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Abstract. Passwords are widely used to protect our sensitive informa-1

tion or to gain access to specific resources. They should be changed2

frequently and be strong enough to prevent well-known attacks. Unfor-3

tunately, user-chosen passwords are usually short and lack sufficient en-4

tropy. A possible solution to these problems is to adopt a Key Derivation5

Function (KDF) that allows legitimate users to spend a moderate amount6

of time on key derivation, while imposing CPU/memory-intensive opera-7

tions on the attacker side. In this paper, we focus on long-term passwords8

secured by the Password-Based Key Derivation Function 2 (PBKDF2)9

and present the case study of Linux Unified Key Setup (LUKS), a disk-10

encryption specification commonly implemented in Linux based operat-11

ing systems. In particular, we describe how LUKS protects long-term12

keys by means of iteration counts defined at runtime, and analyze how13

external factors may affect the iteration counts computation. In doing14

so, we provide means of evaluating the iteration count values defined at15

run-time and experimentally show to what level PBKDF2 is still capable16

of providing sufficient security margin for a LUKS implementation.17
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1 Introduction20

User-chosen passwords are widely used to protect personal data or to gain access21

to specific resources. Therefore, passwords should be strong enough to prevent22

? This paper extends and improves the previous work of the first author “What users
should know about Full Disk Encryption based on LUKS” presented at the 14th
International Conference on Cryptology and Network Security (CANS 2015). New
experiments were conducted for this article (on 32-bit and 64-bit architectures),
using different library versions and different cryptographic backends. In addition, a
costing model is defined and used to estimate the cost of attacks on LUKS partition
passwords created using Cryptsetup.



well-known attacks such as dictionary and brute-force attacks. User-chosen pass-23

words are usually short and lack enough entropy [43], [23] and cannot be directly24

used as a key for secure cryptographic systems. A solution to this problem is de-25

scribed in [42]. By applying a Key Derivation Function (KDF) to a user-chosen26

password, we allow legitimate users to spend a moderate amount of time on key27

derivation, while we impose CPU-intensive operations on the attacker side.28

The developments of the Graphic Processing Unit (GPU) architecture have29

changed this perspective. As opposed to CPUs, the GPU architecture consists of30

a large number of small processors (so-called streaming multiprocessors), which31

are capable of running a group of threads that execute the same program (and32

always the same instruction) over different data [41]. In principle, this archi-33

tecture is convenient for password cracking, because it involves computing the34

same function (a password-hashing function or a PBKDF) over a large number35

of passwords. However, since each GPU thread has only a small amount of fast36

memory available, the potential efficiency of the GPU implementation strongly37

depends on the design of the password processing function.38

The first standardized PBKDF is PBKDF2 [30, 45], a CPU-intensive key39

strengthening algorithms. The design of PBKDF2 includes a time-based security40

parameter (the iteration count), but it has no parameter to increase the necessary41

memory usage of the function. PBKDF2 is defined generically in the sense that42

it does not strictly specify the pseudorandom function (PRF) to be used as its43

core, but in practice HMAC [31] is almost solely used (usually with SHA-1,44

often also with SHA-256 or SHA-512). This means that PBKDF2 can be often45

implemented very efficiently on GPUs, thereby providing an attacker a huge46

potential speedup compared to the defender (who almost always runs PBKDF247

on a CPU).48

As a reaction to the weakness of PBKDF2 against GPU-based attacks (and49

some other flaws), several memory-intensive key strengthening algorithms have50

been developed.51

Bcrypt, for example, was introduced in 1999 [40] and is used for password52

hashing in the OpenBSD operating system and PHP [15]. It employs some pro-53

tections against GPU/ASIC/FPGA attacks, but the memory usage is still fixed,54

so it is not completely safe for the future [38].55

Scrypt was introduced in 2009 [35] and allows tuning both time-based and56

memory-based security parameters. However, it has been criticised for allowing57

a so-called time-memory tradeoff, which makes it possible to achieve constant58

memory usage by performing more computation [36]. It has also been recently59

(August 2016) standardized as RFC 7914 [34].60

In 2013, an open competition called Password Hashing Competition was an-61

nounced. The aim of the competition was to “identify new password hashing62

schemes in order to improve on the state-of-the-art” [9]. In July 2015, the compe-63

tition selected Argon2 as the winning algorithm [20] and gives special recognition64

to Catena [25], Lyra2 [44], yescrypt [37], and Makwa [39].65



1.1 Motivations and contributions66

Although Argon2 is expected to become a new de-facto standard for password-67

based key derivation and password hashing, PBKDF2 is still widely implemented68

to derive keys in many security-related systems such as WPA/WPA2 encryption69

process [29], Linux Unified Key Setup (LUKS) [21, 27], VeraCrypt [16], EncFS70

[2], FileVault Mac OS X [17,24], GRUB2 [3], Winrar [4], and many others.71

In PKCS#5 [42] a number of recommendations for the implementation of72

PBKDF2 have been described. More precisely, PBKDF2 uses salt and itera-73

tion count to slow down the attackers as much as possible. The salt, randomly74

selected, is used to generate a large set of keys corresponding to a given pass-75

word, while the iteration count specifies the number of times the underlying76

pseudorandom function is called to generate a block of keying material. Both77

salt and iteration count do not need to be kept secret. NIST suggests to select78

the iteration count as large as possible, as long as the time required to generate79

the key is acceptable for the user [45]. More precisely, SP 800-132 specifies that80

10,000,000 may be an appropriate iteration count value for very critical keys on81

very powerful system, and 1,000 is a minimum recommended value.82

In real-world applications, mainly two different approaches have been adopted83

in providing the iteration count:84

1. define a value a priori — e.g., WPA/WPA2 encryption process [29], Vera-85

Crypt [10];86

2. define a value at runtime — e.g., LUKS disk encryption specification [21,27].87

The first approach is widely used, yet it does not take into account hardware88

specifications of the devices on which PBKDF2 should run. This means that old89

devices and more powerful ones use the same iteration count value that is (usu-90

ally) provided adopting a conservative approach — i.e., it favors performance at91

the expense of security. On the contrary, when applications care about security,92

the iteration count value is increased considerably — e.g., VeraCrypt [10] —93

impacting system performance and usability.94

The second approach tries to resolve the cons previously described. It exe-95

cutes a runtime test on a device gathering information about the environment96

and, on the bases of hardware and software characteristics collected, provides an97

appropriate iteration count value — the details of the runtime test can be found98

in Section 4.1 or in LUKS disk encryption specification [26]. Unfortunately, this99

approach does not solve all problems. Indeed, the runtime testing may be neg-100

atively affected by several external factors such as the performance of different101

cryptographic backends, e.g., OpenSSL, Libgcrypt, the version of such crypto-102

graphic libraries, the particular architecture on which the code is running on,103

e.g., 32-bit/64-bit architecture, and so on.104

In addition, we do not forget that (a) legitimate users and attackers run their105

algorithms on different hardware — i.e., regular users run their code on CPUs,106

while attackers may also run it on specialized hardware (ASIC/FPGA) or GPUs107

— and (b) some applications require long-term keys and therefore attackers can108

easily run their code off-line for a long time.109



In such a scenario, we focus on the iteration count defined at runtime, pre-110

senting the case study of the Linux Unified Key Setup (LUKS), a disk-encryption111

specification commonly implemented in Linux based operating systems. In par-112

ticular, we describe how LUKS protects long-term keys by means of an iteration113

count defined at runtime, and analyze how external factors may affect the it-114

eration counts computation. In doing so, we provide means of evaluating the115

iteration count values defined at run-time and experimentally show to what116

level PBKDF2 is still capable of providing sufficient security margin for a LUKS117

implementation.118

1.2 Organization of the paper119

The remainder of the paper is organized as follows. In Section 2, we briefly in-120

troduce the Password-Based Key Derivation Function version 2. In Section 3,121

we introduce a method of estimating costs and duration of cracking a password122

protected by PBKDF2. In Section 4, we describe the Linux Unified Key Setup,123

a disk encryption specification based on PBKDF2, which computes the iteration124

count values by executing a runtime test. We experimentally show how exter-125

nal factors may affect the iteration count computation. In Section 5, we provide126

means of evaluating the iteration count values defined at run-time and exper-127

imentally show to what level PBKDF2 is still capable of providing sufficient128

security margin for a LUKS implementation. Finally, discussion and conclusions129

are drawn in Section 6.130

2 Password-Based Key Derivation Function 2131

PBKDF2 is a Password-Based Key Derivation Function described in PKCS #5132

[42], [45]. For providing better resistance against brute force attacks, PBKDF2133

introduce CPU-intensive operations. These operations are based on an iterated134

pseudorandom function (PRF) which maps input values to a derived key. The135

most important properties to assure is that the iterated pseudorandom function136

is cycle free. If this is not so, a malicious user can avoid the CPU-intensive137

operations and, as described in [46, 47], get the derived key by executing a set138

of functionally-equivalent instructions.139

PBKDF2 inputs a pseudorandom function PRF , the user password p, a140

random salt s, an iteration count c, and the desired length len of the derived141

key. It outputs a derived key DerKey.142

DerKey = PBKDF2(PRF, p, s, c, len) (1)

More precisely, the derived key is computed as follows:143

DerKey = T1||T2|| . . . ||Tlen, (2)

where
T1 = Function(p, s, c, 1),



T2 = Function(p, s, c, 2),

...

Tlen = Function(p, s, c, len).

Each single block Ti — i.e., Ti = Function(p, s, c, i) — is computed as144

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc, (3)

where
U1 = PRF (p, s||i),

U2 = PRF (p, U1),

...

Uc = PRF (p, Uc−1).

The PRF adopted can be a hash function [33], cipher, or HMAC [18], [19], and145

[31]. In this paper, we will refer to HMAC-SHA-1, HMAC-SHA-256, HMAC-146

SHA-512, and HMAC-RIPEMD-160.147

3 Estimating the cost of attacking PBKDF2148

Usually, the computational cost of cracking a password protected by PBKDF2 is149

estimated on the number of passwords per second that can be processed. In this150

section, we introduce a different approach of estimating such a cost. We will focus151

not only on the time required to recover a password, but also on the amount152

of computing resources needed to do so. In particular, the method suggested153

is based on two main sources of the cost: the cost of the power consumed by154

the hardware doing the cracking and the cost of the hardware itself. The cost is155

influenced by several factors – the PBKDF2 iteration count, the PRF used for156

PBKDF2, the size of the derived key/hash, the strength of the password and157

the performance characteristics of the hardware used for cracking. Since there158

might be many other contributing factors adding to the cost of an actual attack,159

our proposed estimations can only be seen as a lower bound for the actual cost.160

3.1 Attack scenario161

The method we introduce assumes either brute-force or dictionary offline attack162

– i.e., that the attacker has access to the PBKDF2 hash of the searched password163

(along with the associated salt and iteration count), or some other information164

that allows her3 to verify that the output of PBKDF2 matches the expected one165

(e.g., she knows a plaintext-ciphertext pair encrypted with the output used as the166

key). The method further assumes that the time and computation power needed167

for verifying the PBKDF2 output of a given password candidate is negligible.168

3 The sex of the attacker was set by a random coin toss.



3.2 Method of calculation169

The estimation uses the following input variables:170

– I [iter ·pw−1] – the number of PBKDF2 iterations,171

– B =
⌈

derived key size
PRF output size

⌉
– the number of PBKDF2 output blocks,172

– S [pw] – the password search space,173

– T [s] – the maximum acceptable (average) duration of the attack,174

– E [$ · kWh−1] – the price of electricity available to the attacker4,175

– V [iter · s−1 ·dev−1] – the attacker’s device’s PBKDF2 computation speed176

(in terms of PBKDF2 iterations per second),177

– P [W] – the attacker’s device’s power draw while in full operation,178

– D [$] – the purchase price of a single device,179

– L [s] – the average lifetime of a single device.180

The estimated number of devices needed for the attack and its cost are calculated
using the following formulas:

number of devices needed [dev] =
IBS

2V T
, and (4)

average attack cost [$] =
IBS

2V

(
PE +

D

L

)
. (5)

3.3 Parameters for calculation181

Password search space: This parameter (S) should express the assumed size182

of the password search space. This number depends on the way the password183

was selected and may vary for different scenarios. For example if the password184

is a random string of 8 characters, e.g., A-Z, a-z, and 0-9, the search space is185

(26 + 26 + 10)8 ≈ 248.186

Maximum acceptable attack duration: When cracking a password, it is187

usually required that the attack succeeds within a reasonable amount of time188

(e.g., 1 month/1 year/5 years/...). Since a brute-force or dictionary attack can189

be trivially parallelized, it is sufficient to increase the number of devices that190

perform the cracking. Such an optimization does not (in theory) increase the191

total cost of computation, but there is certain practical limit on how many192

devices the attacker can use in parallel.193

The value of this parameter (T ) should reflect the upper bound on the attack194

duration and allows us to calculate the number of devices that would be needed195

to achieve such duration.196

Price of electricity: Since we assume that the attack cost is mainly defined197

by the cost of consumed electricity, it is necessary to specify minimum expected198

electricity price for the potential attacker. The price of electricity varies a lot199

depending on the type of source and geographic location [1]. We suggest a con-200

servative value of E = $0.05 kWh−1 to be used for the calculations.201

4 $ = US dollar.



Device-specific constants: When estimating the general cost of an attack one202

needs to consider what kind of hardware the attacker will use for the attack. In203

general, it is best to assume the worst case – that the attacker will use the most204

cost-efficient solution available. In the case of PBKDF2, this is especially im-205

portant, since computing PBKDF2 is significantly faster and cheaper on highly206

parallel hardware (such as GPUs or FPGAs) than on a regular CPU (see section207

1). Therefore, it is important to base the cost estimation on the most efficient208

hardware, for which we have the PBKDF2 efficiency characteristics available.209

PBKDF2 computation speed: This constant (V ) is the experimentally mea-210

sured speed of PBKDF2 computation on the device. It is expressed in terms of211

iterations per second per PRF output block.212

Device power draw: This constant (P ) represents the power draw of the213

device during the computation. The value can be measured or obtained from214

the device’s data sheet.215

4 How to protect long-term keys: a case study of LUKS216

4.1 A brief introduction to LUKS217

The Linux Unified Key Setup (LUKS) is a disk-encryption specification com-218

monly implemented in Linux based operating systems. It is a platform-independent219

standard on-disk format developed by Clemens Fruhwirth in 2004 [26, 27]. A220

LUKS partition (see Figure 1) includes:221

1. the partition header,222

2. the key material (i.e., a number of key slots), and223

3. the user encrypted data.224

Fig. 1. A LUKS partition.

Firstly, the partition header contains information about cipher, cipher mode,225

key length, hash function, master key checksum, salt, iteration counts, etc. [26].226

Secondly, a number of key slots (maximum eight) are used to store the en-227

crypted master key. More precisely, LUKS is based on a two-level key hierarchy228



[30]. A strong master key generated by the system is used to encrypt/decrypt229

the whole hard disk. This key is encrypted with a secret user key. The master230

key is unique, but a number of encrypted keys are stored, one for each user who231

has access to the device. LUKS protects the keys stored on the hard disk using232

(1) a key derivation function (i.e., PBKDF2), and (2) an anti-forensic splitter233

to solve the remanence issues in magnetic storage devices [28]. In particular, the234

anti-forensic splitter inflates and splits the master key, then a hash function is235

used as diffusion element. In order to recover the master key, we need a valid236

LUKS partition header and a secret user key. The user key unlocks a specific237

user key slot. Then, PBKDF2, the anti-forensic splitter, and a cipher are used238

to compute the master key as shown in Figure 2.239

Finally, user encrypted data are stored on the device.240

Fig. 2. LUKS: the master key recovery process.

241

Among the various parameters stored in a LUKS partition header, the two242

most important are salt and iteration counts (see Figure 2), because they are243

used by PBKDF2 to slow down brute force attacks. The salt is fetched from244

a random source [27], while the iteration counts are computed by making a245

run-time test when the encrypted partition is generated. More precisely, the246

run-time test computes the iteration count value by running and evaluating a247

PBKDF2 implementation over one- or two-second window size — respectively248

before and after release 1.7.0 — with a predefined password, a specific salt and249



a fixed key size. However, users can easily adjust this value as desired, defining250

a time in seconds to benchmark the iteration counts. In accordance with NIST251

specifications [45], the iteration count computed cannot be smaller than 1,000.252

Our analysis will focus on iteration count values computed in this way. In253

particular, we try to understand how this parameter computed at runtime may254

be affected by external factors.255

4.2 LUKS: Iteration count values computed at runtime256

In [46,47] and [21] Visconti et al. showed how some weaknesses of PBKDF2 and257

Cryptsetup affected the runtime testing used by LUKS to compute the iteration258

count values. These weaknesses have been patched in Libgcrypt 1.7.0 [48] and259

Cryptsetup 1.7.0 [22], respectively. However, the runtime testing may be also260

affected by regular processes that run on Linux distributions, the execution speed261

of cryptographic algorithms implemented in different cryptographic backends262

and also the choice of a specific architecture — i.e., 32-bit or 64-bit OS. The263

influence of these external factors cannot be understood as a “weakness” and264

cannot be patched. Therefore, we tried to identify which factors negatively affect265

the iteration count computation.266

In doing so, we experimentally collected several partition headers using two267

laptops equipped with different hardware configurations: (1) a machine with an268

Intel Core i5 5300U processor (with maximum frequency of 2.9 GHz, 2 cores269

and 4 threads) and 16 GB of RAM; (2) a machine with an Intel Core i7 4500U270

processor (with maximum frequency of 3.0 GHz, 2 cores and 4 threads) and 16271

GB of RAM. In our testing activities, we used the following Linux distributions:272

– Arch Nov 26, 2015,273

– Debian (XFCE) 8.2.0,274

– Fedora (GNOME) 23,275

– Kali (GNOME) 2.0,276

– Lubuntu (LXDE) 15.10,277

– Mint (Cinnamon) 17.2,278

– Ubuntu (Unity) 15.10.279

All tests have been repeated for 32-bit and 64-bit architecture, using “Live CDs”.280

To implement a uniform method of data collection, a common configuration281

for all distributions has been adopted. In particular, we installed the following282

libraries5: Libgcrypt 1.6.5, OpenSSL 1.0.2g, Cryptsetup 1.6.8 and Cryptsetup283

1.7.0.284

For each distribution (seven), each architecture (two) and each library (four)285

listed above, we executed 100 runs for a total of 7× 2× 4× 100 = 5600 iteration286

counts collected. Average values are reported in Tables 1-2 and 3-4. They refer287

to Intel Core i5 5300U and Intel Core i7 4500U processor, respectively.288

5 Note that Libgcrypt 1.6.5 and OpenSSL 1.0.2g were the latest stable version available
at the time of testing.



Table 1. Average iteration counts involved in the key derivation process (Libgcrypt
1.6.5, Live CD, Intel Core i5 5300U processor).

Cryptsetup version 1.6.8 Cryptsetup version 1.7.0

32-bit OS 64-bit OS 32-bit OS 64-bit OS

Arch SHA-1 381,013 462,152 753,287 941,841
SHA-256 183,376 320,395 808,518 1,284,213
SHA-512 64,834 236,345 251,298 1,073,867

RIPEMD-160 272,278 295,299 531,893 592,677

Debian SHA-1 367,932 520,857 731,641 1,044,445
SHA-256 191,432 336,983 798,859 1,342,441
SHA-512 61,667 265,623 243,276 1,092,938

RIPEMD-160 254,239 303,677 504,007 606,515

Fedora SHA-1 387,923 513,939 771,184 1,026,156
SHA-256 205,202 334,415 821,523 1,323,591
SHA-512 63,331 268,130 253,724 1,089,109

RIPEMD-160 274,983 302,392 552,623 605,248

Kali SHA-1 387,236 514,248 772,334 1,032,963
SHA-256 203,523 335,432 882,872 1,307,619
SHA-512 56,562 273,236 241,608 1,072,372

RIPEMD-160 252,314 301,133 535,232 595,942

Lubuntu SHA-1 385,344 514,234 765,234 1,015,323
SHA-256 205,652 331,223 818,561 1,293,967
SHA-512 65,259 260,967 261,396 1,098,561

RIPEMD-160 267,354 299,763 535,105 601,943

Mint SHA-1 279,701 507,137 541,517 1,010,782
SHA-256 196,339 338,481 788,208 1,350,419
SHA-512 59,826 248,630 239,419 995,286

RIPEMD-160 258,418 286,416 510,936 562,741

Ubuntu SHA-1 385,432 508,033 771,355 1,015,164
SHA-256 202,344 334,979 863,371 1,211,739
SHA-512 65,672 270,253 275,296 1,197,264

RIPEMD-160 260,230 300,666 531,976 601,356



Table 2. Average iteration counts involved in the key derivation process (OpenSSL
1.0.2g, Live CD, Intel Core i5 5300U processor).

Cryptsetup version 1.6.8 Cryptsetup version 1.7.0

32-bit OS 64-bit OS 32-bit OS 64-bit OS

Arch SHA-1 629,231 825,123 1,312,223 1,635,781
SHA-256 468,335 616,545 2,007,356 2,455,634
SHA-512 294,455 443,723 1,177,231 1,787,083

RIPEMD-160 389,345 504,433 792,845 941,175

Debian SHA-1 570,418 782,920 1,131,172 1,561,416
SHA-256 364,159 481,299 1,444,241 1,891,303
SHA-512 233,972 377,063 929,403 1,479,630

RIPEMD-160 361,662 491,514 720,363 983,532

Fedora SHA-1 537,051 803,023 1,064,544 1,577,923
SHA-256 423,119 593,211 1,667,642 2,362,423
SHA-512 261,398 439,068 1,049,324 1,753,742

RIPEMD-160 345,237 496,023 686,424 975,962

Kali SHA-1 577,389 775,991 1,099,834 1,550,711
SHA-256 368,283 459,746 1,459,604 1,881,460
SHA-512 232,229 375,621 919,793 1,479,147

RIPEMD-160 365,082 491,319 725,479 786,642

Lubuntu SHA-1 644,752 820,537 1,255,597 1,621,947
SHA-256 493,033 619,805 1,923,145 2,427,355
SHA-512 289,278 435,479 1,146,912 1,718,007

RIPEMD-160 385,815 487,371 771,541 1,007,931

Mint SHA-1 627,625 788,036 1,224,068 1,564,635
SHA-256 391,481 482,962 1,532,511 1,898,248
SHA-512 243,739 385,121 961,830 1,540,997

RIPEMD-160 384,194 499,491 758,629 995,816

Ubuntu SHA-1 645,242 824,821 1,293,239 1,610,281
SHA-256 496,901 604,167 1,939,750 2,427,615
SHA-512 286,276 439,493 1,154,148 1,740,286

RIPEMD-160 391,360 504,617 781,673 1,008,184



Table 3. Average iteration counts involved in the key derivation process (Libgcrypt
1.6.5, Live CD, Intel Core i7 4500U processor).

Cryptsetup version 1.6.8 Cryptsetup version 1.7.0

32-bit OS 64-bit OS 32-bit OS 64-bit OS

Arch sha1 406,348 495,164 764,171 990,328
sha256 193,938 329,896 870,472 1,051,325
sha512 63,240 259,371 247,582 1,048,105
ripemd 241,508 304,761 573,347 609,523

Debian sha1 359,549 516,128 715,082 1,036,435
sha256 192,770 336,841 766,468 1,354,496
sha512 58,823 265,164 233,576 1,053,436
ripemd 248,061 309,178 496,123 615,382

Fedora sha1 337,285 518,217 677,248 1,027,080
sha256 203,173 345,012 813,990 1,381,916
sha512 62,135 260,958 233,150 1,057,849
ripemd 241,965 308,062 484,487 613,908

Kali sha1 423,340 581,718 652,121 1,152,271
sha256 230,216 304,262 916,570 1,220,263
sha512 62,015 251,418 248,306 1,067,746
ripemd 215,060 421,052 646,927 836,201

Lubuntu sha1 381,094 501,693 732,663 999,307
sha256 211,327 321,316 829,288 1,309,996
sha512 64,831 260,017 255,528 1,061,365
ripemd 279,481 306,241 551,369 608,947

Mint sha1 362,468 488,548 735,630 977,097
sha256 203,821 329,896 805,031 1,319,585
sha512 57,552 264,461 254,978 1,049,179
ripemd 283,185 300,468 568,876 595,347

Ubuntu sha1 367,815 484,847 670,156 977,097
sha256 193,938 326,530 815,285 1,312,620
sha512 63,744 262,294 254,978 1,057,849
ripemd 228,462 300,468 474,561 598,128



Table 4. Average iteration counts involved in the key derivation process (OpenSSL
1.0.2g, CD, Intel Core i7 4500U processor).

Cryptsetup version 1.6.8 Cryptsetup version 1.7.0

32-bit OS 64-bit OS 32-bit OS 64-bit OS

32 bits 64 bits 32 bits 64 bits

Arch Linux sha1 619,854 839,343 1,238,208 1,686,984
sha256 483,018 635,235 1,921,189 2,528,394
sha512 281,318 431,705 1,121,576 1,723,904
ripemd 389,649 503,936 775,753 1,034,341

Debian sha1 528,924 790,123 1,044,896 1,438,201
sha256 342,245 467,158 1,361,701 1,836,294
sha512 217,686 383,233 864,863 1,514,791
ripemd 338,624 507,935 670,196 1,007,873

Fedora sha1 493,255 825,805 1,028,111 1,627,980
sha256 414,239 615,383 1,317,868 2,314,123
sha512 257,544 422,441 901,937 1,659,642
ripemd 345,478 513,540 642,408 1,009,861

Kali sha1 656,410 825,605 1,168,949 1,610,062
sha256 492,307 624,369 1,939,392 2,426,539
sha512 283,185 427,652 1,163,634 1,651,611
ripemd 395,061 507,935 785,275 1,007,873

Lubuntu sha1 671,207 841,074 1,300,998 1,665,598
sha256 511,963 631,346 1,992,948 2,429,309
sha512 299,395 427,662 1,115,948 1,699,531
ripemd 401,935 521,856 769,386 953,529

Mint sha1 589,152 812,938 976,309 1,651,954
sha256 360,529 600,389 1,297,898 2,302,316
sha512 217,637 449,283 843,759 1,699,197
ripemd 313,863 521,538 611,966 1,047,714

Ubuntu sha1 670,156 847,681 1,312,820 1,684,208
sha256 507,935 624,389 1,984,496 2,426,539
sha512 296,295 438,355 1,158,369 1,729,728
ripemd 390,243 522,438 805,031 1,028,111

To understand if our testing configuration — i.e., “Live CDs” — may have289

affected the runtime testing, we also installed some of the Linux distributions290

on the first laptop (Intel Core i5 5300U processor). Then we collected 1200291

6 iteration count values with the distributions installed (see Tables 5 and 6)292

and compared these values with those shown in Tables 1 and 2. Note that the293

difference between the configurations called “OSs installed” and “Live CDs” is294

negligible.295

6 For each ditribution (three), each architecture (one) and each library (four), we
executed 100 runs for a total of 3 × 1 × 4 × 100 = 1200 iteration counts collected.
Average values are reported in Tables 5 and 6



Table 5. Average iteration counts involved in the key derivation process (Libgcrypt
1.6.5, OSs installed).

Cryptsetup 1.6.8 Cryptsetup 1.7.0

64-bit OS

Arch SHA-1 480,019 959,102
SHA-256 324,114 1,290,239
SHA-512 266,921 1,069,921

RIPEMD-160 294,801 585,291

Debian SHA-1 518,882 1,032,923
SHA-256 335,012 1,301,522
SHA-512 272,611 1,079,185

RIPEMD-160 303,092 603,801

Fedora SHA-1 513,721 1,020,105
SHA-256 337,001 1,320,007
SHA-512 268,092 1,055,801

RIPEMD-160 302,102 599,987

Table 6. Average iteration counts involved in the key derivation process (OpenSSL
1.0.2g, OSs installed).

Cryptsetup 1.6.8 Cryptsetup 1.7.0

64-bit OS

Arch SHA-1 820,723 1,537,322
SHA-256 613,023 2,467,901
SHA-512 438,491 1,765,118

RIPEMD-160 507,002 976,992

Debian SHA-1 768,173 1,535,254
SHA-256 487,468 1,877,618
SHA-512 370,287 1,459,036

RIPEMD-160 491,227 976,604

Fedora SHA-1 701,334 1,568,833
SHA-256 605,046 2,340,005
SHA-512 434,133 1,726,227

RIPEMD-160 484,943 984,109

4.3 How external factors may affect the iteration count values296

Tables 1 and 2 can help us to identify which factors negatively affect the it-297

eration count computation. In particular, we look closely at library versions,298

architectures (32/64-bit OS), backends and distributions.299

Library versions: The first external factor that we analyzed is the version of300

the libraries installed. Such a factor may affect the iteration count computation301

and consequently the attack cost. As an example, we show the differences from302



Cryptsetup version 1.7.0 to 1.6.8 (see Figure 3). The value indicated in the303

graph has been obtained by dividing the iteration count for version 1.7.0 by the304

corresponding iteration count for version 1.6.8. These ratios are compared across305

different configurations. Note that the ratio between two costs is equivalent to the306

ratio between the corresponding iteration counts, as long as the hash functions307

and GPU devices used in Equation 5 are the same.308

Fig. 3. Difference in attack cost in Cryptsetup 1.7.0 vs 1.6.8.
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Disregarding some minor measurement variations, the attack cost is increased by309

a factor of 2 for SHA-1 and RIPEMD-160 and by a factor of 4 for SHA-256 and310

SHA-512. This increase is due to two independent bugs in the iteration count311

calculation that have been fixed in Cryptsetup version 1.7.0.312

Interestingly, in Live CD distributions we found old library versions (see313

Table 7) such as Cryptsetup 1.6.1 (March 2013), Libgcrypt 1.6.1 (January 2014)314

and OpenSSL 1.0.1f (January 2014), while the latest version available at the315

time of writing were Cryptsetup 1.7.2 (June 2016), Libgcrypt 1.7.0 (April 2016)316

and OpenSSL 1.0.2h (May 2016).317

Table 7. Library versions available in Live CDs (December 2015).

Cryptsetup Libgcrypt OpenSSL

Arch 1.7.0 1.6.4 1.0.2d

Debian 1.6.6 1.6.3 1.0.1k

Fedora 1.6.8 1.6.4 1.0.1k

Kali 1.6.6 1.6.3 1.0.1k

Lubuntu 1.6.6 1.6.3 1.0.2d

Mint 1.6.1 1.6.1 1.0.1f

Ubuntu 1.6.6 1.6.3 1.0.2d

Unfortunately, also updated library versions available in official repositories are318

far from being up-to-date (see Table 8). Most of them are affected by the weak-319

nesses described in [46],[21]. Only Arch supports libraries that are not.320



Table 8. Updated library versions available in official repositories (May 2016).

Cryptsetup Libgcrypt OpenSSL

Arch 1.7.1 1.7.0 1.0.2h

Debian 1.6.6 1.6.3 1.0.1k

Fedora 1.6.8 1.6.4 1.0.2h

Kali 1.6.6 1.6.3 1.0.1k

Lubuntu 1.6.6 1.6.3 1.0.2d

Mint 1.6.1 1.6.1 1.0.1f

Ubuntu 1.6.6 1.6.3 1.0.2d

Architectures (32/64-bit OS): A second external factor that may affect the321

iteration count computation is the architecture on which our code is running.322

Experimental results reported in Tables 1 and 2 show an important gap between323

the iteration count values computed using several configurations. As an example,324

we list the following:325

– “Table 1, Ububtu, SHA-512, 32-bit OS, Cryptsetup 1.7.0” versus “Table 1,326

Ububtu, SHA-512, 64-bit OS, Cryptsetup 1.7.0”. The iteration counts com-327

puted are 275, 296 (32-bit OS) and 1, 197, 264 (64-bit OS). They quadrupled.328

– “Table 1, Kali, SHA-512, Cryptsetup 1.6.8” (56, 562 vs 273, 236, 32-bit and329

64-bit OS respectively). Again, they quadrupled;330

– “Table 1, Fedora, SHA-512, Cryptsetup 1.7.0” (253, 724 vs 1, 089, 109, 32-bit331

and 64-bit OS respectively). Again;332

– “Table 2, Fedora, SHA-512, Cryptsetup 1.6.8” (261, 398 vs 439, 068, 32-bit333

and 64-bit OS);334

– “Table 2, Mint, SHA-512, Cryptsetup 1.7.0” (961, 830 vs 1, 540, 997, 32-bit335

and 64-bit OS);336

– . . .337

This means that, from security perspective, it is better for the user to run the338

code on a 64-bit OS rather than a 32-bit OS, since we can get higher itera-339

tion counts (and thus higher costs for the attacker) for the same level of user340

inconvenience (i.e., time for unlocking the disk).341

Backends: The third factor that we analyzed is the backend installed on the342

system, i.e., Libgcrypt vs. OpenSSL. Interesting results can be observed when343

analyzing the following configurations:344

– “Table 1, Kali, SHA-512, 32-bit OS, Cryptsetup 1.6.8” versus “Table 2, Kali,345

SHA-512, 32-bit OS, Cryptsetup 1.6.8”. The iteration counts collected are346

56, 562 (Libgcrypt) and 232, 229 (OpenSSL). They quadrupled.347

– “Lubuntu, SHA-512, 32-bit OS, Cryptsetup 1.7.0” (261, 396 vs 1, 146, 912,348

Table 1 and Table 2 respectively). Again, they quadrupled;349

– “Fedora, SHA-512, 32-bit OS, Cryptsetup 1.6.8” (63, 331 vs 261, 398, Table350

1 and Table 2 respectively). Again;351



– “Arch, SHA-256, 64-bit OS, Cryptsetup 1.7.0” (1, 284, 213 vs 2, 455, 634,352

Table 1 and Table 2 respectively). In this case, the iteration count value is353

doubled.354

– . . .355

More in general, on 64-bit systems, Cryptsetup with OpenSSL used as the crypto356

backend produced between 1.5 and 2 times higher iteration counts as opposed357

to Cryptsetup with Libgcrypt. On 32-bit systems the following differences have358

been observed:359

– for RIPEMD-160: 1.2-1.5 higher with OpenSSL vs. Libgrypt,360

– for SHA-1: 1.4-1.7 higher with OpenSSL vs. Libgrypt (and 2.25 higher on361

Linux Mint),362

– for SHA-256: 1.8-2.5 higher with OpenSSL vs. Libgrypt,363

– for SHA-512: 3.8-4.5 higher with OpenSSL vs. Libgrypt.364

Note that part of this increase is due to a performance bug [46] in PBKDF2365

provided by Libgcrypt and fixed in Libgcrypt version 1.7.0 [48]. Figure 4 helps366

us to visualize these differences. The ratios in this graph have been obtained367

analogically to that of Figure 3 — i.e., by dividing the iteration count computed368

with OpenSSL by the corresponding Libgcrypt. Then, such ratios are compared369

across a number of configurations.370

Fig. 4. Difference in attack cost in Cryptsetup backend OpenSSL vs Libgcrypt
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The graph suggests that the choice of cryptographic library to be used as the371

backend for Cryptsetup has a significant impact on the resulting iteration counts372

and, consequently, the attack cost.373

Linux Distributions: The last factor which may affect the iteration count374

computation is the distribution installed. In particular, we analyzed data gath-375

ered with a number of Linux desktop distributions and we found the following376

result:377

– In “Table 1, SHA-1, 32-bit OS, Cryptsetup 1.6.8”, the iteration counts gath-378

ered are 279, 701 (Mint) and 387, 923 (Fedora);379



– “Table 2, SHA-256, 32-bit OS, Cryptsetup 1.7.0” (1, 444, 241 vs 2, 007, 356,380

Debian and Arch respectively);381

– “Table 2, SHA-256, 32-bit OS, Cryptsetup 1.6.8” (364, 159 vs 496, 901, De-382

bian and Ubuntu respectively).383

In cases listed above, the iteration count values are increased about 36-40 per-384

cent. Interestingly, the iteration count on the 32-bit Linux Mint with the Libgcrypt385

crypto backend is unusually low compared to other distributions. We were not386

able to identify the reason behind this deviation.387

5 LUKS: Examining PBKDF2 security margin388

In this Section we evaluate the estimated cost of attack on the password of a389

LUKS partition created using Cryptsetup. We assumed an optimized version of390

the attack where only key derivation PBKDF2 computation is needed. In general391

case the attack computation would have to include also keyslot decryption and392

master key checksum computation, which would increase the computation time393

by about 20-25% (see [21, section 4.1]).394

To model an attacker’s hardware, we used PBKDF2 benchmarks produced395

by an open-source tool [32] using the experimentally collected iteration counts396

listed in Section 4.2. To estimate the cost of cracking a password protected by397

PBKDF2, we chose specific system parameters — e.g., the derived key length, the398

electricity price, the purchase price of a single device, and so on — and imposed399

limitations to some of them — e.g., a maximum acceptable attack duration.400

Finally, we ran our code using different GPUs such as NVIDIA GeForce 465,401

NVIDIA Tesla M2090, NVIDIA Tesla K20, and NVIDIA Tesla K20X. More402

details about system parameters and GPUs can be found in Tables 9, 10, and403

11.404

Table 9. Attack estimation parameters.

Parameter name Value Comment

Derived key size 256 bits
Password search space (S) 248 (8-character alphanumeric)
Max. attack duration (T ) 5 years
Price of electricity (E) $0.05 kWh−1 [1]

5.1 Attack feasibility evaluation405

We select two configurations of the user’s system (see Table 12) between those406

listed in Tables 1 and 2. More precisely, we chose the configurations that produce407

the worst and best iteration count value.408

Using Eq. (4) and multiplying this result by the cost of the respective device,409

we get an idea of the cost of the whole equipment needed to perform an attack410



Table 10. Attack estimation parameters for GPU devices.

Device Parameter name Value Comment

NVIDIA Power draw (P ) 200 W [11]
GeForce Purchase price (D) $215 [11] (MSRP)
GTX 465 Lifetime (L) 5 years (conservative estimate)

NVIDIA Power draw (P ) 250 W [14]
Tesla Purchase price (D) $2500 [14] (MSRP)

M2090 Lifetime (L) 10 years (conservative est., based on [6])

NVIDIA Power draw (P ) 225 W [12]
Tesla Purchase price (D) $3150 [12] (MSRP)
K20 Lifetime (L) 15 years [6]

NVIDIA Power draw (P ) 235 W [13]
Tesla Purchase price (D) $7700 [13] (MSRP)
K20X Lifetime (L) 15 years [7]

Table 11. Measured PBKDF2 computation speeds for GPU devices

PBKDF2
Device Hash function computation

speed (V )

NVIDIA SHA-1 178437745.7
GeForce RIPEMD-160 138319407.9
GTX 465 SHA-256 75482616.7

SHA-512 24101794.6

NVIDIA SHA-1 291032649.1
Tesla RIPEMD-160 219635621.6

M2090 SHA-256 120639441.8
SHA-512 37930735.9

NVIDIA SHA-1 676654200.7
Tesla RIPEMD-160 524113035.1
K20 SHA-256 178302193.3

SHA-512 33038175.2

NVIDIA SHA-1 721176830.2
Tesla RIPEMD-160 540764271.2
K20X SHA-256 191052691.1

SHA-512 36163354.4

Table 12. Attack estimation user configurations.

Configuration Distribution Architecture Backend Cryptsetup version

“worst-case” Mint 32-bit Libgcrypt 1.6.8
“best-case” Arch 64-bit OpenSSL 1.7.0



in 5 years. Note that the actual cost might be higher or lower than this value411

– it has to include the cost of consumed electricity and, on the other hand, can412

be lower by the residual price of the hardware after performing the attack (we413

assume that the hardware can be resold or used for a different purpose after the414

attack). For simplicity, our model assumes that the price of the device decreases415

linearly with the usage time.416

Fig. 5. The attack’s initial hardware cost under “worst-case” configuration.
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Fig. 6. The attack’s initial hardware cost under “best-case” configuration.
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Figures 5 and 6 show the hardware costs calculated for the “worst-case”417

and “best-case” configurations, respectively. Notice that for the cheap NVIDIA418

GeForce GTX 465 GPU, the initial costs are an order of magnitude lower ($500-419

700K for “worst-case”) than for the other GPU devices ($2-11M for “worst-420

case”).421

The overall values of the costs suggest that an attack on LUKS passwords422

would require a very large amount of resources and would be feasible only for423

very wealthy attackers. Also, even in the weakest configuration, the attack would424

require thousands of GPU devices in order to be successful after 5 years on425

average. Such amount of devices might pose serious challenges and incur other426



costs (e.g., for the host computers, cooling, or physical storage), which we do427

not take into account.428

5.2 Attack cost comparison429

Figures 7 and 8 show the attack costs calculated for the “worst-case” and “best-430

case” configurations, respectively. Taking the minimum over all the GPU devices,431

we get a minimum cost of $1-1.5M for the “worst-case” configuration (for all432

hash functions). For the “best case” configuration, we get $5-7M with SHA-1433

and RIPEMD-160 hash functions, $19M with SHA-256 and $43M with SHA-512.434

Fig. 7. The attack cost under “worst-case” configuration.
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Fig. 8. The attack cost under “best-case” configuration.

0

50,000,000

100,000,000

RIPEMD−160 SHA−1 SHA−256 SHA−512
Hash function

A
tta

ck
 c

os
t

Device

NVIDIA GeForce GTX 465

NVIDIA Tesla K20

NVIDIA Tesla K20X

NVIDIA Tesla M2090

5.3 Cryptsetup vs. VeraCrypt435

Finally, we compared the cost of brute-force attacks on a LUKS partition created436

by Cryptsetup versions 1.6.8 and 1.7.0 to the cost of attacking a VeraCrypt437

partition.438



VeraCrypt is the successor of a popular disk encryption software for the439

Windows operating system, TrueCrypt, which has been discontinued on 28 May440

2014 [5,16]. Both TrueCrypt and VeraCrypt use PBKDF2 as the key derivation441

function. One of the most criticised problems of the original TrueCrypt was442

that the PBKDF2 iteration count was fixed and extremely low (1,000-2,000443

iterations). In VeraCrypt, the iteration count has been raised to 327,661-655,331444

iterations (depending on the hash function), but is still fixed [10]. Since version445

1.12, the user can specify an optional “PIM” value to personalize the iteration446

count. However, since PIM has to be remembered by the user together with the447

password, this feature is unlikely to be used by the majority of users [8].448

Fig. 9. Attack cost of Cryptsetup vs VeraCrypt.
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As seen in Figure 9, the estimated attack cost is comparable between Vera-449

Crypt and Cryptsetup 1.7.0, while Cryptsetup 1.6.8 is falling behind both.450

Note that due to the fact that the iteration count is set to a fixed value451

in VeraCrypt, the disk unlocking time may be very high on legacy hardware452

(especially if the SHA-512 hash function is used). Since Cryptsetup picks the453

iteration count dynamically, it avoids this problem (assuming the encrypted454

disk is always used on the same/similar HW-SW configuration), although the455

attack cost may be reduced if the PBKDF2 computation is slow.456

6 Discussion and conclusions457

Although Argon2 is expected to supersede PBKDF2 in the next few years, cur-458

rently PBKDF2 is still widely implemented to derive keys in many security-459

related systems. In this paper, we addressed the problem of long-term passwords460

secured by PBKDF2, presenting the case study of LUKS. We (a) analyzed how461

external factors may affect the iteration counts computation used by PBKDF2462

to slow down attackers, (b) provided means of evaluating the iteration count463

values defined by real-world applications, and finally (c) showed that PBKDF2464

is — and will still remain for years to come — capable to provide enough security465

margin for applications that require long-term keys.466



More precisely, our testing activities identified four external factors that can-467

not be defined “weaknesses” (and cannot be patched) but which negatively affect468

the iteration count computation, improving the speed of a brute-force attack:469

1. Library versions: Experimental results show that a security or performance470

bug coded into lines of an older version of the library can considerably affect471

the iteration count computation and, consequently, the attack cost. In our472

testing activities, we found old library versions in Live CD distributions,473

but also those available in official repositories are far from being up-to-date.474

This means that the majority of Linux distributions tested are affected by475

well-know LUKS weaknesses described in literature.476

2. Architectures (32/64-bit OS): We show an important gap between the iter-477

ation count values computed using 32-bit or 64-bit configurations. Experi-478

mental results suggest that, in several 32-bit Linux distributions, iteration479

counts can be reduced to a quarter when compared with the same 64-bit480

distros and, consequently, the attack cost too. Hence, from the user’s point481

of view, is more convenient use a 64-bit OS rather than a 32-bit OS.482

3. Backends: The choice of cryptographic library to be used as the backend for483

Cryptsetup has a significant impact on the resulting iteration counts. Be-484

cause the execution speed of cryptographic algorithms is due to independent485

optimizations coded in Libgcrypt and OpenSSL, our testing activities show486

that, on average, OpenSSL performs better than Libgcrypt.487

4. Linux distributions: We analyzed the effects that a number of Linux distri-488

butions have on the iteration count computations. In some cases, the choice489

of a particular Linux distribution can help user to increase the iteration490

count values, and hence the attack cost, by about 36-40 percent. Moreover,491

we noted that the 32-bit Linux Mint with the Libgcrypt crypto backend492

performs below average, but we were not able to identify the reason behind493

this deviation.494

Once external factors have been identified, we estimated the attack costs on495

the basis of the power consumed by the hardware doing the cracking and the496

cost of the hardware itself. Since there might be many other contributing factors497

— e.g., physical storage, cooling, or host computers — our estimations can only498

be seen as a lower bound for the actual cost.499

Our results suggest that even in the weakest configuration, an attack on500

LUKS passwords would require a very large amount of resources — i.e., thou-501

sands of GPUs — in order to be successful in a reasonable amount of time (five502

years on average). In the worst-case scenario, which is based on the configura-503

tions that produce the worst iteration count value, the estimated cost is between504

$1M and $1.5M. In the best case scenario, which is based on the configurations505

that produce the best iteration count value, we get a minimum cost of $5-7M506

with SHA-1 and RIPEMD-160 and a maximum cost of $43M with SHA-512.507

Interestingly, the cost for SHA-512 is so high due to 64-bit arithmetic operations508

being less efficient on the GPU (as opposed to CPU).509
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