost, i.e., S∗i = arg minSi⊆Ki c

Si

i′,i′′ . The second one uses only a subset of the inter-customer edges of
the SPPRC multi-graph, namely we limit the number of edges adjacent to a customer to a given value D. In
our implementation, we use D ∈ {2, 5, 10} to obtain a sequence of pricing heuristics with increasing search
space and computational effort. The overall pricing strategy is to first consider the SPPRC multi-graphs
with only one Pareto-optimal delivery per customer and D = 2, 5, 10, and |n| inter-customer edges, followed
by the SPPRC multi-graphs with all Pareto-optimal deliveries and the same values for D. Whenever the
labeling algorithm finds negative reduced paths in one of the (reduced) networks they are returned to the
RMP and the networks later in the sequence are not solved in this iteration.

The course of our BPC algorithm is summarized in Algorithm 1.

4. Computational Results

We implemented the BPC algorithm in C++ and compiled the code in release mode under MS Vi-
sual Studio 2013 (64-bit version). At each column-generation iteration, the RMP was solved by means of
CPLEX 12.6.2. The experiments were carried out on a standard PC with an Intel(R) Core(TM) i7-5930k,
clocked at 3.5 GHz, and 64 GB of RAM, by allowing a single thread for each run. The time limit TL1
for each run was set to one hour. The main components and important parameters of the algorithm are
summarized in Table 1.

4.1. Benchmark Instances

As done in Archetti et al. (2015), we considered the small (n = 15) and mid-size (n = 20, 40, 60, 80)
instances introduced by Archetti et al. (2016). In each instance, the customer locations are taken from
the R101 or the C101 instance of the Solomon (1987) benchmark. Then, as for the small instances, the
number κ of commodities is set to 2 or 3, and the probability p with which the single customer requires
each specific commodity is set to 1.0 or 0.6. When the customer requires the commodity, the corresponding
demand is randomly selected in the interval [1, 100] or [40, 60]. The vehicle capacity is finally set to β ·
maxi∈N{

∑
k∈Ki

dik} with β ∈ {1.1, 1.5, 2.0, 2.5}. One instance is created for each combination of the defining
parameters, for a total of 64 small instances.
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Algorithm 1: BPC algorithm

// Initialization

1 Add static DIs // Section 3.2

// Main loop

2 while not integer optimal do
3 Select branch-and-bound node // Section 3.4

4 Forbid DIs not compatible with branching decisions // Section 3.4

// Solve LP-relaxation

5 do
6 do
7 do
8 for each customer i ∈ N do

9 Compute Pareto-optimal pairs (c̃Si
i′i′′ , d

Si
i′i′′) // Section 3.1

10 Separate violated DIs // Section 3.2

11 Build SPPRC multi-graph // Section 3.1

12 Solve pricing problem on multi-graph // Section 3.1

13 while negative reduced-cost columns found
// Recovery procedure

14 Try to restore primal solution // Section 3.2

15 if overstabilization then
16 Forbid overstabilizing DIs // Section 3.2

17 while overstabilization
18 Separate violated valid inequalities // Section 3.3

19 while violated valid inequalities found
20 if LP fractional and no bounding then
21 Perform branching // Section 3.4

Column Two phase approach: (1) Pareto-optimal pairs (c̃Si
i′i′′ , d

Si
i′i′′) for each customer Section 3.1

Generation (2) SPPRC with implicit bidirectional labeling, ng-path
Reduced networks: (a) only one Pareto optimal set Si per customer Section 3.5

(b) of sizes D = 2, 5, 10

Cutting Capacity cuts: all, heurististic separation Section 3.3
Subset-row inequalities: only |R| = 3, exact separation
Strong-degree constraints: all, exact separation

Branching Best-bound first tree search Section 3.4
Five-level hierarchy: (1) #veh, (2) #visits, (3) edge flow, (4) Ryan-Foster

on tasks for the same customer, and (5) for different customers
Variable selection: fractional part closest to 0.5

Table 1: Summary of main components and important parameters of the branch-price-and-cut algorithm
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The defining parameters for the mid-size instances differ as follows: κ and β are fixed to 3 and 1.5,
respectively, and the demand for each commodity required by the customers can be randomly selected only
in the interval [1, 100]. Five instances are generated for each combination of the parameters, for a total of
80 mid-size instances.

Recall that the C-SDVRP is inherently symmetric. The larger the number of commodities per customer,
the larger the number of possible cost equivalent solutions to the problem that differ only in the delivery
patterns associated with the same set of elementary 0-(n+ 1)-path. We claimed that the use of DIs should
have positive effects especially for such highly symmetric instances. In order to support this statement,
we enlarged the set of small and mid-size instances considering additional values for the number κ of
commodities, namely 4, 5, and 6. In particular, following the same procedure as described in Archetti et al.
(2016), we generated 336 additional instances with more commodities (96 small and 240 mid-size).

4.2. Impact of Dual Inequalities

For the analysis of the impact of DIs, we restrict the test set to the 160 mid-size instances with 20 and
40 customers, because these instances pose a challenge due to the large number of up to 40 · 6 = 240 tasks.
Moreover, comparisons on the basis of results obtained for smaller or bigger instances may lead to erroneous
conclusions as they are generally either very easy or prohibitively hard to solve.

We define Plain as the version of the BPC algorithm in which DIs are not used. We analyze how much
the DIs contribute to the performance of the BPC algorithm by comparing Plain against the following
variants of the BPC algorithm in which:

S-Rank: the DI columns associated with ranking inequalities (4) are statically added to the
RMP;

S-Rank-S-Subs: the DI columns associated with ranking inequalities (4) and a selection of the subset
inequalities (5) are statically included into the RMP;

D-Subs: the DI columns associated with violated subset inequalities (5) are dynamically
added to the RMP;

S-Rank-D-Subs: the DI columns corresponding to ranking inequalities (4) are statically added to the
RMP, whereas DI columns associated with subset inequalities (5) are dynamically
added when the corresponding inequalities are violated;

S-Rank-S/D-Subs: as S-Rank-S-Subs but with the additional possibility to dynamically add to the
master problem further DI columns associated with violated subset inequalities;

We analyze the six different BPC algorithms with the help of performance profiles that allow the com-
parison of a set A of algorithms that are all applied to the same benchmark set (Dolan and Moré, 2002).
The performance profile ρA(τ) of an algorithm A ∈ A is the fraction of instances that algorithm A can solve
within a factor τ of the fastest algorithm (unsolved instances are taken into account with infinite run time).
In particular, ρA(1) is the percentage of instances on which A is a fastest algorithm compared to all other
algorithms B ∈ A \ {A}. The value 1− ρA(∞) is the percentage of instances not solved by A.

We start with the comparison for the solution of the linear relaxation of (1), in the following denoted
by Root, for A = {Plain, S-Rank, S-Rank-S-Subs, D-Subs, S-Rank-D-Subs, S-Rank-S/D-Subs}. The perfor-
mance profiles are depicted in Figure 3. The most striking result is that the Plain BPC is clearly inferior
to all other variants that use DIs for a stabilization of the RMP. Without doubt, DIs significantly acceler-
ate the column-generation process. The variant S-Rank that only uses ranking inequalities and adds them
during the initialization of the RMP seems to be the clear winner. The four other variants perform better
than Plain and worse than S-Rank. Among themselves, S-Rank-S-Subs seems slightly better than the three
others which perform almost identically.

We expected rather similar results for integer solutions produced with the fully-fledged BPC (in the
following denoted by Tree). Figure 4 depicts the performance profiles of all six BPC algorithms. Also here
Plain is not at all competitive and the use of DIs can be strongly recommended. Moreover, the simple
variant S-Rank is no longer superior, instead the variant S-Rank-D-Subs seems to be the overall best
strategy.

In order to understand the different behavior at the root node and for the branch-and-bound tree, we
deeper analyze the pricing iterations. Table 2 compares the number of column-generation iterations for the
six variants. The following results are provided for the linear relaxation (Root) and the branch-and-bound
tree (Tree):

#: Number of instances (out of 160) solved by all six algorithms, all following averages
are taken only over those instances solved by all six variants;
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Figure 3: Performance profiles for the solution of the linear relaxation (Root) of the C-SDVRP instances
with n = 20 and 40 customers.
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# absolute relative to Plain

Number of iterations
total Root 159 260.8 0.47 0.43 0.47 0.44 0.43

Tree 88 1862.3 0.67 0.71 0.75 0.72 0.67

exact (only) Root 159 3.2 0.90 1.41 1.55 1.48 1.55
Tree 88 320.2 0.96 1.07 1.09 1.09 1.05

Number of optima Tree 91 +3 +2 +4 +1 +4

Time Tree 88 352.7 0.68 0.74 0.74 0.74 0.66

Table 2: BPC results (Root and Tree) for the C-SDVRP instances with n = 20 and 40 customers: Number of
column-generation iterations (total and exact only), number of proven optimal solutions, and computation
times.

relative to Plain: The numbers for Plain are given as absolute values. For all other variants, we
compute the geometric mean of the ratios compared to Plain;
(e.g., S-Rank needs only 0.47 times the number of column-generation iterations for
solving the root node compared to Plain)

Number of iterations: The number of column-generation iterations performed (we present the total num-
ber and the number of times the exact pricing problem over the full network was
solved);

Number of optima: Number of instances solved to proven optimality;
Time: Overall computation time (in seconds).

All five strategies reduce the total number of pricing iterations. This causes the observed reduction in
computation times compared to Plain. On the other hand, all variants except for S-Rank need more exact
pricing iterations. This effect is more prominent at the root node (ratios between 1.41 and 1.55) than for
the complete branch-and-bound tree (ratios between 1.05 and 1.09). Only S-Rank requires less exact pricing
iterations compared to Plain, at the root as well as in the tree. Therefore, the different performance shown
in the profiles of Figures 3 and 4 can be explained with two concurring effects. Overall, the use of more than
just the ranking inequalities (variant S-Rank) better stabilizes the RMP leading to a smaller total number of
iterations, but more exact pricing iterations have to be performed. These additional exact pricing iterations
occur more at the root node than in the branch-and-bound tree.

As stated above, on the basis of the performance profiles depicted in Figure 4, strategy S-Rank-S/D-Subs

seems to be superior to the other strategies. This is also confirmed by the results shown in Table 2 where
S-Rank-D-Subs is best w.r.t. both the number of optima and computation time (95 optima and 0.66 time
ratio w.r.t. Plain). Therefore, the following experiments choose S-Rank-S/D-Subs as the stabilized version
of the BPC.

Next, we show more detailed results comparing Plain and the winning variant S-Rank-S/D-Subs. Table 3
summarizes the results obtained on all 160 benchmark instances, grouped by the number κ of commodities
and the number n of customers. Each group comprises 20 instances with the exception of the group for
n = 40 and κ = 6, for which Plain was not able to solve the linear relaxation at the root node in one out of
20 cases. Again, Plain serves as the baseline algorithm and we provide absolute values for it, while values
for S-Rank-S/D-Subs, apart from those reported in column opt, are given as geometric means of the ratios
relative to Plain. The columns with header Root refer to the solution of the linear relaxation and those
with header Tree to the full BPC. The columns of the table have the following meaning:

#: Number of instances for which the linear relaxation is solved by both algorithms, all averages in
section “Root” are taken only over those instances;

iter: Number of column-generation iterations;
cols: Number of columns (of routes as well as of DIs) in the RMP at termination;
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Root Tree

Plain S-Rank-S/D-Subs S-Rank-

Number of Time for Number of Time for Plain S/D-Subs

(absolute) (absolute) (ratio) (ratio) (abs.) (rat.)

κ n # iter cols PP RMP root iter cols PP RMP root opt time opt time

3 20 20 58.9 1725.9 0.1 0.1 0.1 0.63 0.63 0.90 0.88 0.81 20 42.4 20 0.73
3 40 20 113.5 5352.5 1.3 1.3 1.5 0.61 0.59 0.91 0.36 0.85 8 510.8 8 0.75

Total/Avg. 40 86.2 3539.2 0.7 0.7 0.8 0.62 0.61 0.90 0.56 0.83 28 176.2 28 0.74

4 20 20 106.2 4107.3 0.8 0.8 0.9 0.46 0.46 0.76 0.40 0.71 18 152.3 19 0.68
4 40 20 184.8 9114.4 6.0 6.0 6.5 0.51 0.52 0.90 0.24 0.85 9 656.2 9 0.98

Total/Avg. 40 145.5 6610.9 3.4 3.4 3.7 0.49 0.49 0.82 0.31 0.78 27 320.2 28 0.77

5 20 20 172.9 6711.1 2.1 2.1 2.4 0.37 0.39 0.81 0.24 0.72 15 216.5 16 0.61
5 40 20 310.3 16328.6 22.7 22.7 24.2 0.42 0.45 0.86 0.18 0.82 4 1773.2 4 0.55

Total/Avg. 40 241.6 11519.8 12.4 12.4 13.3 0.39 0.42 0.83 0.21 0.77 19 544.2 20 0.60

6 20 20 310.6 11638.6 9.8 9.8 10.7 0.30 0.35 0.69 0.14 0.64 15 534.8 16 0.45
6 40 19 859.1 60695.9 458.3 458.3 466.0 0.28 0.31 0.44 0.14 0.43 2 3140.1 3 0.90

Total/Avg. 39 577.8 35538.3 228.3 228.3 232.5 0.29 0.33 0.56 0.14 0.53 17 841.3 19 0.49

Total/Avg. 159 260.8 14168.5 60.2 60.2 61.5 0.43 0.45 0.77 0.27 0.72 91 420.0 95 0.66

Table 3: Comparison of the two BPC algorithms Plain and S-Rank-S/D-Subs on the benchmark instances
with n = 20 and 40 customers

PP: Accumulated time (in seconds) for the solution of the pricing subproblems;
RMP: Accumulated time (in seconds) for the reoptimization of the RMP;
root: Total time (in seconds) for solving the linear relaxation;
opt: Number of instances solved to proven optimality;

time: Total time (in seconds) for solving branch-and-bound tree, averages are taken only over those
instances solved optimally by both.

We start with observations regarding the solution of the root node: The larger the number n of customer
and the number κ of commodities, the more iterations are needed and more columns are generated with
the Plain BPC. The same is true for the pricing and re-optimization times and, therefore, for the overall
root computation times. For a constant number of tasks, e.g., 120 tasks, a comparison of the rows for κ = 3
and n = 40 and for κ = 6 and n = 20 reveals that the latter instances are significantly more difficult for
Plain. This is due to the higher symmetry in the latter group of instances with κ = 6 commodities. The
columns for the S-Rank-S/D-Subs show that the number of iterations and generated columns as well as the
computation time for pricing and re-optimization of the RMP are clearly reduced by adding DI columns.
Larger instances benefit more from stabilization than smaller instances. Indeed, for the largest instances with
κ = 6 and n = 40, i.e., 240 tasks, the average time ratio for the overall root computation goes down to 0.43.
Comparing PP and RMP times, the RMP times decrease more. The point is probably that PP times are
dominated by the calls to the exact labeling algorithm over the full network. These exact iterations cannot
be avoided with stabilization, but the number of iterations and generated columns is reduced so that RMP
re-optimization times are reduced by a larger extent.

The comparison of the Plain and the S-Rank-S/D-Subs regarding the branch-and-bound tree shows
the following: In total, computation times of the stabilized BPC are reduced to 66 % on average over all
instances. The faster computation times allow the variant S-Rank-S/D-Subs to compute four more optimal
solutions (95 compared to 91 computed with Plain).

4.3. Comparison with Results of Archetti et al. (2015)

In this section we compare our chosen variant S-Rank-S/D-Subs of the BPC with the implementation of
Archetti et al. (2015) which does not use any stabilization technique. All instances used in the computational
study of Archetti et al. (2015) have two or three commodities (κ = 2 or 3). Since we focus on the stabilization
aspect, only the instances with κ = 3 are interesting for a detailed comparison. In contrast to the previous
Section 4.2, however, we use all the available instances with n = 20, 40, 60, and 80 customers.

Tables 4 and 5 present instance-by-instance results for the 80 instances, grouped by the original Solomon
instance, number of customers n, and commodity probability p. The other columns of the tables have the
following meaning:
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Instance (Archetti et al., 2015) S-Rank-S/D-Subs S-Rank-S/D-Subs 4 hours

n p No. z∗ z∗ gap time z∗ gap time nodes z∗ gap time nodes

C101 20 0.6 1 573.86 573.86 (opt) 1.1 573.86 (opt) 0.1 1 573.86 (opt) 0.1 1
2 592.07 592.07 (opt) 1.5 592.07 (opt) 0.1 1 592.07 (opt) 0.1 1
3 595.53 595.53 (opt) 58.2 595.53 (opt) 5.4 54 595.53 (opt) 5.4 54
4 617.88 617.88 (opt) 5.4 617.88 (opt) 0.7 12 617.88 (opt) 0.7 12
5 628.28 628.28 (opt) 13.8 628.28 (opt) 2.3 36 628.28 (opt) 2.3 36

1 1 750.63 750.63 (opt) 13.5 750.63 (opt) 0.4 6 750.63 (opt) 0.4 6
2 714.65 714.65 (opt) 12.1 714.65 (opt) 0.7 5 714.65 (opt) 0.7 5
3 626.16 626.16 (opt) 1614.5 626.16 (opt) 119.0 259 626.16 (opt) 119.0 259
4 747.70 747.70 (opt) 109.2 747.70 (opt) 5.2 26 747.70 (opt) 5.2 26
5 768.52 768.52 (opt) 21.6 768.52 (opt) 4.2 48 768.52 (opt) 4.2 48

R101 20 0.6 1 457.86 457.86 (opt) 6.0 457.86 (opt) 0.3 8 457.86 (opt) 0.3 8
2 667.01 667.01 (opt) 2.8 667.01 (opt) 0.7 10 667.01 (opt) 0.7 10
3 455.05 455.05 (opt) 1.3 455.05 (opt) 0.2 3 455.05 (opt) 0.2 3
4 589.91 589.91 (opt) 3.7 589.91 (opt) 0.5 9 589.91 (opt) 0.5 9
5 663.22 663.22 (opt) 1.1 663.22 (opt) 0.1 7 663.22 (opt) 0.1 7

1 1 599.84 599.84 (opt) 6.6 599.84 (opt) 0.7 6 599.84 (opt) 0.7 6
2 863.88 863.88 (opt) 30.0 863.88 (opt) 4.3 11 863.88 (opt) 4.3 11
3 617.12 615.35 0.29 TL2 617.12 (opt) 420.1 694 617.12 (opt) 420.1 694
4 712.02 712.02 (opt) 24.3 712.02 (opt) 2.6 18 712.02 (opt) 2.6 18
5 794.41 794.41 (opt) 4120.0 794.41 (opt) 79.4 496 794.41 (opt) 79.4 496

20 Avg. 0.03 318.2 0.00 11.9 86 0.00 11.9 86

C101 40 0.6 1 841.02 838.44 0.31 TL2 840.30 0.09 TL1 932 841.02 (opt) 10707.9 1900
2 ∗1006.47 990.26 1.61 TL2 992.06 1.43 TL1 1972 993.23 1.32 TL4 5442
3 879.26 879.26 (opt) 1538.4 879.26 (opt) 10.8 11 879.26 (opt) 10.8 11
4 921.06 920.92 0.02 TL2 921.06 (opt) 195.9 335 921.06 (opt) 195.9 335
5 868.74 868.74 (opt) 2939.9 868.74 (opt) 161.5 163 868.74 (opt) 161.5 163

1 1 ∗1370.84 1300.31 5.15 TL2 1301.90 5.03 TL1 3142 1302.75 4.97 TL4 8869
2 1357.79 1354.52 0.24 TL2 1357.50 0.02 TL1 2149 1357.79 (opt) 6216.7 3228
3 1299.43 1298.31 0.09 TL2 1299.40 0.00 TL1 1489 1299.43 (opt) 3998.8 1568
4 1236.16 1231.91 0.34 TL2 1234.36 0.15 TL1 2817 1235.00 0.09 TL4 7854
5 ∗1362.22 1263.33 7.26 TL2 1265.71 7.08 TL1 2302 1266.55 7.02 TL4 7014

R101 40 0.6 1 761.78 759.22 0.34 TL2 761.78 (opt) 1462.4 833 761.78 (opt) 1442.9 833
2 896.01 895.93 0.01 TL2 896.02 (opt) 632.4 981 896.02 (opt) 632.4 981
3 851.03 851.03 (opt) 2469.4 851.03 (opt) 71.4 143 851.03 (opt) 71.4 143
4 973.48 970.62 0.29 TL2 971.85 0.17 TL1 4390 972.71 0.08 TL4 11148
5 854.35 854.35 (opt) 2152.5 854.35 (opt) 149.7 160 854.35 (opt) 149.7 160

1 1 ∗1238.25 1232.66 0.45 TL2 1235.80 0.20 TL1 2613 1237.11 0.09 TL4 7241
2 ∗1276.11 1234.05 3.30 TL2 1235.80 3.16 TL1 2116 1236.78 3.08 TL4 5442
3 1056.13 1056.13 (opt) 2411.2 1056.13 (opt) 291.4 310 1056.13 (opt) 291.4 310
4 1244.14 1242.08 0.17 TL2 1243.06 0.09 TL1 3504 1244.14 (opt) 13141.9 9450
5 ∗1130.01 1096.02 3.01 TL2 1097.96 2.84 TL1 1681 1098.87 2.76 TL4 5028

40 Avg. 2.26 2302.3 2.02 137.0 1602 1.94 137.0 3856

Table 4: Comparison with results of Archetti et al. (2015), mid-size instances with κ = 3 (Part 1).

z∗: Lower bound obtained by BPC at time of termination;
z∗: The best solution provided by one of the BPC algorithms included in the table, or if marked with

an asterisk ∗ by an extra run of S-Rank-S/D-Subs with an mixed depth/best first tree exploration
strategy;

gap: The percentage gap 100 · (z∗ − z∗)/z∗ if not solved to proven optimality (opt), averages are taken
over the instances for which all algorithms could provide lower bounds;

time: Total computation time in seconds, averages are taken over the instances that were solved to
optimality by all algorithms;

nodes: Number of solved nodes by BPC at time of termination, averages are taken over all instances.

Note that Archetti et al. (2015) have set the computation time limit TL2 to two hours (7200 seconds), while
we set the time limit TL1 for variant S-Rank-S/D-Subs to one hour (3600 seconds) to account for the better
computer used in our experiments.

Over the benchmark, our stabilized BPC algorithm solves 32 out of 80 instances optimally, while the
unstabilized algorithm of Archetti et al. (2015) solves 24. In particular, our algorithm provides 4 out of
20 optima for the 60-customer instances on which the unstabilized algorithm was not able to prove any
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Instance (Archetti et al., 2015) S-Rank-S/D-Subs S-Rank-S/D-Subs 4 hours

n p No. z∗ z∗ gap time z∗ gap time nodes z∗ gap time nodes

C101 60 0.6 1 1221.36 1216.34 0.41 TL2 1220.10 0.10 TL1 563 1221.36 (opt) 11703.7 1404
2 1331.77 1330.13 0.12 TL2 1331.77 (opt) 3195.5 599 1331.77 (opt) 3195.5 599
3 1180.61 1180.29 0.03 TL2 1180.61 (opt) 275.6 64 1180.61 (opt) 275.6 64
4 1282.72 1281.42 0.10 TL2 1282.72 (opt) 1049.2 264 1282.72 (opt) 1049.2 264
5 ∗1339.02 1294.56 3.32 TL2 1299.07 2.98 TL1 957 1299.98 2.92 TL4 2924

1 1 ∗2049.20 1966.87 4.02 TL2 1969.31 3.90 TL1 1016 1970.02 3.86 TL4 3626
2 ∗1787.11 1657.61 7.25 TL2 1659.11 7.16 TL1 629 1659.90 7.12 TL4 2427
3 ∗1897.73 1782.65 6.06 TL2 1784.31 5.98 TL1 1131 1785.08 5.94 TL4 3980
4 ∗1936.13 1890.51 2.36 TL2 1896.33 2.06 TL1 1177 1896.99 2.02 TL4 3901
5 ∗1773.78 1618.64 8.75 TL2 1625.32 8.37 TL1 563 1626.47 8.30 TL4 2426

R101 60 0.6 1 1284.99 1279.20 0.45 TL2 1282.51 0.19 TL1 1372 1284.44 0.04 TL4 5353
2 1310.86 1306.21 0.35 TL2 1308.09 0.21 TL1 1601 1309.05 0.14 TL4 3952
3 1028.52 1028.32 0.02 TL2 1028.52 (opt) 331.6 245 1028.52 (opt) 331.6 245
4 1221.57 1215.90 0.46 TL2 1219.15 0.20 TL1 1826 1220.17 0.11 TL4 5140
5 1149.70 1146.77 0.25 TL2 1148.05 0.14 TL1 1246 1149.26 0.04 TL4 3564

1 1 ∗2135.42 - - TL2 2040.84 4.43 TL1 2398 2042.20 4.37 TL4 8307
2 ∗1706.34 1633.53 4.27 TL2 1639.08 3.94 TL1 2436 1640.03 3.89 TL4 7881
3 ∗1609.37 1544.33 4.04 TL2 1547.39 3.85 TL1 2280 1548.50 3.78 TL4 7228
4 ∗1748.82 1694.81 3.09 TL2 1708.22 2.32 TL1 1346 1709.38 2.26 TL4 4446
5 ∗1505.13 1487.25 1.19 TL2 1490.34 0.98 TL1 876 1491.57 0.90 TL4 3303

60 Avg. 2.45 - 2.23 - 1129 2.17 - 3552

C101 80 0.6 1 ∗1697.63 1629.59 4.01 TL2 1632.21 3.85 TL1 480 1633.24 3.79 TL4 1975
2 ∗1637.98 1588.94 2.99 TL2 1595.50 2.59 TL1 668 1596.31 2.54 TL4 2697
3 ∗1784.51 1726.68 3.24 TL2 1731.77 2.96 TL1 617 1732.86 2.89 TL4 2301
4 ∗1510.45 1430.96 5.26 TL2 1440.28 4.65 TL1 435 1441.19 4.59 TL4 1705
5 ∗1783.91 1651.33 7.43 TL2 1662.12 6.83 TL1 460 1663.11 6.77 TL4 1808

1 1 ∗2327.33 - - TL2 2226.65 4.33 TL1 304 2227.37 4.30 TL4 1321
2 ∗2302.58 1992.49 13.47 TL2 2095.53 8.99 TL1 277 2096.99 8.93 TL4 1378
3 ∗2750.59 - - TL2 2574.99 6.38 TL1 805 2575.56 6.36 TL4 2889
4 ∗2509.90 - - TL2 2343.46 6.63 TL1 435 2344.22 6.60 TL4 1793
5 ∗2507.19 - - TL2 2387.96 4.76 TL1 494 2388.47 4.74 TL4 2268

R101 80 0.6 1 ∗1458.72 1430.71 1.92 TL2 1434.71 1.65 TL1 1048 1436.16 1.55 TL4 4053
2 ∗1509.04 1459.24 3.30 TL2 1462.05 3.11 TL1 1197 1463.17 3.04 TL4 4550
3 ∗1643.03 1583.16 3.64 TL2 1585.92 3.48 TL1 1980 1587.42 3.38 TL4 6985
4 ∗1442.54 1400.02 2.95 TL2 1404.23 2.66 TL1 611 1405.40 2.57 TL4 2440
5 ∗1523.49 - - TL2 1451.05 4.75 TL1 144 1451.05 4.75 TL4 144

1 1 ∗2214.27 - - TL2 2084.94 5.84 TL1 934 2085.99 5.79 TL4 3209
2 ∗1972.32 - - TL2 1913.71 2.97 TL1 907 1915.06 2.90 TL4 3246
3 ∗2338.46 - - TL2 2261.39 3.30 TL1 1121 2262.44 3.25 TL4 4216
4 ∗2191.98 - - TL2 2080.61 5.08 TL1 547 2081.89 5.02 TL4 2556
5 ∗2183.39 - - TL2 2119.67 2.92 TL1 1059 2120.65 2.87 TL4 3896

80 Avg. 4.82 - 4.08 - 726 4.01 - 2772

Table 5: Comparison with results of Archetti et al. (2015), mid-size instances with κ = 3 (Part 2).

optimality. All 80-customer remain unsolved, but we are able to provide lower bounds in all cases. Although
there were only modest improvements in terms of the number of optimal solutions found and quality of the
bounds computed, the results concerning the 20- and 40-customer instances show how S-Rank-S/D-Subs is
about one order of magnitude faster than the unstabilized algorithm of Archetti et al. (2015).

In order assess the performance of S-Rank-S/D-Subs with a larger time limit and to get a clearer picture
why the larger instances cannot be solved, we performed an additional run of S-Rank-S/D-Subs on the
unsolved instances with an extended time limit of four hours (TL4). These results are also shown in Tables 4
and 5. With the longer runtime, five additional instances are solved optimally, while most of the 60-customer
and all 80-customer instances remain unsolved. Lower bounds are improved only slightly with the additional
computation time, although S-Rank-S/D-Subs solves on average around 3.5 times more branch-and-bound
nodes. We attribute this behavior to the inherent symmetry of the C-SDVRP that makes the problem hard
to solve with an increased number of tasks to perform.

4.4. Results for New Instances with More Commodities

As mentioned at the beginning of the section, we created 96 small (n = 15) and 240 mid-size (n =
20, 40, 60, and 80) new C-SDVRP instance with four to six commodities (κ ∈ {4, 5, 6}). The new benchmark
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is available at http://logistik.bwl.uni-mainz.de/benchmarks.php.

Instances Results

κ n # gap time opt gapLP nodes CC SR SD rec

4 15 32 0.41 117.0 31 5.10 182.6 26.5 13.4 0.1 2.2
5 15 32 – 39.0 32 5.53 47.8 33.5 17.0 0.1 2.7
6 15 32 – 284.2 31 5.93 35.5 35.5 22.2 0.2 3.6

4 20 20 – 355.6 19 3.93 240.4 47.9 19.4 2.6 6.0
4 40 20 0.11 2326.5 9 4.24 813.0 176.5 30.0 80.1 51.7
4 60 20 – 3486.5 2 4.82 730.5 245.7 30.0 125.3 44.0
4 80 20 – 3600.0 0 – 412.0 266.4 30.0 90.6 24.3

5 20 20 0.33 824.8 16 5.18 372.3 60.5 25.8 19.2 13.3
5 40 20 0.18 3072.2 4 3.81 657.6 184.3 30.0 72.8 69.9
5 60 20 – 3600.0 0 – 324.0 237.7 30.0 67.8 45.0
5 80 20 – 3600.0 0 – 188.2 276.6 30.0 34.1 24.2

6 20 20 0.13 999.0 16 6.12 184.2 73.6 29.5 6.9 13.6
6 40 20 – 3430.9 3 4.47 352.8 180.9 30.0 43.6 52.2
6 60 20 – 3600.0 0 – 198.5 254.8 27.5 36.0 34.3
6 80 20 – 3600.0 0 – 78.4 243.5 22.5 10.2 19.0

Table 6: Aggregated results for new instances with more commodities

Table 6 shows aggregated results whereas the Appendix gives instance-by-instance results, i.e., Tables 7–
9 for the small instances and Tables 10–17 for the mid-size instances. The additional columns of the tables
have the following meaning:

zLP: Linear-relaxation lower bound of the RMP;
gapLP: The percentage gap 100 · (z∗ − zLP)/z∗ of the linear-relaxation lower bound;

CC: Number of generated CC by BPC at time of termination;
SR: Number of generated SR inequalities by BPC at time of termination;
SD: Number of generated SD constraints by BPC at time of termination;
rec: Number of times the recovery procedure found an overstabilized RMP solution in the BPC at time

of termination.
Overall, we are able to solve all but two of the 96 small instances with 15 customers and most (51 of 60)

of the 20 customer instances. For the larger instances, the number of optima proven decreases significantly:
only 16 and two optima for the 40 and 60 customer instances, respectively, while we cannot find any optimal
solution for the instances with 80 customers. Lower bounds, however, are provided for all instances.

5. Conclusions

In this paper, we have developed a new BPC algorithm tailored to the commodity-constrained split
delivery vehicle routing problem (C-SDVRP). The main novelty is the use of dual-optimal inequalities for
the stabilization of the column-generation process. We have focused on the interaction of branching and
cutting decisions and the different classes of dual inequalities. For the first time, non-robust VRP cuts such
as subset-row inequalities and strong-degree constraints have been used in conjunction with dual subset
inequalities that were originally introduced for packing and cutting applications. In order to keep as many
dual inequalities as possible in the overall branch-and-bound tree, we have derived precise rules for their
validity in the presence of branching and cutting constraints.

In an extensive computational analysis, we compared different strategies for the a-priori addition and
dynamic generation of dual inequalities. A first result is that all strategies that employ stabilization based on
dual inequalities clearly outperform the unstabilized version of the BPC algorithm. Interestingly, the BPC
algorithms with the analyzed strategies perform differently when solving the linear relaxation and within
the branch-and-bound tree. A key observation in this context is that certain strategies require less overall
column-generation iterations, but more calls to the exact pricing algorithm. This effect is, in the C-SDVRP,
more pronounced at the root node resulting in the observed and different behaviors of the strategies.
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Our best strategy is one that a priori adds dual ranking inequalities and a few dual subset inequalities,
but identifies the most violated dual subset inequalities in each column-generation iteration and adds them
to the RMP. Comparing this strategy to the state-of-the-art algorithm on the existing benchmark, we are
significantly faster. We have computed several new proven optima for instances with up to 60 customers and
180 tasks. In addition, we have determined lower bounds for all tested instances with up to 80 customers
and 480 tasks. This improves the bounds for all unsolved instances and proves lower bounds for the first
time for several instances.
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This appendix is supposed to become online supplementary material.

Appendix

I. Detailed Results for the Small Instances (n = 15)

Instance S-Rank-S/D-Subs

p di β z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 0.6 [1;100] 1.1 450.69 450.69 (opt) 0.7 421.56 6.46 9 32 11 0 0
0.6 [40;60] 1.1 410.08 410.08 (opt) 0.1 404.7 1.31 1 13 0 0 0

1 [1;100] 1.1 490.56 490.56 (opt) 1.5 477.17 2.73 7 57 14 0 2
1 [40;60] 1.1 624.41 624.41 (opt) 0.2 604.04 3.26 3 32 0 0 0

0.6 [1;100] 1.5 323.13 323.13 (opt) 0.4 318.31 1.49 7 28 10 0 1
0.6 [40;60] 1.5 341.26 341.26 (opt) 0.4 329.42 3.47 7 29 26 0 0

1 [1;100] 1.5 343.63 343.63 (opt) 8.0 306.49 10.81 27 38 30 0 4
1 [40;60] 1.5 464.62 466.53 0.41 TL1 447.61 4.06 5454 61 30 2 43

0.6 [1;100] 2.0 264.13 264.13 (opt) 0.6 244.66 7.37 1 15 0 0 0
0.6 [40;60] 2.0 264.13 264.13 (opt) 0.8 229.27 13.20 6 16 10 0 0

1 [1;100] 2.0 299.38 299.38 (opt) 17.3 258.44 13.67 36 35 30 0 4
1 [40;60] 2.0 349.53 349.53 (opt) 1.5 340.78 2.50 5 26 20 0 0

0.6 [1;100] 2.5 203.33 203.33 (opt) 4.1 183.98 9.52 22 20 30 0 3
0.6 [40;60] 2.5 231.31 231.31 (opt) 3.9 203.96 11.82 19 26 30 0 0

1 [1;100] 2.5 263.51 263.51 (opt) 26.3 222.89 15.41 10 29 22 0 3
1 [40;60] 2.5 311.30 311.30 (opt) 8.5 282.78 9.16 35 36 30 0 2

R101 0.6 [1;100] 1.1 369.77 369.77 (opt) 0.1 364.9 1.32 2 23 0 0 1
0.6 [40;60] 1.1 626.09 626.09 (opt) 0.3 612.06 2.24 27 27 30 0 0

1 [1;100] 1.1 549.44 549.44 (opt) 0.1 538.68 1.96 1 25 0 0 1
1 [40;60] 1.1 672.59 672.59 (opt) 0.1 658.59 2.08 7 39 4 0 0

0.6 [1;100] 1.5 435.77 435.77 (opt) 5.0 410.34 5.84 14 35 30 0 1
0.6 [40;60] 1.5 432.91 432.91 (opt) 0.1 425.27 1.76 7 21 4 0 0

1 [1;100] 1.5 418.08 418.08 (opt) 0.1 401.05 4.07 2 29 0 0 0
1 [40;60] 1.5 558.96 558.96 (opt) 56.1 538.65 3.63 27 46 30 0 0

0.6 [1;100] 2.0 316.20 316.20 (opt) 0.1 307.4 2.78 3 6 0 0 0
0.6 [40;60] 2.0 321.96 321.96 (opt) 0.1 318.31 1.13 1 7 0 0 0

1 [1;100] 2.0 376.27 376.27 (opt) 0.1 365.95 2.74 1 13 0 0 1
1 [40;60] 2.0 444.19 444.19 (opt) 0.0 437.64 1.47 1 12 0 0 0

0.6 [1;100] 2.5 277.82 277.82 (opt) 0.1 264.24 4.89 2 2 4 0 0
0.6 [40;60] 2.5 348.97 348.97 (opt) 0.1 336.19 3.66 2 18 0 0 0

1 [1;100] 2.5 344.36 344.36 (opt) 0.2 329.7 4.26 10 23 5 0 3
1 [40;60] 2.5 402.44 402.44 (opt) 8.4 389.49 3.22 87 30 30 0 1

Table 7: Detailed results for the small instances (n = 15) with κ = 4 commodities.
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Instance S-Rank-S/D-Subs

p di β z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 0.6 [1;100] 1.1 393.31 393.31 (opt) 83.3 373.98 4.91 64 37 30 0 1
0.6 [40;60] 1.1 489.76 489.76 (opt) 0.2 462.39 5.59 7 46 0 0 0

1 [1;100] 1.1 489.03 489.03 (opt) 49.6 442.21 9.57 64 73 30 0 9
1 [40;60] 1.1 634.32 634.32 (opt) 140.2 617.5 2.65 424 75 30 2 5

0.6 [1;100] 1.5 266.16 266.16 (opt) 2.1 244.6 8.10 2 12 10 0 1
0.6 [40;60] 1.5 376.32 376.32 (opt) 0.3 336.29 10.64 2 22 0 0 0

1 [1;100] 1.5 382.71 382.71 (opt) 514.3 358.63 6.29 148 24 30 0 13
1 [40;60] 1.5 457.51 457.51 (opt) 49.4 435.91 4.72 107 70 30 0 2

0.6 [1;100] 2.0 201.12 201.12 (opt) 6.5 176.82 12.08 1 3 0 0 1
0.6 [40;60] 2.0 265.02 265.02 (opt) 3.2 223.45 15.69 19 18 30 0 0

1 [1;100] 2.0 298.43 298.43 (opt) 65.2 262.02 12.20 21 32 30 0 9
1 [40;60] 2.0 349.40 349.40 (opt) 15.7 343.48 1.69 17 24 30 0 1

0.6 [1;100] 2.5 169.47 169.47 (opt) 10.4 169.19 0.17 1 1 0 0 1
0.6 [40;60] 2.5 232.49 232.49 (opt) 1.0 209.28 9.98 10 18 30 0 0

1 [1;100] 2.5 232.22 232.22 (opt) 152.2 209.79 9.66 5 16 0 0 4
1 [40;60] 2.5 311.00 311.00 (opt) 38.2 277.07 10.91 24 44 30 0 0

R101 0.6 [1;100] 1.1 480.36 480.36 (opt) 0.2 468.31 2.51 8 48 10 0 2
0.6 [40;60] 1.1 540.78 540.78 (opt) 0.1 525.59 2.81 5 27 15 0 0

1 [1;100] 1.1 546.37 546.37 (opt) 22.2 520.15 4.80 41 68 30 0 7
1 [40;60] 1.1 665.12 665.12 (opt) 11.9 643.58 3.24 142 90 30 0 7

0.6 [1;100] 1.5 406.66 406.66 (opt) 0.2 386.49 4.96 6 29 0 0 3
0.6 [40;60] 1.5 393.54 393.54 (opt) 0.1 377.83 3.99 3 41 0 0 0

1 [1;100] 1.5 454.76 454.76 (opt) 0.2 441.94 2.82 1 22 0 0 2
1 [40;60] 1.5 566.45 566.45 (opt) 56.2 542.33 4.26 235 78 30 0 7

0.6 [1;100] 2.0 343.93 343.93 (opt) 0.1 338.18 1.67 1 10 0 0 1
0.6 [40;60] 2.0 398.16 398.16 (opt) 2.1 381.39 4.21 39 36 30 0 0

1 [1;100] 2.0 351.19 351.19 (opt) 0.5 338.65 3.57 3 13 0 0 3
1 [40;60] 2.0 443.56 443.56 (opt) 0.8 430.58 2.93 10 31 30 0 0

0.6 [1;100] 2.5 324.38 324.38 (opt) 0.1 322.4 0.61 1 9 0 0 1
0.6 [40;60] 2.5 331.78 331.78 (opt) 0.2 321.96 2.96 5 8 20 0 0

1 [1;100] 2.5 339.66 339.66 (opt) 0.8 329.29 3.05 7 5 10 0 4
1 [40;60] 2.5 399.76 399.76 (opt) 21.7 385.2 3.64 108 42 30 0 2

Table 8: Detailed results for the small instances (n = 15) with κ = 5 commodities.
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Instance S-Rank-S/D-Subs

p di β z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 0.6 [1;100] 1.1 455.52 455.52 (opt) 40.8 418.69 8.09 124 41 30 0 8
0.6 [40;60] 1.1 447.61 447.61 (opt) 0.4 416.45 6.96 4 27 10 0 0

1 [1;100] 1.1 502.64 – – TL1 486.62 – 362 68 30 0 14
1 [40;60] 1.1 628.13 628.13 (opt) 8.2 613.13 2.39 34 32 30 0 2

0.6 [1;100] 1.5 343.38 343.38 (opt) 2.6 308.43 10.18 3 14 0 0 2
0.6 [40;60] 1.5 350.85 350.85 (opt) 2.4 315.03 10.21 12 30 30 0 0

1 [1;100] 1.5 416.85 416.85 (opt) 2463.9 385.12 7.61 46 53 30 5 14
1 [40;60] 1.5 490.30 490.30 (opt) 43.7 460.17 6.15 59 63 30 2 0

0.6 [1;100] 2.0 265.56 265.56 (opt) 155.6 218.03 17.90 36 34 30 0 11
0.6 [40;60] 2.0 307.98 307.98 (opt) 5.7 283.44 7.97 3 29 0 0 0

1 [1;100] 2.0 308.81 308.81 (opt) 379.0 269.77 12.64 27 40 30 0 9
1 [40;60] 2.0 377.20 377.20 (opt) 9.0 352.89 6.44 2 14 10 0 0

0.6 [1;100] 2.5 169.23 169.23 (opt) 92.4 164.03 3.07 2 16 0 0 0
0.6 [40;60] 2.5 272.20 272.20 (opt) 12.3 237.13 12.88 40 27 30 0 0

1 [1;100] 2.5 239.32 239.32 (opt) 1534.9 217.71 9.03 35 31 30 0 7
1 [40;60] 2.5 311.97 311.97 (opt) 57.0 291.83 6.46 11 34 30 0 0

R101 0.6 [1;100] 1.1 525.55 525.55 (opt) 1.0 504.92 3.93 16 39 30 0 4
0.6 [40;60] 1.1 447.99 447.99 (opt) 1.9 427.8 4.51 23 29 30 0 0

1 [1;100] 1.1 575.24 575.24 (opt) 34.1 549.55 4.47 57 78 30 0 13
1 [40;60] 1.1 679.02 679.02 (opt) 1.8 667.67 1.67 19 62 30 0 0

0.6 [1;100] 1.5 451.37 451.37 (opt) 0.5 440.72 2.36 16 18 30 0 3
0.6 [40;60] 1.5 450.37 450.37 (opt) 4.0 430.91 4.32 35 47 30 0 0

1 [1;100] 1.5 488.50 488.50 (opt) 18.2 468.12 4.17 35 85 30 0 9
1 [40;60] 1.5 551.36 551.36 (opt) 575.9 517.13 6.21 52 71 30 0 0

0.6 [1;100] 2.0 325.84 325.84 (opt) 0.4 323.57 0.70 2 6 2 0 2
0.6 [40;60] 2.0 374.28 374.28 (opt) 23.6 360.02 3.81 19 11 30 0 0

1 [1;100] 2.0 375.32 375.32 (opt) 1.8 364.36 2.92 6 11 10 0 4
1 [40;60] 2.0 443.77 443.77 (opt) 16.2 430.6 2.97 19 36 30 0 0

0.6 [1;100] 2.5 334.59 334.59 (opt) 3.5 317.16 5.21 17 28 30 0 6
0.6 [40;60] 2.5 307.02 307.02 (opt) 0.1 299.72 2.38 2 9 0 0 0

1 [1;100] 2.5 360.28 360.28 (opt) 3.9 349.24 3.06 14 26 17 0 8
1 [40;60] 2.5 391.30 391.30 (opt) 0.5 378.98 3.15 3 27 0 0 0

Table 9: Detailed results for the small instances (n = 15) with κ = 6 commodities.
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II. Detailed Results for the Mid-Size Instances (n = 20, 40, 60, 80)

Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 20 0.6 1 573.86 573.86 (opt) 0.1 573.28 0.10 1 4 0 0 0
2 592.07 592.07 (opt) 0.1 566.9 4.25 1 37 0 0 0
3 595.53 595.53 (opt) 5.4 533.06 10.49 54 54 30 0 0
4 617.88 617.88 (opt) 0.7 603.3 2.36 12 66 30 0 1
5 628.28 628.28 (opt) 2.3 604.1 3.85 36 50 30 0 0

1 1 750.63 750.63 (opt) 0.4 736.56 1.87 6 29 10 0 1
2 714.65 714.65 (opt) 0.7 686.41 3.95 5 48 10 0 0
3 626.16 626.16 (opt) 119.0 593.22 5.26 259 47 30 0 2
4 747.70 747.70 (opt) 5.2 706.87 5.46 26 71 30 0 4
5 768.52 768.52 (opt) 4.2 745.15 3.04 48 58 30 0 4

R101 20 0.6 1 457.86 457.86 (opt) 0.3 445.58 2.68 8 40 10 0 0
2 667.01 667.01 (opt) 0.7 655.88 1.67 10 29 27 0 1
3 455.05 455.05 (opt) 0.2 443.98 2.43 3 36 0 0 0
4 589.91 589.91 (opt) 0.5 570.97 3.21 9 52 15 0 1
5 663.22 663.22 (opt) 0.1 648.93 2.15 7 36 8 0 1

1 1 599.84 599.84 (opt) 0.7 580.87 3.16 6 44 10 0 0
2 863.88 863.88 (opt) 4.3 838.49 2.94 11 34 30 0 2
3 617.12 617.12 (opt) 420.1 589.83 4.42 694 57 30 11 24
4 712.02 712.02 (opt) 2.6 687.47 3.45 18 49 30 0 2
5 794.41 794.41 (opt) 79.4 751.76 5.37 496 71 30 0 14

C101 40 0.6 1 840.30 – – TL1 782.95 – 932 196 30 42 3
2 992.06 – – TL1 948.14 – 1972 147 30 122 14
3 879.26 879.26 (opt) 10.8 845.46 3.84 11 130 20 0 2
4 921.06 921.06 (opt) 195.9 883.78 4.05 335 110 30 34 0
5 868.74 868.74 (opt) 161.5 833.75 4.03 163 77 30 16 6

1 1 1301.90 – – TL1 1210.08 – 3142 182 30 103 72
2 1357.50 1357.79 0.02 TL1 1275.27 6.08 2149 234 30 110 115
3 1299.40 1299.49 0.01 TL1 1215.15 6.49 1489 187 30 54 98
4 1234.36 – – TL1 1172.33 – 2817 196 30 135 28
5 1265.71 – – TL1 1153.93 – 2302 162 30 212 11

R101 40 0.6 1 761.78 761.78 (opt) 1462.4 742.65 2.51 833 99 30 37 4
2 896.02 896.02 (opt) 632.4 874.11 2.45 981 144 30 31 2
3 851.03 851.03 (opt) 71.4 828.3 2.67 143 117 30 12 1
4 971.85 973.48 0.17 TL1 938.74 3.57 4390 139 30 465 1
5 854.35 854.35 (opt) 149.7 814.44 4.67 160 128 30 9 1

1 1 1235.80 – – TL1 1208.52 – 2613 202 30 214 84
2 1235.80 – – TL1 1197.67 – 2116 257 30 214 48
3 1056.13 1056.13 (opt) 291.4 1038.69 1.65 310 179 30 5 16
4 1243.06 – – TL1 1211.52 – 3504 184 30 422 110
5 1097.96 – – TL1 1064.26 – 1681 153 30 164 50

Table 10: Detailed results for the mid-size instances (n = 20 to 40) with κ = 3 commodities.
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Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 60 0.6 1 1220.10 – – TL1 1147.63 – 563 311 30 165 0
2 1331.77 1331.77 (opt) 3195.5 1277.81 4.05 599 308 30 42 1
3 1180.61 1180.61 (opt) 275.6 1141.78 3.29 64 182 30 5 1
4 1282.72 1282.72 (opt) 1049.2 1233.06 3.87 264 215 30 11 2
5 1299.07 – – TL1 1225.12 – 957 315 30 423 31

1 1 1969.31 – – TL1 1889.44 – 1016 358 30 65 40
2 1659.11 – – TL1 1587.69 – 629 300 30 105 49
3 1784.31 – – TL1 1703.73 – 1131 226 30 126 34
4 1896.33 – – TL1 1823.25 – 1177 287 30 155 107
5 1625.32 – – TL1 1569.73 – 563 233 30 35 20

R101 60 0.6 1 1282.51 1284.99 0.19 TL1 1261.02 1.87 1372 189 30 321 11
2 1308.09 – – TL1 1281.35 – 1601 276 30 290 3
3 1028.52 1028.52 (opt) 331.6 1012.18 1.59 245 150 30 39 2
4 1219.15 – – TL1 1201.34 – 1826 163 30 544 27
5 1148.05 1151.21 0.27 TL1 1125.66 2.22 1246 287 30 266 33

1 1 2040.84 – – TL1 2013.23 – 2398 158 30 265 186
2 1639.08 – – TL1 1607.80 – 2436 192 30 152 136
3 1547.39 – – TL1 1525.45 – 2280 206 30 673 70
4 1708.22 – – TL1 1681.15 – 1346 284 30 106 74
5 1490.34 – – TL1 1461.98 – 876 233 30 120 37

C101 80 0.6 1 1632.21 – – TL1 1550.64 – 480 400 30 95 0
2 1595.50 – – TL1 1526.39 – 668 277 30 118 6
3 1731.77 – – TL1 1660.42 – 617 400 30 170 1
4 1440.28 – – TL1 1375.15 – 435 347 30 247 12
5 1662.12 – – TL1 1562.98 – 460 400 30 207 30

1 1 2226.65 – – TL1 2167.72 – 304 364 30 67 7
2 2095.53 – – TL1 2009.26 – 277 306 30 107 11
3 2574.99 – – TL1 2488.46 – 805 324 30 57 38
4 2343.46 – – TL1 2253.41 – 435 399 30 47 36
5 2387.96 – – TL1 2302.49 – 494 400 30 67 16

R101 80 0.6 1 1434.71 – – TL1 1407.84 – 1048 153 30 301 1
2 1462.05 – – TL1 1447.64 – 1197 188 30 231 16
3 1585.92 – – TL1 1570.82 – 1980 190 30 321 17
4 1404.23 – – TL1 1389.55 – 611 159 30 258 3
5 1451.05 – – TL1 1431.73 – 144 159 30 105 2

1 1 2084.94 – – TL1 2058.75 – 934 228 30 60 61
2 1913.71 – – TL1 1897.11 – 907 243 30 206 56
3 2261.39 – – TL1 2242.57 – 1121 181 30 113 43
4 2080.61 – – TL1 2057.73 – 547 137 30 100 17
5 2119.67 – – TL1 2099.55 – 1059 251 30 213 57

Table 11: Detailed results for the mid-size instances (n = 60 to 80) with κ = 3 commodities.
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Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 20 0.6 1 649.08 649.08 (opt) 5.8 620.56 4.39 12 39 30 0 3
2 681.03 681.03 (opt) 0.2 659.36 3.18 3 39 0 0 1
3 538.00 538.00 (opt) 1.7 501.7 6.75 15 57 30 0 3
4 655.95 655.95 (opt) 941.1 623.89 4.89 2612 57 30 38 6
5 604.50 604.50 (opt) 12.7 581.67 3.78 63 32 30 2 1

1 1 809.62 809.62 (opt) 179.2 765.3 5.47 215 71 30 10 12
2 719.47 – – TL1 684.53 – 233 82 30 2 18
3 731.22 731.22 (opt) 2.2 702.74 3.89 4 62 0 0 2
4 695.00 695.00 (opt) 0.7 670.85 3.47 3 30 0 0 2
5 798.93 798.93 (opt) 2.5 750.32 6.08 6 49 0 0 2

R101 20 0.6 1 560.61 560.61 (opt) 0.4 540.15 3.65 9 61 17 0 0
2 724.04 724.04 (opt) 0.3 709.27 2.04 1 13 0 0 0
3 523.70 523.70 (opt) 8.6 507.42 3.11 16 47 30 0 2
4 591.95 591.95 (opt) 0.3 565.64 4.44 3 20 0 0 2
5 651.84 651.84 (opt) 0.4 631.84 3.07 4 36 10 0 0

1 1 680.43 680.43 (opt) 111.3 665.92 2.13 138 54 30 0 8
2 864.49 864.49 (opt) 39.5 845.62 2.18 14 28 30 0 3
3 527.54 527.54 (opt) 15.2 509.3 3.46 29 50 30 0 6
4 650.29 650.29 (opt) 12.6 636.92 2.06 18 46 30 0 6
5 807.65 807.65 (opt) 2177.3 753.64 6.69 1409 84 30 0 43

C101 40 0.6 1 948.63 948.63 (opt) 1023.7 895.41 5.61 551 185 30 86 8
2 990.97 990.97 (opt) 564.4 922.65 6.89 500 134 30 42 9
3 1158.42 – – TL1 1095.86 – 1504 189 30 194 34
4 976.77 976.77 (opt) 96.8 898.84 7.98 139 145 30 11 9
5 1153.11 1153.11 (opt) 2212.3 1101.13 4.51 490 186 30 11 6

1 1 1261.97 – – TL1 1151.37 – 1142 221 30 178 54
2 1239.18 1239.18 (opt) 2085.7 1172.09 5.41 462 200 30 25 57
3 1269.48 1271.09 0.13 TL1 1203.15 5.35 750 199 30 34 116
4 1352.52 – – TL1 1255.6 – 1400 230 30 72 155
5 1421.31 – – TL1 1332.82 – 1102 239 30 63 47

R101 40 0.6 1 1162.02 1162.02 (opt) 140.9 1143.54 1.59 212 129 30 12 18
2 881.66 881.66 (opt) 93.4 863.79 2.03 56 132 30 2 3
3 988.39 988.39 (opt) 362.8 963.12 2.56 408 152 30 2 18
4 1080.61 1081.68 0.10 TL1 1050.11 2.92 2184 168 30 231 7
5 800.97 – – TL1 768.97 – 363 141 30 36 17

1 1 1239.62 1239.62 (opt) 349.4 1217.78 1.76 140 138 30 9 35
2 1117.06 – – TL1 1090 – 1078 165 30 52 145
3 1167.83 – – TL1 1133.37 – 1349 221 30 119 192
4 1244.51 – – TL1 1211.98 – 1187 195 30 156 42
5 1313.80 – – TL1 1259.48 – 1243 160 30 266 62

Table 12: Detailed results for the mid-size instances (n = 20 to 40) with κ = 4 commodities.
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Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 60 0.6 1 1636.94 – – TL1 1542.06 – 1069 368 30 83 21
2 1505.91 1505.91 (opt) 1561.6 1427.26 5.22 288 298 30 32 4
3 1352.17 1352.17 (opt) 3368.1 1292.56 4.41 678 228 30 27 49
4 1521.40 – – TL1 1454.43 – 1076 277 30 239 10
5 1590.62 – – TL1 1504.92 – 757 286 30 32 3

1 1 1831.44 – – TL1 1740.34 – 332 318 30 11 38
2 1668.72 – – TL1 1595.26 – 273 264 30 45 74
3 2034.77 – – TL1 1916.40 – 280 331 30 48 38
4 1823.32 – – TL1 1732.55 – 122 252 30 17 16
5 1791.78 – – TL1 1716.11 – 123 280 30 24 21

R101 60 0.6 1 1552.24 – – TL1 1535.52 – 2052 144 30 403 86
2 1354.81 – – TL1 1324.73 – 1598 214 30 188 11
3 1276.17 – – TL1 1255.49 – 1585 206 30 381 14
4 1432.08 – – TL1 1401.70 – 1275 258 30 414 149
5 1201.86 – – TL1 1175.02 – 545 175 30 75 31

1 1 1802.43 – – TL1 1780.56 – 116 128 30 17 15
2 1648.49 – – TL1 1627.88 – 724 224 30 145 104
3 1699.64 – – TL1 1670.63 – 660 262 30 186 49
4 1601.72 – – TL1 1574.18 – 449 189 30 26 74
5 1726.92 – – TL1 1695.05 – 608 211 30 112 72

C101 80 0.6 1 1888.49 – – TL1 1822.17 – 415 250 30 69 10
2 2055.12 – – TL1 1976.74 – 604 400 30 149 14
3 1748.96 – – TL1 1670.66 – 482 284 30 49 26
4 1585.83 – – TL1 1526.02 – 299 400 30 91 39
5 2190.16 – – TL1 2102.90 – 637 400 30 119 72

1 1 2652.92 – – TL1 2559.53 – 136 391 30 8 17
2 2418.94 – – TL1 2333.59 – 118 361 30 1 43
3 2582.24 – – TL1 2507.46 – 136 333 30 9 7
4 2432.52 – – TL1 2341.21 – 224 400 30 28 44
5 2451.31 – – TL1 2368.39 – 203 400 30 29 41

R101 80 0.6 1 1628.63 – – TL1 1610.91 – 887 161 30 307 9
2 1661.78 – – TL1 1643.11 – 1165 174 30 238 24
3 1624.20 – – TL1 1601.62 – 764 233 30 291 10
4 1453.66 – – TL1 1436.42 – 214 103 30 63 11
5 1631.95 – – TL1 1617.77 – 1063 234 30 206 7

1 1 2158.99 – – TL1 2130.46 – 232 220 30 73 23
2 2134.54 – – TL1 2114.86 – 67 160 30 2 8
3 2106.72 – – TL1 2091.32 – 20 97 30 2 8
4 2169.42 – – TL1 2146.81 – 312 182 30 57 32
5 2012.88 – – TL1 1990.19 – 261 144 30 21 41

Table 13: Detailed results for the mid-size instances (n = 60 to 80) with κ = 4 commodities.
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Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 20 0.6 1 621.01 621.01 (opt) 1.0 596.34 3.97 9 53 20 0 2
2 756.35 759.85 0.46 TL1 658.41 13.35 3106 69 30 279 7
3 518.91 518.91 (opt) 1.2 498.77 3.88 7 40 18 0 1
4 673.26 673.26 (opt) 2.0 620.55 7.83 21 62 30 2 2
5 665.57 665.57 (opt) 7.5 657.59 1.20 12 26 30 0 2

1 1 815.67 815.67 (opt) 375.1 786.18 3.62 147 56 30 0 16
2 743.05 743.05 (opt) 44.3 686.9 7.56 39 57 30 3 5
3 715.22 717.29 0.29 TL1 681.99 4.92 1149 78 30 8 64
4 787.38 787.38 (opt) 246.5 724.63 7.97 83 121 30 0 9
5 733.69 733.69 (opt) 19.6 712.12 2.94 18 52 30 0 7

R101 20 0.6 1 590.23 590.23 (opt) 4.2 563.48 4.53 30 52 30 0 3
2 733.90 733.90 (opt) 1220.6 679.29 7.44 750 51 30 71 8
3 482.58 482.58 (opt) 1.7 471.12 2.37 5 27 0 0 3
4 634.88 634.88 (opt) 2.1 599.14 5.63 16 43 12 0 3
5 705.36 705.36 (opt) 38.5 680.69 3.50 99 46 30 0 2

1 1 651.93 651.93 (opt) 16.7 625.81 4.01 18 65 30 0 6
2 1058.07 – – TL1 1019.88 – 355 98 30 16 23
3 669.64 669.64 (opt) 98.9 642.91 3.99 31 75 30 0 7
4 687.01 687.01 (opt) 16.5 649.79 5.42 10 77 15 0 5
5 826.29 828.34 0.25 TL1 792.77 4.29 1541 62 30 5 91

C101 40 0.6 1 925.77 926.38 0.07 TL1 893.8 3.52 468 128 30 58 11
2 1083.31 1085.86 0.23 TL1 1030.73 5.08 1962 169 30 39 112
3 893.10 – – TL1 881.03 – 230 96 30 33 12
4 969.26 969.26 (opt) 262.1 933.09 3.73 105 168 30 6 7
5 1221.69 – – TL1 1149.6 – 1313 148 30 165 32

1 1 1239.04 – – TL1 1149.04 – 214 208 30 5 48
2 1304.84 – – TL1 1203.88 – 362 216 30 50 79
3 1518.51 – – TL1 1453.95 – 321 326 30 4 72
4 1266.96 – – TL1 1187.09 – 392 156 30 80 55
5 1419.43 – – TL1 1325.55 – 257 275 30 27 41

R101 40 0.6 1 1011.72 – – TL1 991.32 – 1919 135 30 293 72
2 921.31 – – TL1 891.28 – 1544 176 30 125 195
3 848.73 848.73 (opt) 782.6 819.65 3.43 223 131 30 4 6
4 925.29 927.62 0.25 TL1 889.94 4.06 851 169 30 307 14
5 844.19 844.19 (opt) 1552.0 806.22 4.50 455 138 30 33 17

1 1 1245.76 – – TL1 1224.97 – 761 209 30 53 223
2 1214.52 – – TL1 1182.01 – 785 214 30 90 189
3 1101.84 1101.84 (opt) 1247.6 1076.14 2.33 233 186 30 0 53
4 1320.11 – – TL1 1286.75 – 364 205 30 48 83
5 1269.16 – – TL1 1218.33 – 392 232 30 36 77

Table 14: Detailed results for the mid-size instances (n = 20 to 40) with κ = 5 commodities.
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Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 60 0.6 1 1267.21 – – TL1 1174.39 – 247 274 30 40 24
2 1299.54 – – TL1 1233.11 – 413 194 30 97 80
3 1322.81 – – TL1 1255.20 – 284 328 30 70 13
4 1533.68 – – TL1 1437.03 – 380 220 30 41 18
5 1500.11 – – TL1 1417.60 – 465 283 30 40 18

1 1 1971.97 – – TL1 1915.70 – 184 249 30 31 50
2 2079.26 – – TL1 2000.89 – 189 340 30 33 44
3 2091.39 – – TL1 2032.59 – 59 379 30 5 16
4 1770.93 – – TL1 1701.49 – 73 276 30 2 20
5 1943.15 – – TL1 1846.33 – 93 400 30 1 29

R101 60 0.6 1 1578.17 – – TL1 1559.40 – 613 129 30 140 27
2 1214.21 – – TL1 1192.54 – 326 208 30 118 62
3 1234.72 – – TL1 1215.45 – 89 134 30 23 6
4 1283.35 – – TL1 1259.06 – 760 200 30 158 179
5 1391.90 – – TL1 1366.53 – 1415 175 30 456 82

1 1 1989.24 – – TL1 1970.33 – 134 163 30 5 31
2 1713.94 – – TL1 1691.10 – 128 264 30 13 45
3 1680.88 – – TL1 1651.51 – 169 199 30 5 45
4 1775.84 – – TL1 1747.53 – 179 188 30 18 48
5 1653.40 – – TL1 1619.96 – 279 150 30 59 62

C101 80 0.6 1 1926.31 – – TL1 1843.06 – 393 400 30 75 33
2 1959.01 – – TL1 1874.71 – 219 352 30 55 21
3 2158.10 – – TL1 2069.30 – 491 371 30 88 19
4 1785.00 – – TL1 1711.39 – 190 348 30 41 46
5 1714.63 – – TL1 1616.12 – 149 378 30 67 14

1 1 2668.17 – – TL1 2588.61 – 74 384 30 11 29
2 2495.55 – – TL1 2397.97 – 34 385 30 5 11
3 2616.50 – – TL1 2523.77 – 39 400 30 7 17
4 2416.57 – – TL1 2332.34 – 24 377 30 0 11
5 2667.28 – – TL1 2584.43 – 35 400 30 1 13

R101 80 0.6 1 1876.65 – – TL1 1851.68 – 520 189 30 109 30
2 1722.31 – – TL1 1702.87 – 307 216 30 25 61
3 1814.43 – – TL1 1796.54 – 312 156 30 45 13
4 1703.44 – – TL1 1688.64 – 284 130 30 81 15
5 1739.00 – – TL1 1721.68 – 228 192 30 43 31

1 1 2096.03 – – TL1 2064.40 – 97 162 30 4 29
2 2297.73 – – TL1 2273.41 – 130 267 30 9 22
3 2214.43 – – TL1 2201.76 – 88 143 30 3 25
4 2297.69 – – TL1 2280.30 – 80 118 30 6 15
5 2077.68 – – TL1 2060.02 – 70 164 30 6 28

Table 15: Detailed results for the mid-size instances (n = 60 to 80) with κ = 5 commodities.
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Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 20 0.6 1 834.67 834.67 (opt) 9.6 802.77 3.82 26 78 30 0 7
2 831.18 831.23 0.01 TL1 740.76 10.88 1436 96 30 2 25
3 637.77 637.77 (opt) 66.8 600.86 5.79 172 81 30 0 10
4 597.75 597.75 (opt) 84.4 565 5.48 248 45 30 3 9
5 726.09 726.09 (opt) 41.3 654.53 9.86 25 53 30 0 4

1 1 830.60 830.60 (opt) 52.2 790.94 4.77 29 85 30 0 12
2 773.82 773.82 (opt) 95.7 727.34 6.01 32 76 30 0 6
3 777.16 – – TL1 699.31 – 115 93 30 7 12
4 791.61 791.61 (opt) 81.6 741.28 6.36 30 95 30 0 11
5 824.57 824.57 (opt) 311.4 737.38 10.57 78 66 30 10 20

R101 20 0.6 1 548.17 548.17 (opt) 2.5 531.01 3.13 7 31 20 0 5
2 715.71 715.71 (opt) 26.7 685.19 4.26 15 40 30 0 4
3 598.37 598.37 (opt) 33.6 572.18 4.38 44 70 30 0 10
4 577.61 579.04 0.25 TL1 527.7 8.87 374 71 30 58 11
5 766.93 766.93 (opt) 229.2 716.61 6.56 363 59 30 0 16

1 1 656.77 656.77 (opt) 294.8 636.19 3.13 32 59 30 0 13
2 968.03 968.03 (opt) 1173.6 931.29 3.80 30 60 30 0 8
3 704.72 704.72 (opt) 2901.8 656.64 6.82 203 115 30 1 19
4 804.79 – – TL1 749.35 – 386 134 30 57 56
5 775.02 775.02 (opt) 174.2 730.78 5.71 39 65 30 0 13

C101 40 0.6 1 1024.19 1024.19 (opt) 2745.4 950.47 7.20 125 165 30 3 21
2 1185.80 – – TL1 1128.61 – 1065 238 30 109 76
3 1150.34 – – TL1 1081.63 – 680 197 30 124 110
4 1101.44 – – TL1 1050.21 – 704 187 30 47 92
5 1191.09 – – TL1 1094.6 – 530 191 30 99 36

1 1 1421.95 – – TL1 1322.48 – 68 222 30 9 19
2 1349.07 – – TL1 1265.69 – 114 204 30 12 29
3 1360.14 – – TL1 1273.36 – 40 173 30 4 13
4 1095.58 – – TL1 1061.32 – 39 115 30 6 16
5 1318.13 – – TL1 1242.12 – 39 227 30 3 14

R101 40 0.6 1 1056.06 – – TL1 1040.04 – 742 119 30 107 136
2 1097.22 1097.22 (opt) 2798.7 1069.53 2.52 1023 158 30 127 130
3 834.82 834.82 (opt) 1873.7 804.08 3.68 248 219 30 56 29
4 1022.90 – – TL1 983.31 – 828 194 30 69 66
5 906.82 – – TL1 876.05 – 337 190 30 50 102

1 1 1256.90 – – TL1 1242.37 – 78 120 30 3 23
2 1186.80 – – TL1 1155.93 – 103 178 30 8 27
3 1146.18 – – TL1 1120.26 – 58 142 30 1 21
4 1432.91 – – TL1 1389.9 – 111 196 30 9 41
5 1292.08 – – TL1 1249.59 – 123 183 30 25 42

Table 16: Detailed results for the mid-size instances (n = 20 to 40) with κ = 6 commodities.
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Instance S-Rank-S/D-Subs

n p No. z∗ z∗ gap time zLP gapLP nodes CC SR SD rec

C101 60 0.6 1 1569.20 – – TL1 1485.40 – 251 284 30 47 16
2 1574.31 – – TL1 1489.32 – 300 319 30 114 54
3 1553.25 – – TL1 1493.08 – 283 264 30 40 36
4 1588.51 – – TL1 1510.90 – 285 287 30 71 40
5 1494.85 – – TL1 1409.37 – 246 242 30 31 43

1 1 2079.05 – – TL1 1967.30 – 25 400 30 1 12
2 2043.49 – – TL1 1965.60 – 20 238 30 0 10
3 1770.63 – – TL1 1678.83 – 8 252 0 0 6
4 1834.04 – – TL1 1740.22 – 18 344 10 0 11
5 2169.39 – – TL1 2066.46 – 29 393 30 0 14

R101 60 0.6 1 1687.99 – – TL1 1671.66 – 198 144 30 8 35
2 1453.23 – – TL1 1418.17 – 352 207 30 50 55
3 1386.91 – – TL1 1363.01 – 629 273 30 149 93
4 1431.09 – – TL1 1412.11 – 443 125 30 44 50
5 1504.27 – – TL1 1479.86 – 615 251 30 139 117

1 1 2040.85 – – TL1 2021.26 – 61 120 30 7 18
2 1775.92 – – TL1 1743.93 – 48 334 30 3 19
3 1669.18 – – TL1 1645.16 – 63 204 30 5 20
4 1743.05 – – TL1 1715.45 – 63 163 30 5 22
5 1723.23 – – TL1 1700.28 – 32 252 30 5 14

C101 80 0.6 1 1877.47 – – TL1 1792.62 – 118 315 30 16 34
2 1900.44 – – TL1 1829.50 – 32 400 30 7 8
3 2125.22 – – TL1 2054.57 – 75 359 30 4 7
4 1918.60 – – TL1 1814.20 – 102 400 30 17 17
5 2058.94 – – TL1 1988.84 – 124 377 30 16 37

1 1 2310.06 – – TL1 2310.06 – 0 234 0 0 7
2 2565.44 – – TL1 2492.06 – 3 230 0 0 4
3 2320.99 – – TL1 2320.99 – 0 205 0 0 2
4 2537.06 – – TL1 2476.59 – 6 378 0 0 5
5 2705.60 – – TL1 2617.11 – 4 302 0 0 5

R101 80 0.6 1 2018.25 – – TL1 1989.18 – 262 185 30 42 37
2 1931.55 – – TL1 1907.14 – 252 200 30 48 42
3 1582.70 – – TL1 1566.01 – 227 146 30 16 63
4 1604.98 – – TL1 1587.65 – 65 126 30 15 15
5 1785.03 – – TL1 1771.44 – 171 92 30 22 26

1 1 2444.64 – – TL1 2423.04 – 39 316 30 0 19
2 2093.90 – – TL1 2069.36 – 22 207 30 0 14
3 2262.04 – – TL1 2253.06 – 25 99 30 0 12
4 2316.47 – – TL1 2294.66 – 25 170 30 0 15
5 2283.79 – – TL1 2272.48 – 15 129 30 0 11

Table 17: Detailed results for the mid-size instances (n = 60 to 80) with κ = 6 commodities.
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