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Abstract—Decentralized online social networks (DOSNs) have
recently emerged as a viable solution to preserve the users’
privacy and ensure higher users’ control over the contents they
publish. However, little is known about the backlashes that the
decentralized organization and management of these platforms
may have on the overlaid social network.

This paper fills the gap. Specifically, we investigate how
a decentralized architecture based on distributed servers im-
pacts the structure of the users’ neighborhood and their ego-
networks. Our analysis relies on social data gathered from
the decentralized micro-blogging platform Mastodon, the newest
and fastest-growing decentralized alternative to Twitter. Our
findings highlight that the social network supported by each
server, namely instance, has a specific footprint in terms of
degree distribution and clustered structure of the ego-networks
of its members. Further, how users connect to people hosted
in other instances is heavily bound by the server they are in.
Moreover, users who tend to establish relationships in outer
instances prefer to use a bunch of servers. Finally, we show
that the ego-networks of the users are more clustered within the
instance boundary, i.e. triangles are more likely to form among
members of the same instance. All these findings suggest that
the decentralization drives the social network to a structure that
can be potentially very different from the usual one typical of
centralized online social networks. Thus, the architecture of a
DOSN is a factor developers and researchers should take into
account when designing this kind of social platforms.

Index Terms—decentralized online social networks, node’s
neighborhood, clustering coefficient, online social networks

I. INTRODUCTION

In the last few years, techno-activists, open-source software
developers and researchers have proposed various forms of
online social networks with the goal of both preserving user
privacy and putting users’ communications and contents back
to the focus of these platforms. Decentralized online social
networks (DOSNs) [1] represent one of the most promising
and widely accepted solutions, as they weaken or even remove
the dependency on a centralized provider, thus giving more
control back to the users over their own data.

While user privacy and privacy management [2], data own-
ership [3] and data portability [4] are the main topics where
research on DOSNs is focusing, much remains to uncover

about the structure of the social relationships they maintain.
This latter aspect is as important as the former ones to
allow DOSNs to follow the growth and wide adoption we
observed for their centralized counterpart. In fact, there is a
strict relationship between the social network, and some of its
properties, and the success of many centralized online social
networks [5], [6]. From this perspective, one of the key points
to understand and, somehow, control the evolution and growth
of DOSNs lays on the understanding of the interplay between
the system design and the network of social relationships
the system supports. An interplay quite evident since users
have to choose in advance which server will host their data
and they have a limited access to the social network - in
terms of navigability and friend searchability - imposed by
the connections among the servers.

The above interplay between the system and the overlying
social network is exactly the subject of this paper. To this
purpose, we rely on Mastodon, a new and fast emerging
decentralized microblogging platform, designed as a federated
architecture, in which an overlay of networked servers acts
as proxy to support the social features of the system. The
Mastodon platform exhibits some features well suited to the
purpose of our work: (i) each server, namely a instance in
Mastodon jargon, supports a community orientated towards
specific topics and interests; (ii) data about the hardware ca-
pacity, the position and the publication policy of the instances
are publicly available through APIs; and (iii) users can use all
the functions which ease social interactions, such a “follow”
button, hashtags, post publication, mentions and replies. The
resulting set of data, i.e. the Mastodon social network and the
meta-data about the instances, allows us to investigate how a
federated architecture impacts the neighborhood and the ego-
network of the users, and whether each instance has a specific
social footprint. The main findings on the above aspects may
be summarized as follows:

• The impact of the instances on the creation of links are
weaker than those imposed by the nationality of the user,
i.e. users are more bound by their geographical, cultural



and linguistic background than by the architecture of the
platform. It is, however, suggestive that people alternate
phases in which they form links within the same instance
with people whom they share an interest with, and phases
in which they explore other communities to look for
social relationships.

• The exploring phase, i.e. searching for users outside
the hosting server, is targeted on a few instances. In
fact, users who are likely to search and establish social
relationships outside their home-instance do not equally
spread their social links among the other instances, rather
they prefer a bunch of instances, which likely fit their
interests. From the user’s viewpoint not all the servers in
the network overlay are equally important.

• The architecture based on independent instances has
a stronger impact on how users’ ego-networks cluster.
Indeed, the instance-based design influences the triadic
closure process, sometimes limiting the formation of
closed triads within the instance boundary, other times
promoting the clustering of nodes’ neighborhood outside
the instance they belong to.

• Finally, each instance has a peculiar footprint which
reflects how its members establish “follower”/“followee”,
mutual relationships and close triads. We suppose that
the underlying mechanism which drives the formation
of the nodes’ neighborhood might vary from instance to
instance.

The paper is organized as follows. In Section II we briefly
describe the main feature of the decentralized microblogging
platform Mastodon. In Section III we describe which kind of
data we collect from Mastodon – the instance meta-data and
the structure of the social network – and how we gathered
these pieces of information. In Sections IV and V we discuss
the main findings about the impact instances exert on their
members when they have to establish new relationships and
the footprint of the instances. Here we focus our analysis on
two microscopical aspects of the social network: the node’s
neighborhood and its ego-network structure.

II. AN OVERVIEW OF MASTODON

Mastodon is a DOSN with microblogging features, where
each server runs open source software. The basic aim of the
project, which dates to 2016, is to restore control of the content
distribution channels to the people by avoiding the insertion
of sponsored users or posts in the feeds.

From an architectural viewpoint, the platform follows a
federated architecture organized into two layers implementing
the ActivityPub protocol,1 as shown in Fig.1. The Activity-
Pub protocol allows it both to manage the communications
(black links) among the servers – instances – comprising
the federation and to offer a client-to-server interface which
enables interactions (blue links) among the users having their
accounts on the instances. In the server-to-server layer the
instances form a network, and each of them administrates its

1https://www.w3.org/TR/activitypub/
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Fig. 1. The decentralized architecture of Mastodon. We distinguish between
two layers: the server-to-server layer, made up of interconnected (black links)
instances (InstanceN); and the social network layer, formed by the ’follow’
relationships (blue links) between users (UserK@InstanceN) hosted (dotted
cyan links) by the different instances.

own rules, account privileges, and whether or not to share
messages coming to and from other instances. Each server
hosts individual user accounts, the content they produce, and
the content they subscribe to.

From a user experience viewpoint, Mastodon releases the
major features of a microblogging platform:

• users can follow one another, whether or not they are
hosted on the same instance;

• users can post short messages consisting of up to 500 text
characters, called ’toots’, for others to read.

• toots are aggregated in local and federated timelines. The
former show messages from users hosted on a specific
instance, while the latter aggregate the messages across
all participating Mastodon instances.

• users have control over the visibility of their posts. They
can choose whether the post can be displayed on the
federated timeline, on the timelines of the user’s followers
only, or on the timeline of the users mentioned in the toot.

Mastodon differs from other commercial microblogging
platforms w.r.t. two key points. First, it is oriented towards
small communities and community-based services. In fact,
each instance may support and favor specific topics. So prior to
registration, a user is encouraged to choose the instance better
suited to her own tastes. Second, the Mastodon platform does
not provide any algorithm for recommending new friends or
promoted contents. So, the only way to establish a connection
or consume a content is by searching an already known
account through the search functions or by exploring the feeds
of the instances in search of users with similar interests or
interesting posts. These two characteristics are fundamental
for the study of the interplay between the physical layer of a
decentralized social network and its overlaid social network,
since: (i) the coupling server/topic affects how people are
distributed on the servers set and how they interact among
themselves, this is true because it is well-known that common
interests shape the structure of social networks [7], [8]; (ii) the
lack of recommendation systems removes different external
factors – often hidden by recommendation algorithms – from
the mechanisms driving the formation of new links [9], [10].
The individual goes back to being the focus of the link creation



process and the decentralized organization of the instance
might be one of the few factors affecting the choice of who
to “follow”.

III. DATASET

The dataset has been completely gathered by combing
queries to the Mastodon API and a custom web crawler. Here,
we describe its two main components: the instance meta-data
and the Mastodon social network [11].

A. Instance meta-data

One of the signature elements in the Mastodon platform
is the idea of instance, the cornerstone of the server-to-server
layer in Fig.1. Within a decentralized system, the collection of
information about the instances may raise some issues due to
the search for the servers. Indeed, each server is independent
and the ActivityPub protocol does not provide specifications
for polling the other servers. To overcome this issue, Mastodon
developers have introduced an API to query different kinds
of information about the instances. 2 APIs provide a full
description of the instance, the list of topics the instance
supports, the number of registered users, the number of posts
and the IP address of the instance. By continuously monitoring
the instance meta-data, we are able to estimate the size of the
server-to-server layer and to track its growth over a six-month
period. The number of instances on January 21, 2018 (the date
we got the first snapshot of the Mastodon social network) is
1733, an increase of about 450 servers w.r.t. the start of the
monitoring.

We also enriched the instance meta-data by adding the
geographical position of the instances at a country-granularity.
To this end, we exploited the global IP database provided by
ipstack.com for assigning to each server the country it is in.
The localization of the instances allows us to i) understand
where the instance and the users are distributed worldwide;
and to ii) quantify the strength of the interplay between the
geographical position of the servers and the overlaid social
network. One third of the instances is located in Japan, while
the remaining are distributed in North America, in Europe
(most notably France) and in other countries such as China,
Australia, Brazil and India. Similarly, distribution of the users
follows the instance one; indeed we do not find countries with
few instances and many users.

B. The Mastodon social network

To gather the social relationships among Mastodon users,
we developed a crawler targeted to the web pages of the
platform. From each profile page we extract both the followers
and the followees, i.e. the in-going and out-going relationships
of a user. The opportunity to follow both directions represents
an advantage in building the network, since the crawl of a
directed network using out-going links only may not result in
the entire weakly connected component [12]. We also highlight
that the information in following/follower web pages are also
available to visitors who are not logged on. To build a seed

2https://instances.social/api/doc/

set as large as possible and reach as many users as possible,
we exploit the list of the instances and their global timelines,
since they report all the statuses with public visibility (see
Section II) in chronological order. Specifically, from each
public timeline we extract the users who posted at least one
status – Mastodon APIs provide a specific end-point to get
posts in a public timeline – and put them into the seed set.
The resulting seed set contains more than 62K users. Finally, in
our crawler we implement a breadth-first search (BFS) strategy
which traverses both out-going and in-going links, where the
latter are traversed in the opposite direction. In the crawler
we also add a filter which discards links towards profiles
hosted in other social platforms supporting ActivityPub or
OStatus protocols, which allow users to interact with users
on other decentralized platforms, i.e. the “fediverse”. After
the end of the crawling process we obtained a network made
up of 479,425 nodes and 5,649,762 directed links, covering
46% of users in Mastodon (the total amount of users can
be obtained by the instances metadata). Specifically, the six
biggest instances are covered on average to an extent of 52%.

In the following analysis we model the followee and fol-
lower relationships by defining two networks: (i) the directed
network, which reflects the asymmetric nature of the social
relationships in Mastodon; and (ii) the mutual network, formed
by the reciprocated links in the directed network.The latter
allows us to compare our findings on the Mastodon networks
with previous studies on centralized online social networks
[13].

IV. THE IMPACT OF THE INSTANCES

In this section we present our findings about the impact of
instance-based decentralized architecture on how people estab-
lish new relationships with the other members of Mastodon.
Specifically, we investigate this aspect from a microscopic
viewpoint by analyzing the characteristics of the neighborhood
and the ego-network of Mastodon users.

1) Are users bound by instances?: In the Mastodon context,
it should be easier to find friends within the same instance
than in outer instances, since users within an instance are
supposed to share a common interest and each instance has
a dedicated timeline showing their users’ activities only.3 So,
here we are wondering to what extent users are bound by
instances when they establish relationships. To evaluate how
likely users establish connections outside their own instances,
we compute the border-index BI. Namely, the border-index of
a user u is defined as the fraction of u’s neighbours who are
hosted in different instances:

BI(u) =
|{v ∈ Γ(u)(.)|i(u) 6= i(v)}|

|Γ(u)(.)|
(1)

where Γ(u)(.) indicates the set of u’s successors (Γ(u)(+))/
predecessors (Γ(u)(−)) in the directed network, or the set
of u’s neighbors (Γ(u)(mut)) in the mutual network; while

3Finding interesting users or posts in the federated timeline is much harder
since users have to scroll many more elements coming from most of the
Mastodon instances.
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Fig. 2. In (a) the border-index distribution (CDF) taking into account different types of degree (out-degree, in-degree and mutual degree) and different kinds
of node attribute (instance or country). In (b) the distribution of the border-index based on the mutual degree and the instance attribute. The figure reports the
distribution for the ten biggest instances. In (c) the distribution (CDF) of the dispersion index measured on the whole network (black dots) and on the ten
biggest instances (coloured dots). In (d) the three types of triangle according to the position of the nodes in the instances. In (e) the distribution (CDF) of
the intra-triangle index measured on users having a mutual degree greater than 10, for the ten biggest instances. In (f) the distribution (CCDF) of the mutual
degree in the 10 biggest instances of Mastodon.

i(u) denotes the instance the user u is on. A border-index
close to 1 indicates that a user in an instance is likely to
establish relationships with users outside the instance. In this
case the user is scarcely limited by the instance. In Fig. 2a
we report the cumulative distribution function (CDF) of the
border-index measured on both the directed (blue and green
lines) and mutual (purple line) networks. We observe that in
all the cases about 35-40% of the users establish or receive
connections to/from people in other instances, i.e. they are
more likely to search for friendships outside their instance
or to receive friendship requests from users who lie outside
their home-instance. In the same figure, we also display the
CDF of the border-index where we substitute the instance of u
(see equation 1), with its country. This way, we can compare
the impact of the geographical, cultural and linguistic limits
given by the country, with the influence of an architectural
aspect, given by the instances. As we can see in Fig. 2a,
users are more bound by the country than by the instance
they belong to. In fact, only 10% of the Mastodon users have
more than a half of their neighbors lying in instances located
in other countries. Thus, from the analysis of the border-index
we can assert that the constraints imposed by the instances
on the creation of links are weaker than those imposed by
the nationality of the user, i.e. users are more bound by their
geographical, cultural and linguistic backgrounds than by the
architecture of the platform. This fact is also supported by
the analysis of the assortativity for the attributes instance and
country. In fact, the former is 0.56 and the latter is 0.75 in the
mutual network, meaning that country-homophily is stronger

than instance-homophily.
The above finding holds for a generic user in Mastodon,

since the distribution of the border-index has been computed
on the whole Mastodon network. However, it may be that users
in some instances tend to establish intra-instance relationships
more than others. To cope with this aspect, we analyze the
distribution of the border-index in each single instance, as
shown in Fig. 2b. Here we reported the CDF of the border-
index for the ten largest instances in Mastodon. We observe
that the above general behavior is a mixture of traits of the
instances very different from one another. On the one hand,
there are instances, e.g. “mastodon.cloud”, “mamot.fr” and
“framapiaf.org”, whose users are likely to create connections
outside their home-instance; on the other hand, there are
instances whose users are bound by the instance they belong
to (“pawoo.net” or “friends.nico”). We should note that this
phenomenon scarcely depends on the size of the instance,
in fact “mao.daizhige.org” and “pawoo.net” show similar
behaviors, but the former is ten times smaller than the latter. In
general, the tendency of users to establish relationships with
members of outer instances depends on the instance.

2) Do users connect to specific outer instances?: A further
aspect which may shape the neighborhood is how each node’s
links are distributed among the outer instances. In fact, people
may equally distribute their relationships among the instances
or address their efforts on specific instances; where , the
latter behavior is more likely, since people focus on instances
which are inclined to their interests. We investigate how users
distribute their relationships among the instances by exploiting



a statistical measure of dispersion. Specifically, for a generic
user u, we compute the Kullback–Leibler (KL) divergence
between the distribution of the instances of the u’s neighbors
– discarding u’s neighbors lying on the u’s instance – and
a uniform distribution on the same instance set. Since KL
divergence represents the distance between these distributions,
the closer the KL divergence to 0 the more similar the distri-
butions. In Fig. 2c we report the distribution (CDF) of the KL
divergence measured on users having a border-index greater
than 0.5 and a degree greater than 10, grouped by instance,
along with the KL divergence distribution measured on the
aggregation of the instances (black line). We reasonably define
as “similar to the uniform” those distributions which get a KL
divergence less than 0.3, meaning that users spread almost
uniformly their social relationships among the instances. From
the figure a clear trait emerges as in all the instances nearly
75% of the members are not “similar to the uniform”; i.e., to
a lesser or greater extent they prefer a few instances when
they have to create a social relationship. This behavior is
even more evident in ”pawoo.net” and ”friends.nico”, where
more than 20% of their members prefer one or two outer
instances. In general, in all the instances, users who are likely
to seek out and establish social relationships outside their
home-instance do not equally spread their connections among
the other instances; rather, they prefer a a few instances, which
likely fit their interests.

TABLE I
α AND xmin PARAMETERS ESTIMATED BY THE FITTING. THE FIRST TWO
COLUMNS REFER TO THE OUT-DEGREE, THE THIRD AND FOURTH REFER

TO THE IN-DEGREE, THE LAST TWO COLUMNS TO THE MUTUAL DEGREE.

Instance α+ x+min α− x−min αm xmmin
pawoo.net 2.4 205 1.6 25 2.2 65
mstdn.jp 2.2 71 2.4 25 2.4 63
mastodon.social 2.9 130 2.3 155 3.3 100
mastodon.xyz 2.8 69 2.1 65 2.5 30
mamot.fr 3.1 130 2.4 167 3.0 79
friends.nico 1.9 50 2.3 182 2.2 75
mastodon.cloud 2.8 95 2.4 7.2 3.0 66
framapiaf.org 2.4 47 1.8 19 2.3 22
mao.daizhige.org 2.1 28 1.9 18 2.1 14

3) The impact of instances on triangles.: Moving from
neighborhood viewpoint to an ego-network perspective we
seek out to what extent instances impact the formation of
triangles a node belongs to. To this aim, we start by getting
the ego-network of each node, which consists of the subgraph
induced over the neighborhood of the node in the network.
Then, we focus on the triangles involving the node and its two
neighbours. The organization into instances introduces three
types of triangle shown in Fig. 2d. Here we deal with the first
type, i.e. a triangle whose elements are restricted to the same
instance. Based on it, for each node u we compute the intra-
triangle index ITR, defined as the ratio between the number of
triangles of type I and the overall number of triangles involving
the node u. An intra-triangle index close to 1 indicates that the
user is almost always in triangles limited to the same instance,
i.e. her ego-network clusters within the same instance. In

Fig. 2e we report, for the ten largest instances, the distribution
(CDF) of the intra-triangle index measured on users having a
mutual degree greater than 10. From the figure two opposite
behaviors emerge: (i) in some instances, such as ‘pawoo.net”
or “friends.nico”, we observe a tendency of the neighborhood’s
nodes of being clustered within the instance boundary (ii) in
other instances, most of nodes are involved in triangles whose
members lay in outer instances, i.e. their neighborhood tends
to cluster outside the instance they belong to. In general we
confirm that the architecture based on independent instances
has a stronger impact on the how users’ ego-networks cluster;
sometimes instances act as a bound on how the neighborhood
of their members clusters, other times instances promote an
external clustering.

V. THE FOOTPRINT OF THE INSTANCES

In this section we present our findings about the diversity
of the instances in terms of the social network they support,
i.e. their footprint.

The properties of the node neighborhood, and consequently
the node degree, are fundamental in defining how people in an
online social network behave. In particular, in the context of
DOSNs, the distribution of the degree might be a footprint of
the instances since it captures the propensity of the instance
members to follow or be followed by other Mastodon users,
and how this propensity is distributed among the members of
the instance.

1) Degree distribution footprint: Since aggregating all the
nodes’ degree does not allow us to highlight the contribution of
each instance, we compute and compare the distribution of the
in-degree (k−), out-degree (k+) and mutual degree (kmut) for
the instances with more than one thousand members, i.e. the
ten biggest instances in Mastodon. For reasons of readability
and space, in Fig. 2f we report the complementary cumulative
distribution function (CCDF) of the mutual degree. But our
findings can be extended to the out-degree and in-degree
cases. From the figure it is evident that two different traits
emerge: a group of instances (“pawoo.net”, “mstdn.jp” and
“friends.nico”) hosting users who are more likely to establish
mutual relationships with other Mastodon users; and a second
group, made up by the remaining instances, containing fewer
connected people. With respect to [11], we examine the latter
aspect in greater depth, starting from the observation that
all the distributions follow a heavy-tail trait, so we adopt a
widely used framework for quantifying and fitting heavy-tail
and power-law behaviors in empirical data [14]. For all the
instances, the power-law distribution was the best candidate.

In TABLE I we report the estimated parameters α(.) – the
exponent of the power-law – and x

(.)
min – the minimal value

from which the scaling behavior of the power-law begin –
for the out-degree, in-degree and mutual degree distributions
of the ten largest instances. In all the cases the α exponents
differ from one another, but can be roughly merged into two
or three groups. For instance, in the case of mutual degree,
“mastodon.social”, “mastodon.cloud” and “mamot.fr” have an
exponent greater than or equal to 3, while the remaining



Fig. 3. The local clustering coefficient as a function of the mutual degree in
the ten largest instances.

instances lie in the range [2.1− 2.5]. Similar results hold for
the out-degree and the in-degree.

In general, by combining the previous observations on the
degree distributions and the outcomes of the fitting procedure,
we can assert that each instance has a peculiar footprint which
reflects on how its members establish “follower”/“followee”
or mutual relationships. Moreover, we suppose that the un-
derlying mechanism which drives the formation of the nodes’
neighborhood may vary among the instance, since the vari-
ability of the slope parameter (α) is strictly related to different
network growth models.

2) Clustering coefficient footprint: In the previous section
we found that instances condition how triangles form, meaning
that also the clustering coefficient of the nodes may be a
footprint of the instance. So, we analyze the differences in
the local clustering between the main Mastodon instances,
as shown in Fig. 3. In the figure we report the average
local clustering coefficient versus the mutual degree in the
ten biggest instances. Instances are very different from one
another: i) “mstdn.jp”, the second largest instance, has a
higher average clustering coefficient (0.35) than the other
instances (e.g. “pawoo.net” - 0.26, “mastodon.social” - 0.13
and “mastodon.xyz” - 0.08), and it is also higher than the clus-
tering coefficient of the entire network; ii) in the “mstdn.jp”
subnetwork the clustering coefficient increases up to a peak
(cc = 0.46) at degree around 30, then slows down. That
indicates the presence of clustered regions around nodes with a
small-medium connectivity. The same behavior, at a different
magnitude order, has been observed in the Twitter Japanese
subgraph [13], where there are quasi-clique subgraphs centered
around high degree nodes. The above results highlight a further
footprint of the instances, i.e. the trend of the local clustering
coefficient as a function of the degree.

VI. CONCLUSION

Decentralized online social networks have recently emerged
as a novel paradigm able to better preserve the user’s privacy
and to ensure higher users’ control over the contents they
publish. The design of such a decentralized architecture has
been mainly accomplished without giving sufficient consid-
eration to the overlaid social network, despite the fact that
it played a significant role in the successful design of their
centralized counterpart, in terms of both new services and
efficiency of data management. This paper investigates the

interplay between the system design and the network of
social relationships the system supports. Our analysis relies
on a novel large dataset about the decentralized microblog-
ging platform Mastodon, and highlights to what extent an
instance/community-based infrastructure conditions the way
people connect to each other over the platform. Our findings
show that the impact instances exert on how their members
establish social relationships is instance-dependent, however
to a lesser or greater extent people cross over the instance
boundaries to search for new friendships. The underlying
factors driving this behavior are actually unknown, however
it might be different across the instances, since each of them
has a specific footprint in terms of degree distribution and
clustering coefficient.

As a future work we wonder which role instances and
privacy settings play on the diffusion of contents on the
Mastodon social network.
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