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Abstract. When implementing a cryptographic algorithm, efficient operations have high1

relevance both in hardware and software. Since a number of operations can be performed via2

polynomial multiplication, the arithmetic of polynomials over finite fields plays a key role in3

real-life implementations — e.g. accelerating cryptographic and cryptanalytic software (pre-4

and post-quantum) [18]. One of the most interesting paper that addressed the problem has5

been published in 2009. In [5], Bernstein suggests to split polynomials into parts and presents6

a new recursive multiplication technique which is faster than those commonly used. In order7

to further reduce the number of bit operations [6] required to multiply n-bit polynomials,8

researchers adopt different approaches. In [19] a greedy heuristic has been applied to linear9

straight-line sequences listed in [6]. In 2013, D’angella, Schiavo and Visconti [21] skip some10

redundant operations of the multiplication algorithms described in [5]. In 2015, Cenk, Negre11

and Hasan [12] suggest new multiplication algorithms. In this paper, (a) we present a “k-1”-12

level Recursion algorithm that can be used to reduce the effective number of bit operations13

required to multiply n-bit polynomials; and (b) we use algebraic extensions of F2 combined14

with Lagrange interpolation to improve the asymptotic complexity.15

Keywords: Polynomial multiplication, Karatsuba, Two-level Seven-way Recursion algorithm, bi-16

nary fields, fast software implementations.17

1 Introduction18

Finite fields have applications in many areas of computer science and engineering, such as digital19

signal processing [29,9], coding theory [3,8], cryptography [30,2,10,31,25] and so on. Such appli-20

cations usually need efficient implementations both in hardware [34,15,14,1,28,26] and software21

[5,21,19,12], thus a fast execution of arithmetic operations over finite fields is a crucial issue. In22

this paper particular attention is paid to binary fields, i.e., finite fields of characteristic 2, because23

they are very attractive for several cryptographic applications, especially for those who play with24

elliptic curves [4,7,5].25

http://www.di.unimi.it/visconti
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A binary field F2n is composed of binary polynomials modulo a n-degree irreducible polyno-26

mial. The multiplication between two elements of F2n is one of the most crucial low-level arithmetic27

operations. It consists of an ordinary polynomial multiplication and a modular reduction by an irre-28

ducible polynomial. Whereas the modular reduction is a relatively simple operation, the polynomial29

multiplication turns out to be a costly operation.30

A real case scenario can help readers to understand the problem in details. In 2009, Bernstein31

show that, on a binary Edwards curve [5], a 251-bit single-scalar multiplication requires 44,679,66532

bit operations, 43,011,084 of which (about 96%) are for field multiplications. That said, it is not33

difficult to understand why fast software implementations for polynomial multiplication over finite34

fields are desired.35

It is well known that the naive polynomial multiplication algorithm — the so-called School-book36

algorithm — is not the optimal way to multiply two polynomials. If the polynomials involved in37

the product have the same degree, say n, the multiplication takes n2 multiplications and (n− 1)238

additions. Thus, its complexity is 2n2+O(n). Many researchers have tried to improve this algorithm,39

following two main directions: (1) provide a better asymptotic estimation [34,16,35,24]; (2) reduce40

the effective number of bit operations [5,12,14,22,21].41

A number of interesting approaches that improves the school-book algorithm have been pub-42

lished in literature — see for example Karatsuba [27], Toom [38], Cook [20], Schönhage and Strassen43

[37], Bernstein [5], and so on. More precisely, Karatsuba [27] achieves an asymptotic complexity44

of 7n1.58 + O(n). Toom [38] and Cook [20] reduced the number of steps needed to multiply two45

polynomials introducing an algorithm with complexity O(n1+ε), for arbitrary small ε > 0. In [37]46

Schönhage and Strassen showed how to achieved complexity O(n log n log log n) using a procedure47

based on the Fast Fourier Transform (FFT). In 2009, Bernstein [5] improves the Karatsuba identity48

(Three-way Recursion algorithm), obtaining the following asymptotic complexity 6.5n1.58 +O(n).49

Cenk, Negre and Hasan in [12] suggest to change the field for the polynomials, getting an asymptotic50

complexity of 15.125n1.46 − 2.67n log3(n) +O(n).51

Notice that asymptotic estimations are not explicit bounds and real-world applications have to52

deal with issues of hardware and software implementations — e.g., hardware constraints, software53

speedups, and so on. Therefore, in order to get the minimum number of bit operations needed to54

multiply two n-bit polynomials — for sake of simplicity we call such a number M(n) — researchers55

analyze, rearrange and modify the algorithms that provide interesting asymptotic estimations.56

Their aim is to improve bounds published in literature for specific value (small) of n, and these57

improvements that are not visible in the asymptotics. Consequently, a number of papers tries to58

reduce the effective number of bit operations [34,16,35,24]. As far as we know, the best explicit59

upper bounds for the polynomial multiplication appear in [6,19,21,12].60

Karatsuba [27] was the first one who reduces the number of bit operations of the School-61

book algorithm. A different approach has been described by Bernstein in 2009 [5]. He refines62

the Karatsuba identity and suggests to use a polynomial multiplication technique which employs63

(recursively) different multiplication algorithms, picking, at each step, the best one. Moreover, he64

presents three new multiplication algorithms — i.e., Three-way Recursion, Five-way Recursion,65

and Two-level Seven-way Recursion algorithm — that are used to reduce the effective number of66

bit operations. The technique presented in [5] not only results in new software speed records [6],67

but also avoids well-known software side-channel attacks. Indeed, all computations are expressed68

as straight-line sequences of AND/XOR operations, thus they are data-independent. In [19] are69

published improvements for specific value of n obtained by applying Boyar-Peralta heuristic [11] on70
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the linear part of straight-line sequences reported in [6]. In 2013, D’angella, Schiavo and Visconti71

[21] skip some redundant operations of the multiplication algorithms described in [5], reducing72

the number of bit operations for many values of n. The authors focus in particular on Five-way73

Recursion algorithm because such an algorithm is widely used. In 2015, Cenk, Negre and Hasan [12]74

present new multiplication algorithms which improve many of the explicit upper bounds previously75

described.76

1.1 Our contributions77

In this paper we investigate the possibility to (a) further reduce the effective number of bit opera-78

tions required to multiply n-bit polynomials, and (b) improve the asymptotic complexity.79

Firstly, we refine the Two-level Seven-way Recursion algorithm [5]. As shown in [5], it seems80

that Lagrange Interpolation is a useful tool to arrange the order of operations. Although in many81

cases this is true, in others it is not. Rearranging the operations in a different way, we present a “k-82

1”-level Seven-way Recursion algorithm, or “k-1”-level Recursion for short. We show that Three-,83

Four-, and Five-level Recursion can be used to improve the explicit upper bounds published in84

literature.85

Secondly, we use algebraic extensions of F2 combined with Lagrange interpolation to improve86

the asymptotic complexity. We will show an interesting connection between this technique and the87

computation of the values of a polynomial in all of the field elements.88

1.2 Organization of the paper89

The remainder of the paper is organized as follows. In Section 2, we state definitions and some90

preliminary concepts that are useful to understand the following sections. In Section 3, starting91

with the classical school-book algorithm, we introduce some of the approaches currently adopted92

to multiply polynomials in an efficient way. Section 4 is the heart of this paper. We present our93

contribution, showing the new speed records achieved and explaining the techniques adopted.94

Finally, conclusions are drawn in Section 5.95

2 Preliminaries96

We restrict our analysis to polynomials over finite fields of characteristic 2, so we will not ever use97

the minus sign. If F (t) and G(t) are two of these polynomials, we will call their product H(t).98

To denote the cost of the multiplication in Fg between two polynomials of degree n− 1 we will99

use Mg(n).100

2.1 Projective Lagrange Interpolation101

As pointed out in [12], Lagrange Interpolation leads us to efficient multiplication algorithms. How

does this technique work? Consider a field K and a polynomial H ∈ K[x],

H(x) = h0 + h1x+ h2x
2 + ...+ hnx

n

Algebra tells us that we need to fix the value of the polynomial in n+ 1 points in order to uniquely102

determine it. So, given a set of n + 1 distinct points {k0, . . . , kn} ⊆ K, we define the Lagrange103

polynomials as follows:104
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li(x) =
∏
j 6=i

x− kj
ki − kj

i = 0, . . . , n

Notice that we have li(ki) = 1 and li(kj) = 0, ∀j 6= i. This feature allows us to exactly reconstruct

any polynomial H ∈ K[x] as

H(x) =

n∑
i=0

H(ki) · li(x)

For our purposes, the above technique is not optimal. Given the same problem with only n points

{k0, ..., kn−1}, define the degree n− 1 polynomial

H =

n−1∑
i=0

H(ki) · li(x)

We still have H(ki) = H(ki), for i = 0, ..., n− 1. Let

l∞(x) =

n−1∏
j=0

(x− ki)

and H(∞) = hn. Since H(∞) · l∞ vanishes at every ki and has degree n, we can reconstruct H105

with the so-called Projective Lagrange Interpolation formula,106

H(x) =

n−1∑
i=0

H(ki) · li(x) +H(∞) · l∞(x).

2.2 Which field?107

Lagrange Interpolation requires n+1 points, but we just have two points in F2! Projective Lagrange108

Interpolation will do with n points since it makes use of the point at infinity: where can we find109

even more points? A possible answer is to consider finite algebraic extensions of F2, generated110

by a monic irreducible polynomial γ over F2 of degree d. Indeed, an extension F is a quotient111

F2[X]/〈γ(X)〉, so the elements of F are all d-bit polynomials, i.e., the set of polynomials over F2112

of degree at most d − 1, and F has 2d elements. If δ is another irreducible polynomial of degree113

d, there is a, non canonical, isomorphism F2[X]/〈γ(X)〉 ' F2[X]/〈δ(X)〉, so we will call such an114

extension F2d .115

F×
2d

is a cyclic group: let α be a fixed generator, we can see F2d as a vector space over F2 with116

basis {1, α, α2, . . . , αd−1}. At last, note that F2d is the splitting field of X2d +X: its roots are all117

the elements of the field.118

3 Current approaches119

3.1 School-book algorithm120

Given two n-bit polynomials121

F = f0 + f1t+ ...+ fnt
n and G = g0 + g1t+ ...+ gnt

n.122

The steps of the algorithm are:123
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– Recursively multiply f0 + f1t+ ...+ fn−1t
n−1 by g0 + g1t+ ...+ gn−1t

n−1;124

– Compute (fng0 + f0gn)tn + (fng1 + f1gn)tn+1 + ...+ fngnt
2n. This takes 2n+ 1 multiplications125

and n additions;126

– Add the former to the latter. This takes n− 1 additions for the coefficients of tn, ..., t2n−2; the127

other coefficients do not overlap.128

We get the recursion formulaM(n+1) ≤M(n) + 4n and the best case boundM(n) ≤ 2n2 − 2n+ 1.129

This algorithm is efficient only in low degrees. Indeed, as reported in [6], the cost of the school-book130

algorithm is too high from degree 14 on.131

3.2 Karatsuba132

Given two 2n-bit polynomials F and G, write them as F = F0 + F1t
n, G = G0 + G1t

n for some133

other n-bit polynomials F0, F1, G0, G1. The Karatsuba algorithm [27] can be described by the134

product.135

(F0 + tnF1)(G0 + tnG1)

= (1 + tn)F0G0 + tn(F0 + F1)(G0 +G1) + (tn + t2n)F1G1

The operations involved are:136

– M2(n): multiplication F0G0137

– n− 1: sum S1 = (1 + tn)F0G0138

– 2n: sums F0 + F1, G0 +G1139

– M2(n): multiplication (F0 + F1)(G0 +G1)140

– M2(n): multiplication F1G1141

– n− 1: sum S2 = (tn + t2n)F1G1142

– 2n− 1: sum S3 = S1 + tn(F0 + F1)(G0 +G1)143

– 2n− 1: sum S3 + S2144

Summing all costs, we get145

M2(2n) ≤ 3M2(n) + 8n− 4 (1)

3.3 Bernstein146

Bernstein improves the Karatsuba algorithm defining the so-called Refined Karatsuba algorithm147

[5]. As described in Section 3.2, we consider two 2n-bit polynomials F , G and take F0, G0 as n-bit148

polynomials and F1, G1 as k-bit polynomials. The Refined Karatsuba algorithm can be described149

as follows.150

(F0 + tnF1)(G0 + tnG1)

= (1 + tn)F0G0 + tn(F0 + F1)(G0 +G1) + (tn + t2n)F1G1

= (1 + tn)F0G0 + tn(F0 + F1)(G0 +G1) + (1 + tn)tnF1G1

= (1 + tn)(F0G0 + tnF1G1) + tn(F0 + F1)(G0 +G1)

The cost estimation of the algorithm is151

M2(n+ k) ≤ 2M2(n) +M2(k) + 4k + 3n− 3 n/2 ≤ k ≤ n (2)
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This improves that of Karatsuba described in Section 3.2.152

Moreover in [5] we can find another improvement but for higher degrees. In fact, Bernstein153

presents the so-called Two-level Seven-way Recursion. Consider the problem of multiplying two154

polynomial of 4n bits. Applying the Refined Karatsuba identity three times and factoring out155

1 + tn, we get156

(F0 + tnF1 + t2nF2 + t3nF3)(G0 + tnG1 + t2nG2 + t3nG3)

= (1 + t2n)
(

(1 + tn)(F0G0 + tnF1G1 + t2nF2G2 + t3nF3G3)

+tn(F0 + F1)(G0 +G1) + t3n(F2 + F3)(G2 +G3)
)

+t2n
(
F0 + F2 + tn(F1 + F3)

)(
G0 +G2 + tn(G1 +G3)

)
The cost evaluation for polynomials with 3n+ k coefficients, assuming n/2 ≤ k ≤ n, is157

– 3M(n): multiplications F0G0, F1G1, F2G2.158

– M(k): multiplication F3G3.159

– 3(n− 1): sums S1 = F0G0 + tnF1G1 + t2nF2G2 + t3nF3G3.160

– 2n+ 2k − 1: sum (1 + tn)S1.161

– 2n+M(n): multiplication S2 = (F0 + F1)(G0 +G1).162

– 2k +M(n): multiplication S3 = (F2 + F3)(G2 +G3).163

– 4n− 2: sums S4 = (1 + tn)S1 + tnS2 + t3nS3.164

– 2n+ 2k +M(2n): multiplication S5 = (F0 + F2 + tn(F1 + F3))(G0 +G2 + tn(G1 +G3)).165

– 6n+ 2k − 2: sum (1 + t2n)S4 + t2nS5.166

Hence, summing all the costs, we obtain167

M(3n+ k) ≤M(2n) + 5M(n) +M(k) + 19n+ 8k − 8 n/2 ≤ k ≤ n (3)

3.4 Cenk, Negre, Hasan168

In [12] and [13], the authors suggest to use a field bigger than F2 for Projective Lagrange In-169

terpolation. They consider two 3n-bit polynomials F and G, written as F = F0 + F1t
n + F2t

2n,170

G = G0 +G1t
n +G2t

2n with F0, F1, F2, G0, G1, G2 n-bit polynomials. Then, they make compu-171

tations using the elements of F4. If α is a generator of F×4 , and assuming n odd, the new algorithm172

can be written as follows.173

H(t) = (F0 + tnF1 + t2nF2)(G0 + tnG1 + t2nG2)

H(0) = F0G0

H(1) = (F0 + F1 + F2)(G0 +G1 +G2)

H(α) = (F0 + F2 + α(F1 + F2))(G0 +G2 + α(G1 +G2))

H(α+ 1) = (F0 + F1 + α(F1 + F2))(G0 +G1 + α(G1 +G2))

H(∞) = F2G2

(F0 + tnF1 + t2nF2)(G0 + tnG1 + t2nG2)

=
(
H(0) + tnH(∞)

)
(1 + t3n)

+
(
H(1) + (1 + α)(H(α) +H(α+ 1))

)
(tn + t2n + t3n)

+α
(
H(α) +H(α+ 1)

)
t3n +H(α)t2n +H(α+ 1)tn

(4)
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Notice that if n is even, we just exchange the formulae for H(α) and H(α + 1). As described in174

[12], the cost evaluation for the CNH 3-way split algorithm is175

M2(3n) ≤ 2M4(n) + 3M2(n) + 29n− 12

An improvement of this algorithm is described in [12]: using two polynomials C0 and C1 to rearrange176

equations H(α) and H(α+ 1)177

H(α) =
(
F0 + F2 + α(F1 + F2)

)(
G0 +G2 + α(G1 +G2)

)
= C0 + αC1

H(α+ 1) =
(
F0 + F1 + α(F1 + F2)

)(
G0 +G1 + α(G1 +G2)

)
= (C0 + C1) + αC1

it is possible to redefine (4) as178

(F0 + tnF1 + t2nF2)(G0 + tnG1 + t2nG2)

= H(∞)t4n +H(0)

+
(
H(0) +H(1) + C1

)
t3n +

(
C0 +H(1) + C1

)
t2n +

(
H(∞) +H(1) + C0

)
tn.

The relative cost for this algorithm is179 M2(3n) ≤ 3M2(n) +M4(n) + 20n− 5

M4(3n) ≤ 5M4(n) + 56n− 19
(5)

However, (5) does not perform well for low degrees as shown in [12] (see table 2). More encouraging180

is the best case bound, but it requires the following two results.181

Result 1 (From Master Theorem) Let a, b and i be positive integers and assume that a 6= b. Let

n = bi and a 6= 1. The solution to the inductive relationr1 = e

rn = arn/b + cn+ d

is

rn =

(
e+

bc

a− b
+

d

a− 1

)
nlogb a − bc

a− b
n− d

a− 1
.

Proof. The proof is trivial. Substituting in the inductive relation the expression for rn and rn/b,182

we find an identity.183

Result 2 (From Master Theorem) Let a, b and i be positive integers. Let n = bi, a = b, a 6= 1 and

δ 6= 1. The solution to the inductive relationr1 = e

rn = arn/b + cn+ fnδ + d

is

rn =

(
e+

fbδ

a− bδ
+

d

a− 1

)
n− nδ

(
fbδ

a− bδ

)
+ cn logb n−

d

a− 1
.

Proof. Similar to the previous one184
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Going back to (5), we can apply the first lemma to the second inequality, getting185

M4(n) ≤ 30.25n1.46 − 28n+ 4.75

and replacing it in the first inequality, we obtain186

M2(3n) ≤ 3M2(n) + 30.25n1.46 − 8n− 0.25

Finally, using the second lemma we get the best case bound187

M2(n) ≤ 15.125n1.46 − 14.25n− 2.67n log3 n+ 0.125.

3.5 Find and Peralta188

In [23], authors develop a new method based on Karatsuba algorithm. They consider kn-bit polyno-189

mials F and G, written as F = F0+F1t
n+ . . .+Fk−1t

(k−1)n and G = G0+G1t
n+ . . .+Gk−1t

(k−1)n
190

for some n-bit polynomials Fi and Gi, i = 0, . . . , k − 1.191

The sketch of their idea is the following: (a) compute all possible subsets of {F0, F1, . . . , Fk−1}192

and {G0, G1, . . . , Gk−1}, excluding the emptyset; (b) take the sum of the elements in every subsets,193

thus having 2k − 1 sums for F and G respectively; (c) multiply the 2k − 1 sums for F by the194

corresponding sum for G — for example, F6 + F8 + F9 will be multiplied by G6 + G8 + G9 —195

obtaining H, a set of 2k − 1 elements; (d) a computer search gives a minimal subset H ⊂ H,196

containing only the elements needed to multiply FG.197

For example, if we consider k = 4 we get198

F = F0 + F1t
n + F2t

2n + F3t
3n and G = G0 +G1t

n +G2t
2n +G3t

3n.199

(a)-(b) After computing all possible subsets, the 24 − 1 possible sums for F and G are200

{F0, F1, F2, F3, F0 + F1, F0 + F2, F0 + F3, F1 + F2, F1 + F3, F2 + F3, F0 + F1 + F2,

F0 + F1 + F3, F0 + F2 + F3, F1 + F2 + F3, F0 + F1 + F2 + F3}

{G0, G1, G2, G3, G0 +G1, G0 +G2, G0 +G3, G1 +G2, G1 +G3, G2 +G3, G0 +G1 +G2,

G0 +G1 +G3, G0 +G2 +G3, G1 +G2 +G3, G0 +G1 +G2 +G3}

(c) It is straightforward and give us201

H = {H0, H1, H2, H3, H01, H02, H03, H12, H13, H23, H123, H023, H013, H012, H0123}

where Hi1...ik = (Fi1 + . . .+ Fik)(Gi1 + . . .+Gik).202

(d) Now, a computer search will give the following203

H = {H0, H1, H01, H2, H02, H3, H13, H23, H0123},

The elements of H are the only ones needed to multiply FG. Then, the authors split each Hi1...ik204

in three parts, say HL, HM and HH , and find the SLPs that compute f(x) = (HM )x and f(x) =205

(HL, HH)x over GF (2).206
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Calling M∧(C) the cardinality of H, s(T ) the number of operations needed to compute all the sums207

of the form Fi1 + . . .+Fik, s(R) the number of operations of a SLP that computes f(x) = (HM )x208

over GF (2), and s(E) the number of operations of a SLP that computes f(x) = (HL, HH)x over209

GF (2), the general estimate for multiplying two kn-bit polynomials will be210

M(kn) ≤ n∧M(n) + 2n · s(T ) + (n− 1) · s(E) + s(R).

Setting k = 4, 5, 6, 7, . . . , we get211

M(4n) ≤ 9M(n) + 34n− 12

M(5n) ≤ 13M(n) + 54n− 19

M(6n) ≤ 17M(n) + 85n− 29

M(7n) ≤ 22M(n) + 107n− 33

. . .

(6)

Notice that finding the number of operations of a SLP that computes f(x) = (HM )x and f(x) =212

(HL, HH)x over GF (2) may require heavy use of HW resources.213

4 Our contribution214

In this section, we define a more efficient algorithm rearranging the order of operations and improve215

the general complexity through best case bounds. In the sequel, we will denote these two approaches216

with (I) and (II) respectively.217

4.1 Improvements of Two-level Seven-way (I)218

We can now give an improvement of the preceding algorithm for higher degrees. In fact, we consider219

polynomials of 8n bits and apply the same technique of the Two-level Seven-way Recursion. We220

can collect t4n, apply the Refined Karatsuba and apply Two-level Seven-way Recursion for inner221

multiplication. We will call the following algorithm Three-level Recursion.222

(∑7
i=0 t

inFi

)(∑7
i=0 t

inGi

)
=
(∑3

i=0 t
inFi + t4n

∑3
i=0 t

inFi+4

)(∑3
i=0 t

inGi + t4n
∑3
i=0 t

inGi+4

)
= (1 + t4n)

((∑3
i=0 t

inFi

)(∑3
i=0 t

inGi

)
+ t4n

(∑3
i=0 t

inFi+4

)(∑3
i=0 t

inGi+4

))
+

t4n
(∑3

i=0 t
inFi +

∑3
i=0 t

inFi+4

)(∑3
i=0 t

inGi +
∑3
i=0 t

inGi+4

)
= (1 + t4n)

((∑3
i=0 t

inFi

)(∑3
i=0 t

inGi

)
+ t4n

(∑3
i=0 t

inFi+4

)(∑3
i=0 t

inGi+4

))
+

t4n
(∑3

i=0 t
in(Fi + Fi+4)

)(∑3
i=0 t

in(Gi +Gi+4)
)
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= (1 + t4n)

(
(1 + t2n)

(
(1 + tn)

(∑7
i=0 t

inFiGi

)
+

∑3
j=0 t

(2j+1)n(F2j + F2j+1)(G2j +G2j+1)

)
+

+t2n(F0 + F2 + (F1 + F3)tn)(G0 +G2 + (G1 +G3)tn)+

+t6n(F4 + F6 + (F5 + F7)tn)(G4 +G6 + (G5 +G7)tn)

)
+

t4n
(∑3

i=0 t
in(Fi + Fi+4)

)(∑3
i=0 t

in(Gi +Gi+4)
)

The cost evaluation for polynomials with 7n+ k coefficients, assuming n/2 ≤ k ≤ n, is223

– 7M(n): multiplication FiGi, for i = 0, . . . , 6224

– M(k): multiplication F7 by G7225

– 7(n− 1): sum S1 =
∑7
i=0 t

inFiGi226

– 6n+ 2k − 1: sum S2 = (1 + tn)S1227

– 3(2n+M(n)): multiplication (F2j + F2j+1)(G2j +G2j+1), for j = 0, 1, 2228

– 2k +M(n): multiplication (F6 + F7)(G6 +G7)229

– 4(2n− 1): sum S3 = S2 +
∑3
j=0 t

(2j+1)n(F2j + F2j+1)(G2j +G2j+1)230

– 6n+ 2k − 1: sum S4 = (1 + t2n)S3231

– 4n+M(2n): multiplication S5 = (F0 + F2 + (F1 + F3)tn)(G0 +G2 + (G1 +G3)tn)232

– 2n+ 2k +M(2n): multiplication S6 = (F4 + F6 + (F5 + F7)tn)(G4 +G6 + (G5 +G7)tn)233

– 2(4n− 1): sum S7 = S4 + t2nS5 + t6nS6234

– 6n+ 2k − 1: sum S8 = (1 + t4n)S7235

– 6n+ 2k +M(4n): multiplication S9 =
(∑3

i=0 t
in(Fi + Fi+4)

)(∑3
i=0 t

in(Gi +Gi+4)
)

236

– 8n− 1: sum S8 + t4nS9237

Hence, summing all the costs, we get

M(7n+ k) ≤M(4n) + 2M(2n) + 11M(n) +M(k) + 67n+ 12k − 17 n/2 ≤ k ≤ n

One could continue in the same fashion of the Three-level, consider polynomials of 2kn bits, collect238

t2
k−1n, apply the Refined Karatsuba and the “k-1”-level Recursion. We are going to see that this239

is not a totally right way.240

We want to see which kind of improvements are given from algorithms of the Section 3.3. They241

are of two types: the best case bound (for n large enough) and concrete (only on low degree).242

Lemma 1 will help us to state the best case bounds.243

If we go back to the recursion (2), we see that, when k is equal to n, it could be rewritten as244

M(2n) ≤ 3M(n) + 7n− 3 (7)

so, also as245

M(n) ≤ 3M(n/2) +
7

2
n− 3.

We can now apply Lemma 1, finding246

M(n) ≤ 6.5nlog2 3 − 7n+ 1.5
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What about (3)? If we state k = n, we get247

M(4n) ≤M(2n) + 6M(n) + 27n− 8

so, we cannot apply Lemma 1, but if we substitute M(2n) with the recursion formula (7), we find248

M(4n) ≤ 9M(n) + 34n− 11 (8)

finally, we obtain249

M(n) ≤ 6.43nlog2 3 − 6.8n+ 1.38

Notice that (8) is not the best known, in fact, in [23] we can find250

M(4n) ≤ 9M(n) + 34n− 12 (9)

so, for higher levels of recursion we will use (9) instead of (8).251

To enable an easy comparison of different algorithms, in Table 1 we present the the best case252

bounds. Notice that the first and the third coefficients of each estimation are decreasing, instead253

the second one is growing.254

Algorithm Best case bound Number of bits

[5]Refined Karatsuba M(n) ≤ 6.50nlog2 3 − 7.00n+ 1.50 n = 2x

[5]Two-level Seven-way M(n) ≤ 6.43nlog2 3 − 6.80n+ 1.38 n = 4x

[23]4-way split M(n) ≤ 6.30nlog2 3 − 6.80n+ 1.50 n = 4x

Three-level M(n) ≤ 6.34nlog2 3 − 6.68n+ 1.35 n = 8x

Four-level M(n) ≤ 6.30nlog2 3 − 6.62n+ 1.31 n = 16x

Five-level M(n) ≤ 6.28nlog2 3 − 6.57n+ 1.30 n = 32x

Table 1. Best case bounds: comparison of different algorithms

By exploiting the recursion formulae, we can also improve the cost of the multiplication between255

two polynomials of low degree (see Table 2).256

4.2 Product in finite fields: general case (II)257

There are several approaches that can be adopted to multiply two polynomials, say F and G, in an258

efficient way. In this section we provide a new one. In doing so, we make some useful assumptions.259

We take d a non negative integer and the factors F and G of the form260

F (t) =

2d−1∑
i=0

Fi(t)t
in with Fi ∈ F2[t], degFi ≤ n− 1

In order to simplify notation, given a factor F (t) of the above form, we define261

F̃ (x) =

2d−1∑
i=0

Fi(t)x
i

We are now ready to suggest a new efficient algorithm.262
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n Best known Our Gates Depth Depth of our Depth Algorithm
contribution gained best known contribution gained used

24 702 [12] 697 5 10 9 1 3-lev
32 1156 [12] 1148 8 11 10 1 3-lev
40 1703 [23] 1700 3 14 13 1 3-lev
47 2228 [23] 2214 14 13 11 2 4-lev
48 2259 [23] 2238 21 13 11 2 4-lev
63 3626 [23] 3612 14 14 12 2 4-lev
64 3673 [23] 3640 23 13 12 1 4-lev
72 4510 [23] 4510 0 25 15 10 3-lev
79 5329 [23] 5313 16 16 15 1 4-lev
80 5366 [23] 5345 21 16 15 1 4-lev
95 7073 [23] 6978 95 15 13 2 5-lev
96 7110 [23] 7006 104 16 13 3 5-lev
120 10438 [5] 10294 144 130 17 113 3-lev
127 11447 [5] 11277 170 17 14 3 5-lev
128 11466 [12] 11309 157 16 14 2 5-lev

Table 2. Improvements of M(1) −M(128): we apply Three-, Four-, and Five-level Recursion algorithm

Let’s start with an observation. There is an interesting connection between x2
d

+x and Lagrange263

polynomials. Indeed, we can prove the following three equalities:264

1. l0(x) =
x2

d

+ x

x
= x2

d−1 + 1265

2. lαi(x) =
x2

d

+ x

x+ αi
i = 0, 1, . . . , 2d − 2266

3. l∞ = x2
d

+ x = x(x2
d−1 + 1) = x · l0(x)267

We now rewrite the interpolation law as follows:268

H̃(x) = H̃(0) · l0(x) +

2d−2∑
i=0

H̃(αi) · lαi(x) + H̃(∞) · l∞(x)

H̃(x) = H̃(0) · l0(x) +

2d−2∑
i=0

H̃(αi) · lαi(x) + xH̃(∞) · l0(x)

H̃(x) = H̃(0) · (1 + x2
d−1) +

2d−2∑
i=0

H̃(αi)
x2

d

+ x

x+ αi
+ xH̃(∞) · (1 + x2

d−1)

269

H̃(x) = (1 + x2
d−1)(H̃(0) + xH̃(∞)) +

2d−2∑
i=0

H̃(αi)
x2

d

+ x

x+ αi
(10)

Notice that fractions x2d+x
x+αi of Equation (10) are Lagrange polynomials of F×

2d
. Using the naive270

division algorithm, we obtain271

lαi(x) =
x2

d

+ x

x+ αi
=

2d−1∑
j=1

(αi)(j−1)x2
d−j (11)

and replacing Equation (11) in (10), we get272
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H̃(x) = (1 + x2
d−1)(H̃(0) + xH̃(∞)) +

2d−2∑
i=0

H̃(αi)

2d−1∑
j=1

αi(j−1)x2
d−j

H̃(x) = (1 + x2
d−1)(H̃(0) + xH̃(∞))︸ ︷︷ ︸

SA

+

2d−1∑
j=1

2d−2∑
i=0

αi(j−1)H̃(αi)

x2
d−j

︸ ︷︷ ︸
SB

(12)

We will now discuss the costs of this algorithm.273

Consider SA: it will always be the same in every field F2d . The cost of the operations in SA is:274

– M2(n): multiplication H̃(0) = F0G0275

– M2(n): multiplication H̃(∞) = F2d−1G2d−1276

– n− 1: sum H̃(0) + xH̃(∞)277

– 0: sum (1 + x2
d−1)(H̃(0) + xH̃(∞))278

The last estimate holds only for d 6= 1, otherwise polynomials H̃(0)+xH̃(∞) and x(H̃(0)+xH̃(∞))279

overlap on some bits and it becomes 2n− 1.280

Consider now the sum SA +SB . The degree of SA is (2d + 2)n− 2, but its structure lacks many281

powers. Indeed, SA is a polynomial that has two parts, the first with powers whose degrees are282

running from 0 to 3n− 2, the second from (2d − 1)n to (2d + 2)n− 2. This is very useful because283

SB has powers with degrees from n to (2d + 1)n − 2, so, SA and SB overlaps only in two parts.284

The first in (3n− 2)−n+ 1 = 2n− 1 bits and the second in (2d + 1)n− 2− (2d− 1)n+ 1 = 2n− 1.285

Since the cost of SA + SB does not depend on the field, it is286

– 4n− 2: sum H(t) = SA + SB287

Finally, consider the sums in SB . Supposing that the internal summation has been computed,288

the external one is conducted over 2d − 1 polynomials. These polynomials have powers from cn to289

cn+ 2n− 2, with c = 1, . . . , 2d− 1 and each one overlaps the following on n− 1 bit. Therefore, the290

cost of the external sum in SB is291

– (2d − 2)(n− 1): sum S1x+ S2x
2 + · · ·+ S2d−1x

2d−1
292

We are left to compute the internal sums in SB . We will show that we do not need to compute all293

H̃(αi).294

Firstly, we start with showing that if i = 2qi′ for some q, then there will be a connection between295

the coefficients of H̃(αi) and H̃(αi
′
).296

Theorem 1. If we take integers i and i′ such that i′ = 2qi for some q, then we can express the297

coefficients of H̃(αi
′
) as a linear combination of the coefficients of H̃(αi).298

Proof. We have299

H̃(αi) = F̃ (αi) · G̃(αi) =

2d−1∑
j=0

Fjα
ij

2d−1∑
k=0

Gkα
ik =

2d∑
l=0

 ∑
j+k=l

0≤j,k≤2d−1

FjGk

 (αi)l.

We define300
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Hl =
∑
j+k=l

0≤j,k≤2d−1

FjGk

thus301

H̃(αi) =

2d∑
l=0

Hlα
il (13)

Remember that the field F2d can be viewed as vector space over F2. So, we can write every power302

of α as a linear combination of the elements of the basis {1, α, α2, . . . , αd−1}303

αil =

d−1∑
b=0

cb,ilα
b (14)

and substitute (14) in (13), getting304

H̃(αi) =

2d∑
l=0

Hl

d−1∑
b=0

cb,ilα
b =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

αb

Take now H̃(αiw) with w > 1, from (14) we have305

αilw = (αil)w =

(
d−1∑
b=0

cb,ilα
b

)w
.

In order to write coefficients of H̃(αiw) as linear combinations of the coefficients of H̃(αi), we need306

the following equality:307 (
d−1∑
b=0

cb,ilα
b

)w
=

d−1∑
b=0

cb,ilα
bw (15)

Suppose it holds, then308

H̃(αiw) =

2d∑
l=0

Hl

(
d−1∑
b=0

cb,ilα
b

)w
=

2d∑
l=0

Hl

d−1∑
b=0

cb,ilα
bw =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

αbw.

Finally, using (14), we obtain309

H̃(αiw) =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

αbw =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

 d−1∑
t=0

ct,bwα
t =

=

d−1∑
t=0

d−1∑
b=0

ct,bw

 2d∑
l=0

Hlcb,il

αt

Let’s go back to (15): since we are in characteristic two, the equality holds when w = 2q, for some310

q.311

Secondly, we have to remember that α2d = α. So, for every H̃(αi), with i 6≡ 0 mod 2d−1, there312

are at most d different evaluations of H̃ that can be computed with H̃(αi). They are the following313

set:314
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Pi = {H̃(αi), H̃(α2i), H̃(α22i), . . . , H̃(α2d−1i)}

We can count the number of Pi for every algebraic extension of F2, because it depends only on the315

degree d.316

Theorem 2. The number of different Pi is

P = −1 +
1

d

d−1∑
k=0

gcd(2k − 1, 2d − 1)

In particular, if 2d − 1 is prime, P = (2d − 2)/d.317

We define an action of the (additive) group Z on Z/(2d − 1)Z as k · i = 2ki. Since d acts trivially,318

this action induces an action of Z/dZ on Z/(2d − 1)Z: if O(i) is the orbit of i ∈ Z/(2d − 1)Z,319

then Pi = {H̃(αj) : j ∈ O(i)}. We have a trivial orbit O(0) = {0} which would correspond to the320

set P0 = {H̃(1)} which we will not count. In order to prove the Theorem 2, we need a couple of321

additional lemmata.322

Lemma 1 (Burnside’s Lemma). If the finite group G acts on the finite set X, then the number

of orbits is
1

#G

∑
g∈G

# Fix(g)

where Fix(g) = {x ∈ X : g · x = x}.323

Proof. See [36], chapter 3.324

Lemma 2. Fix an integer N and let x ∈ Z/NZ. Then

#{y ∈ Z/NZ : xy = 0} = gcd(x,N)

Proof. Let Z = {y ∈ Z/NZ : xy = 0}: it is not empty since it includes 0 and it is straightforward

to verify that Z is an ideal in Z/NZ, thus Z = 〈d〉 where d is a divisor of N and Z has N/d

elements. Let D = gcd(x,N), ν = N/D and define x̃ as the smallest positive integer such that

x̃ ≡ x mod N . Since

νx =
N

D
x ≡ N x̃

D
≡ 0 mod N

we have that ν ∈ Z. Viceversa, if y ∈ Z and ỹ is the smallest positive integer such that ỹ ≡
y mod N , we have that ỹx̃ = kN for some integer k ≥ 0. Thus

ỹ
x̃

D
= k

N

D
= kν; i.e., ỹ

x̃

D
≡ 0 mod ν

Since x̃/D and ν = N/D are relatively prime, this implies ỹ ≡ 0 mod ν, i.e., ν divides ỹ, thus325

y ∈ 〈ν〉. This shows that Z = 〈ν〉, hence that #Z = N/ν = gcd(x,N).326

Proof (Theorem 2). Fix k ∈ Z/dZ: we want to compute Fix(k) = {x ∈ Z/(2d − 1)Z : k · x = x}.327

If x ∈ Fix(k) then 2kx = x, that is (2k − 1)x = 0; and, viceversa, if (2k − 1)x = 0 then k · x = x.328

Hence, Fix(k) = {x ∈ Z/(2d− 1)Z : (2k − 1)x = 0} has, by the previous lemma, gcd(2k − 1, 2d− 1)329

elements.330

The thesis now follows from Burnside’s Lemma.331
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Let’s sum up the costs of Equation (12).332

– M2(n): multiplication H̃(0) = F0G0333

– M2(n): multiplication H̃(∞) = F2d−1G2d−1334

– n− 1: sum H̃(0) + xH̃(∞)335

– 0: sum (1 + x2
d−1)(H̃(0) + xH̃(∞))336

– 4n− 2: sum H(t) = SA + SB337

– (2d − 2)(n− 1): sums S1x+ S2x
2 + · · ·+ S2d−1x

2d−1
338

– ∆1: evaluation F̃ (αi), G̃(αi)339

– M2(n): multiplication H̃(1)340

– PM2d(n): multiplications H̃(αi)341

– ∆2: sums Si, i = 1, . . . , 2d − 1342

Some of the previous costs are left blank, in particular ∆1 and ∆2, since the evaluation of F , G343

and the sums Si depends on the polynomial used to generate the field F2d . Roughly speaking, we344

can say that ∆1 = An and ∆2 = B(2n− 1), obtaining the following estimation:345

M((2d−1 + 1)n) ≤ 3M2(n) + PM2d(n) + (2d + 3 +A+ 2B)︸ ︷︷ ︸
Q1

n+ (−1− 2d −B)︸ ︷︷ ︸
Q2

M((2d−1 + 1)n) ≤ 3M2(n) + PM2d(n) +Q1n+Q2 (16)

Now, we want to apply the following result.346

Result 3 (From Master Theorem) Let a and b be positive real numbers with a ≥ 1 and b ≥ 2. Let

T (n) be defined by

T (n) =

aT
(⌈n

b

⌉)
+ f(n) n > 1

d n = 1

Then347

1. if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)),348

2. if f(n) = Θ(nc) where logb a = c, then T (n) = Θ(nlogb a logb n),349

3. if f(n) = Θ(nc) where logb a > c, then T (n) = Θ(nlogb a).350

The same results apply with ceilings replaced by floors.351

Proof. See [32], Section 5.2.352

We cannot apply Theorem 3 to (16) since both M2 and M2d appear: we will have to move353

everything down to F2-operations.354

4.3 Bit operations and asymptotic estimation (II)355

As seen in Section 4.2, we need to evaluate an F2d -polynomial F̃ of degree 2d − 1. Recall that the356

field F2d can be seen as an F2-vector space of dimension d. Thus, for all i, we can evaluate F̃ (αi)357

as follows:358

F̃ (αi) =

d−1∑
j=0

Fjα
j Fj ∈ F2[t]
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To compute H̃(αi) we need to multiply the two evaluations of F̃ and G̃.359

H̃(αi) = F̃ (αi)G̃(αi) =

d−1∑
j=0

Fjα
j
d−1∑
k=0

Gkα
k =

2d−2∑
l=0

 ∑
j+k=l

0≤j,k≤d−1

FjGk


︸ ︷︷ ︸

Hl

αl

We want now to compute Hl. We take care only of multiplications. If we look at Hl, we note that360

it is formed by the sum of the products between Fj and Gk such that j + k = l. We separate the361

two cases: j = k and j 6= k. If j = k, we need the multiplication FjGj . If j 6= k, we need two362

multiplications, which are FjGk and FkGj . For the latter, we exchange one multiplication with363

four sums, since charF2d = 2 and we have already computed FjGj .364

FjGk + FkGj = (Fj + Fk)(Gj +Gk) + FjGj + FkGk

The required multiplications are365

d+

(
d

2

)
= d+

d(d− 1)

2
=
d2 + d

2
.

Now, we can write the estimation for bit calculations over F2d , assuming a generic estimate for the366

number of bit additions367

M2d(n) ≤ d2 + d

2
M2(n) + Cn+D (17)

Substituting (17) in the estimation (16), we obtain a formula which we can apply Theorem 3 to:368

M2((2d−1 + 1)n) ≤ 3M2(n) + P

(
d2 + d

2
M2(n) + Cn+D

)
+Q1n+Q2

M2((2d−1 + 1)n) ≤
(

3 +
P (d2 + d)

2

)
M2(n) + (Q1 + CP )n+ (Q2 +DP )

Applying the third case of Theorem 3, we get:369

M2(n) = Θ
(
nE
)
, where E =

log
(

3 + P (d2+d)
2

)
log(2d + 1)

If we compute the exponent E for 1 ≤ d ≤ 20, it is not difficult to see that E decreases from 1.58370

to 1.17.371

4.4 Case d=2 (II)372

Using Equation (12), we are able to find a better best case bound than that presented in [12] (see373

CNH 3-way split algorithm (24)). Indeed,374

– M2(n): multiplication H̃(0) = F0G0375

– M2(k): multiplication H̃(∞) = F2G2376

– 2k: sums S1 = F0 + F2, S2 = G0 +G2377

– 2k: sums S3 = F1 + F2, S4 = G1 +G2378

– 2n: sums S5 = S1 + F1, S6 = S2 +G1379
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– 0: multiplications P1 = αS3, P2 = αS3380

– 0: sums S7 = S1 + P1, S8 = S2 + P2381

– M2(n): multiplication H̃(1) = S5S6382

– M4(n): multiplication H̃(α) = S7S8(= C0 + C1α)383

– 2n− 1: sum S9 = H̃(1) + C1384

– 2n− 1: sum S10 = S9 + C0385

– 2n− 1: sum S11 = S10 + C1386

– 2(n− 1): sums S12 = S9x
3 + S10x

2 + S11x387

– n− 1: sum S13 = H̃(0) + xH̃(∞)388

– 0: sum S14 = (1 + x3)S13389

– 4n− 2: sum H = S14 + S12390

Summing all the costs, we obtain391 M(2n+ k) ≤ 2M2(n) +M2(k) +M4(n) + 15n+ 4k − 8 n/2 ≤ k ≤ n

M(3n) ≤ 3M2(n) +M4(n) + 19n− 8 k = n
(18)

But this is not enough. In order to get the best case bound, we have to compute the costs for the392

same algorithm that uses polynomials over F4. In this case, we cannot deduce the expression for393

H̃(α+ 1) from H̃(α). In addition, from equation394

α(a0 + a1α) = a1 + (a0 + a1)α

we have that the cost of the multiplication by α is 1, and from395

(a0 + a1α) + (b0 + b1α) = (a0 + b0) + (a1 + b1)α

we have that the cost of the sum between two polynomials is doubled. Thus,396

– M4(n): multiplication H̃(0) = F0G0397

– M4(n): multiplication H̃(∞) = F2G2398

– 4n: sums S1 = F0 + F1, S2 = G0 +G1399

– 4n: sums S3 = F1 + F2, S4 = G1 +G2400

– 2n: multiplications P1 = αS3, P2 = αS4401

– 4n: sums S5 = S1 + P1, S6 = S2 + P2402

– 4n: sums S7 = S5 + S3, S8 = S6 + S4403

– 4n: sums S9 = S1 + F2, S10 = S2 +G2404

– M4(n): multiplication H̃(1) = S9S10405

– M4(n): multiplication H̃(α) = S7S8406

– M4(n): multiplication H̃(α+ 1) = S5S6407

– 8n− 4: sum S13 = H̃(1) + H̃(α) + H̃(α+ 1)408

– 10n− 5: sum S14 = H̃(1) + H̃(α+ 1) + α(H̃(α) + H̃(α+ 1))409

– 4n− 2: sum S15 = H̃(1) + H̃(α) + α(H̃(α) + H̃(α+ 1))410

– 4(n− 1): sums S16 = S13x
3 + S14x

2 + S15x411

– 2(n− 1): sum S17 = H̃(0) + xH̃(∞)412

– 0: sum S18 = (1 + x3)S17413

– 8n− 4: sum H = S18 + S16414
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The sum of the costs in F4 is415

M4(3n) ≤ 5M4(n) + 58n− 21

We observe that this is not good as416

M4(3n) ≤ 5M4(n) + 56n− 19 (19)

which can be found in [12]. Applying Lemma 1 to (19), we get417

M4(n) ≤ 30.25n1.46 − 28n+ 4.75

Then, we substitute the preceding inequality to the second of (18) obtaining418

M2(3n) ≤ 3M2(n) + 30.25n1.46 − 9n− 3.25

Finally, to get the best case bound, we apply Lemma 2:419

M2(n) ≤ 15.125n1.46 − 3n log3 n− 15.75n+ 1.625.

5 Conclusions420

In this paper, we presented a new algorithm to multiply two n-bit polynomials. We showed how421

this new approach can be used to (a) reduce the effective number of bit operations and (b) improve422

the asymptotic estimations.423

The idea described in this paper can be easily implemented to speed up cryptographic software424

implementations. Notice that further improvements might be obtained avoiding some redundant425

XOR operations involved in the multiplication algorithms [5]. For example, it is possible to apply426

a greedy heuristic [33,11,39] to a straight-line sequence such as the one provided in Appendix A.427

Unfortunately, this approach is computational expensive and often it does not provide a useful428

result in an acceptable amount of time.429
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6 Appendix A

We present M(24), the straight-line sequence of bit operations, or straight-line program (SLP),

needed to multiply two 24-bit polynomials. This SLP has been obtained by applying Three-level

Recursion algorithm.

F (x)G(x) =

23∑
i=0

f [i]xi
23∑
j=0

g[j]xj =

46∑
k=0

h[k]xk = H(x)

t1 = f[2] ∗ g[2]

t2 = f[2] ∗ g[0]

t3 = f[2] ∗ g[1]

t4 = f[0] ∗ g[2]

t5 = f[1] ∗ g[2]

t6 = f[1] ∗ g[1]

t7 = f[1] ∗ g[0]

t8 = f[0] ∗ g[1]

t9 = f[0] ∗ g[0]

t10 = t8 + t7

t11 = t6 + t4

t12 = t11 + t2

t13 = t5 + t3

t14 = f[5] ∗ g[5]

t15 = f[5] ∗ g[3]

t16 = f[5] ∗ g[4]

t17 = f[3] ∗ g[5]

t18 = f[4] ∗ g[5]

t19 = f[4] ∗ g[4]

t20 = f[4] ∗ g[3]

t21 = f[3] ∗ g[4]

t22 = f[3] ∗ g[3]

t23 = t21 + t20

t24 = t19 + t17

t25 = t24 + t15

t26 = t18 + t16

t27 = f[8] ∗ g[8]

t28 = f[8] ∗ g[6]

t29 = f[8] ∗ g[7]

t30 = f[6] ∗ g[8]

t31 = f[7] ∗ g[8]

t32 = f[7] ∗ g[7]

t33 = f[7] ∗ g[6]

t34 = f[6] ∗ g[7]

t35 = f[6] ∗ g[6]

t36 = t34 + t33

t37 = t32 + t30

t38 = t37 + t28

t39 = t31 + t29

t40 = f[11] ∗ g[11]

t41 = f[11] ∗ g[9]

t42 = f[11] ∗ g[10]

t43 = f[9] ∗ g[11]

t44 = f[10] ∗ g[11]

t45 = f[10] ∗ g[10]

t46 = f[10] ∗ g[9]

t47 = f[9] ∗ g[10]

t48 = f[9] ∗ g[9]

t49 = t47 + t46

t50 = t45 + t43

t51 = t50 + t41

t52 = t44 + t42

t53 = f[14] ∗ g[14]

t54 = f[14] ∗ g[12]

t55 = f[14] ∗ g[13]

t56 = f[12] ∗ g[14]

t57 = f[13] ∗ g[14]

t58 = f[13] ∗ g[13]

t59 = f[13] ∗ g[12]

t60 = f[12] ∗ g[13]

t61 = f[12] ∗ g[12]

t62 = t60 + t59

t63 = t58 + t56

t64 = t63 + t54

t65 = t57 + t55

t66 = f[17] ∗ g[17]

t67 = f[17] ∗ g[15]

t68 = f[17] ∗ g[16]

t69 = f[15] ∗ g[17]

t70 = f[16] ∗ g[17]

t71 = f[16] ∗ g[16]

t72 = f[16] ∗ g[15]

t73 = f[15] ∗ g[16]

t74 = f[15] ∗ g[15]

t75 = t73 + t72

t76 = t71 + t69

t77 = t76 + t67

t78 = t70 + t68

t79 = f[20] ∗ g[20]

t80 = f[20] ∗ g[18]

t81 = f[20] ∗ g[19]

t82 = f[18] ∗ g[20]

t83 = f[19] ∗ g[20]

t84 = f[19] ∗ g[19]

t85 = f[19] ∗ g[18]

t86 = f[18] ∗ g[19]

t87 = f[18] ∗ g[18]

t88 = t86 + t85

t89 = t84 + t82

t90 = t89 + t80

t91 = t83 + t81

t92 = f[23] ∗ g[23]

t93 = f[23] ∗ g[21]

t94 = f[23] ∗ g[22]

t95 = f[21] ∗ g[23]

t96 = f[22] ∗ g[23]

t97 = f[22] ∗ g[22]

t98 = f[22] ∗ g[21]

t99 = f[21] ∗ g[22]

t100 = f[21] ∗ g[21]

t101 = t99 + t98

t102 = t97 + t95

t103 = t102 + t93

t104 = t96 + t94

t105 = t13 + t22

t106 = t1 + t23

t107 = t26 + t35

t108 = t14 + t36

t109 = t39 + t48

t110 = t27 + t49

t111 = t52 + t61

t112 = t40 + t62

t113 = t65 + t74

t114 = t53 + t75

t115 = t78 + t87

t116 = t66 + t88

t117 = t91 + t100

t118 = t79 + t101

t119 = t105 + t9

t120 = t106 + t10

t121 = t25 + t12

t122 = t107 + t105

t123 = t108 + t106

t124 = t38 + t25

t125 = t109 + t107

t126 = t110 + t108

t127 = t51 + t38

t128 = t111 + t109

t129 = t112 + t110

t130 = t64 + t51

t131 = t113 + t111

t132 = t114 + t112

t133 = t77 + t64

t134 = t115 + t113

t135 = t116 + t114

t136 = t90 + t77

t137 = t117 + t115

t138 = t118 + t116

t139 = t103 + t90

t140 = t104 + t117

t141 = t92 + t118

t142 = f[0] + f[3]

t143 = f[1] + f[4]

t144 = f[2] + f[5]

t145 = g[0] + g[3]

t146 = g[1] + g[4]

t147 = g[2] + g[5]

t148 = t144 ∗ t147

t149 = t144 ∗ t145

t150 = t144 ∗ t146

t151 = t142 ∗ t147

t152 = t143 ∗ t147

t153 = t143 ∗ t146

t154 = t143 ∗ t145

t155 = t142 ∗ t146

t156 = t142 ∗ t145

t157 = t155 + t154

t158 = t153 + t151

t159 = t158 + t149

t160 = t152 + t150

t161 = f[6] + f[9]

t162 = f[7] + f[10]

t163 = f[8] + f[11]

t164 = g[6] + g[9]

t165 = g[7] + g[10]

t166 = g[8] + g[11]

t167 = t163 ∗ t166

t168 = t163 ∗ t164

t169 = t163 ∗ t165

t170 = t161 ∗ t166

t171 = t162 ∗ t166

t172 = t162 ∗ t165

t173 = t162 ∗ t164

t174 = t161 ∗ t165

t175 = t161 ∗ t164

t176 = t174 + t173

t177 = t172 + t170

t178 = t177 + t168

t179 = t171 + t169

t180 = f[12] + f[15]

t181 = f[13] + f[16]

t182 = f[14] + f[17]

t183 = g[12] + g[15]

t184 = g[13] + g[16]

t185 = g[14] + g[17]

t186 = t182 ∗ t185

t187 = t182 ∗ t183

t188 = t182 ∗ t184

t189 = t180 ∗ t185

t190 = t181 ∗ t185

t191 = t181 ∗ t184

t192 = t181 ∗ t183

t193 = t180 ∗ t184

t194 = t180 ∗ t183

t195 = t193 + t192

t196 = t191 + t189

t197 = t196 + t187

t198 = t190 + t188

t199 = f[18] + f[21]

t200 = f[19] + f[22]

t201 = f[20] + f[23]

t202 = g[18] + g[21]

t203 = g[19] + g[22]

t204 = g[20] + g[23]

t205 = t201 ∗ t204

t206 = t201 ∗ t202

t207 = t201 ∗ t203

t208 = t199 ∗ t204

t209 = t200 ∗ t204

t210 = t200 ∗ t203

t211 = t200 ∗ t202

t212 = t199 ∗ t203

t213 = t199 ∗ t202

t214 = t212 + t211

t215 = t210 + t208

t216 = t215 + t206

t217 = t209 + t207

t218 = t119 + t156

t219 = t120 + t157

t220 = t121 + t159

t221 = t122 + t160

t222 = t123 + t148

t223 = t125 + t175

t224 = t126 + t176

t225 = t127 + t178

t226 = t128 + t179

t227 = t129 + t167

t228 = t131 + t194

t229 = t132 + t195

t230 = t133 + t197

t231 = t134 + t198

t232 = t135 + t186

t233 = t137 + t213

t234 = t138 + t214

t235 = t139 + t216

t236 = t140 + t217

t237 = t141 + t205

t238 = t221 + t9

t239 = t222 + t10

t240 = t124 + t12

t241 = t223 + t218

t242 = t224 + t219

t243 = t225 + t220

t244 = t226 + t221

t245 = t227 + t222

t246 = t130 + t124

t247 = t228 + t223

t248 = t229 + t224

t249 = t230 + t225

t250 = t231 + t226

t251 = t232 + t227

t252 = t136 + t130

t253 = t233 + t228

t254 = t234 + t229

t255 = t235 + t230

t256 = t236 + t231

t257 = t237 + t232

t258 = t103 + t136

t259 = t104 + t233

t260 = t92 + t234

t261 = f[0] + f[6]

t262 = f[1] + f[7]

t263 = f[2] + f[8]

t264 = f[3] + f[9]

t265 = f[4] + f[10]

t266 = f[5] + f[11]

t267 = g[0] + g[6]

t268 = g[1] + g[7]

t269 = g[2] + g[8]

t270 = g[3] + g[9]

t271 = g[4] + g[10]

t272 = g[5] + g[11]

t273 = t263 ∗ t269

t274 = t263 ∗ t267

t275 = t263 ∗ t268

t276 = t261 ∗ t269

t277 = t262 ∗ t269

t278 = t262 ∗ t268

t279 = t262 ∗ t267

t280 = t261 ∗ t268

t281 = t261 ∗ t267

t282 = t280 + t279

t283 = t278 + t276

t284 = t283 + t274

t285 = t277 + t275

t286 = t266 ∗ t272

t287 = t266 ∗ t270

t288 = t266 ∗ t271

t289 = t264 ∗ t272

t290 = t265 ∗ t272

t291 = t265 ∗ t271

t292 = t265 ∗ t270

t293 = t264 ∗ t271

t294 = t264 ∗ t270

t295 = t293 + t292

t296 = t291 + t289

t297 = t296 + t287

t298 = t290 + t288

t299 = t267 + t270

t300 = t268 + t271

t301 = t269 + t272

t302 = t261 + t264

t303 = t262 + t265

t304 = t263 + t266

t305 = t304 ∗ t301

t306 = t304 ∗ t299

t307 = t304 ∗ t300

t308 = t302 ∗ t301

t309 = t303 ∗ t301

t310 = t303 ∗ t300

t311 = t303 ∗ t299

t312 = t302 ∗ t300

t313 = t302 ∗ t299

t314 = t312 + t311

t315 = t310 + t308

t316 = t315 + t306

t317 = t309 + t307

t318 = t285 + t294

t319 = t273 + t295

t320 = t313 + t318

t321 = t314 + t319

t322 = t316 + t297

t323 = t317 + t298

t324 = t305 + t286

t325 = t320 + t281

t326 = t321 + t282

t327 = t322 + t284

t328 = t323 + t318

t329 = t324 + t319

t330 = f[12] + f[18]

t331 = f[13] + f[19]

t332 = f[14] + f[20]

t333 = f[15] + f[21]

t334 = f[16] + f[22]

t335 = f[17] + f[23]

t336 = g[12] + g[18]

t337 = g[13] + g[19]

t338 = g[14] + g[20]

t339 = g[15] + g[21]

t340 = g[16] + g[22]

t341 = g[17] + g[23]

t342 = t332 ∗ t338

t343 = t332 ∗ t336

t344 = t332 ∗ t337

t345 = t330 ∗ t338

t346 = t331 ∗ t338

t347 = t331 ∗ t337

t348 = t331 ∗ t336

t349 = t330 ∗ t337

t350 = t330 ∗ t336

t351 = t349 + t348

t352 = t347 + t345

t353 = t352 + t343

t354 = t346 + t344

t355 = t335 ∗ t341

t356 = t335 ∗ t339

t357 = t335 ∗ t340

t358 = t333 ∗ t341

t359 = t334 ∗ t341

t360 = t334 ∗ t340

t361 = t334 ∗ t339

t362 = t333 ∗ t340

t363 = t333 ∗ t339

t364 = t362 + t361

t365 = t360 + t358
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t366 = t365 + t356

t367 = t359 + t357

t368 = t336 + t339

t369 = t337 + t340

t370 = t338 + t341

t371 = t330 + t333

t372 = t331 + t334

t373 = t332 + t335

t374 = t373 ∗ t370

t375 = t373 ∗ t368

t376 = t373 ∗ t369

t377 = t371 ∗ t370

t378 = t372 ∗ t370

t379 = t372 ∗ t369

t380 = t372 ∗ t368

t381 = t371 ∗ t369

t382 = t371 ∗ t368

t383 = t381 + t380

t384 = t379 + t377

t385 = t384 + t375

t386 = t378 + t376

t387 = t354 + t363

t388 = t342 + t364

t389 = t382 + t387

t390 = t383 + t388

t391 = t385 + t366

t392 = t386 + t367

t393 = t374 + t355

t394 = t389 + t350

t395 = t390 + t351

t396 = t391 + t353

t397 = t392 + t387

t398 = t393 + t388

t399 = t238 + t281

t400 = t239 + t282

t401 = t240 + t284

t402 = t241 + t325

t403 = t242 + t326

t404 = t243 + t327

t405 = t244 + t328

t406 = t245 + t329

t407 = t246 + t297

t408 = t247 + t298

t409 = t248 + t286

t410 = t250 + t350

t411 = t251 + t351

t412 = t252 + t353

t413 = t253 + t394

t414 = t254 + t395

t415 = t255 + t396

t416 = t256 + t397

t417 = t257 + t398

t418 = t258 + t366

t419 = t259 + t367

t420 = t260 + t355

t421 = t405 + t9

t422 = t406 + t10

t423 = t407 + t12

t424 = t408 + t218

t425 = t409 + t219

t426 = t249 + t220

t427 = t410 + t399

t428 = t411 + t400

t429 = t412 + t401

t430 = t413 + t402

t431 = t414 + t403

t432 = t415 + t404

t433 = t416 + t405

t434 = t417 + t406

t435 = t418 + t407

t436 = t419 + t408

t437 = t420 + t409

t438 = t235 + t249

t439 = t236 + t410

t440 = t237 + t411

t441 = t103 + t412

t442 = t104 + t413

t443 = t92 + t414

t444 = f[0] + f[12]

t445 = f[1] + f[13]

t446 = f[2] + f[14]

t447 = f[3] + f[15]

t448 = f[4] + f[16]

t449 = f[5] + f[17]

t450 = f[6] + f[18]

t451 = f[7] + f[19]

t452 = f[8] + f[20]

t453 = f[9] + f[21]

t454 = f[10] + f[22]

t455 = f[11] + f[23]

t456 = g[0] + g[12]

t457 = g[1] + g[13]

t458 = g[2] + g[14]

t459 = g[3] + g[15]

t460 = g[4] + g[16]

t461 = g[5] + g[17]

t462 = g[6] + g[18]

t463 = g[7] + g[19]

t464 = g[8] + g[20]

t465 = g[9] + g[21]

t466 = g[10] + g[22]

t467 = g[11] + g[23]

t468 = t455 ∗ t467

t469 = t455 ∗ t465

t470 = t455 ∗ t466

t471 = t453 ∗ t467

t472 = t454 ∗ t467

t473 = t454 ∗ t466

t474 = t454 ∗ t465

t475 = t453 ∗ t466

t476 = t453 ∗ t465

t477 = t475 + t474

t478 = t472 + t470

t479 = t452 ∗ t464

t480 = t452 ∗ t462

t481 = t452 ∗ t463

t482 = t450 ∗ t464

t483 = t480 + t482

t484 = t451 ∗ t464

t485 = t451 ∗ t463

t486 = t451 ∗ t462

t487 = t450 ∗ t463

t488 = t450 ∗ t462

t489 = t487 + t486

t490 = t484 + t481

t491 = t449 ∗ t461

t492 = t449 ∗ t459

t493 = t449 ∗ t460

t494 = t447 ∗ t461

t495 = t448 ∗ t461

t496 = t448 ∗ t460

t497 = t448 ∗ t459

t498 = t447 ∗ t460

t499 = t447 ∗ t459

t500 = t498 + t497

t501 = t495 + t493

t502 = t446 ∗ t458

t503 = t446 ∗ t456

t504 = t446 ∗ t457

t505 = t444 ∗ t458

t506 = t445 ∗ t458

t507 = t445 ∗ t457

t508 = t445 ∗ t456

t509 = t444 ∗ t457

t510 = t444 ∗ t456

t511 = t509 + t508

t512 = t506 + t504

t513 = t512 + t499

t514 = t502 + t500

t515 = t501 + t488

t516 = t491 + t489

t517 = t490 + t476

t518 = t479 + t477

t519 = t462 + t465

t520 = t463 + t466

t521 = t464 + t467

t522 = t450 + t453

t523 = t451 + t454

t524 = t452 + t455

t525 = t524 ∗ t521

t526 = t524 ∗ t519

t527 = t524 ∗ t520

t528 = t522 ∗ t521

t529 = t523 ∗ t521

t530 = t523 ∗ t520

t531 = t523 ∗ t519

t532 = t522 ∗ t520

t533 = t522 ∗ t519

t534 = t532 + t531

t535 = t529 + t527

t536 = t456 + t459

t537 = t457 + t460

t538 = t458 + t461

t539 = t444 + t447

t540 = t445 + t448

t541 = t446 + t449

t542 = t541 ∗ t538

t543 = t541 ∗ t536

t544 = t541 ∗ t537

t545 = t539 ∗ t538

t546 = t540 ∗ t538

t547 = t540 ∗ t537

t548 = t540 ∗ t536

t549 = t539 ∗ t537

t550 = t539 ∗ t536

t551 = t549 + t548

t552 = t546 + t544

t553 = t550 + t510

t554 = t514 + t511

t555 = t515 + t513

t556 = t516 + t542

t557 = t517 + t533

t558 = t518 + t516

t559 = t478 + t517

t560 = t468 + t525

t561 = t553 + t513

t562 = t554 + t551

t563 = t555 + t552

t564 = t556 + t514

t565 = t557 + t515

t566 = t558 + t534

t567 = t559 + t535

t568 = t560 + t518

t569 = t459 + t465

t570 = t460 + t466

t571 = t461 + t467

t572 = t456 + t462

t573 = t457 + t463

t574 = t458 + t464

t575 = t447 + t453

t576 = t448 + t454

t577 = t449 + t455

t578 = t444 + t450

t579 = t445 + t451

t580 = t446 + t452

t581 = t580 ∗ t574

t582 = t580 ∗ t572

t583 = t580 ∗ t573

t584 = t578 ∗ t574

t585 = t579 ∗ t574

t586 = t579 ∗ t573

t587 = t579 ∗ t572

t588 = t578 ∗ t573

t589 = t578 ∗ t572

t590 = t588 + t587

t591 = t585 + t583

t592 = t577 ∗ t571

t593 = t577 ∗ t569

t594 = t577 ∗ t570

t595 = t575 ∗ t571

t596 = t576 ∗ t571

t597 = t576 ∗ t570

t598 = t576 ∗ t569

t599 = t575 ∗ t570

t600 = t575 ∗ t569

t601 = t599 + t598

t602 = t596 + t594

t603 = t572 + t569

t604 = t573 + t570

t605 = t574 + t571

t606 = t578 + t575

t607 = t579 + t576

t608 = t580 + t577

t609 = t608 ∗ t605

t610 = t608 ∗ t603

t611 = t608 ∗ t604

t612 = t606 ∗ t605

t613 = t607 ∗ t605

t614 = t607 ∗ t604

t615 = t607 ∗ t603

t616 = t606 ∗ t604

t617 = t606 ∗ t603

t618 = t616 + t615

t619 = t613 + t611

t620 = t591 + t600

t621 = t581 + t601

t622 = t617 + t589

t623 = t618 + t590

t624 = t619 + t602

t625 = t609 + t592

t626 = t622 + t620

t627 = t623 + t621

t628 = t624 + t620

t629 = t625 + t621

t630 = t589 + t510

t631 = t590 + t511

t632 = t565 + t561

t633 = t566 + t562

t634 = t567 + t563

t635 = t568 + t564

t636 = t478 + t602

t637 = t468 + t592

t638 = t630 + t563

t639 = t631 + t564

t640 = t632 + t626

t641 = t633 + t627

t642 = t634 + t628

t643 = t635 + t629

t644 = t636 + t565

t645 = t637 + t566

t646 = t469 + t471

t647 = t473 + t646

t648 = t503 + t505

t649 = t507 + t648

t650 = t483 + t485

t651 = t492 + t494

t652 = t496 + t651

t653 = t647 + t650

t654 = t649 + t652

t655 = t526 + t528

t656 = t530 + t655

t657 = t653 + t656

t658 = t543 + t545

t659 = t547 + t658

t660 = t654 + t659

t661 = t582 + t584

t662 = t586 + t661

t663 = t593 + t595

t664 = t597 + t663

t665 = t650 + t654

t666 = t662 + t665

t667 = t652 + t653

t668 = t664 + t667

t669 = t657 + t660

t670 = t662 + t610

t671 = t612 + t614

t672 = t664 + t671

t673 = t672 + t670

t674 = t673 + t669

t675 = t421 + t510

t676 = t422 + t511

t677 = t423 + t649

t678 = t424 + t561

t679 = t425 + t562

t680 = t426 + t660

t681 = t427 + t638

t682 = t428 + t639

t683 = t429 + t666

t684 = t430 + t640

t685 = t431 + t641

t686 = t432 + t674

t687 = t433 + t642

t688 = t434 + t643

t689 = t435 + t668

t690 = t436 + t644

t691 = t437 + t645

t692 = t438 + t657

t693 = t439 + t567

t694 = t440 + t568

t695 = t441 + t647

t696 = t442 + t478

t697 = t443 + t468

h[0] = t9

h[1] = t10

h[2] = t12

h[3] = t218

h[4] = t219

h[5] = t220

h[6] = t399

h[7] = t400

h[8] = t401

h[9] = t402

h[10] = t403

h[11] = t404

h[12] = t675

h[13] = t676

h[14] = t677

h[15] = t678

h[16] = t679

h[17] = t680

h[18] = t681

h[19] = t682

h[20] = t683

h[21] = t684

h[22] = t685

h[23] = t686

h[24] = t687

h[25] = t688

h[26] = t689

h[27] = t690

h[28] = t691

h[29] = t692

h[30] = t693

h[31] = t694

h[32] = t695

h[33] = t696

h[34] = t697

h[35] = t415

h[36] = t416

h[37] = t417

h[38] = t418

h[39] = t419

h[40] = t420

h[41] = t235

h[42] = t236

h[43] = t237

h[44] = t103

h[45] = t104

h[46] = t92
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