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The 109 Residue Nerve Tissue Minihemoglobin
from Cerebratulus lacteus Highlights Striking
Structural Plasticity of the �-Helical Globin Fold

transport and storage [1–3], several novel Hb functions
have recently emerged, including control of NO levels
in microorganisms and dehaloperoxidase activity [4–7].
Despite the large variability in their primary and quater-
nary structures, Hbs display a well-conserved tertiary
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B-2610 Antwerp structural studies on vertebrate blood Hbs over the
Belgium years [11]. Monomeric myoglobin (Mb) is the best known
3 Department of Biology and Geoscience tissue globin; it occurs in muscles, where it acts as an
Faculty of Science O2 buffer facilitating oxygen diffusion to the mitochon-
Shizuoka University dria [2, 3], also involved in NO detoxification and bio-
836 Oya chemistry [12]. Unicellular organisms may display dif-
Shizuoka 422-8529 ferent globin subfamilies, including full-length Hbs,
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University “Roma Tre” Nerve tissue Hbs are found in vertebrates and inverte-
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brates. Neuroglobin and cytoglobin are recently discov-
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ered new members of the vertebrate globin family. Neu-
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roglobin is a monomeric, �150 amino acid-long heme5 Section of Neurobiology and
protein, predominantly expressed in vertebrate brain atInstitute of Cell and Molecular Biology
micromolar concentration, displaying less than 25% se-School of Biological Sciences
quence identity to conventional vertebrate Hbs or MbsUniversity of Texas
(see Figure 1) [15, 16]. Its O2 affinity is comparable toCO920
that of Mb (P50 � 2 torr), with a heme hexacoordinatedAustin, Texas 78712
structure of the His-Fe-His type in both deoxyferrous
and -ferric forms. The function of neuroglobin is still
debated [5, 15, 17–19]. Cytoglobin is thought to be ex-Summary
pressed at very low concentrations in all vertebrate tis-
sues, including brain [16]. It displays sequence identitiesA very short hemoglobin (CerHb; 109 amino acids)
versus Hbs and Mbs of about 26%–30%, being charac-binds O2 cooperatively in the nerve tissue of the nemer-
terized by N- and C-terminal extensions of 15–20 aminotean worm Cerebratulus lacteus to sustain neural ac-
acids. Thus, despite occurring also in the brain, cyto-tivity during anoxia. Sequence analysis suggests that
globin cannot be classified as nerve specific. However,CerHb tertiary structure may be unique among the
both human neuroglobin and cytoglobin genes displayknown globin fold evolutionary variants. The X-ray
unique intron/exon patterns; phylogenetic analysis sug-structure of oxygenated CerHb (R factor 15.3%, at
gests a very ancient origin [15–17].1.5 Å resolution) displays deletion of the globin N-ter-

Nerve tissue globins have sporadically been observedminal A helix, an extended GH region, a very short H
in mollusc, annelid, arthropod, and nemertean specieshelix, and heme solvent shielding based on specific
as well as in nematodes [2, 20–22]. In contrast to theiraromatic residues. The heme-bound O2 is stabilized
vertebrate counterparts, the invertebrate nerve tissueby hydrogen bonds to the distal TyrB10-GlnE7 pair.

Ligand access to heme may take place through a wide globins reach a millimolar local concentration. This high
protein matrix tunnel connecting the distal site to a concentration is likely sufficient to facilitate O2 diffusion
surface cleft located between the E and H helices. or storage, thus supporting cell function during tempo-

rary hypoxia periods encountered by the animal [2, 21,
Introduction 23, 24].

From a structural viewpoint, sequence alignment of
Hemoglobins (Hbs) occur in all kingdoms of living organ-
isms and display a variety of functions. In addition to O2 Key words: globin fold plasticity; nerve tissue minihemoglobin; oxy-

gen binding; oxygenated hemoglobin; protein cavities; X-ray crystal-
lography6 Correspondence: bolognes@fisica.unige.it
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Figure 1. Structure-Based Amino Acid Sequence Alignments

The figure displays multiple amino acid sequence alignments of CerHb relative to C. lacteus body wall Hb, P. caudatum trHb, and M. tuberculosis
trHbN (as representatives of the trHb homology subfamily), sperm whale Mb, Vitreoscilla sp. Hb, and human and mouse neuroglobins (NGB).
With the exception of human and mouse neuroglobins, the sequence alignments have been based on structural superpositions of each
protein’s three-dimensional structure onto the CerHb C� backbone. The extension of � helices in sperm whale Mb has been indicated on top
of the alignment, with reference to topological sites. Amino acid numbering and the span of � helices in CerHb are shown on the bottom line.
The key topological positions B10, CD1, E7, and F8 are highlighted in yellow.

all known nerve tissue globins reveals the presence of Results and Discussion
key globin fold determinants [15, 25, 26]. In general,
most globin �-helical segments can be recognized, to- Deviations from the Classical Globin Fold

in the 109 Residue CerHbgether with the vertebrate globin invariant residues
PheCD1, HisF8, and patterns of buried hydrophobic res- The three-dimensional structure of the oxygenated de-

rivative of C. lacteus nerve tissue Hb (CerHb) was solvedidues (Figure 1) [25–27]. (Amino acid residues have been
identified by their three-letter code, their sequence num- by means of MAD methods, based on the anomalous

signal of the heme iron atom. Diffraction data were col-ber, and their topological position within the eight heli-
ces—A through H—of the globin fold [1]). However, in lected at three wavelengths at the ID29 ESRF beamline

(Grenoble, France; Table 1), using one crystal of thespecific cases such as the nerve tissue and body wall
Hbs of C. lacteus, which are the smallest stable Hbs orthorhombic form previously described [29]. Refine-

ment of the crystal structure converged at a general Rknown (both composed of 109 amino acids), extensive
perturbation of the common globin fold pattern is evi- factor value of 15.3% (Rfree 18.7%) for data in the

35.0–1.5 Å resolution range, with ideal stereochemicaldent together with poor conservation even of the struc-
tural determinants typical of the truncated Hb subfamily parameters [30, 31]. The final model contains 857 protein

atoms, 106 ordered solvent atoms, one dioxygen mole-[13, 14, 28].
Here we describe the three-dimensional structure of cule, and one sulfate and one acetate anions (Table 1).

Despite the low levels of residue conservation relativeoxygenated C. lacteus nerve tissue Hb (CerHb) at 1.5 Å
resolution, as a first structural insight into the newly to full-length (non)vertebrate Hbs or Mbs (the residue

identity between sperm whale Mb and CerHb aligneddiscovered neuroglobin subfamilies. CerHb tertiary
structure displays striking editing of the vertebrate glo- sequences is 13%), CerHb can be predicted to fall within

the Hb superfamily (Figure 1) [1, 9, 10, 21, 27]. However,bin fold, with deletion of the N-terminal A helix and short-
ening of the C-terminal H helix to two turns. A unique inspection of the crystal structure shows that CerHb is

strikingly modified at two main regions, due to extensiveprotein matrix tunnel, connecting the heme distal cavity
to the molecular surface, may play a central role in sup- residue deletions relative to full-length globins (Figures

2A and 2B). First, the N-terminal A helix of the classicalporting O2 diffusion to and from the heme.
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Table 1. Data Collection and Refinement Statistics for CerHb

(A) CerHb MAD Data Collection Statistics

Absorption peak Inflection point Remote

Wavelength (Å) 1.739 1.740 0.915
Resolution (Å) 35–1.95 35–1.95 35–1.50
Mosaicity (�) 0.42 0.42 0.39
Completeness (%) 93.4 (90.2)* 93.5 (89.9) 97.1 (95.7)
Rmerge (%) 4.8 (8.5) 4.9 (8.9) 5.4 (23.9)
Total reflections 29,384 29,367 67,606
Unique reflections 8,559 8,544 17,906
Redundancy 3.4 3.4 3.8
Average I/�(I) 16.7 (10.2) 16.3 (9.4) 14.3 (3.2)

(B) Refinement Statistics and Model Quality

Resolution range (Å) 35–1.50
Protein nonhydrogen atoms 857
Water molecules 106
Dioxygen molecules 1
Sulfate ions 1
Acetate ions 1
R factor/Rfree

# (%) 15.3/18.7
Space group P212121

Unit cell (Å) a � 42.72, b � 43.17, c � 60.11
Rmsd from ideal geometry:

Bond lengths (Å) 0.006
Bond angles (�) 1.14

Ramachandran plot:##

Most favored region 95.7%
Additional allowed region 4.3%

Averaged B factors (Å2):
Main chain 14
Side chain 16
Solvent 24
Heme 13

* Outer shell statistics are shown in parentheses. The outer shells are 1.95–2.00 Å for the absorption peak and inflection point, and 1.53–1.50
Å for the remote point.
# Calculated using 10% of the reflections.
## Data produced using the program PROCHECK [31].

globin fold is entirely deleted. Second, the (C-terminal) distant from all known globin tertiary structures, sup-
porting the identification of a new Hb subfamily (theH helix is trimmed to only 8 residues [Gly(99)H10–

Leu(106)H17], being largely substituted by an extended “mini-Hb” subfamily [21]).
GH interhelical region. Thus, from a globin topological
viewpoint, CerHb is essentially composed of helices B Structural Features Characteristic

of the CerHb Foldthrough H of the classical globin fold (Figure 2).
Within the Hb superfamily, CerHb [21] and truncated As a result of the A helix deletion (18 residues deleted

relative to sperm whale Mb; see Figures 1 and 2B),Hbs [13, 28] display the lowest known molecular weights
(12–13 kDa). However, a structural overlay of CerHb (109 CerHb N-terminal residue Val1 falls at the AB hinge re-

gion within the classical globin fold topology. In theamino acids) and P. caudatum trHb (116 amino acids)
protein backbones (Figure 2C) highlights the matching absence of the whole A helix, a globin-conserved and

stabilizing intramolecular hydrophobic contact betweenof only 67 C� pairs (rmsd � 1.33 Å), mostly localized at
the B, E, and G helices. The poorly matching regions in residue A12 (mostly Trp [25]) and residues from the

C-terminal end of the E helix is lost, partly substitutedthe two globins fall on the heme proximal side, particu-
larly along the F helix (an extended polypeptide pre-F in CerHb by contacts between Trp(3)B2 and Val(1),

Ile(52)E15, Ile(56)E19, and the GH region residues Ala(95)region in trHbs), in keeping with the low sequence iden-
tity (�20%) relating CerHb and the trHb subfamily (Fig- and Leu(98) (Figure 3). Such a localized hydrophobic

cluster anchors the B helix to the CerHb core, and effi-ures 1 and 2C). Similarly, despite the substantial dele-
tions of residues mentioned above, C� backbones of ciently seals the heme distal pocket from solvent access

through a B/E and B/G contact region route, the primaryCerHb and sperm whale Mb match at 68 C� pairs, with
an rmsd of 1.77 Å. Further, as a general rule emerging route proposed for ligand diffusion to the heme in trHbs

[28]. The occurrence of Trp at the B2 topological positionfrom different structural comparisons [32, 33] of CerHb
within the Hb superfamily, a net preference for conserva- is extremely uncommon throughout all globin se-

quences [25, 26, 34], being present only in Lucina pec-tion of the full B-, C-, E-, and G-helical regions among
all (non)vertebrate globins is evident. Thus, based on tinata HbI, where the surrounding structural region is

rich in aromatic residues [35]. In CerHb, the occurrencefold comparisons only, CerHb appears almost equally
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Figure 3. The Structural Environment of Trp(3)B2

The CerHb elongated GH segment (shown in foreground) appears to be related to the presence of the bulky residue Trp(3)B2, which anchors
the N-terminal part of the molecule to the protein core through several hydrophobic contacts. Notice also the location of residue Cys(90)G16,
relative to the heme. Drawn with MOLSCRIPT [66] and Raster3D [67].

Figure 4. O2 Stabilization at the Heme Distal Site of CerHb

The CerHb distal site region is displayed in a stereo view, showing residues Phe(10)B9, Tyr(11)B10, Phe(25)CD1, Gln(44)E7, Lys (47)E10, and
Thr(48)E11, the dioxygen molecule (magenta), the heme group, and part of the polypeptide chain path. Hydrogen bonds are drawn as dashed
lines. The proximal HisF8 residue is also shown. Drawn with MOLSCRIPT [66] and Raster3D [67].

of a bulky Trp residue at site B2 close to the GH region Inspection of the CerHb core regions highlights struc-
tural details which are reminiscent of (non)vertebratewithin the tertiary structure likely restricts the presence

of an �-helical segment at the N-terminal half of the H globins. The B helix supports the Phe(10)B9-Tyr(11)B10
residue pair, setting the orientation of Tyr(11)B10 towardhelix which is substituted by the extended GH poly-

peptide segment His(93)–Leu(98) (Figures 2 and 3). To the distal heme site (see below). A similar residue pair
is present in elephant Mb [36], and is strongly conservedprevent formation of an �-helical segment at this topo-

logical region, the GH segment has adopted the helix- in nonvertebrate globins [7, 10, 26, 34]. As observed in
several vertebrate globins [25], the His(18)C1-Pro(19)C2breaking Gly(94)-Pro(95) sequence motif.

Figure 2. CerHb Tertiary Structure

Stereo views of CerHb C� trace ([A]; every tenth residue and the N- and C-terminal residues are labeled). CerHb C� backbone (cyan ribbon),
in overlays with sperm whale Mb (red trace, [B]; the main � helices are labeled in sperm whale Mb) and P. caudatum trHb (orange trace, [C];
� helices are labeled in CerHb). Drawn with MOLSCRIPT [66] and Raster3D [67].



Structure
730



Nerve Tissue Mini-Hb Crystal Structure
731

pair of CerHb starts the C helix, which supports residue bond. The dioxygen molecule adopts a bent orientation,
forming a 103� Fe-O1-O2 angle. Relative to the porphyrinPhe(25)CD1 next to the heme CHD methinic bridge.
ring, the O2 ligand is oriented in the direction of the methinicStructural similarity between CerHb and sperm whale
CHD atom, thus pointing to the rear end of the hemeMb, in this region, is substantial (Figure 2B).
crevice. Two main hydrogen bonds stabilize the heme Fe-The CerHb CD region displays contacts between
bound dioxygen. On the one hand, the Fe distal O2 atomPhe(25)CD1 and Phe(27)CD3 side chains. Similar stack-
is linked to the Tyr(11)B10 OH group (2.58 Å). On theing interactions are observed in (non)vertebrate globins,
other, the Fe proximal O1 atom is hydrogen bondedalthough the sequence motif is often 1 residue longer,
to the Gln(44)E7 NE2 atom (2.61 Å). Additional polarthat is, PheCD1-X-X-PheCD4. Notable residues along
interactions contribute to the overall structural organiza-the CerHb E helix are Gln(44)E7 and Thr(48)E11, which
tion of the heme distal site. Specifically, the Tyr(11)B10face the heme distal ligand binding site, and Tyr(51)E14,
OH group is connected to the Thr(48)E11 OG1 atom bywhich provides a floor to the heme pocket, compensat-
a strong hydrogen bond (2.59 Å), while weaker interac-ing for the absence of the A helix. A similar function for
tions connect the Tyr(11)B10 OH group to the Gln(44)E7a strongly conserved Phe residue at site E14 has been
NE2 atom (3.24 Å), and the Gln(44)E7 NE2 atom to thenoted in trHbs, where virtual absence of the proximal
Thr(48)E11 OG1 atom (3.53 Å). Moreover, it can be no-F helix would leave a solvent-accessible heme cavity
ticed that a close contact (3.5 Å) occurring between the[13, 28].
heme Fe-bound dioxygen and the rim of the Phe(25)CD1Gly(57)E20 is the last residue in the E helix, immedi-
aromatic ring is indicative of an aromatic-electrostaticately followed by the Gly(58)–Asp(61) EF hinge. The
contact, which further contributes to stabilization of theheme proximal F helix covers residues Ala(62)F1 through
ligand (Figure 4) [38]. As a result of the interlacing ofLys(70)F9, encoding a heme proximal side overall struc-
side chains and hydrogen bonds, the heme Fe-boundture more closely related to (non)vertebrate globins than
dioxygen is fully buried in the distal site, being totallyto trHbs, which also display a conserved Gly-Gly motif
inaccessible to solvent.at the EF hinge region [13, 28]. CerHb F helix regularly

The side chain clustering within the heme distal sitesupports residue Leu(65)F4, contacting the heme CHB
does not leave room for solvent molecules, in keepingmethinic bridge and the proximal His(69)F8 residue.
with the absence of electron density peaks besides di-The elongated G helix (15 amino acids) of CerHb hosts
oxygen in this protein region. Analysis of the atomic B

residue Phe(79)G5, next to the heme B-pyrrole ring and
factors for the O2 molecule (O1 B � 23 Å2, O2 B � 28 Å2)

to the imidazole ring of His(69)F8. An intramolecular
is in keeping with a bound dioxygen displaying only

contact between Phe(79)G5 and His(69)F8 sets the azi- slightly higher mobility at the distal O2 atom, hydrogen
muthal orientation of the proximal imidazole relative to bonded by residue Tyr(11)B10. Such an observation,
the heme pyrrole N atoms. The G helix hosts 2 Cys and the orientation adopted by the O2 diatomic mole-
residues, at sites G11 and G16. Both residues are too cule, may reflect specific structural properties of the
far from the distal site cavity to suggest any involvement heme distal cavity. Spectrophotometric analysis of dis-
in heme ligand reactivity (i.e., O2/NO chemistry), as pro- solved crystals (aged, but not exposed to X-rays) did
posed for Ascaris suum Hb [37]. not show the presence of deoxygenated or oxidized

CerHb species, in keeping with the reported stability of
Heme Stabilization and Ligand Binding oxygenated CerHb, in vivo and in vitro [21]. However,
Stabilization of the heme group within the CerHb poly- the occurrence of radiation-dependent redox processes
peptide chain occurs through 35 van der Waals contacts during X-ray data collection cannot be ruled out [39].
[�4.0 Å; residues Phe(10)B9, Tyr(21)C4, Lys(24)C7, The proximal His(69)F8 residue is coordinated to the
Tyr(51)E14, Leu(65)F4, Arg(68)F7, Arg(72), Val(74), heme Fe atom through a 2.06 Å bond. The proximal
Phe(79)G5, Ala(82)G8, and Ile(102)H13], and through the imidazole azimuthal orientation is set by a hydrogen
His(69)F8 NE2-Fe coordination bond. Moreover, electro- bond between the side chain ND1 atom and Leu(65)F5
static interactions to the heme propionates provide a O atom (2.85 Å), and by contacts to Phe(79)G5. The
significant stabilizing contribution. Residue Arg(72) is F5-F8 main chain/side chain hydrogen bond is a key
hydrogen bonded to the heme D-propionate, whereas interaction strongly conserved in Hbs and Mbs from all
Lys(47)E10 is electrostatically linked to the heme A-pro- evolutionary phyla [10]. Analysis of the heme Fe atom
pionate (at 4.9 Å). The side chain of Arg(68)F7 may also coordination parameters indicates that the Fe atom lies
contribute to electrostatic stabilization of the heme, but within the pyrrole N-atom’s plane, with coordination dis-
in the crystal structure its orientation is affected by the tances to the four pyrrole N-atoms averaging 2.03 Å.
presence of a nearby bound sulfate anion.

Binding of O2 to the heme Fe atom occurs in a tightly A Proposed Novel O2 Diffusion Pathway in CerHb
occupied distal site cavity (Figure 4). The O2 molecule Lack of the N-terminal A helix together with other CerHb-

specific structural features such as residue substitutionsis bound to the heme Fe atom via a 1.94 Å coordination

Figure 5. An Elongated Protein Matrix Cavity in CerHb

Outline of the CerHb core cavity, stretching from protein surface to the heme distal site. The cavity surface, defined by a 1.4 Å radius probe,
is calculated in the absence of the O2 molecule with the program SURFNET [68] and is displayed in blue. Residues lining the cavity walls are
portrayed in light gray and the heme group in red (A). For comparison, C. eugametos trHb (B) and sperm whale Mb (C) are shown in the same
orientation and scale, together with the protein tunnel surface and Xe binding sites (cyan spheres), respectively. Drawn with BOBSCRIPT [69]
and Raster3D [67].
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and the span of individual helices gives rise to an evident tunnel of trHbs, nor to the Xe cavities identified in Mb
as relevant for ligand diffusion (Figure 5).surface cleft, located approximately between the end

of the E helix and the beginning of the H helix. This
cleft is about 8 Å wide, bordered by surface residues Functional and Molecular Properties of a Mini-Hb

In situ, CerHb is half-saturated with O2 at 2.9 torr, theHis(100)H11, Asp(104)H15, and by main chain carbonyl
groups of the 55–62 region, hosting several ordered corresponding value of the apparent dissociation equi-

librium constant for oxygen binding being 3.8 � 10�6 Mwater molecules. The inner part of the cleft is defined
by residues Ala(55)E18, Leu(98)H9, and Ala(101)H12, (at pH 7.3 and 15�C). The Hill coefficient for CerHb in

situ at half O2 saturation, n �2.3 (at pH 7.3 and 15�C),which in turn are part of the narrow access to an elon-
gated core tunnel (about 10 Å long, 	100 Å3 volume, as is in keeping with the self-association of this nerve tissue

Hb at least into tetramers in the deoxygenated state atdefined by a 1.4 Å probe) directed toward the heme
distal site, where it is terminated by Val(7)B6, Phe(10)B9, the 2–3 mM (heme) concentration estimated in the cells,

dissociating into dimers and monomers upon oxygen-and Thr(48)E11 (Figure 5A). The tunnel is mainly lined by
9 hydrophobic residues [Val(7)B6, Phe(10)B9, Ile(52)E15, ation and dilution [21]. Therefore, CerHb undergoes

O2-linked association-dissociation equilibria [21] as of-Ala(55)E18, Leu(86)G12, Leu(98), Ala(101)H12, Ile(102)H13,
Ile(105)H16], by Thr(48)E11 and Tyr(51)E14, and by the ten observed in (non)vertebrate globins [7, 10, 48]. A

very similar behavior has been also reported for theheme B-methyl and B-vinyl groups. The inner part of
the tunnel has roughly an hour glass shape, divided body wall C. lacteus mini-Hb [21]. The finding of one

oxygenated CerHb molecule per asymmetric unit in thebetween the proximal and distal sides of the heme, with
a diameter varying between 5.5 and 6.9 Å. The heme crystalline state, together with considerations from the

analysis of crystal packing contacts (which occur atdistal side end of the tunnel falls at about 4 Å from the
Tyr(11)B10 OH group and from the heme Fe-bound O2 scattered protein surface regions), is in keeping with the

proposed O2-linked association-dissociation equilibria,molecule. No other structural feature of the distal site
limits access to the ligand binding site. The overall size which indicate a monomeric state for the oxygenated

derivative of CerHb [21].and shape of the tunnel may vary dynamically, following
conformational readjustments of the Tyr(51)E14 side The crystal structure of CerHb allows us to identify a

new structural subgroup, henceforth called the “mini-chain, which, despite being a core residue, is relatively
free of intramolecular contacts and can swing within the Hb” subfamily, within the Hb homology superfamily, sim-

ilar to what has been recently recognized for trHbs [14].tunnel space by C�-C
 and C
-C� rotations, possibly
reshaping it into two smaller regions. Remarkably, however, despite the comparable globin

chain sizes, mini-Hbs and trHbs display very differentCerHb core tunnel is unique in its size and location
among all known globin structures. Considering the free structural modifications of the classical three-on-three

globin �-helical sandwich, indicating diverse evolution-energy cost of maintaining an empty cavity within the
protein matrix relative to protein stability [40], it can be ary histories. The structural modifications observed in

the two distinct Hb subfamilies can hardly be coded insuggested that the CerHb core cavity plays a functional
role in providing an O2 diffusion pathway to and from a trimmed Mb construct comprising the vertebrate Hb

central exon region (topological sites B12–G7), sincethe heme, as an alternative to the distal site gating mech-
anism based on the E7 residue found in classical Hbs proper hosting of the rigid porphyrin ring within a globin

matrix lacking the A and significant parts of the B andand Mbs [41]. In fact, O2 release and uptake to and from
the solvent space through the CerHb distal E7 region H helices requires several concerted structural adapta-

tions, which are complex and necessarily distributedwould require a substantial conformational transition of
the Gln(44)E7 side chain, likely associated with readjust- throughout the tertiary structure. Such concepts had

been anticipated by characterization of a proteolyzedments of the side chains of Lys(47)E10, the heme propio-
nate(s), and cleavage of several intramolecular hydrogen form of horse heart Mb, comprising residues 32–139

(topological sites B13–H16). Surprisingly, despite main-bonds.
Related to the issue of ligand diffusion pathways to taining essential globin fold structure around the heme

cavity, the protein carbonylated form is structurallythe heme, recent structural investigations on trHbs from
closer to the parent horse Mb (60% �-helical content)Mycobacterium tuberculosis and Chlamydomonas eu-
than the deoxygenated form (40% � helix). Moreover,gametos have indicated that a 20 Å-long hydrophobic
while ligand binding kinetics are similar to those of nativetunnel through the protein matrix may support O2 diffu-
horse Mb, the stability of the oxygenated derivative ission and binding processes (Figure 5B) [13, 14, 28].
drastically reduced [49–51]. Finally, in relation to theMoreover, local diffusion processes of diatomic ligands
�-helical composition of mini-Hbs and trHbs, where �within the Mb protein matrix have shown the residence
helices recognized crucial for the stability of the moltenof O2, CO, or NO in small internal cavities, previously
globule apoprotein intermediate are deleted or largelyidentified by Xe atom binding [42]. Such processes have
shortened [52–54], it may be expected that CerHb andrecently been related to Mb dynamics and functionality,
trHb subfamilies be characterized by folding pathwaysopening new perspectives in the O2-dependent NO de-
markedly different from those postulated for native Mb.toxification process and reaction catalyzed by Mb in vivo

[6, 43–47]. Inspection of the three-dimensional structure,
Biological Implicationshowever, shows that no internal cavities are present in

CerHb besides the core hydrophobic tunnel. From the
structural and topological viewpoints, CerHb core tunnel The smallest known Hbs (109 residues long) have been

isolated from the nerve tissue and body wall muscle ofis unique and cannot be related to the protein matrix
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sodium acetate buffer (pH 5.5) at 4�C. Bunches of elongated pris-the marine nemertean worm C. lacteus. The nerve tissue
matic crystals (�0.07 � 0.07 � 0.4 mm3) grew within 1 week, ascomponent (CerHb) is believed to act as an oxygen
previously reported [29]. The crystals were stored in 70% ammoniumstore, sustaining neural activity during anoxic (bur-
sulfate and 50 mM sodium acetate buffer (pH 5.5), and transferred

rowing) periods. The gene coding for CerHb displays to the same solution supplemented with 15% glycerol immediately
two introns at the B12.2 and G7.0 sites, that is, at intron before data collection at 100 K.
sites strongly conserved in the (non)vertebrate classical

Data Collection and Processingglobin genes but entirely different from those displayed
Three-wavelength MAD data sets were collected at ESRF synchro-by truncated Hb genes. Such gene structure may place
tron source (beamline ID29, Grenoble, France) at 100 K (Table 1).CerHb evolutionarily closer to full-length (non)vertebrate
The peak and the inflection point wavelengths were determined by

globins. collecting an X-ray absorption spectrum near the heme Fe atom K
Oxygenated CerHb crystal structure shows striking absorption edge. Diffraction data were processed using DENZO,

adaptation of the globin fold, likely necessary to sustain SCALEPACK, and programs from the CCP4 suite [57, 58]. The crys-
tals belong to the orthorhombic space group P212121 and accommo-heme binding in a polypeptide chain 30–50 residues
date one CerHb molecule per asymmetric unit, with an estimatedshorter than conventional Hbs and Mbs. Major globin
solvent content of 47% (Table 1A).fold modifications include full deletion of the N-terminal

A helix, substantial reshaping of the GH interhelical re-
Structure Solution and Refinement

gion, and reshaping of the C-terminal H helix. Poor ter- MAD phases, based on the heme Fe atom anomalous signal, were
tiary structure matches are also found relative to the determined at 1.95 Å resolution using SOLVE [59], with a figure of

merit of 0.56. The electron density map was remarkably improvedfold of truncated Hbs, the only Hb subfamily displaying
by solvent flattening using the program RESOLVE [60], yielding apolypeptide chains of a size comparable to CerHb.
figure of merit of 0.73 at 1.95 Å resolution. The resulting electronFurthermore, the CerHb three-dimensional structure
density map was of excellent quality, clearly displaying almost allsuggests that binding of the heme within a very short
the main molecular features and residues. The program wARP [61]

polypeptide chain requires extensive interactions with was used to extend and refine phases to 1.5 Å resolution and for
both distal and proximal residues. Clustering of heme- automated model building of all the main and side chain atoms. The

molecular model was subsequently manually checked with O [62]stabilizing distal residues may impair diffusion of O2 to
and refined at the maximum resolution using CNS [63] and subse-the heme Fe through the “classical” E7 gate path ob-
quently REFMAC [64] for anisotropic B factor refinement. The finalserved in vertebrate globins. Nevertheless, binding of
model contains 109 residues (plus an extra N-terminal Met residue),O2 to CerHb heme is supported by the Tyr(11)B10-
106 water molecules, one dioxygen molecule, and one sulfate and

Gln(44)E7 residue pair, through a hydrogen-bonded net- one acetate anions (R factor � 15.3% and Rfree � 18.7%, respec-
work reminiscent of those observed in nonvertebrate tively), with ideal stereochemical parameters (Table 1B [30]). Weak

electron density was observed only for residue Lys(36)D6.Hbs and Mbs displaying the same distal residue pair,
but very different O2 affinity.
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