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Summary

Peptidoglycan is the predominant stress-bearing

structure in the cell envelope of most bacteria, and

also a potent stimulator of the eukaryotic immune sys-

tem. Obligate intracellular bacteria replicate exclu-

sively within the interior of living cells, an osmotically

protected niche. Under these conditions peptidogly-

can is not necessarily needed to maintain the integrity

of the bacterial cell. Moreover, the presence of peptido-

glycan puts bacteria at risk of detection and destruc-

tion by host peptidoglycan recognition factors and

downstream effectors. This has resulted in a selective

pressure and opportunity to reduce the levels of pepti-

doglycan. In this review we have analysed the occur-

rence of genes involved in peptidoglycan metabolism

across the major obligate intracellular bacterial spe-

cies. From this comparative analysis, we have identi-

fied a group of predicted ‘peptidoglycan-intermediate’

organisms that includes the Chlamydiae, Orientia tsu-

tsugamushi, Wolbachia and Anaplasma marginale.

This grouping is likely to reflect biological differences

in their infection cycle compared with peptidoglycan-

negative obligate intracellular bacteria such as Ehrli-

chia and Anaplasma phagocytophilum, as well as obli-

gate intracellular bacteria with classical peptidoglycan

such as Coxiella, Buchnera and members of the Rick-

ettsia genus. The signature gene set of the

peptidoglycan-intermediate group reveals insights

into minimal enzymatic requirements for building a

peptidoglycan-like sacculus and/or division septum.

Introduction

Peptidoglycan structure and function

Peptidoglycan (also called murein) is one of the largest

macromolecules in a bacterial cell, typically forming a

mesh-like structure called the peptidoglycan sacculus that

encases the cytoplasmic membrane (Vollmer et al., 2008a;

Weidel and Pelzer, 1964). In Gram-negative (or, more pre-

cisely, diderm) bacteria, this peptidoglycan sacculus resides

in the periplasm between the cytoplasmic and outer mem-

brane, whilst in Gram-positive (monoderm) species the pep-

tidoglycan layer is thicker and connected with other major

cell wall polymers such as wall teichoic acid, capsular poly-

saccharide and the S-layer (Weidenmaier and Peschel,

2008; Silhavy et al., 2010). Peptidoglycan is structurally dis-

tinct from cell wall components in archaea and single celled

eukaryotes (with the exception of certain plant and algae

chloroplasts), and has no homolog in multicellular eukaryo-

tic organisms. Peptidoglycan has at least three major func-

tions. First, it enables the bacterial cell to sustain the high

turgor, which results from the difference between the high

osmolarity of the bacterial cytoplasm and the comparatively

low osmolarity of the external environment. Second, pepti-

doglycan maintains the shape of a bacterial cell. Third, it

provides rigidity to envelope-spanning surface structures

such as flagella and retractile pili that exert force and require

a solid support to push or pull against. The essentiality of

peptidoglycan for survival of bacteria in a hypoosmolar envi-

ronment along with its role in anchoring cell surface
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appendages that are often important virulence determi-

nants makes it an attractive antibiotic target, and multiple

classes of clinically successful antibiotics target various

aspects of peptidoglycan synthesis, for example beta-

lactams and glycopeptides (Silver, 2013).

Peptidoglycan is composed of polysaccharide chains

made up of alternating ß-1,4-linked N-acetylglucosamine

(GlcNAc) and N-acetylmuramic acid (MurNAc) residues

which are connected via short peptides (Fig. 1) (Weidel

and Pelzer, 1964; Vollmer et al., 2008a). These peptides

Fig. 1. Summary of
peptidoglycan recognition
proteins in invertebrates and
mammals. An overview of
peptidoglycan recognition
proteins in invertebrates and
mammals. Some proteins
degrade peptidoglycan (shown
in red) whilst others induce
downstream signalling
pathways (shown in blue).
Polymerised peptidoglycan is
shown, with fragments
recognised by different
PGRPs indicated by dotted
lines/boxes.
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contain D-amino acids such as D-alanine or D-

glutamate, as well as unusual non-proteinogenic amino

acids, such as meso-diaminopimelic acid (meso-DAP).

The length of individual glycan chains, the amino acid

sequence of the peptides and the structure of cross-

links are variable between species and may differ at dis-

tinct stages of growth in one species (Vollmer and

H€oltje, 2004; Vollmer, 2008; Vollmer and Seligman,

2010). Chemical modifications are found in the glycan

backbone or peptides, and these may have emerged in

response to selective pressure on peptidoglycan from

peptidoglycan-targeting enzymes or antibiotics (Vollmer

and Tomasz, 2002; Vollmer, 2008; Figueiredo et al.,

2012). Given the importance of a structurally intact sac-

culus on bacterial cell integrity, the polymerisation and

insertion of new peptidoglycan strands is a complex and

robustly regulated process (Typas et al., 2012; Pazos

et al., 2017) and this is particularly critical in the context

of bacterial cell division (Egan and Vollmer, 2013).

Immune responses to peptidoglycan

The innate immune response of vertebrates and inverte-

brates has evolved a repertoire of components to detect

and destroy invading bacteria. This is achieved through

recognition of characteristic non-self structures, called

pathogen associated molecular patterns (PAMPs). Pepti-

doglycan is an important PAMP, due to its presence in

virtually all bacteria and its almost complete absence in

higher eukaryotes. Specific fragments released from

peptidoglycan are recognised by various peptidoglycan

recognition proteins (Fig. 1 and Table 1) (Sukhithasri

et al., 2013; Neyen and Lemaitre, 2016). The sacculus

is hidden from the innate immune system by the pres-

ence of an outer membrane in intact diderm bacteria,

but soluble peptidoglycan turnover products can be

released from intact cells either directly into the sur-

rounding milieu or within outer membrane vesicles. Fur-

thermore, bacterial cells undergoing lysis release

peptidoglycan fragments into the extracellular environ-

ment. (Goodell and Schwarz, 1985; Uehara and Park,

2008; Schwechheimer et al., 2013). Some peptidoglycan

recognition proteins directly hydrolyse peptidoglycan

through their amidase or muramidase activity, whilst

others have no enzymatic activity but activate a down-

stream signaling pathway in response to binding pepti-

doglycan fragments which can then lead to immune cell

maturation or the release of proinflammatory cytokines

(Fig. 1) (Boneca, 2005; Chaput and Boneca, 2007).

Whilst the aim of this immune response is to clear the

bacterial infection, overstimulation of the inflammatory

response can lead to fatal conditions such as septic

shock (Calandra, 2001; Neyen and Lemaitre, 2016).

Peptidoglycan recognition proteins are located in multi-

ple organs and tissues throughout the body, and can be

located extracellularly, intracellularly or attached to the

surface of a host cell (Girardin and Philpott, 2004; Royet

and Dziarski, 2007; Dziarski and Gupta, 2010). This

ensures the detection of invading pathogens in almost

every possible location (Fig. 1 and Table 1).

Obligate intracellular bacteria

Bacterial species have evolved to exploit an enormous

diversity of environmental niches for their growth and

replication. One of the most specialised replicative

niches is the interior of a living eukaryotic cell. Some

bacterial pathogens adopt this niche at some point dur-

ing their lifecycle (facultative intracellular bacteria) whilst

others have become so adapted to this environment that

they have lost the ability to replicate in the absence of

their cellular host (obligate intracellular bacteria). These

intracellular bacteria typically replicate either free in the

eukaryotic cytoplasm, or within specialised vacuoles. It

is hypothesised that an early mutualistic adaptation

between bacteria and archaea led to the emergence of

modern mitochondria and chloroplasts (Bonen et al.,

1977; Kuntzel et al., 1981; Carvalho et al., 2015). The

major groups of obligate intracellular bacteria are the

phylogenetically distinct Chlamydiales and Rickettsiales

orders, as well as Coxiella, Buchnera and Mycobacte-

rium leprae (Fig. 2 and Table 2). Whilst most cause

human or animal disease, a small number (including

Wolbachia, Buchnera and Protochlamydia amoebophila)

are not known to cause disease and have a mutualistic

relationship with their eukaryotic hosts. A common fea-

ture of most diverse species of obligate intracellular bac-

teria is their significantly reduced genome (compared to

most free-living bacteria), which is a consequence of the

adaptation to the stable, intracellular environment and of

their parasitic lifestyle. An overview of representative

obligate intracellular bacteria, their pathogenesis and

their cellular lifestyles, is given in Table 2.

The unique lifecycle of obligate intracellular bacteria,

while shielding them from extracellular innate immune

surveillance, has resulted in particular selective pres-

sures on their peptidoglycan, especially with respect to

peptidoglycan-sampling immune surveillance mecha-

nisms (e.g., NOD1/2) located in the cytoplasm of host

cells (Chaput and Boneca, 2007). Their location within

the isotonic eukaryotic cell confers osmotic protection,

whilst their constant proximity to host cell immune

receptors means that they are under pressure to reduce

recognition of this key PAMP. In this review, we explore

the ability of obligate intracellular bacteria to assemble

the peptidoglycan transiently during the cell cycle, at
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reduced levels and/or to synthesize a chemically modi-

fied version of peptidoglycan.

The peptidoglycan of obligate intracellular bacteria

Chlamydiales

The Chlamydiales are a large and diverse order of bac-

teria that include both human and animal pathogens, as

well as non-pathogenic environmental species. The two

major human pathogens are C. trachomatis and

C. pneumoniae. However, some of the lesser-known so-

called ‘environmental’ chlamydia (sometimes referred to

as ‘chlamydia-like’ bacteria), which live inside amoeba,

have recently been described as putative human patho-

gens, including Waddlia chondrophila and possibly Sim-

kania negevensis (Ammerdorffer et al., 2017; Vouga

et al., 2017). Chlamydiae are tropic for endothelial, epi-

thelial and monocyte/macrophage cells and even

primitive macrophage-like cells such as amoebae

(Kebbi-Beghdadi and Greub, 2014). They secrete effec-

tor proteins through a type 3 secretion system to trigger

dramatic rearrangement of the host cytoskeleton result-

ing in engulfment of the bacterium (Nans et al., 2015).

Once phagocytosed by the host cell, Chlamydiae

remodel the phagocytic vacuole, resulting in a special-

ised membrane-surrounded organelle, called inclusion,

that provides a protected environment for replication

(Nans et al., 2015). The chlamydial cell type that is

engulfed is the dispersal form known as the elementary

body, a non-replicative and poorly metabolically active

cell type. Upon uptake, the elementary body differenti-

ates within the inclusion into the replicative reticulate

body which is no longer infectious (Nans et al., 2015).

Chlamydiales are amongst the few known bacteria that

lack FtsZ, the bacterial tubulin homolog that organizes

the divisome complex at midcell to direct septal peptido-

glycan synthesis and facilitates cytokinesis (Busiek and

Margolin, 2015). Evidence has been provided that the

bacterial actin complex, composed of MreB actin and its

regulator RodZ, partially substitute for the role of FtsZ in

cytokinesis and spatial regulation of septal peptidogly-

can synthesis (Jacquier et al., 2014; Kemege et al.,

2015; Liechti et al., 2016). After a complete replication

cycle re-differentiation into elementary bodies takes

place in response to unknown signals, and new elemen-

tary bodies are released from the cell by either lysis or

extrusion.

For many years, the chlamydial anomaly described

the paradox of a non-detectable peptidoglycan, despite

the susceptibility of these organisms towards b-lactams,

which target peptidoglycan synthesis (Ghuysen and

Goffin, 1999). Notably, unlike for other bacteria, b-

lactams are not bactericidal for chlamydia, but lead to a

persistent infection of polyploid aberrant bodies (Skilton

et al., 2009). The bactericidal action of b-lactams in

most bacteria is due to a lethal uncoupling of peptidogly-

can synthetic and remodelling activities during growth

and cell division, followed by lysis (Tomasz and Waks,

1975; Kohlrausch and H€oltje, 1991; Cho et al., 2014).

Although chlamydia can survive in the osmoprotective,

intracellular environment, they cannot multiply without

peptidoglycan synthesis, suggesting that peptidoglycan

is required for chlamydial division (Henrichfreise et al.,

2009; Skilton et al., 2009; Jacquier et al., 2014; 2015).

The chlamydial anomaly has recently been resolved

through the use of highly sensitive mass spectrometry

techniques and newly developed fluorescent probes

based on the peptidoglycan-specific D-Ala-D-Ala dipep-

tide (Liechti et al., 2013; Pilhofer et al., 2013). It is now

known that several Chlamydiae possess peptidoglycan-

like structures, although the composition and arrange-

ment seems to vary throughout the order. Complete

peptidoglycan sacculi have been isolated and observed

by cryoelectron tomography in some (but not all) envi-

ronmental isolates (Pilhofer et al., 2013). However, the

human pathogen C. trachomatis has no peptidoglycan

sacculus but a discrete and transient peptidoglycan ring

structure, which constricts together with the septum of

dividing cells (Liechti et al., 2016; Packiam et al., 2015).

Hence, even in the absence of a need for osmoprotec-

tion C. trachomatis cells maintain a rudimentary and b-

lactam-sensitive peptidoglycan structure for cytokinesis.

The elementary bodies of this species appears to main-

tain cell envelope integrity by a network of outer

Fig. 2. Phylogenetic tree showing relationship between selected
obligate intracellular and free-living bacteria discussed in this
review. Obligate intracellular bacteria are shown in red, and free-
living bacteria are shown in black.
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Table 3. Summary of all genes included in this study

Gene name KEGG number Protein function

alr K01775 Alanine racemase
amiA,B,C K01448 N-Acetylmuramoyl-L-alanine amidase
amiD K11066 N-Acetylmuramoyl-L-alanine amidase
ampG K08218 MFS transporter, PAT family, beta-lactamase induction signal transducer
ampH K18988 Serine-type D-Ala-D-Ala carboxypeptidase/endopeptidase
anmK K09001 Anhydro-N-acetylmuramic acid kinase
argD K00821 Acetylornithine/N-succinyldiaminopimelate aminotransferase
asd K00133 Aspartate-semialdehyde dehydrogenase
aspC K10206 Aspartate aminotransferase
bacA (uppP) K06153 Undecaprenyl-diphosphatase
dacA K01286 DD-Carboxypeptidase PBP5
dacB K07259 DD-Carboxy-/endopeptidase PBP4
dacC K07258 D-Alanyl-D-alanine carboxypeptidase; penicillin-binding protein 6a
dacD K07258 D-Alanyl-D-alanine carboxypeptidase; penicillin-binding protein 6b
dapA K01714 4-Hydroxy-tetrahydrodipicolinate synthase
dapC (argD) K14267 N-Succinyldiaminopimelate aminotransferase
dapD K00674 2,3,4,5-Tetrahydropyridine-2-carboxylate N-succinyltransferase
dapE (msgB) K01439 Succinyl-diaminopimelate desuccinylase
dapF K01778 Diaminopimelate epimerase
ddl K01921 D-Alanine-D-alanine ligase
ftsA K03590 Cell division protein FtsA
ftsB K05589 Cell division protein FtsB
ftsE K09812 Cell division transport system ATP-binding protein
ftsI (pbpB) K03587 Transpeptidase involved in septal peptidoglycan synthesis (DD-transpeptidase)
ftsK (spoIIIE) K03466 DNA segregation ATPase
ftsL (divIC) K03586 Cell division protein FtsL
ftsN K03591 Cell division protein FtsN
ftsP (sufl) K04753 Suppressor of FtsI
ftsQ K03589 Cell division protein FtsQ
ftsW (rodA, spoVE) K03588 Cell division protein FtsW, SEDS protein
ftsX K09811 Cell division transport system permease protein
ftsZ K03531 Cell division protein FtsZ (tubulin homolog)
glmM K03431 Phosphoglucosamine mutase
glmS K00820 Glucosamine--fructose-6-phosphate aminotransferase
glmU K04042 Bifunctional UDP-N-acetylglucosamine pyrophosphorylase / Glucosamine-1-phosphate

N-acetyltransferase
glyA K00600 Glycine hydroxymethyltransferase, SHMT
ldt (erfK, srfK) K16291 LD-transpeptidase
lpxT (yeiU) K19803 Lipid A 1-diphosphate synthase; undecaprenyl pyrophosphate:lipid A 1-phosphate

phosphotransferase
lysC (apk) K00928 Aspartate kinase
metC K01760 Cystathionine beta-lyase
mepA K07261 Murein DD-endopeptidase
mepH K19303 Murein DD-endopeptidase
mepM K19304 Murein DD-endopeptidase
mepS K13694 Murein DD-endopeptidase
mltB K08305 Membrane-bound lytic murein transglycosylase B
mltC K08306 Membrane-bound lytic murein transglycosylase C
mltD K08307 Putative membrane-bound lytic murein transglycosylase D
mltE K08308 Lytic murein endotransglycosylase E
mltF K18691 Membrane-bound lytic transglycosylase F, murein hydrolase
mltG K07082 Endolytic murein transglycosylase, septation protein, ampicillin sensitivity
mraY K01000 Phospho-N-acetylmuramoyl-pentapeptide-transferase
mrcA (ponA) K05366 Penicillin-binding protein 1A/PBP1A (glycosyltransferase/DD-transpeptidase)
mrcB (ponB) K05365 Penicillin-binding protein 1B/PBP1B (glycosyltransferase/DD-transpeptidase)
mrdA (pbpA) K05515 Penicillin-binding protein 2/PBP2 (DD-transpeptidase)
mreB (mbl) K03569 Rod shape-determining protein MreB and related proteins (actin homolog)
mreC K03570 Rod shape-determining protein MreC
mreD K03571 Rod shape-determining protein MreD
mtgA K03814 Monofunctional glycosyltransferase
murA (murZ) K00790 UDP-N-acetylglucosamine 1-carboxyvinyltransferase
murB K00075 UDP-N-acetylpyrovoylglucosamine dehydrogenase
murC K01924 UDP-N-acetylmuramate-L-alanine ligase
murD K01925 UDP-N-acetylmuramoylalanine--D-glutamate ligase
murE K01928 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase
murF K01929 UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-alanine ligase
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membrane proteins cross-linked via disulphide bonds

(Hatch et al., 1986).

Chlamydia are a member of the PVC superphylum

(Planctomycetes-Verrucomicrobia-Chlamydiae). Whilst

many of these genera are not obligate intracellular bac-

teria they will be briefly discussed here because they

are unusual in having multiple members that are free liv-

ing bacteria predicted to lack a peptidoglycan cell wall.

The Verrucomicrobia, including Akkermansia mucini-

phila, possess a classical cell wall and are described as

being diderm (Gram-negative) species. In contrast, the

Planctomycetes were long described as universally lack-

ing peptidoglycan and having a proteinaceous cell wall

instead. Two recent reports, however, have demon-

strated the detection of a peptidoglycan-like substance

in some members of the planctomycetes (Jeske et al.,

2015; van Teeseling et al., 2015). These include Kuene-

nia stuttgartiensis Planctomyces limnophilus, Gemmata

obscuriglobus and Rhodopirellula baltica. Similar to the

Chlamydiae, the peptidoglycan in these organisms was

difficult to detect and present at low abundance.

Rickettsiales

The order Rickettsiales contains two families: the

Rickettsiaceae and the Anaplasmataceae (Eremeeva

et al., 2005). Significant differences in their lifecycles

and cell tropism may have resulted in distinct selective

pressures on their peptidoglycan, and they will be dis-

cussed separately in this section. The order Rickett-

siales is evolutionarily related to the predicted precursor

of modern mitochondria (Emelyanov, 2001).

The Rickettsiaceae are a group of obligate intracellu-

lar, vector-borne bacteria that cause a range of typhus-

like diseases in humans (Parola and Raoult, 2006;

Walker, 2007). They primarily target the vascular endo-

thelium, but R. akari is tropic to monocytes/macro-

phages (Radulovic et al., 2002) and Orientia

tsutsugamushi is also found in monocytes/macrophages

and dendritic cells (Moron et al., 2001; Paris et al.,

2012). Unlike the Chlamydiales, the Rickettsiaceae can-

not spread directly between infected individuals but are

transferred via a mite, tick, louse or flea vector, likely

due to a different tropism and/or poor survival outside

cells compared to chlamydial elementary bodies. With

the exception of R. prowazekii, which can spread

directly between infected individuals via the body louse,

most Rickettsiaceae are maintained through a range of

animal reservoirs (Eremeeva and Dasch, 2015). Some

Rickettsiaceae, such as O. tsutsugamushi, are also able

to be transmitted transovarially to vector offspring,

bypassing the absolute requirement for an intermediate

animal reservoir (Shin et al., 2014; Takhampunya et al.,

2016). Rickettsiaceae use a zipper-like mechanism for

uptake into the target cell (Ihn et al., 2000; Lee et al.,

2008; Cho et al., 2010a). Once inside the cell, they

escape from membrane-enclosed vacuoles in the endo-

lysosomal pathway and undergo growth and replication

directly in the host cytosol (Chu et al., 2006). The bacte-

ria are therefore directly exposed to autophagy machin-

ery (Choi et al., 2013; Ko et al., 2013) and cytosolic

immune receptors such as Nod1 and Nod2 (Cho et al.,

2010b), and this has likely put selective pressure on

these organisms to minimise receptor activation and

downstream effectors.

With the exception of Orientia, which is a distinct

genus within the Rickettsiaceae, the Rickettsiaceae are

thought to possess a complete peptidoglycan structure

and are sensitive to penicillin when grown in cultured

cells (Silverman and Wisseman, 1978; Wisseman et al.,

1982). Orientia is insensitive to ß-lactams and was his-

torically thought to lack any peptidoglycan structures

(Amano et al., 1987), despite the presence of an appa-

rently complete peptidoglycan biosynthetic pathway

encoded in its genome (Cho et al., 2007; Min et al.,

2008; Nakayama et al., 2008). Recent work has

Table 3: Continued

Gene name KEGG number Protein function

murG K02563 UDP-N-acetylglucosamine--N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol
N-acetylglucosamine transferase

murI (glr) K01776 Glutamate racemase
murJ (mviN) K03980 Putative peptidoglycan lipid II flippase
nagK K00884 N-acetylglucosamine kinase
nagZ K01207 Beta-N-acetylhexosaminidase
pbpC K05367 Penicillin-binding protein 1C (glycosyltransferase/DD-transpeptidase)
pbpG K07262 Serine-type D-Ala-D-Ala endopeptidase PBP7
pgpB K01096 PAP2-type phosphatidylglycerophosphatase / undecaprenyl-diphosphate diphosphatase
rodA (mrdB) K05837 Rod shape determining protein RodA, hypothetical lipid II flippase and/or glycosyltransferase
rodZ (yfqA) K15539 Cytoskeleton-associated protein
slt (mltE) K08309 Soluble lytic murein transglycosylase
uppS (yaeS) K00806 Undecaprenyl diphosphate synthase
ybjG (bcrC) K19302 PAP2-type undecaprenyl-diphosphate diphosphatase
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provided evidence that O. tsutsugamushi may possess

a minimal peptidoglycan-like structure and is sensitive to

a range of non-ß-lactam peptidoglycan-targeting antibi-

otics such as D-cycloserine and phosphomycin, but

remains insensitive to all ß-lactams tested, which might

be explained by an intrinsic insensitivity by the class B

PBPs of this organism (Atwal et al., 2017) or an

unknown beta-lactamase. O. tsutsugamushi was also

shown to possess a disulphide cross-linked protein net-

work on the outer membrane, analogous to the Chla-

mydiae (Atwal et al., 2017).

The Anaplasmataceae comprise a group of tick-

borne human and veterinary pathogens. This family

also contains the nematode-borne pathogen Neorick-

ettsia sennetsu (Dittrich et al., 2015) and the prolific

and promiscuous insect symbiont Wolbachia (Sicard

et al., 2014). This family is unlike the Rickettsiaceae in

primarily residing in erythrocytes, neutrophils and

monocytes/macrophages and having a vacuolar cellu-

lar localisation (Carlyon and Fikrig, 2003; Rikihisa,

2003; Munderloh et al., 1999). Similar to the Chlamy-

diales, Anaplasmataceae exhibit a morphologically

distinct biphasic life cycle, transitioning between non-

replicative and infectious dense-core particles and rep-

licating reticulate cells (Troese and Carlyon, 2009).

Anaplasma phagocytophilum and Ehrlichia chaffeensis

have been reported to lack both peptidoglycan and

LPS, and this is supported by the absence of genes

required for their synthesis (Lin and Rikihisa, 2003).

Peptidoglycan has never been detected in Wolbachia,

however, it has been shown that lipid II is essential for

cell division (Vollmer et al., 2013) and Wolbachia con-

tains a functional peptidoglycan amidase (Wilmes

et al., 2017). There are no reports of the analysis or

isolation of peptidoglycan in Anaplasma marginale.

Anaplasmataceae have the ability to incorporate host-

derived lipids and sterols such as sphingolipids or cho-

lesterol into their membranes, conferring some degree

of structural rigidity in the absence of peptidoglycan

(Lin and Rikihisa, 2003).

Coxiella burnettii

C. burnettii is an intracellular g-proteobacterium and

the causative agent of the human disease Q fever (van

Schaik et al., 2013). It is generally described as an

obligate intracellular bacterium, but specific growth

media has recently been developed that supports

growth in the absence of living host cells (Omsland

et al., 2009). Similar to the Anaplasmataceae and

Chlamydiales, Coxiella occupies a replicative niche

within a membrane-enclosed vacuole of an infected

cell (Kohler and Roy, 2015). The Coxiella-containing

vacuole, however, is acidified, and this organism has

developed mechanisms to survive and proliferate

under these conditions (van Schaik et al., 2013).

Coxiella differentiates between the replicative large

cell variant (LCV) form, and the non-replicative short cell

variant (SCV). Whilst both are capable of infecting cul-

tured cells, the extracellular SCV form is the predomi-

nate agent of transmission in the environment. The SCV

form of Coxiella is incredibly stable and able to with-

stand harsh environmental conditions such as extended

desiccation and heat. It is highly infectious, with only 10

particles sufficient to cause disease in humans, making

Coxiella a potential bioterrorism threat (Azad, 2007;

Oyston and Davies, 2011).

Structural rigidity in SCV-form Coxiella is partially

conferred by a thick peptidoglycan, and it has recently

been shown that this is characterised by an abundance

of LD-transpeptidase-mediated 3-3 peptide cross-links

(Sandoz et al., 2016).

Mycobacterium leprae

M. leprae is a member of the Mycobacteriaceae family

within the class Actinobacteria, and is the causative

agent of the human disease leprosy (Rodrigues and

Lockwood, 2011). Mycobacteria possess an almost

impermeable, waxy cell surface with an unusual second

membrane that is rich in mycolic acids and attached to

a thick peptidoglycan layer via the polysaccharide arabi-

nogalactan (Jankute et al., 2015; Nataraj et al., 2015).

With 3.3 Mbp and 1,604 predicted proteins, M. leprae

has a small genome compared with 4.4 Mbp and 3,924

predicted proteins in M. tuberculosis (Cole et al., 2001;

Gutierrez et al., 2009), and extensive attempts to culture

it in the laboratory have been unsuccessful (Lagier

et al., 2015). It is therefore considered to be unique

amongst mycobacteria in having an obligate intracellular

lifecycle. M. leprae is predominantly localised in histio-

cytes and nerve cells, but is also found in macrophages

and epithelial cells (Rodrigues and Lockwood, 2011).

The peptidoglycan of M. leprae is comparable with that

of other mycobacteria in that there is a high percentage

of 3-3-cross-links, but it lacks the N-glycolation on mur-

amic acid residues found in some mycobacteria, and it

contains glycine in place of L-alanines in a fraction of

the peptides (Mahapatra et al., 2008).

Buchnera

Buchnera aphidicola is the primary endosymbiont of the

pea aphid Acyrthosiphon pisum (Douglas et al., 2011).

Unlike the other obligate intracellular bacteria discussed

here this organism is an obligate endosymbiont, and the
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insect host cannot survive in its absence. Buchnera is

found within specialised polyploidy cells in the aphid

body cavity, called bacteriocytes, where bacteria live

within membrane-enclosed vacuoles called symbio-

somes. Buchnera is a g-proteobacterium, but lacks

genes required for synthesising LPS in its outer mem-

brane. Bacteria are spherical or oval in shape, are sen-

sitive to penicillin and have a meso-DAP-containing

peptidoglycan sacculus (Griffiths and Beck, 1974; Houk

et al., 1977). Genome evolution of B. aphidicola has

been intensively studied and it has been proposed to

have evolved from an E. coli-like genome by means of

gene removal (Silva et al., 2001).

Overview of this work

In the current study, we have sought to explore the relation-

ship between the presence of enzymatic activities involved

in peptidoglycan biosynthesis and turnover, and the pres-

ence of peptidoglycan in different obligate intracellular bac-

terial species. We have selected representatives of all major

known groups of obligate intracellular bacteria, and have

included a closely related free-living organism as an out-

group for each species or group of species. This includes

C. crescentus for the alpha-proteobacteria (Rickettsiales);

E. coli for the gamma-proteobacteria (Coxiella and

Buchnera); B. subtilis and M. smegmatis for the terrabacte-

ria (Mycobacterium leprae) and Akkermansia muciniphila

and Planctomyces limnophilus as planctomycetes and ver-

rucomicrobia members of the PVC group respectively

(Chlamydiae). These species were selected based on the

availability of complete and annotated genomes and experi-

mental evidence on the presence or absence of peptidogly-

can (where available). We used a combination of KEGG

database analysis and protein homology blast searches

to identify proteins involved in different stages of peptidogly-

can biosynthesis, and these are shown in Figs 4–7. Organ-

isms are coloured according to their peptidoglycan status,

with black indicating the complete absence of any peptido-

glycan biosynthetic capacity (Mycoplasma pneumoniae,

Anaplasma phagocytophilum, Ehrlichia ruminatum),

red indicating a demonstrated low level or incomplete pep-

tidoglycan sacculus (Protochlamydia amoebophila,

Chlamydia trachomatis, Planctomyces limnophilus and

Orientia tsutsugamushi) and green indicating the pres-

ence of a classical peptidoglycan sacculus (Mycobacte-

rium leprae, Mycobacterium smegmatis, Buchnera

aphidicola, Rickettsia typhi, Caulobacter crescentus,

Coxiella burnettii, Bacillus subtilis and Escherichia coli ).

Where the peptidoglycan status is unknown, organisms

are coloured in orange (Wolbachia strain wMel,

Anaplasma marginale). In all dendrograms the organisms

are grouped according to their similarity in protein profile

across all genes considered in this study (Table 3 and full

list shown in Supporting Information Table S1) and the

proteins are grouped according to their similarity across

all organisms considered in this work (Supporting

Information Table S1).

Pathways for peptidoglycan biosynthesis and remodelling

Overview of peptidoglycan biosynthesis

The peptidoglycan synthesis pathway starts in the cyto-

plasm with the formation of UDP-MurNAc (Barreteau

et al., 2008). Several further steps involving cytoplasmic

amino acid racemaces, and D- and L-amino acid ligases

result in the synthesis of UDP-MurNAc pentapeptide,

which is the substrate for subsequent steps at the cyto-

plasmic membrane. MraY transfers MurNAc (pentapep-

tide) phosphate to the transport lipid undecaprenol

phosphate (C55-P) to form lipid I, and MurG catalyses

the transfer of GlcNAc from UDP-GlcNAc to lipid I to

synthesize lipid II, the ultimate precursor for peptidogly-

can synthesis (Bouhss et al., 2008). C55-P is generated

by UppS and a C55-PP pyrophosphatase (BacA or

PAP2 type). Lipid II is transported from the inner to the

outer leaflet of the cytoplasmic membrane by a flippase,

a process that remains an active area of research, with

either SEDS proteins or MurJ being proposed as the

lipid II flippase (Mohammadi et al., 2011; Sham et al.,

2014). Lipid II is polymerized and the resulting nascent

chains incorporated into the existing peptidoglycan layer

by glycosyltransfer and transpeptidation reactions (Egan

et al., 2015). These are catalysed by a group of

membrane-bound enzymes including penicillin-binding

proteins (PBPs), monofunctional glycosyltransferases

and perhaps SEDS proteins (Meeske et al., 2016), and

take place in the periplasm (Gram-negative/diderm bac-

teria) or on the extracellular surface (Gram-positive/

monoderm bacteria) (Egan and Vollmer, 2013; Egan

et al., 2017). The newly inserted peptidoglycan matures

by the activities of synthetic and hydrolytic enzymes,

such as LD-transpeptidases and carboxypeptidases,

and is eventually turned over by peptidoglycan hydro-

lases (amidases, endopeptidases, muramidases) during

cell growth and division (Figs 3 and 7) (H€oltje, 1998;

Vollmer et al., 2008b). Some of the released peptidogly-

can fragments are transported into the cytoplasm and

trimmed for use in lipid II biosynthesis in a process

called peptidoglycan recycling (Park and Uehara, 2008).

Biosynthesis of peptidoglycan precursors

The classical peptidoglycan precursor contains D-Glu at

position 2 and D-Ala at positions 4 and 5 of the
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pentapeptide side chain (Vollmer et al., 2008a). Incorpo-

ration of D-Glu and the D-Ala-D-Ala dipeptide, which is

synthesized by Ddl proteins, are catalysed by MurD and

MurF respectively (Barreteau et al., 2008). The genes

encoding these proteins are present across all organ-

isms thought to possess peptidoglycan (Fig. 4A),

although Ddl is present as a fusion protein with MurC in

many Chlamydiae. The distribution of enzymes that cat-

alyse amino acid racemisation reactions is more compli-

cated. The classical amino acid racemases for these

reactions are MurI, Alr and DadX. Whilst these are pres-

ent in most of the organisms possessing classical

peptidoglycan, their presence in intermediate peptidogly-

can species is inconsistent. MetC has been shown to

possess alternative alanine racemase activity in E. coli

(Kang et al., 2011), and GlyA has been shown to be

the alanine racemase in Chlamydia pneumoniae

(De Benedetti et al., 2014), suggesting that the proteins

used for racemase activity need not be strictly con-

served in these pathways. It is also possible that Ddl,

MurF and MurD may have different amino acid specific-

ities in different organisms, and this can ultimately only

be resolved by determining the structure of purified pep-

tidoglycan from specific bacterial species.

Fig. 3. Peptidoglycan biosynthesis pathway. An overview of proteins involved in peptidoglycan biosynthesis. GTase, glycosyltransferase;
TPase, transpeptidase; Mgt, monofunctional glycosyltransferase; LD-TP, LD-transpeptidase; SEDS, shape, elongation, division and
sporulation; CT390, LL-diaminopimelate aminotransferase from Chlamydia trachomatis; At4g33680, LL-diaminopimelate aminotransferase
from Arabidopsis thaliana; C5-PP, isopentenyl-pyrophosphate; C15-PP, farnesyl-pyrophosphate; C55-PP, undecaprenyl-pyrophosphate.
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Peptidoglycan from diderm bacteria typically contains

meso-DAP in position 3, which is linked to D-Ala in posi-

tion 4 of adjacent strands in mature peptidoglycan.

MurE is the enzyme that mediates the incorporation of

meso-DAP into the peptidoglycan precursor (Barreteau

et al., 2008) and this gene is present in all organisms

that possess complete or intermediate peptidoglycan in

this study (Fig. 4B). The distribution of meso-DAP bio-

synthetic proteins is more complicated. DapD and DapE

are missing in P. amoebophila, C. trachomatis, Plancto-

mycetes sp. and A. muciniphila, but it has been shown

that the LL-diaminopimelate transferase (CT390) can

perform the same reaction in C. trachomatis (McCoy

et al., 2006). O. tsutsugamushi lacks the enzyme cata-

lysing the final step of meso-DAP biosynthesis, DapF.

Whilst no direct alternative to this enzyme has been

described, a recent study showed the presence of

meso-DAP in purified O. tsutsugamushi by mass spec-

trometry, suggesting the presence of an unidentified

alternative gene or pathway (Atwal et al., 2017). Surpris-

ingly, E. ruminantium possesses a complete set of

genes required for meso-DAP biosynthesis, although it

lacks MurE that would be required to incorporate it into

the peptidoglycan precursor. This pathway is conserved

in E. chaffeensis and E. muris (Supporting Information

Table S1) and may have been retained during reductive

evolution due to requirement of this metabolite in a dif-

ferent cellular pathway.

The MurNAc(-pentapeptide) phosphate moiety from

UDP-MurNAc-pentapeptide is transferred to the lipid

anchor C55-P to form lipid I. This bacterial polyisoprenoid

anchors the building blocks for peptidoglycan and LPS syn-

thesis to the inner leaflet of the membrane and enables

flippases to shuttle them across the membrane. The MraY

transferase synthesizing lipid I (Al-Dabbagh et al., 2016) is

present in all species that have complete or intermediate

peptidoglycan, and absent in all those lacking peptidogly-

can (Fig. 4D). The assembly of C55-PP requires UppS

(Manat et al., 2014), and its corresponding gene is

encoded in almost all genomes of the peptidoglycan-

positive species in our study with the exception of M. lep-

rae and M. smegmatis (Fig. 4C). In fact, uppS is absent in

all mycobacteria (Supporting Information Table S1) and it is

known that alternative, shorter lipid carriers can perform

glycan transport in these organisms. The pyrophospha-

tases BacA (also called UppP), PgpB and YbjG (E. coli),

required for the dephosphorylation of C55-PP to C55-P

(Manat et al., 2014), were absent in many organisms in

our study and this may reflect poor conservation of genes

in the pathway.

MurG transfers GlcNAc from UDP-GlcNAc to lipid I

to form lipid II (Chen et al., 2002), which is transported

across the membrane for polymerization (Fig. 3). Genes

encoding MurA-G and MraY are present in all organisms

with complete and intermediate-peptidoglycan, and

are almost completely absent in those organisms

lacking peptidoglycan (Fig. 4D). As expected, the mur

genes are therefore a strong predictor of peptidoglycan

status.

The generation of UDP-GlcNAc is more problematic, with

GlmM absent from some peptidoglycan-intermediate spe-

cies and GlmM and GlmS absent from all Rickettsiaceae

and A. muciniphila (Fig. 4D and Supporting Information

Table S1). It is possible that an alternative pathway is used

for the generation of UDP-GlcNAc, potentially employing

novel importers.

Growth of a peptidoglycan sacculus

Here, we discuss the membrane steps in peptidoglycan

synthesis, including the flipping of lipid II across the

cytoplasmic membrane, and the synthesis of cross-

linked peptidoglycan strands.

First, lipid II is transported from the inner to the outer

leaflet of the cytosolic membrane to make it accessible

for incorporation into existing peptidoglycan. The identity

of lipid II flippase is an area of active research, with

MurJ and SEDS proteins (FtsW, RodA) being primary

candidates (Ruiz, 2008; Mohammadi et al., 2011, 2014;

Sham et al., 2014). At least one copy of MurJ, FtsW

and RodA-like proteins were present in all

peptidoglycan-positive and peptidoglycan-intermediate

species in our analysis, with the exception of Buchnera

and A. muciniphila which lack RodA, and whilst FtsW

was absent from all peptidoglycan-negative species

MurJ was found in A. phagocytophilum (Fig. 5).

Following flippase activity, two specific enzymatic

activities are required to incorporate lipid II into an

extended peptidoglycan structure. Glycosyltransferase

activity polymerizes the glycan strands and transpepti-

dase activity cross-links peptides from adjacent glycan

strands. The most common cross-links are DD-type,

between D-Ala in position 4 of one peptide and meso-

DAP in position 3 of another, but they can also be of the

LD-type which forms between two meso-DAP residues

(H€oltje, 1998; Vollmer et al., 2008a). Glycosyltransferase

activity in E. coli is largely performed by class A bifunc-

tional PBPs, which possess both glycosyltransferase

and transpeptidase activity, and a monofunctional glyco-

syltransferase (MtgA) (Egan et al., 2015). It was recently

suggested that RodA from Bacillus subtilis also pos-

sesses glycosyltransferase activity, and it was hypothes-

ised that this may be a general property of SEDS

proteins and a possible source of glycosyltransferase

activity in organisms lacking class A PBPs and mono-

functional glycosyltransferases (Meeske et al., 2016).

However, the E. coli SEDS protein FtsW lacked
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glycosyltransferase activity and instead controlled the

glycosyltransferase activity of PBP1B in the presence

of the class B PBP3 (Leclercq et al., 2017). DD-

transpeptidase activity is performed by class A PBPs

(E. coli PBP1A, PBP1B, PBP1C) and class B PBPs

(E. coli PBP2, PBP3), LD-transpeptidase activity for the

formation of 33-cross-links is performed by LD-

transpeptidases (E. coli YcbB, YnhG) (Magnet et al.,

2008).

In our bioinformatics analysis of transpeptidase and

glycosyltransferase activity (Fig. 5), we found that class A

PBPs are absent from all the bacteria with intermediate

peptidoglycan, but that representatives of both class B

PBPs and SEDS proteins are present. Assuming that the

transient peptidoglycan of these organisms contains gly-

can strands as for members of the chlamydia group

(Pilhofer et al., 2013; Packiam et al., 2015), then the

required glycosyltransferase activity comes either from

the SEDS protein(s) or from a yet unknown glycosyltrans-

ferase. LD-transpeptidases are present in E. coli,

B. subtilis and C. burnettii but could not be identified in

any of the other obligate intracellular organisms that we

analysed, based on classifications provided by the Kegg

database.

Peptidoglycan trimming, degradation and recycling

Nascent or polymerised peptidoglycan is often subject

to secondary modifications, such as N-deacetylation of

residues in glycan chains, and trimming of the peptides

by carboxypeptidases (Vollmer, 2008; Peters et al.,

2016). Other peptidoglycan hydrolases cleave at vari-

ous sites in the glycan and peptide components of pep-

tidoglycan and these activities cause a release of

peptidoglycan fragments from the sacculus (peptidogly-

can turnover) (Vollmer et al., 2008b). Peptidoglycan

hydrolases are a large and diverse group of enzymes,

whose cleavage sites are shown in Fig. 6A. The

released fragments are partly released into the extrac-

ellular space, and partly taken up and recycled into

new peptidoglycan precursors (Park and Uehara, 2008;

Borisova et al., 2016). The release of extracellular

peptidoglycan is immunogenic and it is likely that obligate

intracellular bacteria would limit the release of these mole-

cules. Our bioinformatics analysis of peptidoglycan degra-

dation and recycling genes shows a diverse pattern of

genes in the selected organisms (Fig. 6B). The DD-

carboxypeptidase proteins DacA, DacC, DacD and DacF

are present in many peptidoglycan-positive and

peptidoglycan-negative organisms and may have another

Fig. 5. Dendogram showing the presence of peptidoglycan synthases, putative flippases, and SEDS proteins encoded by selected bacterial
genomes. The organism name is coloured according to peptidoglycan status: black, no peptidoglycan; red, intermediate or low-level
peptidoglycan; green, classical peptidoglycan sacculus; orange, peptidoglycan status unknown. The organisms are grouped according to the
similarities in the presence/absence profiles for all proteins considered in this study (full list shown in Supporting Information Table S1) and the
proteins are grouped according to their similarities across all organisms considered in this work. The presence of multiple orthologs is
indicated by colouring according to the key. *Class A PBPs contain merged profiles of MrcA (Kegg Accession Number KO5366, see also
Supporting Information Table S1), MrcA2/PbpC (KO5367) and MrcB (KO5365). **PBP2 contains merged profiles of MrdA (KO5515) and PBPA
(K05364). § Proteins annotated as RodA-like are present (YP_884452 and NP_301145). # Protein NP_220201 is not present in Kegg as
belonging to the PBP2 family, but it has been identified as such in Ouellette et al. (2012). The most similar sequence in Protochlamydia
amoebophila is WP_011174685.1 (36% identical). $MSMEG_0031 and MLBr00018 are annotated as PbpA/PBP2 (K05364) they share< 30%
identity with MrdA from E. coli. This ortholog group appears to be present in Mycobacterium spp. only (among the organisms considered in
this work). & Protein annotated as FtsI-PbpB is present (I33_1702), but it belongs to a different ortholog group in Kegg (K08724) && Protein
similar to MurJ is present (I33_3060) assigned to no orthologous group.//Protein similar to Ldt proteins from E. coli, but not assigned to a K
number in Kegg: I33_1583 (YkuD).>A protein belonging to ortholog group K21464 (PbpG) is present (I33_3896). This is also similar to MtgA
from E. coli.
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role in addition to peptidoglycan degradation. There was

no consistent pattern in the distribution of hydrolase activ-

ities in the intermediate-peptidoglycan group. Orientia and

A. marginale genomes do not encode an AmiA/B/C-like

amidase, in common with all Rickettsiales, but possess a

lytic transglycosylase (MltE) homologue. In contrast, lytic

transglycosylase genes are absent in peptidoglycan-

negative A. phagocytophilum and E. ruminantium and

obvious lytic transglycosylase-like genes were not

detected in the chlamydial genomes either, raising the

possibility that additional enzymes can cleave glycan

strands. Interestingly, AmiA from C. pneumoniae showed

not only amidase but also DD-carboxypeptidase activity

(Kl€ockner et al., 2014). The latter, unexpected activity

Fig. 6. Peptidoglycan degradation and recycling.
A. Overview of enzymes involved in peptidoglycan degradation.
B. Dendogram showing the presence of peptidoglycan degradation and recycling proteins encoded by selected bacterial genomes. The
organism name is coloured according to peptidoglycan status: black, no peptidoglycan; red, intermediate or low-level peptidoglycan; green,
classical peptidoglycan sacculus; orange, peptidoglycan status unknown. The organisms are grouped according to the similarities in the
presence/absence profiles for all proteins considered in this study (full list shown in Supporting Information Table S1) and the proteins are
grouped according to their similarities across all organisms considered in this work. The presence of multiple orthologs is indicated by
colouring according to the key.
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could be attributed to two motifs usually found in PBPs

and was inhibited by b-lactams.

Cell morphogenesis proteins

The peptidoglycan biosynthesis machinery is posi-

tioned and/or regulated through association with a net-

work of cytosolic and membrane-bound proteins

involved in bacterial growth and morphogenesis (Egan

et al., 2017). Two major components of the bacterial

cytoskeleton are the tubulin homolog FtsZ and the

actin homolog MreB (Ouellette et al., 2012; Celler

et al., 2013). Both have been shown to generate

dynamic filaments that are associated with PBPs and

to guide the incorporation of nascent peptidoglycan

(Dominguez-Escobar et al., 2011; Garner et al., 2011).

Whilst the Chlamydiae lack FtsZ (Frandi et al., 2014),

MreB is absent in Buchnera and mycobacteria (Letek

et al., 2008) (as well as the peptidoglycan-negative

mycoplasma and ehrlichiae). This underscores the fact

that cytoskeleton-guided peptidoglycan incorporation

may be conserved in bacteria, but that there are differ-

ent combinations of cytoskeletal elements and peptido-

glycan synthesis enzymes across the kingdom,

presumably reflecting unique aspects of the cell

division apparatus and modes of peptidoglycan syn-

thesis in different organisms.

Predicting the peptidoglycan status of obligate

intracellular bacteria

A small number of genes were highly correlated with the

predicted peptidoglycan status, and these are summar-

ised in Fig. 8. We observed that those bacteria with

demonstrated low level of peptidoglycan or an incom-

plete sacculus were associated with a signature gene

set: the presence of lipid II biosynthesis genes murA-

murG and mraY; the presence of at least one SEDS

gene ftsW or rodA; the presence of at least one gene

encoding a class B monofunctional PBP, but the notable

absence of any detectable genes for class A bifunctional

PBPs. Based on this classification we would predict that

Wolbachia and Anaplasma marginale both possess

some sort of peptidoglycan-like structure, and we term

this group ‘peptidoglycan-intermediate’ organisms.

Discussion

In this review, we explored the relationship between the

distribution of genes involved in various aspects of cell

Fig. 7. Dendogram showing the presence of cell morphogenesis proteins encoded by selected bacterial genomes. The organism name is
coloured according to peptidoglycan status: black, no peptidoglycan; red, intermediate or low-level peptidoglycan; green, classical peptidoglycan
sacculus; orange, peptidoglycan status unknown. The organisms are grouped according to the similarities in the presence/absence profiles for all
proteins considered in this study (full list shown in Supporting Information Table S1) and the proteins are grouped according to their similarities
across all organisms considered in this work. The presence of multiple orthologs is indicated by colouring according to the key. # Proteins
annotated to this function are present in the genomes of these species, Coxiella burnetii NP_820244.1; C. crescentus ADW96154.1; Chlamydia
trachomatis NP_219511.1; Protochlamydia amoebophila CAF23404. *I33_1701 is annotated as FtsL but it is not included in any ortholog group.
**Orthologs of I33_1877 in other Bacillus species are annotated as RodZ, but these sequences are not included in the RodZ ortholog group in
Kegg. § A Multicopper oxidase with three cupredoxin domains (includes cell division protein FtsP and spore coat protein CotA) is present in strain
168 (BSU06300) but not in RO-NN-1
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wall biology, and the intracellular replicative niche

adopted by obligate intracellular bacteria. We hypothe-

sise that the selective pressures of an osmoprotective

environment, combined with proximity to cellular host

immune responses, would lead organisms to reduce

their levels of peptidoglycan. Indeed, we observed com-

mon patterns of gene loss and retention in groups of

unrelated obligate intracellular bacteria (Fig. 8). We

termed this group peptidoglycan-intermediate. This

group was characterised by the presence of genes

encoding orthologs of MurA-MurG, MraY, SEDS proteins

RodA/FtsW and the class B PBPs PBP2/PBP3(FtsI),

but the notable absence of any class A PBPs. This

group of organisms included pathogenic and environ-

mental Chlamydiae as well as Orientia tsutsugamushi,

Wolbachia strain wMel and Anaplasma marginale.

Within this group the detailed structure of peptidoglycan

determined by mass spectrometry is only known for

Chlamydia trachomatis and it will be interesting to see

how conserved patterns of gene retention translates to

commonalities and differences in peptidoglycan struc-

ture across this group. It is expected that there will

remain substantial differences in structure and arrange-

ment, since it is already known that the peptidoglycan of

Protochlamydia amoebophila forms a complete sacculus

but peptidoglycan of Chlamydia trachomatis has only

been detected as a discrete ring located at the septum

and no peptidoglycan sacculus could be isolated from

the chlamydia-like bacterium Simkania negevensis.

There are also likely to be lineage-specific differences in

the composition of peptidoglycan, for example

unidentified chemical modifications have been shown for

Protochlamydia amoebophila (Pilhofer et al., 2013) and

there is some circumstantial evidence consistent with a

modification of muropeptides after antibiotic treatment in

Chlamydia trachomatis (Packiam et al., 2015). Species-

specific variations in peptidoglycan structure and com-

position might therefore reflect unique aspects of the

individual cell biology and the host-pathogen interactions

of each obligate intracellular lineage.

The classification of an intermediate peptidoglycan

group raises questions about why different closely

related obligate intracellular bacteria would adopt differ-

ent peptidoglycan statuses. For example, whilst all Rick-

ettsia encode genes for a classical peptidoglycan

sacculus, the sister genus Orientia lacks class A PBPs

and was classified as peptidoglycan-intermediate. The

pressure for a reduced peptidoglycan structure in Orien-

tia is unlikely to result solely from vector difference

(many Rickettsia are tick-borne whilst Orientia is mite-

borne) because Rickettsia akari is also mite-borne and

possesses complete peptidoglycan genes in common

with other Rickettsia. Orientia is associated with dendri-

tic cells and monocytes/macrophages in addition to

endothelial cells in human patient eschar tissue sam-

ples, in contrast to most Rickettsia, which are predomi-

nantly endothelial-cell localised. It is possible that this

has led to a specific selective pressure on Orientia to

reduce peptidoglycan, although it is worth noting that

Rickettsia akari also localises in monocyte/macrophage

cells. In common with this line of reasoning, it is notable

that A. marginale possesses a complement of genes

Fig. 8. Summary of the presence/absence of key peptidoglycan biosynthesis gene homologs together with predictions about corresponding
PG status. Obligate intracellular bacteria are shown in red, and free-living bacteria are shown in black.
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supporting the production of intermediate peptidoglycan,

whilst the closely related A. phagocytophilum completely

lacks the ability to produce peptidoglycan. This may also

reflect differences in cell tropism since A. marginale is

localised in erythrocytes whilst A. phagocytophilum is

localised in monocytes/macrophages, potentially result-

ing in a difference in immune-driven selective pressure

on peptidoglycan status. Lastly, it is also possible that

species-specific chemical modifications exist that influ-

ence the magnitude of the signalling response of pepti-

doglycan innate immune surveillance systems.

The total lack of peptidoglycan in some organisms, as

well as the presence of only intermediate peptidoglycan

in others raises the question of how bacterial cells are

structured in the absence of a complete classical pepti-

doglycan sacculus. Mycoplasma is unusual in lacking

peptidoglycan but not being an obligate intracellular bac-

terium. It can replicate both in extracellular tissue fluid

as well as within eukaryotic cells, and this lifestyle con-

fers osmotic protection as well as a source of sterol lip-

ids that are essential for their growth and likely protects

the cell from rupture in the absence of a rigid cell wall.

Host-derived lipids are also important features of the

membranes of Anaplasmataceae, conferring structural

rigidity in the absence of a cell wall. Both Chlamydiae

and Orientia possess disulphide cross-linked proteins on

their outer membranes and these confer additional

structural rigidity in the absence of a full peptidoglycan

cell wall sacculus. It is also conceivable that the prolifer-

ation mode can shape the genomic repertoire of pepti-

doglycan biosynthesis and remodelling genes. For

example although the peptidoglycan-intermediate Planc-

tomycetes are free-living bacteria, they reproduce by

budding rather than binary fission typically executed by

most other bacteria.

In conclusion, our analyses suggest that a group of

diverse obligate intracellular bacteria have responded to

selective pressures imposed by this lifestyle by selectively

retaining a subset of genes in the peptidoglycan-

biosynthesis pathway. We hypothesise that this will result

in some commonalities in peptidoglycan structure, which

may include reduced overall abundance, differences in

chain length and peptide cross linking, and regulated or

limited biosynthesis in time and space. Future structural

and biochemical analyses of the peptidoglycan from this

group will lead to a greater understanding of the relation-

ship between bacterial cell growth and host immune recog-

nition, as well as commonalities of a minimal peptidoglycan

cell wall, in this unique group of bacterial organisms.
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