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Abstract In this paper, we describe and analyze several methods of estima-
tion for the type II discrete Weibull distribution, outlining their applicability
and properties, assessing and comparing their performance via intensive Monte
Carlo simulation experiments. We consider the standard maximum likelihood
method, a method of proportion, and two variants of the least-squares method.
The type II discrete Weibull distribution can be used in reliability engineering
for modeling count data or discrete lifetimes and its use is theoretically moti-
vated by its capability of modeling either bounded or unbounded support, and
either increasing or decreasing failure rate. Statistical analyses of real datasets
are presented to show the capability of the distribution in fitting reliability
data and illustrate the application of the proposed inferential techniques.
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1 Introduction

Almost all reliability studies assume that time is continuous and continuous
probability distributions such as exponential, gamma,Weibull, normal and log-
normal are commonly used to model the lifetime of a component or a structure.
These distributions and the methods for estimating their parameters are well-
known. In many practical situations, however, lifetime is not measured with
the calendar time: for example, when a device works in cycles or on demands
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and the number of cycles or demands prior to failure is observed; or when
the regular operation of a device is monitored once per period, and the num-
ber of time periods successfully completed is observed. Moreover, reliability
data are often grouped into classes or truncated according to some censoring
criterion. In all these situations, lifetime is modeled as a discrete random vari-
able. Indeed, not so much work has been done on discrete stochastic models in
reliability so far. Generally, most reliability concepts for continuous lifetimes
have been adapted to the discrete context. Bracquemond and Gaudoin (2003)
provided an exhaustive survey on discrete lifetime distributions; Bracque-
mond, Gaudoin, Roy, and Xie (2001); Bracquemond and Gaudoin (2002); Xie,
Gaudoin, and Bracquemond (2002) discussed adjustments of some reliability
concepts for continuous models to the discrete case.

Often, discrete distributions can be defined as counterparts of continuous
distributions, see for example Khalique (1989); Noughabi, Roknabadi, and
Borzadaran (2013). Among the continuous distributions used in the engineer-
ing field, the Weibull model is surely the most popular. As a discrete al-
ternative, three main distributions have been introduced. The first one was
presented in Nakagawa and Osaki (1975) and is referred to as type I dis-
crete Weibull. The second one, which this article takes into consideration, was
proposed and studied in Stein and Dattero (1984); the third in Padgett and
Spurrier (1985). More recently, Noughabi, Borzadaran, and Roknabadi (2011)
presented a discrete version of the continuous modified Weibull distribution
proposed by Lai, Xie, and Murthy (2003).

The type II discrete Weibull (henceforth, if there is no ambiguity, simply
discrete Weibull) random variable (rv) mimics the hazard rate function of its
continuous analogue. The hazard rate function for a continuous rv is defined
as

r(x) =
f(x)

1− F (x)
=

f(x)

S(x)
(1)

where f(x) and F (x) are the probability density function and cumulative dis-
tribution function, respectively; and S(x) = P (X ≥ x) is the survival function.
For a discrete rv, the hazard rate function is usually defined as:

r(x) = rx =
P (X = x)

S(x)
. (2)

Note that for the discrete case 0 ≤ r(x) ≤ 1. The discrete Weibull rv is built
by imposing that the hazard rate function (2) is equal to its analogue in the
continuous case:

r(x) =

{

cxβ−1 x = 1, 2, . . . ,m

0 x > m
(3)

with 0 < c < 1, where m is defined as ⌊c−1/(β−1)⌋ if β > 1; if 0 ≤ β ≤ 1,
m = +∞. The upper bound m of the support of the discrete Weibull rv is
needed in order to assure that the hazard rate function in (3) always takes
values smaller than 1 (restriction that is not needed in the continuous case).
The chance of a finite support for a distribution intended to model count
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data may appear unusual and represent a theoretical or practical shortcoming;
however, some authors indeed claimed that discrete distributions describing
the lifetime of a system, device, etc, should be naturally defined on a finite
support (see, for example, Jiang 2013).

The survival function S can be then expressed in terms of the hazard
rates (3):

S(x) = (1− r1)(1− r2) · · · (1− rx−1) =

x−1
∏

j=1

(1− rj), x = 2, . . . ,m (4)

whereas obviously S(1) = 1. The corresponding probability mass function
(pmf) has a complex expression and can be written for β > 1 as

P (X = x) =











c x = 1

S(x)− S(x+ 1) x = 2, . . . ,m− 1

S(m) x = m

(5)

whereas, if 0 ≤ β ≤ 1,

P (X = x) =

{

c x = 1

S(x)− S(x+ 1) x = 2, 3, . . .
(6)

with S(·) given by (4). Note that if β = 1, the discrete Weibull distribution
reduces to the geometric distribution with parameter c, with pmf P (X = x) =
c(1− c)x−1 for x = 1, 2, . . . , and constant hazard rate function r(x) = c.

To the best of our knowledge, inferential techniques have not been di-
rectly studied and assessed for this discrete Weibull model. In the next Sec-
tion, we present and discuss several estimation methods for the parameters of
the discrete Weibull model, trying to outline possible issues and theoretical
properties. In Section 3, we discuss a Monte Carlo simulation study aimed at
comparing the performance of the methods of Section 2 under a number of
artificial scenarios. Section 4 presents two applications of the discrete Weibull
model to real datasets taken from the literature and applies the inferential
techniques discussed in Sections 2 and 3. Section 5 concludes the paper with
some final remarks and comments on future research directions.

2 Estimation

In this section, we consider three methods (with a further variant for the
latter method) for the point estimation of the parameters c and β of the
type II discrete Weibull distribution. Parameter estimation is provided un-
der classical frequentist framework and it is thus based on a i.i.d. sample
xxx = (x1, x2, . . . , xn) of size n. We will assume that both parameters are un-
known. The first method is the conventional maximum likelihood method; the
second method (method of proportion) has been proposed for similar discrete
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models, characterized by at least two parameters, in the context of stochastic
reliability; the third method is the least-squares method, which here exploits
the specific expression of the hazard rate function for the model at study.

2.1 Maximum likelihood method

Point estimates of the parameters c and β can be derived by maximizing the
likelihood function

L(c, β;x1, . . . , xn) =

n
∏

i=1

P (c, β;xi) (7)

or, equivalently, the log-likelihood function

ℓ(c, β;x1, . . . , xn) = logL(c, β;x1, . . . , xn) =

n
∑

i=1

logP (c, β;xi) (8)

Generally, it is not possible to obtain an analytical solution for the maximum
likelihood estimates (MLEs) (ĉML, β̂ML), admitted they exist: they can be only
numerically derived by directly maximizing (7) or (8) (see Khan, Khalique,
and Abouammoh (1989); Kulasekera (1993) for analogous issues for the type
I discrete Weibull distribution).

For the model at study, particular care should be paid since once a sample
(x1, x2, . . . , xn) has been drawn, the parameter space for the vector (c, β) is
subject to the constraint xmax = max {x1, . . . , xn} ≤ ⌊c−1/(β−1)⌋, that can be
rewritten as β ≤ 1− log c/ log xmax.

In fact, given a sample (x1, . . . , xn) not each pair (c, β) belonging to the
natural parameter space (0, 1)× [0,∞) is feasible: (c, β) must ensure that the
corresponding value of the upper bound m is greater than or equal to each xi,
i.e., greater than or equal to xmax (see Figure 1). As seen before, since a value
of β smaller than or equal to 1 leads to a support equal to N

+, the subset
(0, 1) × [0, 1] continues to belong to the “feasible parameter region” in any
case. As a function of c and β, given (x1, . . . , xn), the log-likelihood function
presents a discontinuity on the points of the parameter space (0, 1)× [0,+∞)
belonging to the curve of equation β = 1− log c/ log(xmax + 1). If we suppose
that m > xmax, the likelihood function can be written as

L(c, β, x1, . . . , xn) = cn
xmax
∏

k=2

k(β−1)
∑

n
i=1

1xi=k [1 − c(k − 1)β−1]
∑

n
i=1

1xi≥k (9)

and then the log-likelihood becomes

ℓ(c, β;x1, . . . , xn) = n log c+(β−1)

xmax
∑

k=2

n
∑

i=1

1xi=k log k+

xmax
∑

k=2

n
∑

i=1

1xi≥k log[1−c(k−1)β−1]

(10)
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Fig. 1: Contour plot of c−1/(β−1). Once a sample is drawn and the maximum
value xmax = max {xi; i = 1, . . . , n} is observed, the parameter space of (c, β),
initially equal to (0, 1) × R

+, is restricted to the area below the contour line
of level K = xmax.

Letting nk =
∑n

i=1 1xi=k and N ′
k =

∑n
i=1 1xi≥k, we get

ℓ(c, β;x1, . . . , xn) = n log c+(β−1)

xmax
∑

k=2

nk log k+

xmax
∑

k=2

N ′
k log[1− c(k−1)β−1].

(11)
On the contrary, if we suppose that m = xmax (i.e., the sample comprises at
least one value equal to m) the log-likelihood becomes:

ℓ(c, β;x1, . . . , xn) = (n−nxmax
) log c+(β−1)

xmax−1
∑

k=2

nk log k+

xmax
∑

k=2

N ′
k log[1−c(k−1)β−1]

(12)
Note that since the support of the distribution depends upon the value of the
parameters c and β, not much can be claimed about the asymptotic distribu-
tion of the MLEs (see Sen, Singer, and Pedroso De Lima 2010; LeCam 1970).
If regularity conditions hold, large sample approximate (1 − α) confidence
intervals can be separately built for c and β as

θ̂h ∓ z1−α/2

√

Î−1
hh (13)

with θh = c, θ̂h = ĉML if h = 1; θh = β, θ̂h = β̂ML if h = 2, and Îhh the
observed Fisher Information matrix for the sample at hand,

Îhh = −
1

n

n
∑

i=1

∂2 logP (X = xi; θ1, θ2)

∂θ2h

∣

∣

∣

∣

∣

ĉML,β̂ML

. (14)

We will now consider two cases where the maximum likelihood method
poses some problems, due to the dependence of the parameter space on the
observed sample values.
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Example 1: non-existence of MLE, existence of an upper bound
of ℓ Let us suppose we want to derive the MLEs of c and β based on the i.i.d.
sample (x1, x2, x3) = (1, 2, 3), or one of its 6 possible permutations, drawn from
the discrete Weibull model at study. The log-likelihood function can assume
one of the two following expressions:

ℓ1(c, β; 1, 2, 3) = 3 log c+(β−1)(log 2+log 3)+2 log(1−c)+log(1−c2β−1) (15)

if m > 3, or

ℓ2(c, β; 1, 2, 3) = 2 log c+ (β − 1) log 2 + 2 log(1− c) + log(1− c2β−1) (16)

if m = 3.
It can be shown that the function ℓ admits an upper limit (ℓsup = −3.312405)

for (c, β) tending to (ĉML∗, β̂ML∗) = (0.3058, 1.8546) from the region corre-
sponding to ℓ2, i.e., ℓsup = limc→ĉML∗,β→β̂ML∗

ℓ2, with c and β such that

m(c, β) = 3. The point (ĉML∗, β̂ML∗) lies on the dashed curve of Figure 2a,

which is the set of discontinuity points for ℓ described before. (ĉML∗, β̂ML∗)
can be considered an extension of the maximum likelihood estimates, since
they satisfy the condition

lim
(c,β)→(ĉML∗,β̂ML∗)|m(c,β)=xmax

L(c, β;x1, . . . , xn) = sup
(c,β)

L(c, β;x1, . . . , xn)

Large-sample confidence intervals (13) for c and β cannot be built because the

(observed) Fisher information matrix (14) cannot be computed in (ĉML∗, β̂ML∗)
(the log-likelihood is not continuous here).

Example 2: MLE lying on the boundary Let us suppose we want to
derive the MLEs of c and β based on the i.i.d. sample of size n = 10 xxx =
(1, 1, 2, 2, 2, 2, 3, 3, 3, 4) (or any of its possible permutations) drawn from the

discrete Weibull model at study. The MLEs are ĉML = 0.2216039 and β̂ML =
2.0869723 and the corresponding value of the log-likelihood is −12.82967. The

corresponding value of m = ⌊ĉ
−1/(β̂ML−1)
ML ⌋ is equal to 4 = xmax. Thus, the

point whose coordinates are the MLEs lies on the boundary between the fea-
sible and the non-feasible region, see Figure (2b). For this reason, as in the
previous example, large-sample confidence intervals (13) for c and β cannot be
built because the (observed) Fisher information matrix (14) cannot be com-

puted in (ĉML, β̂ML).

2.2 Method of proportion

Through this method (see, for example, Khan, Khalique, and Abouammoh
1989), the unknown parameters c and β of the discrete Weibull model are
estimated by equating the first two probabilities P (X = 1) and P (X = 2)
to the corresponding sample rates of 1s and 2s. Suppose that the sample
contains at least a 1 and at least a 2. Letting p̂1 =

∑n
i=1 1xi=1/n and p̂2 =
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Fig. 2: MLEs and feasible/non-feasible parameter regions for two samples from
a discrete Weibull rv: xxx = (1, 2, 3) (left) and xxx = (1, 1, 2, 2, 2, 2, 3, 3, 3, 4) (right)

∑n
i=1 1xi=2/n be the proportions of 1s and 2s in the sample, respectively,

we can derive the expression of the estimates for c and β by the method of
proportion as

ĉP = p̂1 (17)

β̂P = 1 + log

[

p̂2
p̂1(1− p̂1)

]

/ log(2) (18)

being P (X = 2) = c2β−1(1 − c). Though being very straightforward and
providing an analytical expression for the estimates, the method of proportion
exhibits however an intrinsic weakness since it automatically discards plenty of
information contained in the sample, making use only of the sample rates of 1s
and 2s. Moreover, it can yield ‘inconsistent’ estimates for β, i.e., values smaller
than zero, whereas its natural parameter space is R

+
0 . Inconsistent estimates

thus occur if and only if

1 + log

[

p̂2
p̂1(1− p̂1)

]

/ log(2) < 0 ⇔ p̂2 <
p̂1(1− p̂1)

2
.

2.3 Least-squares method

This method exploits the expression of the failure rate function for the discrete
Weibull distribution given by (3). Making the logarithm of the two sides in
the expression (3) of the hazard rate function we get

log r = log c+ (β − 1) logx (19)

that can be rewritten as a linear model

z = a+ bw (20)
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letting z = log r, w = log x, a = log c, b = β − 1. Now, for each sample
observation xi, i = 1 . . . , n, we can estimate the corresponding hazard rate
value ri = r(xi) as the ratio between the sample frequency of values equal
to xi and the sample frequency of values equal to or greater than xi, r̂i =
r̂(xi) =

∑n
j=1 1xj=xi

/
∑n

j=1 1xj≥xi
, which is a number between 0 and 1 (equal

to zero for all the integer values x not present in the sample; equal to 1 for
xmax = max {xi, i = 1, . . . , n}, see also Bracquemond and Gaudoin (2002)).
The estimates of the parameters a and b in the linear model (19), with z
replaced by ẑ = log r̂, can be derived by the least-squares method and are
denoted as â and b̂,

b̂ = cov(w, ẑ)/var(w) â = ˆ̄z − b̂w̄ (21)

and then the parameter estimates ĉLS and β̂LS of the discrete Weibull rv can
be obtained as

ĉLS = exp(â) β̂LS = b̂+ 1 (22)

A preliminary simulation study has shown that this method often produces
highly biased estimators; a possible remedy is to compute the estimates of
the linear model parameters a and b ignoring the sample values xi equal to
xmax, to which corresponds a value of the sample hazard rate equal to 1. This
modification seems to empirically diminish the absolute value of the bias of
both estimates ĉLS and β̂LS . We will denote these new estimators as ĉMLS

and β̂MLS , MLS standing for “Modified Least-Squares”.
Example The following sample is drawn from a discrete Weibull rv with

c = 0.2 and β = 0.5: xxx = (1, 1, 1, 1, 2, 2, 2, 2, 5, 6, 7, 8, 9, 12, 15, 16, 30). The

least-squares method provides the estimates ĉLS = 0.1594, β̂LS = 1.2187; the
estimate of β is far greater than the true value 0.5. This can explained, apart
from sampling variability considerations, as follows: when β is between 0 and
1, the support of the discrete Weibull rv is the whole N

+, and the closer is
β to 0, the larger is the probability of large integers; for the given choice of
parameters, there is a probability about 20% of values greater than 20. For
such large values, the theoretical hazard rate function r is however very small
(see Eq.(3)), but the corresponding value of the sample hazard rate function r̂
may be moderately high (for the sample at hand, r̂(16) = 0.5); thus, the largest
values in a sample have a sort of “leverage effect” in the linear model (20),

leading to a positive value for b̂ and thus a value larger than 1 for β̂, as for
the sample here considered (over-estimate). This bad behaviour seems liable
to be mitigated only by increasing the sample size. More accurate details will
be provided in Section 3, devoted to a simulation study.

2.4 An illustrative example

Let consider the sample of size n = 20 drawn from the discrete Weibull rv
with parameters c = 0.1 and β = 1.5, whose frequency distribution is given by
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xi 1 2 3 4 5 6 7 9
Oi 1 2 2 8 2 3 1 1

where Oi denotes the observed frequency of value xi. The method of proportion
can be applied to this sample and yields the estimates ĉP = 1/20 = 0.05 and

β̂P = 1+ log

[

1/10

1/20(19/20)

]

/ log(2) = 2.074. As for the least-squares method,

the values of the sample hazard rates for each distinct observed value and the
transformed values wi and zi are reported below.

xi 1 2 3 4 5 6 7 9
r̂i 0.05 0.1053 0.1176 0.5333 0.2857 0.6 0.5 1
wi 0 0.6931 1.0986 1.3863 1.6094 1.7918 1.9459 2.1972
ẑi -2.9957 -2.2509 -2.1405 -0.6287 -1.2528 -0.5108 -0.6931 0

It is then easy to calculate the intermediate estimates

b̂ = cov(w, ẑ)/var(w) = 1.4322 â = ˆ̄z − b̂w̄ = −3.0398 (23)

and finally ĉLS = 0.0478 and β̂LS = 2.4322. The modification of the least-
squares method provides similar results: ĉMLS = 0.0466 and β̂MLS = 2.4562.
The maximum likelihood method yields the estimates ĉML = 0.0497 and
β̂ML = 2.3034, but here raises some difficulty since it is not possible to build
the large sample confidence intervals for c and β, as described in subsection
2.1. Note that all the point estimates for c are smaller than the true value
of c, and all the point estimates for β are greater than the true value of β.
However, the four methods provide very similar estimates for each of the two
parameters.

3 Simulation study

Here, we describe a Monte Carlo simulation study we performed to assess
the properties of the estimators presented in the previous section under dif-
ferent experimental conditions. A similar comparative study was carried out
in Barbiero (2013) for comparing estimators for the type III discrete Weibull
distribution.

3.1 Simulation design

The Monte Carlo simulation study comprises a number of artificial settings
obtained by combining different values of the two distribution parameters c
and β and sample size n. In greater detail, we considered the following val-
ues for c: 0.05, 0.1, 0.2, 0.3; for β: 0.5, 0.75, 1, 1.25, 1.5; and for the sample size
n: 20, 50, 100. With regard to c, values larger than 0.3 were not taken into
consideration since they would imply a 1-probability too much high for prac-
tical cases. As for β, we considered values either smaller than or equal to 1,
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which provide a decreasing or constant hazard rate function and an unbounded
support (β = 1 is a particular case, since for this value the discrete Weibull
distribution degenerates into a geometric); or greater than 1, which provide
an increasing hazard rate function and a bounded support. With regard to the
sample size, we did not consider values smaller than 20, as they would have
produced problems with some estimators and made the comparison among
different estimators more difficult and the presentation of overall results less
readable.

N = 5, 000 samples of size n (n = 20, 50, 100) were simulated for each of the
5× 4 = 20 combinations of parameter values. For each sample, the parameter
estimates were computed according to each of the methods presented in the
previous section (abbreviated as ML, P, LS, MLS) and asymptotic 95% confi-
dence intervals based on large-sample theory were built for both parameters.

The MC bias, i.e. the value bias = 1
N

∑N
i=1(θ̂i − θ) =

¯̂
θ − θ, and the stan-

dard error, i.e., the value SE =

√

1
N

∑N
i=1 (θ̂i −

¯̂
θ)2 –with θ = c, β– of each

point estimator θ̂i were computed over all the 5, 000 random samples, as well
as the actual coverage rate and the average length for the above mentioned
confidence intervals.

The simulation study has been implemented in the programming environ-
ment R (R Development Core Team 2016) and the routines related to the
discrete Weibull model (calculating the probability mass function, the cumu-
lative distribution function, the hazard rate function, the quantile function,
and implementing pseudo-random generation and sample estimation) will be
made freely available through the package DiscreteWeibull (Barbiero 2015),
which already implements types I and III discrete Weibull distributions.

3.2 Simulation results

The results of the simulation study are reported in Tables 1–3 (estimators of
the first parameter c) and 4–6 (estimators of the second parameter β).

Please note that, as revealed in advance, the method of proportion for
the point estimation of c and β cannot be applied for each possible sample,
since it requires the presence in the sample of at least a 1 and a 2. Similarly,
the large-sample confidence intervals for the two parameters based on the
maximum likelihood estimates and Fisher’s information matrix are not always
derivable (recall the examples of Section 2). The rate of “non-feasible” samples
for the two inferential techniques clearly depend upon the combination of
parameter values and the sample size. The summary indexes (bias, standard
error, coverage rate and average length) are clearly computed and averaged
only on the samples where they can be applied.

Looking at the results one can note the following points:

– the method of proportion produces an estimator ĉP whose bias is non-
negligible for small sample size and low values of c; whereas for n = 50, 100,
the bias is never greater than .004 under each scenario. As to β̂P , its bias
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is relevant especially for low values of c and β (and n = 20); whereas for
larger values of c and β, it becomes negligible even for small sample size.
The maximum likelihood method produce a nearly unbiased estimator of
c (a negative bias appears only for large values of c), independently from

the value of β; the bias of β̂ML is non-negligible for small sample size and
increases in absolute value increasing c (keeping fixed β) or increasing β
(keeping fixed c). The least-squares methods yield negatively biased esti-
mators of c (the bias in absolute value decreases increasing β for a fixed c);
the modified version significantly reduces the absolute bias, especially for
small values of n. It should be noted that for some combinations of c and
β the behavior of ĉLS (and ĉMLS) is quite odd, since its bias in absolute
value tends to increase with n. For example, for c = 0.1 and β = 0.5, the
bias — moving n from 20 to 50 and 100 — passes from −0.028 (−0.019)

to −0.047 (−0.042) and −0.050 (−0.046). The bias of the estimator β̂LS

is dramatically high, especially for small values β, and makes it practi-
cally unusable; however, again, the modified version of the method seem to
yield some benefit, lowering the magnitude of the bias. Such an unexpected
behavior can be justified recalling the arguments of section 2.3.

– as to the standard error, among the estimators of c, the one yielded by
the method of proportion is the most variable, under each scenario and for
each sample size examined. The gap does not seem to reduce moving to the
largest sample size. The standard error of all the estimators of c increases
in absolute value with c and is almost independent from the value of β.
As to the estimators of β, again, the method of proportion shows the
largest standard error under each possible scenario and for each sample
size examined. The least-squares method and its modification overcome
the maximum likelihood method for most of the cases, but this advantage
is paid in terms of a larger absolute bias and vanishes for n = 100 and
for small values of c and β. For a given sample size n, the standard error
of the ML and LS (MLS) estimators increases with β keeping c fixed, and
slightly increases with c keeping β fixed. The behavior of the standard
error of β̂P is quite singular and opposite to that of its competitors: for the
largest sample size examined here, it decreases with β keeping c fixed, and
it decreases with c keeping β fixed. It can be easily explained if we recall
that the method of proportion just exploits the information contained in
the sample units equal to 1 or 2, and the fraction of these units increases
with both c and β, thus making the estimator more precise.

– the modification to the least-squares method on the one hand seems to re-
duce the high value of absolute bias that characterizes the original couple
of estimators, but, on the other hand, increases the standard error. Over-
all, the least-squares method and its modification, despite the fact they
are easily applicable to every possible sample, both need to be properly
adjusted in order to make the bias less significant.

– overall, the maximum likelihood method is the most reliable method. In
particular, it is highly reliable in estimating β, whereas the other three
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methods often produce a non-negligible bias for it. In some scenarios, how-
ever, the performances of the ML and LS (MLS) estimators is not so dif-
ferent from each other. In this sense, figure 3, which displays the Monte
Carlo distributions of the estimators for c and β when c = 0.2, β = 1.25
and n = 50, is quite suggestive. At first glance, it shows that in this sce-
nario the estimators derived by the method of proportion (especially the
estimator for β) are more variable than those derived by the other three
methods, whose performance is instead quite similar.

– the confidence interval for c hardly achieves the nominal coverage even
when the sample size is high (n = 100). As a general trend, its performance
gets better for larger values of c, as one could expect, since the distribution
of ĉML resembles normality better when c approaches 0.5. In fact, the real
coverage of the confidence interval for c is quite smaller than the nominal
level if c itself is small (say, 0.05, 0.1), whereas for larger values (0.2, 0.3),
the actual coverage tends to get closer. When c = 0.05, 0.1, increasing the
value of β reduces the coverage rate; whereas, when c = 0.2, 0.3, increasing
the value of β increases the coverage rate.

– the confidence interval for β, on the contrary, always has a coverage rate
close to the nominal one, even for smaller sample size, but is also little
precise. Some variability in the coverage rate is observed for larger values of
c, varying the value of β: increasing β there is a tendency to over-coverage,
decreasing β there is a tendency to under-coverage. On the contrary, for
small values of c, the coverage rate is very close to 95% independently from
the value of β.

Despite complexity of computation, MLEs (of c and β) are overall the best
estimators in terms of statistical performance; LS, MLS, and P estimators
have the advantage of having an analytical expression, but the latter often
suffer from large variability (especially β̂P ), whereas LS and MLS are often
significantly biased. Least-squares estimators have however a much closer per-
formance to MLE and may be susceptible to possible enhancement. Results
are somewhat not surprising, especially if compared to analogous studies of
other discrete models (see, for example, Barbiero 2013; Barbiero 2016).

4 Application

In this section, we apply the inferential techniques described so far to two real
datasets taken from the literature.

4.1 Number of accesses between disk failures

In the first dataset, considered in Bebbington and Lai (1998), the observed
number of trials between errors in read-write error testing of a certain com-
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Table 1: Simulation results for the estimators of parameter c, n = 20. Leg-
enda: SE=standard error, P=method of proportion, ML=maximum likelihood
method, LS=least-squares method, MLS=modified least-squares method,
CI=confidence interval based on ML estimates and Fisher information ma-
trix, rate=actual coverage rate, ave l=average length

c β bias(ĉ) SE(ĉ) CI(c)
P ML LS MLS P ML LS MLS rate ave l

0.05 0.5 0.028 0.000 -0.010 -0.004 0.038 0.026 0.020 0.022 0.877 0.094
0.05 0.75 0.028 0.000 -0.008 -0.001 0.039 0.027 0.022 0.024 0.871 0.101
0.05 1 0.028 0.000 -0.004 0.003 0.039 0.028 0.024 0.027 0.867 0.100
0.05 1.25 0.028 0.000 0.000 0.008 0.039 0.029 0.026 0.030 0.863 0.102
0.05 1.5 0.028 0.000 0.005 0.013 0.038 0.029 0.029 0.032 0.862 0.103
0.1 0.5 0.013 -0.002 -0.028 -0.019 0.058 0.043 0.035 0.038 0.892 0.161
0.1 0.75 0.013 -0.001 -0.021 -0.011 0.059 0.045 0.038 0.042 0.888 0.167
0.1 1 0.014 -0.001 -0.013 -0.003 0.059 0.046 0.041 0.044 0.887 0.171
0.1 1.25 0.014 -0.001 -0.005 0.005 0.059 0.047 0.043 0.047 0.884 0.173
0.1 1.5 0.014 -0.001 0.001 0.011 0.060 0.048 0.045 0.050 0.884 0.175
0.2 0.5 0.000 -0.005 -0.049 -0.034 0.086 0.069 0.062 0.066 0.905 0.261
0.2 0.75 0.002 -0.004 -0.035 -0.020 0.087 0.070 0.064 0.068 0.905 0.267
0.2 1 0.002 -0.004 -0.021 -0.007 0.087 0.072 0.066 0.070 0.906 0.271
0.2 1.25 0.003 -0.005 -0.010 0.002 0.088 0.073 0.068 0.072 0.907 0.275
0.2 1.5 0.003 -0.006 -0.002 0.008 0.087 0.073 0.070 0.074 0.931 0.284
0.3 0.5 0.000 -0.007 -0.055 -0.035 0.101 0.087 0.083 0.087 0.910 0.332
0.3 0.75 0.001 -0.007 -0.037 -0.019 0.101 0.089 0.084 0.088 0.909 0.337
0.3 1 0.001 -0.007 -0.022 -0.006 0.101 0.090 0.085 0.089 0.913 0.341
0.3 1.25 0.002 -0.008 -0.011 0.001 0.102 0.090 0.086 0.090 0.927 0.347
0.3 1.5 0.002 -0.008 -0.003 0.005 0.102 0.089 0.087 0.091 0.948 0.358

Table 2: Simulation results for the estimators of parameter c, n = 50

c β bias(ĉ) SE(ĉ) CI(c)
P ML LS MLS P ML LS MLS rate ave l

0.05 0.5 0.004 0.000 -0.027 -0.025 0.028 0.016 0.009 0.010 0.918 0.061
0.05 0.75 0.004 0.000 -0.022 -0.019 0.028 0.017 0.011 0.012 0.917 0.064
0.05 1 0.004 0.000 -0.016 -0.012 0.028 0.017 0.013 0.014 0.917 0.067
0.05 1.25 0.004 0.000 -0.009 -0.005 0.028 0.018 0.015 0.016 0.914 0.068
0.05 1.5 0.004 0.000 -0.004 0.000 0.028 0.018 0.016 0.017 0.916 0.069
0.1 0.5 0.000 -0.001 -0.047 -0.042 0.042 0.027 0.019 0.020 0.923 0.103
0.1 0.75 0.000 -0.001 -0.034 -0.028 0.042 0.028 0.022 0.023 0.923 0.107
0.1 1 0.000 -0.001 -0.021 -0.015 0.042 0.028 0.024 0.025 0.924 0.110
0.1 1.25 0.000 -0.001 -0.012 -0.006 0.042 0.029 0.026 0.027 0.922 0.112
0.1 1.5 0.000 -0.001 -0.005 0.000 0.042 0.029 0.027 0.029 0.921 0.113
0.2 0.5 0.000 -0.003 -0.063 -0.052 0.056 0.043 0.036 0.038 0.930 0.167
0.2 0.75 0.000 -0.003 -0.039 -0.029 0.056 0.044 0.039 0.041 0.930 0.171
0.2 1 0.000 -0.003 -0.022 -0.013 0.056 0.045 0.041 0.043 0.928 0.174
0.2 1.25 0.000 -0.003 -0.011 -0.004 0.056 0.045 0.043 0.044 0.930 0.176
0.2 1.5 0.000 -0.003 -0.004 0.001 0.056 0.046 0.044 0.046 0.940 0.177
0.3 0.5 0.000 -0.004 -0.062 -0.047 0.063 0.054 0.050 0.052 0.937 0.212
0.3 0.75 0.000 -0.004 -0.036 -0.024 0.063 0.055 0.051 0.053 0.935 0.216
0.3 1 0.000 -0.003 -0.019 -0.009 0.063 0.056 0.052 0.054 0.937 0.218
0.3 1.25 0.000 -0.004 -0.009 -0.002 0.063 0.056 0.054 0.055 0.938 0.219
0.3 1.5 0.000 -0.005 -0.003 0.001 0.063 0.056 0.055 0.057 0.953 0.223
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Table 3: Simulation results for the estimators of parameter c, n = 100

c β bias(ĉ) SE(ĉ) CI(c)
P ML LS MLS P ML LS MLS rate ave l

0.05 0.5 0.001 0.000 -0.032 -0.030 0.021 0.011 0.006 0.006 0.933 0.044
0.05 0.75 0.001 0.000 -0.024 -0.022 0.021 0.012 0.008 0.008 0.929 0.046
0.05 1 0.001 0.000 -0.016 -0.013 0.021 0.012 0.009 0.010 0.928 0.048
0.05 1.25 0.001 0.000 -0.009 -0.006 0.021 0.013 0.011 0.011 0.928 0.049
0.05 1.5 0.001 0.000 -0.004 -0.002 0.021 0.013 0.012 0.012 0.928 0.050
0.1 0.5 0.000 0.000 -0.050 -0.046 0.030 0.019 0.013 0.014 0.935 0.073
0.1 0.75 0.000 0.000 -0.032 -0.028 0.030 0.020 0.016 0.016 0.934 0.077
0.1 1 0.000 0.000 -0.018 -0.014 0.030 0.020 0.018 0.018 0.935 0.079
0.1 1.25 0.000 0.000 -0.009 -0.006 0.030 0.021 0.019 0.020 0.9336 0.080
0.1 1.5 0.000 0.000 -0.004 -0.001 0.030 0.021 0.020 0.021 0.932 0.081
0.2 0.5 0.000 -0.001 -0.059 -0.051 0.040 0.031 0.026 0.027 0.937 0.119
0.2 0.75 0.000 -0.001 -0.033 -0.025 0.040 0.032 0.028 0.029 0.935 0.122
0.2 1 0.000 -0.001 -0.017 -0.011 0.040 0.032 0.030 0.031 0.936 0.124
0.2 1.25 0.000 -0.001 -0.007 -0.003 0.040 0.032 0.031 0.032 0.938 0.125
0.2 1.5 0.000 -0.001 -0.002 0.000 0.040 0.033 0.032 0.033 0.938 0.125
0.3 0.5 0.001 -0.001 -0.055 -0.044 0.047 0.039 0.036 0.037 0.941 0.150
0.3 0.75 0.001 -0.001 -0.029 -0.020 0.047 0.040 0.037 0.038 0.941 0.153
0.3 1 0.001 -0.001 -0.014 -0.007 0.047 0.040 0.039 0.039 0.942 0.155
0.3 1.25 0.001 -0.001 -0.005 -0.001 0.047 0.040 0.039 0.040 0.943 0.155
0.3 1.5 0.001 -0.002 -0.001 0.001 0.047 0.041 0.040 0.041 0.954 0.157

Table 4: Simulation results for the estimators of parameter β, n = 20

β c bias(β̂) SE(β̂) CI(β)
P ML LS MLS P ML LS MLS rate ave l

0.5 0.05 0.445 0.044 0.836 0.782 0.791 0.131 0.088 0.088 0.950 0.486
0.5 0.1 0.329 0.051 0.815 0.749 0.961 0.149 0.110 0.114 0.950 0.554
0.5 0.2 0.109 0.066 0.742 0.650 1.033 0.179 0.125 0.137 0.946 0.664
0.5 0.3 -0.030 0.081 0.672 0.556 0.928 0.207 0.130 0.153 0.941 0.759

0.75 0.05 0.243 0.059 0.693 0.619 0.813 0.181 0.127 0.126 0.951 0.668
0.75 0.1 0.189 0.066 0.652 0.568 0.992 0.198 0.147 0.153 0.950 0.733
0.75 0.2 0.039 0.079 0.565 0.463 1.045 0.224 0.161 0.179 0.945 0.835
0.75 0.3 -0.050 0.091 0.494 0.375 0.905 0.249 0.169 0.200 0.940 0.921

1 0.05 0.075 0.074 0.547 0.459 0.836 0.228 0.164 0.165 0.950 0.842
1 0.1 0.075 0.080 0.496 0.403 1.023 0.243 0.181 0.191 0.948 0.898
1 0.2 0.016 0.090 0.410 0.307 1.036 0.265 0.199 0.224 0.945 0.983
1 0.3 -0.035 0.099 0.347 0.234 0.859 0.285 0.208 0.250 0.950 1.049

1.25 0.05 -0.088 0.089 0.407 0.309 0.868 0.274 0.200 0.205 0.950 1.006
1.25 0.1 -0.010 0.093 0.357 0.261 1.045 0.284 0.216 0.232 0.947 1.050
1.25 0.2 0.006 0.101 0.284 0.187 1.027 0.301 0.235 0.268 0.953 1.109
1.25 0.3 -0.030 0.111 0.233 0.133 0.821 0.313 0.249 0.302 0.974 1.144
1.5 0.05 -0.220 0.103 0.276 0.175 0.903 0.317 0.236 0.248 0.949 1.161
1.5 0.1 -0.073 0.107 0.242 0.149 1.052 0.324 0.253 0.278 0.951 1.184
1.5 0.2 0.010 0.114 0.189 0.106 0.994 0.327 0.272 0.315 0.974 1.199
1.5 0.3 -0.001 0.107 0.150 0.071 0.761 0.301 0.286 0.351 0.983 1.225
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Table 5: Simulation results for the estimators of parameter β, n = 50

β c bias(β̂) SE(β̂) CI(β)
P ML LS MLS P ML LS MLS rate ave l

0.5 0.05 0.200 0.018 0.786 0.748 1.068 0.077 0.074 0.074 0.949 0.294
0.5 0.1 0.024 0.022 0.702 0.653 1.049 0.088 0.079 0.080 0.948 0.335
0.5 0.2 -0.064 0.028 0.571 0.505 0.791 0.106 0.080 0.083 0.945 0.402
0.5 0.3 -0.061 0.034 0.487 0.407 0.629 0.123 0.085 0.091 0.940 0.462

0.75 0.05 0.094 0.025 0.605 0.555 1.095 0.106 0.097 0.097 0.950 0.405
0.75 0.1 0.005 0.028 0.503 0.446 1.038 0.117 0.101 0.102 0.949 0.444
0.75 0.2 -0.047 0.033 0.383 0.316 0.742 0.134 0.105 0.110 0.947 0.506
0.75 0.3 -0.043 0.038 0.316 0.242 0.571 0.148 0.111 0.121 0.944 0.559

1 0.05 0.017 0.031 0.436 0.380 1.108 0.134 0.119 0.119 0.951 0.510
1 0.1 0.002 0.033 0.342 0.284 1.017 0.143 0.122 0.125 0.949 0.545
1 0.2 -0.033 0.038 0.249 0.187 0.685 0.158 0.131 0.139 0.947 0.597
1 0.3 -0.021 0.041 0.197 0.133 0.519 0.169 0.137 0.151 0.943 0.638

1.25 0.05 -0.036 0.037 0.296 0.239 1.110 0.160 0.140 0.142 0.951 0.610
1.25 0.1 0.010 0.039 0.225 0.170 0.985 0.167 0.146 0.152 0.950 0.637
1.25 0.2 -0.011 0.042 0.156 0.103 0.638 0.178 0.155 0.167 0.947 0.674
1.25 0.3 -0.008 0.046 0.118 0.067 0.476 0.187 0.162 0.179 0.954 0.697
1.5 0.05 -0.060 0.042 0.189 0.135 1.109 0.185 0.162 0.167 0.950 0.703
1.5 0.1 0.030 0.045 0.140 0.092 0.945 0.189 0.170 0.178 0.949 0.719
1.5 0.2 0.003 0.049 0.094 0.053 0.598 0.197 0.178 0.191 0.965 0.733
1.5 0.3 0.000 0.053 0.069 0.031 0.440 0.192 0.184 0.206 0.971 0.735

Table 6: Simulation results for the estimators of parameter β, n = 100

β c bias(β̂) SE(β̂) CI(β)
P ML LS MLS P ML LS MLS rate ave l

0.5 0.05 -0.014 0.009 0.711 0.683 1.076 0.053 0.058 0.058 0.949 0.205
0.5 0.1 -0.052 0.010 0.586 0.551 0.796 0.060 0.059 0.059 0.949 0.233
0.5 0.2 -0.031 0.013 0.439 0.393 0.526 0.073 0.058 0.060 0.947 0.279
0.5 0.3 -0.028 0.016 0.361 0.307 0.420 0.084 0.062 0.065 0.947 0.320

0.75 0.05 -0.027 0.012 0.497 0.462 1.064 0.073 0.073 0.073 0.949 0.282
0.75 0.1 -0.032 0.013 0.375 0.336 0.749 0.080 0.073 0.073 0.950 0.309
0.75 0.2 -0.020 0.016 0.265 0.221 0.484 0.092 0.077 0.079 0.945 0.352
0.75 0.3 -0.021 0.018 0.212 0.165 0.385 0.101 0.082 0.086 0.945 0.388

1 0.05 -0.022 0.015 0.322 0.285 1.027 0.092 0.088 0.088 0.949 0.355
1 0.1 -0.012 0.016 0.232 0.195 0.701 0.098 0.090 0.091 0.950 0.379
1 0.2 -0.015 0.018 0.158 0.120 0.455 0.108 0.096 0.100 0.947 0.415
1 0.3 -0.013 0.020 0.122 0.084 0.358 0.116 0.102 0.107 0.943 0.443

1.25 0.05 -0.004 0.017 0.201 0.165 0.978 0.110 0.103 0.104 0.950 0.424
1.25 0.1 0.007 0.018 0.140 0.107 0.658 0.115 0.106 0.108 0.949 0.443
1.25 0.2 -0.006 0.020 0.092 0.061 0.429 0.122 0.113 0.118 0.946 0.469
1.25 0.3 -0.006 0.021 0.067 0.039 0.335 0.127 0.118 0.124 0.943 0.485
1.5 0.05 0.008 0.020 0.120 0.089 0.943 0.126 0.118 0.120 0.949 0.489
1.5 0.1 0.020 0.021 0.083 0.055 0.625 0.129 0.123 0.126 0.949 0.500
1.5 0.2 -0.001 0.022 0.051 0.029 0.405 0.134 0.130 0.135 0.945 0.509
1.5 0.3 -0.001 0.026 0.035 0.016 0.310 0.136 0.133 0.141 0.962 0.509
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Fig. 3: Monte Carlo distribution of estimators ĉ (left) and β̂ (right), when
c = 0.2, β = 1.25, n = 50. Please note that the y-scale in the two boxplots is
not the same.

puter hard disk are reported. The observed sample values are

5, 1, 1, 1, 3, 2, 4, 3, 2, 3, 1, 1, 1, 3, 1, 3, 1, 6, 4, 1, 9, 2, 6, 2, 1, 3, 1, 3,

1, 1, 10, 2, 7, 1, 7, 1, 1, 2, 1, 1, 6, 1, 2, 1, 4, 1, 1, 1, 3, 5, 1, 1, 1, 1, 5, 2,

4, 5, 1, 2, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 2, 2, 4, 6, 1, 3, 1, 1, 1

and their empirical distribution is

xi 1 2 3 4 5 6 7 9 10
Oi 43 13 11 5 5 4 2 1 1

On this sample, we can apply the inferential techniques described in Section
2. The maximum likelihood estimates are ĉML = 0.4725 and β̂ML = 0.8053.
The estimates derived by the method of proportion are ĉP = 0.5059 and β̂P =
0.2913. The least-squares method provides ĉLS = 0.4639 and β̂LS = 0.8846
and its modified version ĉMLS = 0.4708 and β̂MLS = 0.8384. The estimate
of the parameter c of the (hypothesized) underlying discrete Weibull distribu-
tion are quite close to each other. The estimates for the other parameter β
are quite similar for the maximum likelihood and least-squares methods, but
they are both quite different from the estimate by the method of proportion.
However, the four estimates for β being all smaller than 1, it descends that
the corresponding (estimated) support of the discrete model is unbounded and
the failure rate is estimated to be decreasing. Approximate 95% CIs for c and
β can be built separately as (0.3697, 0.5754) and (0.5416, 1.0691), respectively.

Figure 4 displays the relative frequency of the observed sample values along
with their theoretical probability.

In figure 5, the sample failure rate function is plotted (filled circles), for each
observed value x. Note that since the value 8 is not observed, the corresponding
sample failure rate is zero; the same happens for each integer value greater than
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Fig. 4: Empirical distribution of sample values for the first dataset and cor-
responding theoretical probabilities under the type II discrete Weibull model
with the two parameters set equal to their MLE.

xmax = 9. The estimated failure rate function (3) (computed according to the
Weibull model with parameters set equal to their least-squares estimates) is
superimposed (empty squares).
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Fig. 5: Sample and theoretical failure rate functions (represented by filled
circles and empty squares, respectively) for the first dataset under the type
II discrete Weibull model with the two parameters set to their least-squares
estimates.

We can then try to check if the discrete Weibull model (with its two pa-
rameters estimated through the maximum likelihood method) fits the data
adequately. For this aim, we resort to the chi-squared goodness-of-fit test, af-
ter having properly grouped some values in order to ensure that each value or
group of values has an expected frequency at least equal to 5. For this case, we
need to collapse into a unique class all the values equal to or greater than 5. The
observed and expected frequencies (the latter denoted by Ei) are then those re-
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Table 7: Observed vs. expected frequencies for the first dataset

xi 1 2 3 4 ≥ 5
observed frequency Oi 43 13 11 5 13
expected frequency Ei 40.17 18.51 10.04 5.87 10.41

ported in Table 7. The chi-squared statistic, given by χ2 =
∑h=5

i=1 (Oi−Ei)
2/Ei,

takes value 2.707. Now, under the hypothesized discrete model, the chi-square
statistic is asymptotically distributed as a chi square with h−2−1 = 2 degrees
of freedom. Then, the associated p-value is P (χ2

2 > 2.707) = 0.258. We can
accept the hypothesis the observed sample comes from a discrete Weibull type
II distribution with parameters c and β equal to the corresponding MLEs.

Now we can compare the type II discrete Weibull model with other alter-
native discrete models suggested in the literature for fitting reliability data.
The comparison can be carried out considering the log-likelihood function
computed on its MLEs, and then calculating, for example, the AIC (Akaike
Information Criterion) index, given by AIC = 2k− 2ℓ, where k is the number
of parameters of the model and ℓ denotes the log-likelihood function computed
plugging-in the MLEs of the parameters. Here, we will consider the geometric
(G) distribution as a competing stochastic model, whose pmf is

P (X = x) = p(1− p)x−1 x = 1, 2, . . . (24)

which is - as already pointed out - a particular case of the type II discrete
Weibull model; the type I discrete Weibull (W1) distribution (Nakagawa and
Osaki 1975), whose pmf is

P (X = x) = q(x−1)β − qx
β

x = 1, 2, . . . (25)

with 0 < q < 1 and β > 0; the discrete inverse Weibull (IW) distribution (Jazi,
Lai, and Alamatsaz 2010), with pmf

P (X = x) =

{

q x = 1

qx
−β

− q(x−1)−β

x = 2, 3, . . .
(26)

with 0 < q < 1 and β > 0; the zero-truncated Poisson-Lindley (ZTPL) distri-
bution (Ghitany, Al-Mutairi, and Nadarajah 2008):

P (X = x) =
θ2

θ2 + 3θ + 1

x+ θ + 2

(θ + 1)x
x = 1, 2, . . . (27)

with θ > 0; and, finally, the generalized binomial (GNB) distribution, with
pmf

P (X = x) =

{

1− b x = 1

ab(1− a)x−2 x = 2, 3, . . . ,
(28)

The MLE of the parameter of the geometric distribution is p̂G = n/
∑n

i=1 xi =
0.417. The MLEs of the parameters of the type I discrete Weibull distribu-
tion are q̂W1 = 0.516 and β̂W1 = 0.823. The MLEs of the parameters of
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Table 8: Values of the AIC index for the type II discrete Weibull model (W2)
and alternative discrete models for the first dataset

model W2 G W1 IW ZTPL GNB
AIC index 278.936 279.1109 278.1796 289.9503 280.7802 276.38

the discrete inverse Weibull distribution are q̂IW = 0.490 and β̂IW = 1.193.
The MLE of the parameter of the zero-truncated Poisson-Lindley distribution
is p̂ZTPL = 1.005. Finally, for the generalized negative binomial model, the
MLEs are âGNB = 0.355 and b̂GNB = 0.5. The values of the AIC index for the
alternative models listed above are reported in Table 8 and show that actually
the generalized negative binomial provides the best fit, followed by the type I
and type II discrete Weibull distributions.

4.2 Immunogold assay data

Cullen, Walsh, Nicholson, and Harris (1990) gave counts of sites with 1, 2,
3, 4 and 5 particles from immunogold assay data. The counts were 122, 50,
18, 4, 4. The MLEs of the parameters of the type II discrete Weibull model
are ĉML = 0.615 and β̂ML = 1.094. Note that β̂ML > 1, thus the distribution
is estimated to have an upper-bounded support (m = 173), although the
estimated cumulative probability of the maximum observed value (5) is very
close to 1 (≈ 0.996). The parameter estimates derived through the method of

proportion are ĉP = 0.616 and β̂P = 1.095, those derived through the least-
squares method are ĉLS = 0.615 and β̂LS = 1.105, and finally those provided
by the modified least-squares method are ĉMLS = 0.620 and β̂MLS = 1.058.
It is very interesting to note that the four estimates of c are almost identical;
similarly, the four estimates of β are very close to each other and slightly larger
than 1. Thus in this example, the four point estimators seem to converge
much more than for the first dataset analyzed in the previous subsection.
Approximate 95% CIs for c and β can be built separately as (0.5496, 0.6814)
and (0.9149, 1.2732), respectively.

We are interested in testing the null hypothesis H0: “Number of attached
particles is the type II dicrete Weibull random variable” versus the alternative
hypothesisH1: “Number of attached particles is not the type II dicrete Weibull
random variable”. Plugging in the MLEs for c and β, we can compute the
expected theoretical frequencies and then, after merging the last two observed
values in order to exceed the 5 threshold, the chi-square statistic. The chi-
square statistic takes the value χ2 = 0.0123 and the p-value of the test is given
by P (χ2

4−2−1 ≥ 0.0123) = 0.912. It follows that the null hypothesis H0 cannot
be rejected; indeed, the large p-value and the close agreement between the
observed and expected frequencies (Table 9) suggest that the type II discrete
Weibull distribution provides very good fit.

Supposing the data has been generated by a type I discrete Weibull model
(with support given by the set of positive integers), we can derive the MLEs,
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Table 9: Observed vs. expected frequencies for the immunogold assay data

xi 1 2 3 4 (≥)5
observed frequency Oi 122 50 18 4 4
expected frequency Ei 121.9 50.0 17.8 5.8 2.5

Table 10: Sample and theoretical hazard function for the immunogold assay
data

xi 1 2 3 4 5
sample hazard rate r̂i 0.616 0.658 0.692 0.5 1

expected hazard rate r∗
i

0.615 0.657 0.682 0.701 0.716

q̂ = 0.384 and β̂ = 1.093, and again compute the value of the corresponding
χ2 statistic, which is 0.0264, with a p-value 0.871. The zero-truncated Poisson
Lindley distribution (Ghitany, Al-Mutairi, and Nadarajah 2008) (with the
MLE of its unique parameter p equal to 2.183) provides a p-value for the χ2

test equal to 0.511. In relative terms, computing the AIC, we have that the best
model is the zero-truncated Poisson Lindley distribution (AIC = 411.2441),
followed by the type II (412.6335) and type I (412.6813) discrete Weibull.

In Table 10, the values of the sample hazard rate function are reported
for each distinct observed value; the theoretical values, computed recalling the
formula (3) plugging in the MLEs into c and β for the type II discrete Weibull
model, are reported as well.

5 Final remarks

In this paper we considered the type II discrete Weibull distribution, built by
mimicking the hazard rate function of the analogous continuous model, and
presented four types of point estimators for its two parameters, derived using
the maximum likelihood method, the method of proportion, the least-squares
method, and a modification of the latter. The construction of large-sample
confidence intervals based on the maximum likelihood estimates and Fisher
information matrix was also considered. We first outlined the applicability
and properties of such estimators and secondly assessed and compared their
performance (in terms of bias and standard error; coverage rate and average
length) via intensive simulation experiments; both aspects were missing in the
literature.

The simulations led to identify the features of each estimator for differ-
ent combinations of values of the two parameters and different sample sizes.
Although there is not an overall ‘uniformly most efficient’ estimator for all
the experimental settings examined, however, as a general result, despite its
non-analytical form, the maximum likelihood estimator is the most reason-
able choice; the two types of least-squares-based estimators need some further
modification, which has to be explored, in order to reduce their bias; the
method of proportion, though providing estimates with an analytical expres-
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sion, however discards most of the information contained in the sample and
thus reveals nothing much reliable. Attention should be paid when dealing with
small samples, where the method of proportion may fail to produce estimates
and large-sample confidence intervals may be not computable.

Two applications to real data prove that the discrete Weibull model can
fit data even better than more popular distributions; the implementation of
the model and the related inferential techniques have been easily worked out
in the R programming environment and will be made available through a new
version of the DiscreteWeibull package (Barbiero 2015).

Thus, despite the criticality highlighted in this paper, the discrete Weibull
model has been shown to be a competitive stochastic model for count data
and this may encourage its use and the further development of ad-hoc infer-
ential techniques. In this work, we focused on estimation under the classical
frequentist framework, but one can also think of exploring Bayesian estima-
tion, whose formulation would require a specification of prior distributions for
the two parameters and whose solution would possibly require the use of typ-
ical Bayesian tools, such as MCMC. Since frequentist estimation has already
risen some issues, we expect that Bayesian estimation, besides requiring a to-
tally different approach, would be even more challenging, and thus the subject
would probably deserve a work of its own.
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