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Abstract In the Bin Packing Problem with Item Fragmentation a set of items of
known weight and a set of bins of limited capacity are given; the task is to find the
minimum cost assignment of items to bins without exceeding their capacity. However,
contrary to the classical Bin Packing Problem, items can be split and fractionally as-
signed to different bins at a cost. In this paper we generalize models and properties
from the literature by considering a set of heterogeneous bins, possibly having dif-
ferent cost and capacity. We prove that such a natural extension changes substantial
features of the problem. We propose both compact and extended formulations and a
branch-and-price algorithm that combines column generation techniques and implicit
enumeration strategies to achieve guarantees on the optimality of the solutions. We
present the results of an extensive experimental campaign proving that our algorithm
outperforms general purpose commercial solvers by orders of magnitude.

Keywords Bin Packing - Item Fragmentation - Variable Cost and Size - Column
Generation

1 Introduction

In the classic Bin Packing Problem (BPP) a set of items of known weight and a set
of bins of limited capacity are given. The task is to find an assignment of items to
bins such that the sum of the items assigned to the same bin does not exceed its ca-
pacity. Thanks to their direct applicability to several logistic problems, BPPs are one
of the most studied and yet lively category of decisional problems in combinatorial
optimization. Furthermore, BPPs have also been shown to be suited for modeling net-
work design problems, like message transmission in community TV networks [10]
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and fully optical network planning problems [14]. In fact, it is easy to map network
packets to items and communication channels to bins. However, due to the nature of
such problems, where packets can be split among several channels, there is the need
of additional features to BPP models.

The BPP with Item Fragmentation (BPPIF) has been introduced to model such
an additional level of details: unlike BPPs it allows items to be split among several
bins at a cost, generalizing the classic BPP and hence increasing its practical applica-
bility. Several variants of BPPIFs have been discussed in the literature and for a full
taxonomy we refer to [4]. For what concerns the way the capacity is consumed when
items are split, the BPPIF can be found in two versions: BPPIF with Size Increasing
(BPPSIF) and BPPIF with Size Preserving (BPPSPF). In the former, each time an
item is split an additional overhead is triggered, increasing its weight. In the latter,
instead, the item weights remain constant. With regard to the objective function, two
variants have been proposed in the literature, one called fragmentation-minimization
(fm-BPPIF), where a maximum number of bins is given and the number of fragmen-
tations is minimized, and a second called bin-minimization (bm-BPPIF), where an
upper bound on the fragmentations is given and the number of bins is minimized.

BPPIF was first introduced in [10], where a proof of its NP-hardness was pro-
vided. In [12] and [13] traditional BPP heuristics are adapted to BPPIFs and their
approximation properties are discussed. Fast and dual asymptotic fully polynomial
time approximation schemes were presented in [16] and [15], while new approxima-
tion algorithms have been proposed in [9].

Indeed, we previously tackled BPPIFs in [2] and [4]: we highlighted theoretical
properties on the structure of the optimal solutions, proposed new mathematical pro-
gramming formulations, and a unified framework to solve several BPPIFs variants
with optimality guarantees. In particular, in [4] we showed that both generic branch-
and-cut and ad-hoc branch-and-price approaches benefit from formulations where the
decision on the fractional assignment of an item to a bin is postponed at the end of
the optimization process.

However, our exact methodologies have been tailored to the case where bins are
homogeneous, which means that all bins are required to have the same cost and capac-
ity. To achieve a higher degree of flexibility, BPPs find their natural generalization in
the Variable Cost and Size BPP [7], where bins may differ in both cost and capacity.
Therefore in this paper we address the heterogeneous variant of bm-BPPIFs, that we
call Variable Cost and Size BPPIF (VCSBF), proving that such an extension changes
substantial features of our problem.

Our main contributions are the following:

— we investigate the complexity of BPPIFs when the number of allowed fragmen-
tations is unbounded proving that, in such a case, the VCSBF is harder than the
BPPIF with homogeneous bins [4];

— we prove that, similarly to the homogeneous case [4], we can model the VCSBF
using a particular structure called chain that encodes a combinatorial number of
ways to fragment items;

— we apply Dantzig-Wolfe decomposition to obtain an extended formulation and
provide a column generation procedure to solve its continuous relaxation. In par-
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ticular, we prove that although the pricing problem is different from the one in
[4], it still can be solved in pseudo-polynomial time by decomposing it into two
distinct and independent subproblems;

— we implement a branch-and-price algorithm including our column generation
procedure to obtain tight dual bounds, valid dual cuts and a heuristic pricing pro-
cedure to speed up the bounding process, and ad-hoc branching rules to ensure
the integrality of solutions;

— we prove that our methodology is solid and more effective than state-of-the-art
methodologies through an extensive experimental campaign.

Preliminary partial results of our research were presented in [3] where we showed that
a column generation procedure was able to provide tight dual bounds on a dataset
adapted from [4]. In this manuscript we extend our theoretical study and provide
proofs to our claims, we enforce our formulation and also improve the performance
of our bounding procedure, we implement a complete branch-and-price algorithm
and we test it against a new ad-hoc dataset.

For the ease of exposition, in Section 2 we formalize our optimization problem,
extend a few theoretical properties, and propose its mathematical programming mod-
els. In Section 3 we show how we use decomposition techniques to obtain an extended
formulation, while in Section 4 we detail our exact algorithm. We provide the results
of our experimental campaign in Section 5 and we collect some brief conclusions in
Section 6.

2 Modeling

We are given the set of items 7 and the set of bins B. Bins are heterogeneous: we are
given the set T of all bin types, and B can be partitioned accordingly into disjointed
sets By, one for each type t € T. For each item i € I we are given its weight w;, while
for each bin of type r € T we are given both its capacity ¢, and its cost ¢;.

All items must be packed into bins. Split is allowed, and each item may be frag-
mented and fractionally assigned to different bins. The sum of the weights of the
(fragments of) items packed into a single bin of type ¢ must not exceed its capacity
q;- We say that a bin is open if it has at least one assigned (fragment of) item, and
whenever a bin of type ¢ is open we pay a cost ¢;.

An upper bound .# to the number of allowed fragmentations is given. The Vari-
able cost and size Bin Packing Problem with Item Fragmentation (VCSBF) is the
problem of finding a minimum cost packing containing all the items while not ex-
ceeding neither the number of fragmentations .% nor the bin capacities. An example
of a feasible packing is pictured in Figure 1.
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B, B, B, B, B, B;

Fig. 1 Example of a feasible packing having 12 items (from /; to ;) and using 6 bins (from B; to Bg).
Items I3, I5, and Io are split and the packing has 3 fragmentations.

2.1 Compact formulation

We can describe the VCSBF by means of the following mathematical programming
model:

min th-Zuj (D

teT JEB;

st Y Y xj=1 viel )
teT jeB,
Y wi-xij <gqp-u VteT,jeB, 3
i€l
LY Yu-l<7 @
iclteT jeB;
xij < zij Viel,teT,jeB; )
0<x;<1 VielteT,jE€B, (6)
i €B viel,teT,jEB, (7N
uj€B VieT,j€B, )

where each variable x;; is the fraction of item i packed into bin j, variable z;; is set to
1 if a fraction of item i is packed into bin j and O otherwise, and variables u; is set to
1 if bin j is open and O otherwise.

The objective function (1) minimizes the cost of the open bins. Constraints (2) im-
pose that all items are fully assigned, while constraints (3) ensure that bins capacity
is never exceeded. Constraint (4) avoid exceeding the allowed number of fragmenta-
tions. Constraints (5) ensure consistency between x;; and z;; variables.

Computational complexity. Both the VCSBF and its homogeneous version, the bm-
BPPSPF, are NIP-hard in the general case: the latter was proven to be NIP-hard in [10],
and it is easy to prove that also the former is at least as hard as the latter, since it is its
generalization. However, when the upper bound on the number of fragmentation .# =
+-o0, their computational complexity is different. In fact, if we consider an instance of
bm-BPPSPF allowing infinite fragmentations, there always exists an optimal solution
that can be found in polynomial time using the Next-Fit with Item Fragmentation
(NF f) algorithm proposed in [12]. Such an algorithm iteratively packs items into an
open bin until the latter is full. When an item cannot be fully packed, it is split and
fragmented among several bins. The current open bin is filled with a fraction of the
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item and then closed. Then a new bin is opened and the algorithm resumes the packing
procedure starting from the remaining fraction of the fragmented item. When bins are
homogeneous and .% = oo, such an algorithm always provides an optimal solution,
since it never wastes any unit of capacity and the cost of a bin is paid only when
necessary.

However, this is not the case for the VCSBF since bins are not equal ones. In fact
we can prove that:

Theorem 1 The VCSBF is NP-hard even if the number of allowed fragmentations
F = oo,

Proof When % = 40, VCSBF can be reduced to:

min Zc,~2uj )

teT  jeB,

st Y Y qui=Y w (10)
teT jEB, icl
uj €B VteT,jEB, (11)

where u; is 1 if bin j is used and 0 otherwise. Such a problem, that we call VCSBFoo,
is the problem of selecting the minimum cost subset of bins with at least enough
capacity to pack all the items in / with an unbounded number of fragmentations.

Now, let us consider an instance of 0-1 Knapsack Problem (KP) such that we are
given a knapsack of capacity ¢gX¥ and a set of items IXF. For each item i € IX” we are
also given both its weight w&? and its profit pX¥. Such an instance can be reduced
to a VCSBFo instance as follows: each item i € IXP corresponds to a bin type ¢
having g, = wX? and cost ¢, = pX?. Therefore for each type ¢ we have |B;| = 1 and
|B| = |T| = |I*?|. A single item i € I is given having weight w; = ¥, jxp wKF — gKP.

By solving such an instance of VCSBF« we also solve KP: the subset of bins
selected in a VCSBFw solution corresponds to a subset of knapsack items having
minimum profit, and therefore the set of non-selected bins corresponds to a set of
knapsack items having maximum profit. Furthermore, the set of non-selected knap-
sack items does not exceed the knapsack capacity gX¥. A solution to KP can then be
obtained by solving VCSBFc and then packing all the knapsack items corresponding
to bins having u; = 0.

Since an instance of KP can be reduced to an instance of VCSBFc in polynomial
time and KP is NP-hard, VCSBF is NIP-hard. O

2.2 Chain formulation

Even though model (1) — (8) can be used to solve VCSBF instances, from a theoretical
point of view it is easy to prove that the dual bound provided by its continuous relax-
ation is trivial: in fact, an optimal solution to its continuous relaxation can be found
by iteratively selecting bins having minimum ¢, /g, until };c; w; units of capacity are
collected. Feasible x;; and z;; values can be found by simply applying NFy algorithm
assuming infinite fragmentations, while variables u; can be set to u; = Y;c;wi - xij/q
forallt € T, j € B,, obtaining an optimal solution to the continuous relaxation.
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Fig. 2 BPG representation of solution in Figure 1: each vertex corresponds to a bin in the solution, while
each edge connect vertices sharing a fragmented item. The BPG is composed by three connected compo-
nents: {By,B2,B3}, {B4,Bs}, and {Bg}.

Furthermore, in both [2] and [4] it has been proved that from an empirical point
of view generic cutting planes approaches applied to this compact formulation pro-
vide poor dual bounds. Instead, by removing the decision variables on the fractional
assignments of items to bins, new and more effective formulations can be designed.
We now follow this principle by proving that our problem allows such type of formu-
lations.

We start by recurring to the definitions of Bin Packing Graph (BPG) and primitive
solution, both introduced in [15]: the former is a graph having a vertex for each bin
and an edge for each pair of vertices sharing an item (see Figure 2), while the latter is
a feasible solution to BPPIF such that (a) each bin contains at most two fragmented
items, (b) each item is fragmented at most once, and (c) the corresponding BPG is a
collection of paths. Still in [15] it has been proved that:

Theorem 2 ([15]) Any instance of a bm-BPPIF has an optimal solution which is
primitive.

It is easy to extend Theorem 2 to the case with heterogeneous bins and prove that:

Theorem 3 Given an instance of VCSBF having w; < q;, for each pair of item i and
bin j, there always exists an optimal solution that is primitive.

Proof Following the proof in [15] and [4], we observe that if we are given the BPG of
an optimal solution to VCSBF, each of its connected components can be transformed
into a path: all the items assigned to the bins of a connected component can be packed
into the same bins using the NFg algorithm. The BPG obtained after repacking all the
items of each connected component corresponds to a collection of paths in which
each item is fragmented at most once and each bin has at most two fragmented items.

O

In [4], we exploited such a property to propose what we called a chain formulation:
given the BPG of a primitive solution, we say that a chain is the set of bins corre-
sponding to a BPG path, and it is characterized by a cost and a capacity that are the
sum of the costs and the sum of the capacities of its bins, respectively. An example of
chain representation of the solution in Figure 1 is depicted in Figure 3. We also show
that our problem can be reduced to the problem of packing items into a minimum
cost set of chains, instead of a minimum cost set of bins. This is true also for VCSBF,
since it allows optimal primitive solutions when w; < g;. However, we can further
extend such a property:
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B, B, B, B, B, B,

Fig. 3 Chain representation of solution in Figure 1: bins belonging to the same connected component in
the BPG are stacked in order to form a chain of bins. The capacity of each chain is the sum of the capacities
of its bins.

Theorem 4 Any instance of VCSBF can be modeled with a chain formulation.

Proof Given a connected component of the BPG of an optimal solution to VCSBF,
we can always obtain a cost equivalent packing by simply applying NFy algorithm
on the same set of bins corresponding to the connected component. If there exists an
item i having w; > ¢;, then we may split it more than once among more than 2 bins,
therefore obtaining a solution that is not primitive. However, the solution obtained
would still use the same bins and perform at most the same number of fragmenta-
tions, since the number of fragmentations obtained through NF; is always less than
the number of bins used for the packing, as proven in [12]. Therefore, given any con-
nected component of the BPG, we can apply NFy to obtain a cost equivalent chain
that does not exceed neither the number of bins nor the number of fragmentations.

O

Let K be the set of chains; w.l.0.g. |K| = |B|, since each chain corresponds to a set of
at least one bin, and therefore no solution using more than |B| chains can be feasible.
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Model(1) — (8) can be then formulated as:

min Y Y ¢ v (12)

keKteT

st ) =1 Viel (13)
keK
Y wiza <Y arva Vk € K (14)
i€l teT
Y (X ) —w<F (15)
keK teT
ue <Y vie VkeK (16)

teT

Y v < 1B vieT (17)
keK
ik €EB VielLke K (18)
u, €B Vke K (19)
vir € Np VieT, ke K (20)

where each variable z;; is 1 if item i is assigned to chain k and O otherwise, each
variable uy is 1 if chain k is used and O otherwise, and each variable v;; is the number
of bins of type ¢ in chain k.

The objective function (12) minimizes the cost of the packing. Constraints (13)
ensure that all items are packed, while constraints (14) impose that the capacities
of the chains are not exceeded. Constraint (15) imposes a bound to the maximum
number of fragmentations. Constraints (16) ensure that each selected chain has at
least one bin. Constraints (17) ensure that we do not exceed the number of bins of
each type.

From a continuous perspective, our chain formulation achieves the same trivial
dual bound of the compact formulation. In fact, a feasible solution to the continuous
relaxation of the compact model is also feasible to the continuous relaxation of the
chain formulation.

3 Extended formulation

In order to achieve an improved dual bound, we now propose a reformulation of our

problem obtained through Dantzig-Wolfe decomposition [8]. Let z; = (zy, - - - 2| 1|k),

Vi = (Viks - V) W= (W1,--.,wyp), and q = (g1, - -, q|7|)- For each k € K let
Q= {(ZkaukaVk) e BT w2 < g7 v Ay < HVkHI}

be the set of feasible integer points with respect to constraints (14), (16), and (18) —

(20). We relax the integrality conditions but replace each £2; with the convex hull of
its L extreme integer points

1.1 - L Ly -L
Fk:{(zi,ui,vi),...,(Zk",ukk,vkk)}
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and we impose

(Zkﬂ/tk,Vk) = Z(Ziaﬁfw\_/;{)yia (21)
LIy,

where y; >0 for each k € K and | € I}, and Y, y;, = 1 for each k € K.

The model obtained by replacing in the continuous relaxation of formulation
(12) — (20) the vectors (zg,ux, Vi) as indicated in (21), and by making explicit the
indexes is:

min) Y Y ¢ vk (22)

keK el teT

st. Y Y Zy=1 Viel (23)
keK €T},
Y Y v <IB VieT (24)
keK €Ty,

Y Y Y v)—m) < F (25)

keKlel teT

Y =1 Vk €K (26)
I€T;
¥ >0 VkeK Ve, 27)

Constraints (23) can be relaxed in > form, since an optimal solution always exists
in which no item is assigned more than once. Constraints (26) can be relaxed in <
form because an empty pattern with Zi =0, ﬁi =0, and \75( = 0 always exists for each
k € K. We can also relax constraint (25) in

Y Y (X v)-Dws7

keKlel, jeB

because ui =1 for all patterns but the empty ones.

We observe that all sets I, are identical, since identical are the sets of bins com-
posing the chains. Therefore, we consider a single representative I" = (;cx I%, and
aggregate constraints (26) as

Y v <IK|

ler’

which can then be removed since there always exists an optimal solution where at
most |K| patterns are selected, since each pattern / is composed at least by a bin and
K| = |BJ.



10 Marco Casazza

We then obtain the following Master Problem (MP):

minz ch-\?f~yl (28)
lerteT

sty zy =1 viel (29)
ler”
Y oy <|B| vieT (30)
lel”
Yy -1y <z 31)
lel’ teT
y¥'>0 viel (32)

Observation 1 The dual bound provided by the MP is at least as good as the one
given by the continuous relaxation of chain formulation.

Such observation directly follows from the Dantzig-Wolfe decomposition principle.

4 Algorithm

We remark that formulation (28) — (32) has a number of variables that is exponential
in both the number of items and bins; therefore, we recur to Column Generation (CG)
techniques: we start with a Restricted Master Problem (RMP) having a small set of
variables only, and solve it to optimality. We collect dual information and then solve a
combinatorial problem to find negative reduced cost variables (see Subsection 4.2). If
any is found, we add it to the RMP and the CG process is repeated, otherwise both the
RMP and the MP are optimal, and their value is a valid lower bound for the VCSBF.
If the final RMP solution is also integer, then it is optimal for VCSBF, otherwise we
enter a search tree to find a proven global optimum.

4.1 Initialization

The initialization of the RMP allows to start the CG process having already a small
set of variables and may reduce the heading-in effect [17]. In our algorithm we found
to be profitable to initialize our RMP with two sets of columns: the first is the set of
columns having one single item packed into the minimum cost bin that can contain
it; in such a way, when items are smaller than at least one bin, we always start the CG
process having a trivial but yet feasible solution. The second set of columns is the set
of dual cuts already proposed in [4], and it is based on the observation that given the
non-negative dual variables A; corresponding to constraints (29) the following holds:

Proposition 1 ([4]) Given two subsets S C I and T C I such that SNT = 0 and
Yicswi < Yicrwi, no optimal dual solution packing all items in T violates the in-
equality Yics Ai < Yier Ai
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In fact, all columns representing chains including all items in 7 can be replaced by
columns where items in 7 are removed and replaced by items in S, obtaining new
columns that are both feasible and improving.

For what concerns the implementation, for each dual cut we include in the RMP
a column having Z! = 1 for each i € S and z/ = 0 for each i € T. Since these cuts are in
exponential number, we found to be already profitable to include the subsets having
|S| =1and |T| =1 only.

4.2 Pricing new variables

Let A >0, u <0, and n < 0 be respectively the dual variables of constraints (29),
(30), and (31). The pricing problem can be described as:

G*:minth-vt—Zl,--z,-—Zu,~v,—n-((2v,)—l) (33)

teT i€l teT teT

s.t. Zwi~zi < th -V (34)
i€l teT
Yo <F41 (35)
teT
zZEB Viel (36)
v € Ny VteT 37

The objective function (33) can be rewritten in maximization form as:

o'*:—malerzi—Z(Ct—ﬂt—n)'vr—n (38)

icl teT

where A; > 0 is the profit collected when item i is packed into a chain, (¢, — g, — 1) >
0 is the cost paid for each bin of type ¢ in the chain, and 1 < 0 is a fixed profit. We
call problem (33) — (37) Variable Cost and Size 0-1 Knapsack Problem (VCSKP).

Intuitively, we can observe that the objective function is composed by two differ-
ent part: the first part promotes solutions packing more items, and therefore consum-
ing more capacity, while the second part, instead, puts a cost on each unit of capacity
consumed, therefore pushing in the opposite direction. In order to design an effective
algorithm to solve the VCSKP we can first observe that:

Observation 2 Given 2 > 0, an optimal solution to VCSKP using at most 2 units
of capacity can be found by solving two distinct and independent subproblems (SP1)
and (SP2), one maximizing the profit and one minimizing the cost, respectively.

The two subproblems can be modeled as follows:

0,1 (2) =max ) -z (39)
icl

(SP1) sty wi 5 <2 (40)
iel

z€B Viel 41
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G;pQ(Q) = min Z(Ct—,u,—n)-v, (42)
teT
st Y g-vi>2 (43)
(SP2) teT
Yvw<F+1 (44)
teT
v € Ny VieT (45)

(SP1) maximizes the profit of a knapsack consuming at most 2 units of capacity,
while (SP2) select the minimum cost subset of bins providing 2 units of capacity.
The knapsack obtained by packing the items of a solution to (SP1) into a chain of bins
of a solution to (SP2) is feasible for VCSKP. However, even if the value o, (2) —
o’ ,(2) is optimal for a knapsack using at most 2 units of capacity, it may not be

sp2
optimal for VCSKP.

Observation 3 Given Q = min(Y,cr q; - |B:|, Lic; wi), an optimal solution to VCSKP
can be found by solving subproblems (SP1) and (SP2) for each value of 2, that is

*

0" = — max (0,,(2)—0;,,(2)—n) (46)

_ 1
o<2<o "

In fact, among all values of 2 there must be at least one corresponding to an optimal
knapsack.

Lemma 1 (SP1) can be solved in pseudo-polynomial time.

Proof (SP1) is the classic 0-1 KP, which can be solved in pseudo-polynomial time
by means of the well-known dynamic programming algorithm [11]: let My, (I,q) be
the value of an optimal solution to (SP1) in which only items I C I can be selected,
and ¢ units of capacity are consumed. My, (I,g) can be computed recursively:

= . _ Ms‘pl(l_aq)a ifw; >gq
M, (TU{i},q) = {maX{Mypl(I_,q),Mspl(I_vq_Wi) +A;}, otherwise

where M;;,1(0,q) = 0 for each 0 < ¢ < 2. Thus, 0;,,(2) = maxo<g<o Msp1(1,9),
which can be computed in O(|I| - 2) time. O

Lemma 2 (SP2) can be solved in pseudo-polynomial time.

Proof Using an auxiliary variable v, = |B;| — v, indicating how many bins of type ¢
are excluded from the solution, we can reformulate (SP2) as:

G;’ﬁ(g) = max ZT(Ct — “t — n) . \7[ (47)
te
o S~t~ZCIt"7t§ZC]t'|Bt|—£2 (48)
(SP2) = (€T
Y u>B—(F+1) (49)
teT
vt € Ng VieT (50)
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with 675 = Yser (e — e —1) - |Bi| — 55*72-

(SP2) can be solved in a similar way to (SP1): let £ = ¥,c7¢; - |B;| — 2 and
lfat ME(B, f,q) be the cost of an optimal solution to (SP2) where at leas_t f bins in
B C B are selected, and at most g units of capacity are consumed. Mst(Ba f,q) can
be computed recursively:

Mz (BU{j}, £.9)

_ {Mspz(lif,q}, ifg;>q
max{M;5(B, f.q),M;5(B,f —1,g—q;) + (c; — p; —n)}, otherwise

where M;5(0, f,0) = 0 and M{;5(0,0,¢) = 0 for each 0 < f < |B| and 0 < g < 2.

Thus,
o (2)= max M—(B,|B|— f,q). 51

sz( ) 0<f<F+10<q<F sp2( ‘ | f C]) ( )

Similarly to the classic 0-1 KP, the problem can be solved by means of a three-

dimensional matrix of size |B|-|B|- 2. However, in an optimal solution to (SP2), we

never select more than .% + 1 bins of each type, and therefore, for each type ¢ we have

that v, <.% + 1 and v, > |B;| — (% +1). Therefore, in our algorithm we can consider

the last .# + 1 bins of each type and reduce the size of the matrix we use to solve the

problem to |T|- (F +1)-(F +1)- 2. (SP2) can be then solved in O(|T|- 7?2 - 2)

time. O

Theorem 5 An optimal solution to the VCSKP exists that can be found by a pseudo-
polynomial time algorithm.

Proof The proof follows directly from Observation 3 and Lemmas 1 and 2: VCSKP
can be decomposed in Q subproblems that can be solved in pseudo-polynomial time.
However, we remark that by computing once M, (1, Q) and My,»(B,-7, Q) we solve
(SP1) and (SP2) for all 0 < 2 < Q. Therefore, to solve VCSKP only two subprob-
lems (SP1) and (SP2) must be solved, and our procedure is a pseudo-polynomial
time algorithm. g

Heuristic pricing. In a preliminary experimental analysis we found to be profitable to
speed up our CG procedure by adding a heuristic variant of our pricing algorithm. In
fact, we can observe that when constraint (49) is removed from (ﬁ), the problem
is exactly a 0-1 KP, which can be solved faster than the actual (SP2). However, if
constraint (49) is removed we may generate columns corresponding to chains of more
than .%# + 1 bins, and thus potentially reducing the quality of the dual bound. We then
solve our pricing problem setting Q = min((.% + 1) - minyer g;, Y;c; i), in such a
way we always generate columns having at most .% + 1 bins.

4.3 Branch and bound

When the optimal MP is fractional we explore a search tree by means of branching
operations. In the following we propose three branching rules that first ensure the
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integrality of the number of bins of each type selected in a solution, and then fix the
assignment of both items and bins to chains. While the latter are the only ones needed
to ensure the integrality of the solutions, we observed that the former speeds up the
pruning of non-optimal branches.

Fixing the number of bins for each type. Let § be the value of a variable y! in a
fractional solution of the MP. We start by observing that if all 7 are integer, then an
integer solution is found, we eventually update the primal bound, and the branching
node is pruned. Otherwise, let ¥ = ¥, 7 - 3 be the fractional number of bins of type
t selected in a fractional solution to MP. If all #; values are integer, than the solution
is integer with respect with the current branching rule and we skip to the next one.
Otherwise, we search for the bin type 7 having the most fractional number of bins
in the fractional solution, that is 7 € argmin,_y |V — (|| +0.5)|, and we create two
children: in the first we impose a maximum number of | 7;| bins of type 7 by adding a
new constraint ) ;.- ﬁé -yl < |7 in the MP; vice versa, in the second child we impose
a minimum number [¥;] by adding a new constraint ¥, v4-y' > [7;]. In both cases
a new dual variable must be taken into account while solving the MP, but neither the
structure of the pricing problem nor its implementation are affected.

Fixing items into chains. When the number of bin types is integer, we look for the
fractional assignments of items to chains similarly as we did in [4]: the idea is that
for each chain we can select one of its packed items to be the one that identifies the
entire chain. Such an item is then called head item. Let us suppose that each node of
the branching tree holds a set H C I of head items, each corresponding to a chain.
We start with H = 0, and during the exploration of the search tree, each item is either
selected to be assigned to one of the chains identified by head items or it becomes a
new head itself.
Such a branching is divided in two phases:

1. If H = 0 we skip to Phase 2 to select a new head item. Otherwise, let Zj; =
Yierin-zi- 7' be the fractional value of the number of chains in which item i is
selected with head h. We select the pair (fz, z} having the most fractional Z;;, that is
(h,i) € argmingcy icp\ g |Zn; —0.5|, and create two children, one where we impose

that item 7 is never packed with head h, and one where i is always and only packed
with /. To impose such constraints, before processing a node we remove from the
RMP all the columns that do not conform to the current branching decisions and
solve |H|+ 1 pricing problems, one for each chain, and one for the items that have
not been assigned yet.

2. If no fractional assignment of items to chains is found, then it holds that no
column having an head item is fractionally selected. However, this is not suf-
ficient to ensure the integrality of the MP solution, because fractional assign-
ments may arise in the set of columns having no fixed head item. Therefore,
we search for the most fractional chain having no fixed head item, tk}at is [ e

AGMIN; i1 o ey |/ —0.5|. We select an arbitrary item i such that Zé =1, we
h—
extend the head items set H <— H U {7}, and restart the branching from Phase 1.
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Fixing bins into chains. Once all items are fixed into chains, we perform the same
strategy with respect to the number of bin types selected in each chain. In fact, in a
MP solution we may have chains that are composed by a fractional number of bin
types. Let Wy = Y erZn - v - 7 be the fractional number of bin of type ¢ that are
used in a chain identified by head item h. We search for the pair of (/,7) having the
most fractional value Wy, that is (i, ) € argmin,py 7 [Wi — ([ Wi ] +0.5)]. If all v,
values are integer, then an integer solution is found, we eventually update the primal
bound and prune the node. Otherwise we create two children, one where the chain
identified by head item / has at most [W;;] bins of type 7, and one where it has at
least W] bins of type 7.

5 Experimental analysis

We implemented our algorithms in C++, using the framework SCIP [1] version 4.0.0,
setting the default options. The LP subproblems were solved using the simplex algo-
rithm implemented in CPLEX 12.6.3 [6] setting the automatic selection between pri-
mal and dual methods. As primal heuristic we included a single LP rounding heuristic
provided by SCIP after the evaluation of each node of the branching tree. In the re-
mainder we refer to our exact branch-and-price algorithm as BPA.

As a benchmark we considered the branch-and-cut implemented in CPLEX ver-
sion 12.6.3, using both the classic formulation described in Subsection 2.1 and the
chain formulation in Subsection 2.2 with default settings. In the remaining, we refer
to the first as BC and to the second as CHAINBC.

All the tests have been conducted on a PC equipped with an Intel(R) Core(TM) i7-
6700K CPU at 4.00GHz with 32 GB of memory and forcing single thread execution
for all the three competitors.

For our experiments we produced a random dataset of instances, created in a
similar fashion to [5,7]: we generated 10 instances for each combination of

- number of items: |I| € {10,25,50,75,100};

— weights distribution: small (w; € [1,100]), medium (w; € [25,100]), and large
(w; € [50,100]);

— set of types of bins: setl (|7| =2 and ¢, € {100,120}), set2 (|T| =3 and ¢; €
{80,100, 120}), set3 (|T| = 4 and g, € {80,100,120,140}), set4 (|T| =5 and
g: € {60,80,100, 120, 140});

— number of fragmentations: % = ||I|/f], with f € {3,5,10}.

For each type of bins #, the cost is computed as ¢; = [100-,/g;].

5.1 Lower bounds

In a first round of experiments we compared the quality of the lower bound obtained
by the three methodologies when stopped at the root node of the branching tree and
the computational effort required to compute it.
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In Table 1 we report the aggregated results for number of items, weight of items,
and number of fragmentations; for all of the three methodologies we show the aver-
age gap g = (BN — LB) /BN between the lower bound LB and the best known solution
value BN found with either one of the three methodologies after one hour of com-
putation (see Subsection 5.2), the average gap g = (LB — LB) /LB between the lower
bound LB and the best lower bound LB found by the three methodologies, and the
computing time ?.

Our results show that the lower bound obtained by BC is on average the worst and
requires the highest computational effort to be computed. CHAINBC is on average
the fastest, and its bounds are comparable with the ones obtained by our BPA. How-
ever, our BPA is the only methodology that always finds a lower bound that is at most
1% far from the best lower bound. Also, we can observe that our BPA outperforms
the other methodologies when the number of allowed fragmentations is strict and
weights are large: these are the case where item fragmentation is almost mandatory
but the fragmentation resource is scarce.

Although the quality of the lower bounds obtained by both BC and CHAINBC
on our dataset differs from the one on the BPPIF with homogeneous bins [4], we can
still state that when fragmenting is profitable state-of-the-art methodologies provide
less effective lower bounds.

5.2 Optimality guarantees

In our second round of experiments we ran a comparison between the three method-
ologies when solving our instances to proven optimality, setting a time limit of one
hour for each run.

In Table 2 we report for each methodology the number of instances solved to
proven optimality s, the average duality gap g = (UB — LB)/UB between the lower
bound LB and the upper bound UB when the time limit is hit, and the average com-
puting time ¢ for instances solved to proven optimality only.

The results show that our BPA outperforms both BC and CHAINBC approaches,
solving to proved optimality 1798 instances out of 1800, while BC and CHAINBC
solve 711 and 695 instances, respectively. As for the previous run of experiments, we
can observe a common trend for both BC and CHAINBC results: classes of instances
with smaller items or a high number of allowed fragmentation are easier to solve. In
fact, having smaller items allows less fragmentation and instances are more related
to classic BPPs. Also, when instances have a high number of allowed fragmentation
it may be possible to find an optimal solution by simply solving a 0-1 KP, as shown
in Theorem 1 for the asymptotic case with .% = co. Contrary to BC and CHAINBC,
our BPA is faster on those instances where the fragmentation resource is scarce.

6 Conclusions

In this paper we addressed a variant of BPP where items can be split at a cost. We
extended properties from the literature to a more generic case where a set of heteroge-
neous bins is given, proposing new mathematical programming models that avoid the
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Table 1 Lower bound obtained at root node of the branching tree.

Instance class BC CHAINBC BPA
[I| weight .7 (%) g(%) 1) 3(%) g% 1(s) 3(%) g% 1(s)
10 small 1 2.4 1.7 0.1 2.0 1.4 0.0 0.9 0.1 0.0
10 small 2 1.4 0.5 0.1 1.2 0.3 0.0 1.2 0.3 0.0
10 small 3 1.0 0.3 0.1 0.8 0.1 0.0 0.9 0.3 0.0
10 medium 1 3.7 2.7 0.1 3.6 2.6 0.0 1.2 0.1 0.0
10 medium 2 0.8 0.5 0.1 0.7 0.4 0.0 0.5 0.1 0.0
10 medium 3 0.7 0.3 0.1 0.7 0.2 0.0 0.8 0.3 0.0
10 large 1 5.5 5.0 0.2 5.3 4.8 0.0 0.5 0.0 0.0
10 large 2 1.5 1.1 0.1 1.2 0.9 0.0 0.4 0.0 0.0
10 large 3 0.8 0.5 0.2 0.6 0.3 0.0 0.5 0.2 0.0
25 small 2 0.6 0.1 1.3 0.6 0.1 0.1 0.6 0.1 0.1
25 small 5 0.6 0.1 1.2 0.5 0.0 0.1 0.6 0.1 0.1
25 small 8 0.6 0.1 1.0 0.5 0.0 0.0 0.6 0.1 0.1
25 medium 2 1.3 0.9 1.3 1.3 0.8 0.1 0.5 0.0 0.1
25 medium 5 0.4 0.1 1.2 0.3 0.0 0.1 0.4 0.1 0.1
25 medium 8 0.4 0.1 1.0 0.3 0.0 0.1 0.4 0.1 0.1
25 large 2 6.7 6.2 1.8 6.7 6.2 0.1 0.6 0.0 0.0
25 large 5 1.2 0.6 1.4 1.2 0.6 0.1 0.7 0.0 0.1
25 large 8 0.3 0.0 1.2 0.3 0.0 0.1 0.3 0.1 0.1
50 small 5 0.2 0.0 9.4 0.2 0.0 0.2 0.2 0.0 0.4
50 small 10 0.2 0.0 7.8 0.2 0.0 0.2 0.2 0.0 0.4
50 small 16 0.2 0.0 7.6 0.2 0.0 0.2 0.2 0.0 0.4
50 medium 5 0.3 0.1 10.2 0.2 0.1 0.3 0.2 0.0 0.3
50 medium 10 0.2 0.0 8.9 0.2 0.0 0.2 0.2 0.0 0.4
50 medium 16 0.2 0.0 8.1 0.2 0.0 0.2 0.2 0.0 0.5
50 large 5 4.6 4.2 11.9 4.5 4.1 0.4 0.5 0.0 0.2
50 large 10 1.0 0.5 10.3 1.0 0.5 0.3 0.5 0.0 0.4
50 large 16 0.2 0.0 9.0 0.1 0.0 0.2 0.2 0.0 0.5
75 small 7 0.1 00 259 0.1 0.0 0.7 0.1 0.0 1.2
75 small 15 0.1 0.0 209 0.1 0.0 0.6 0.1 0.0 1.3
75 small 25 0.1 0.0 202 0.1 0.0 0.5 0.1 0.0 1.4
75 medium 7 0.2 0.1 254 0.2 0.1 0.9 0.1 0.0 1.1
75 medium 15 0.1 00 219 0.1 0.0 0.7 0.1 0.0 1.3
75 medium 25 0.1 0.0 205 0.1 0.0 0.5 0.1 0.0 1.6
75 large 7 4.7 44 290 4.7 44 1.1 0.3 0.0 0.7
75 large 15 0.7 04 258 0.7 0.4 1.0 0.3 0.0 1.1
75 large 25 0.1 00 237 0.1 0.0 0.7 0.1 0.0 1.6
100 small 10 0.1 00 63.6 0.1 0.0 1.8 0.1 0.0 3.1
100 small 20 0.1 0.0 56.1 0.1 0.0 1.4 0.1 0.0 3.4
100 small 33 0.1 0.0 535 0.1 0.0 1.1 0.1 0.0 3.4
100 medium 10 0.2 00 63.0 0.2 0.0 2.1 0.2 0.0 2.8
100 medium 20 0.1 0.0 60.1 0.1 0.0 1.8 0.1 0.0 29
100 medium 33 0.1 00 51.6 0.1 0.0 1.4 0.1 0.0 3.8
100 large 10 4.2 39 703 4.2 39 2.7 0.3 0.0 1.7
100 large 20 0.7 05 641 0.7 0.4 2.3 0.2 0.0 2.7
100 large 33 0.1 0.0 60.1 0.1 0.0 1.8 0.1 0.0 3.6

use of fractional variables. Aiming for a methodology to obtain strong dual bound,
we exploited Dantzig-Wolfe decomposition to obtain an extended formulation, whose
continuous relaxation is solved through column generation techniques. We proposed
an ad-hoc pricing algorithm that decomposes the pricing problem into two subprob-
lems, both solvable in pseudo-polynomial time. We integrated our bounding proce-
dure into a branch-and-price framework including dual cuts, and implicit enumeration
strategies to solve the problem to proven optimality.
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Table 2 Results obtained within a time limit of 1 hour of computation.

Instance class BC CHAINBC BPA
1] weight F s g(%) 1(s) s 8(%) 1(s) s (%) t(s)
10 small 1 40 0.0 6.7 40 0.0 0.4 40 0.0 0.0
10 small 2 40 0.0 55.2 40 0.0 0.5 40 0.0 0.0
10 small 3 40 0.0 0.2 40 0.0 0.1 40 0.0 0.1
10 medium 1 40 0.0 105.3 40 0.0 5.8 40 0.0 0.0
10 medium 2 40 0.0 130.6 40 0.0 0.5 40 0.0 0.0
10 medium 3 40 0.0 0.6 40 0.0 0.2 40 0.0 0.1
10 large 1 38 32 509.3 40 0.0 49.5 40 0.0 0.0
10 large 2 36 1.0 465.7 40 0.0 36.5 40 0.0 0.0
10 large 3 38 0.7 9.0 40 0.0 1.1 40 0.0 0.1
25 small 2 30 3.1 115.5 30 0.3 11.7 40 0.0 0.3
25 small 5 36 1.9 28.4 34 0.0 5.8 40 0.0 0.7
25 small 8 40 0.0 4.8 39 0.0 43 40 0.0 2.1
25 medium 2 3 38 1269.8 10 1.5 672.3 40 0.0 0.2
25 medium 5 27 2.3 367.7 24 0.1 37.4 40 0.0 0.6
25 medium 8 39 0.6 129.8 31 0.1 24.0 40 0.0 1.9
25 large 2 0 7.1 - 0 5.8 - 40 0.0 0.1
25 large 5 2 34 2459.1 12 1.7 190.6 40 0.0 0.5
25 large 8 23 3.0 544.3 13 0.1 392.0 40 0.0 1.6
50 small 5 2 32 610.8 12 0.4 799.3 40 0.0 2.7
50 small 10 25 2.4 865.4 21 0.2 257.6 40 0.0 7.5
50 small 16 38 1.8 127.2 18 0.3 188.2 40 0.0 17.0
50 medium 5 0 39 - 1 0.9  2016.1 40 0.0 2.1
50 medium 10 0 2.8 - 3 0.5 1281.0 40 0.0 6.9
50 medium 16 23 2.1 896.0 12 0.2 382.1 40 0.0 18.4
50 large 5 0 7.4 - 0 4.3 - 40 0.0 1.0
50 large 10 0 53 - 0 1.5 - 40 0.0 7.6
50 large 16 1 32 1484.1 3 0.6 1434.6 40 0.0 17.8
75 small 7 0 4.9 - 2 0.9 325.9 40 0.0 9.9
75 small 15 3 3.0 3276.4 10 0.3 724.2 40 0.0 27.0
75 small 25 35 1.7 357.1 16 0.1 465.1 40 0.0 79.4
75 medium 7 0 8.8 - 0 1.6 - 40 0.0 7.6
75 medium 15 0 5.1 - 1 1.0 10743 40 0.0 23.8
75 medium 25 7 22 1243.5 10 0.4 809.8 40 0.0 71.7
75 large 7 0 12.5 - 0 19.8 - 40 0.0 4.5
75 large 15 0 8.0 - 0 14.1 - 40 0.0 30.1
75 large 25 0 4.6 - 0 0.9 - 40 0.0 77.1
100 small 10 0 7.5 - 1 1.2 953.3 40 0.0 25.7
100 small 20 0 39 - 10 0.5 956.3 40 0.0 734
100 small 33 25 1.4 638.6 17 0.2 4413 40 0.0 178.8
100 medium 10 0 9.5 - 0 6.7 - 40 0.0 30.1
100 medium 20 0 6.8 - 0 1.3 - 40 0.0 69.4
100 medium 33 0 29 - 5 0.6  1094.1 40 0.0 2105
100 large 10 0 17.6 - 0 37.9 - 38 0.1 254
100 large 20 0 11.1 - 0 24.0 - 40 0.0 70.2
100 large 33 0 7.0 - 0 1.2 - 40 0.0 2302

After an extensive experimental campaign, our algorithm was proven to be able
to solve 99% of our dataset within few minutes of computation, while state-of-the-art
solvers failed to solve even very small instances.
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