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Abstract Aquifer hydraulic properties such as hydraulic conductivity (K) are ubiquitously heterogeneous
and typically only a statistical characterization can be sought. Additionally, statistical anisotropy at typical
characterization scales is the rule. Thus, regardless of the processes governing solute transport at the local
(pore) scale, transport becomes non-Fickian. Mass-transfer models provide an efficient tool that reproduces
observed anomalous transport; in some cases though, these models lack predictability as model parameters
cannot readily be connected to the physical properties of aquifers. In this study, we focus on a multirate
mass-transfer model (MRMT), and in particular the apparent capacity coefficient (b), which is a strong
indicator of the potential of immobile zones to capture moving solute. We aim to find if the choice of an
apparent b can be phenomenologically related to measures of statistical anisotropy. We analyzed an
ensemble of random simulations of three-dimensional log-transformed multi-Gaussian permeability fields
with stationary anisotropic correlation under convergent flow conditions. It was found that apparent b also
displays an anisotropic behavior, physically controlled by the aquifer directional connectivity, which in turn
is controlled by the anisotropic correlation model. A high hydraulic connectivity results in large b values.
These results provide new insights into the practical use of mass-transfer models for predictive purposes.

1. Introduction

Anisotropy and heterogeneity of hydraulic properties such as the hydraulic conductivity (K) are intrinsic to
aquifers worldwide [e.g., Rubin, 2003]. Both features are linked to the geologic origin of aquifers and are not
easily characterizable at the scales where solute transport typically occurs. A lack of detailed knowledge of
the spatial distribution of hydraulic parameters at the local scale gives rise to uncertain spatiotemporal dis-
tributions of solute plumes, which has significant consequences for the prevention of groundwater pollu-
tion as well as the management and remediation of polluted aquifers [e.g., Bolster et al., 2009; de Barros
et al., 2011].

Macroscopic anisotropy is a very well-known phenomenon in structural geology related to sedimentological
processes, faulting and folding, and metamorphic processes. While in hydrogeology, it is common to refer
to anisotropic formations as vertically axisymmetric media (e.g., stratified formations such as those present
at the Grand Canyon, Colorado River, USA, depicted in Figure 1(bottom)), other forms of anisotropic forma-
tions also exist, such as those shown in Figure 1(top). Figure 1a depicts a conceptual sketch by Koltermann
and Gorelick [1996] of oriented coarse-grained deposits embedded in a fine-grained matrix. The origin of
these deposits is fluvial; well-connected coarse-grained structures appear to be distributed along one princi-
ple direction. Figure 1b corresponds to an outcrop of vertically oriented planes of fractures in a gneiss for-
mation in Cordoba (Spain). The fractures originated from recent tectonic activities, and their orientation is
collinear with the main stratification of the rock formation, tilted by an angle of 80–85� (i.e., subvertical). In
this case, preferential flow paths along quasivertical planes are expected. It should be noted that the obser-
vation of anisotropy is scale dependent. An anisotropic description at the field scale gives no information as
to whether or not the local behavior is isotropic.

Because it is infeasible to exhaustively model all local scale heterogeneous patterns affecting flow and sol-
ute transport dynamics, alternative (effective) models are powerful tools for capturing pertinent dynamics.
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These models aim to reproduce the average behavior of flow and solute plumes by means of upscaled
(averaged) mathematical operators (such as macrodispersive terms) or using alternative mathematical mod-
els (such as nonlocal formulations) [e.g., Rubin, 2003]. In the context of (statistically) anisotropic porous
media, effective models have been studied extensively since the early work on flow in perfectly stratified
formations by Gelhar et al. [1979]. These authors were the first to derive values of directional effective K in
randomly heterogeneous media. Later, many others developed a suite of solutions for expected values and

Figure 1. Three different anisotropic geological environments: (a) two conceptual sketches of a fluviatile sedimentation processes depending on the nature of the river (braided or
meander) (from Koltermann and Gorelick [1996]). (b) An outcrop of a formation in Southern Spain showing subvertical fracturing and the potential of an axisymmetric anisotropy with a
horizontal axis. (c) The Grand Canyon in the United States, characteristic of axisymmetric anisotropy with vertical axis.

Water Resources Research 10.1002/2013WR014578

PEDRETTI ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 1206



uncertainties (variances) for flow and solute concentrations in statistically anisotropic media under uniform
flow conditions [see e.g., Rubin, 2003].

Significantly less work focuses on flow and transport under convergent (radial) flow conditions. Sanchez-Vila
and Carrera [1997] showed that convergent flow tracer tests (CFTTs) in statistically nonisotropic media leads
to variable directional travel times, which resulted in the concept of apparent directional advective porosities.
It is important to note that CFTTs are sometimes preferable to uniform flow tracer tests in field applications
for economic reasons [e.g., Ptak et al., 2004]; additionally the analysis of convergent forced-gradient flow
and solute transport problems is relevant in several practical circumstances such as delineation of well-
capture zones or aquifer remediation using pump-and-treat activities.

Much previous work on upscaled transport in heterogeneous media departs from the assumption that con-
servative solutes in the subsurface can be perfectly modeled with an advection-dispersion equation (ADE).
In recent years, this approach has been criticized due to its poor ability to properly reproduce field observa-
tions; observed BTCs from field experiments often display early arrivals, greater concentrations in late-time
tails and highly nonsymmetric (skewed) distributions, while BTCs predicted by the ADE are generally sym-
metric (nonskewed). Nonsymmetric distributions of BTCs are also typically referred to as having tailing, and
all these discrepancies between field observation and ADE predictions are lumped together under the gen-
eral term anomalous transport. Among several causes that can explain the failure of the ADE, we highlight
here the limited resolution and dimensionality of numerical models using the ADE, the assumption of
multi-Gaussianity for ln K multivariate distributions, the lack of consideration of flow distributions other
from uniform, and the assumption of ergodicity.

The dimensionality issue can be exemplified by the limited ability of two-dimensional (2-D) ADE-based numer-
ical simulations to reproduce anomalous transport. 2-D numerical setups are largely adopted for practical rea-
sons due to the lower computational burden compared with 3-D simulations. However, when used to
simulate transport using the ADE model (especially assuming unconditional multi-Gaussian K fields), 2-D mod-
els offer a limited capacity to reproduce observed anomalous transport, leading to inaccurate identification of
apparent transport parameters [Sanchez-Vila et al., 1996]. Counterexamples are provided from 2-D simulations
with very large ln K variance [e.g., Le Borgne et al., 2008] or when inclusion models are used [e.g., Fiori et al.,
2006]. Tailing, however, has also been observed in experiments with low ln K variance and distributions of K
different from embedded inclusions, such as in the 3-D laboratory experiments [e.g., Fern�andez-Garcia et al.,
2002] or field-scale tracer tests [e.g., Riva et al., 2008]. A comparison between unconditional 2-D and 3-D
multi-Gaussian numerical simulations by Pedretti et al. [2013] indicates that 2-D ADE-based simulations fail to
reproduce tailing, while 3-D ADE-based simulations do produce such tailing, under convergent radial flow.

The inability of unconditional 2-D fields to generate anomalous transport may be related with the poor abil-
ity of 2-D configurations to reproduce important connectivity patterns that exist in typical aquifers. For
example, some authors obtained anomalous distributions of BTCs from 2-D simulations after manipulating
unconditional simulations to increase transport connectivity [e.g., Zinn and Harvey, 2003; Willmann et al.,
2008], thus effectively removing the idea of statistical stationarity from the system. These authors showed
that connectivity not only affects the advection porosity, but also influences the choice of mass-transfer
parameters in a theoretical formulation of transport based on overlapping mobile and immobile pore frac-
tions (defined below). Interpretations of experiments by Fern�andez-Garcia et al. [2002] using a single poros-
ity model show that anisotropy and connectivity are jointly two of the most important features controlling
advection porosity in CFTTs. The issue of connectivity has been largely debated in recent years, although, to
date, no unique quantifiable definition of connectivity exists [e.g., Renard and Allard, 2013].

Another complication relates to the injection-extraction distance (R) of CFTTs and the nonstationary flow
that is typical in most experiments. As reported by Gelhar [1993], tracer tests are usually performed under
highly nonergodic conditions, both because flow is radial in two-well settings and because R is often on the
order of a few horizontal integral scales associated with the soil heterogeneity (Ix). However, for practical
theoretical reasons [e.g., Dagan, 1989; Rubin, 2003] the tendency has been to build models of solute trans-
port assuming ergodicity, which may not be a reasonable assumption as ergodicity can require an R on the
order of tens to hundreds times Ix, even for uniform flow [Matheron, 1967].

In the recent paper by Pedretti et al. [2013], a set of 3-D unconditional multi-Gaussian numerical simulations
of radial convergent transport in heterogeneous media showed that anomalous transport, displayed by
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highly asymmetric depth-integrated BTCs, could be associated with transport stratification. This was particu-
larly evident when R was on the order of Ix. The ratio between these two variables can be seen to largely
impact not only the degree of asymmetry of the BTCs (i.e., the departure from ADE-predicted symmetric dis-
tributions, measured as the dimensionless time difference between the BTC concentration peak and its cen-
ter of mass), but also the apparent power-law decrease of the BTC after the concentration peak. Pedretti
et al. [2013] also indicate that the transverse dispersivity at the local scale (i.e., the Peclet number at the
scale of a numerical grid cell) may have a small impact on the slope of apparent power-law tailing on the
late-time BTCs and a stronger impact on the BTC’s degree of asymmetry. However, in the latter case, an
insufficient number of simulations were conducted to confidently evaluate the dependence of slope and
degree of asymmetry with local dispersivity. A similar analysis on the influence of the flow velocity on the
mass-transfer parameters was reported by Sharifi Haddad et al. [2012].

Both late-time power-law slopes and the degree of asymmetry are important indicators used for the infer-
ence of microscale heterogeneity using so-called non-Fickian or nonlocal models, a class of effective models
which have emerged with the intent of better describing transport at intermediate to large scales. These
methods include models based on multiporosity domains, which we focus on in this paper due to their
wide use. Conceptually multiporosity models are based on the existence of heterogeneities at the micro-
scopic level that exchange mass between fast (or mobile) aquifer zones and slower (or immobile) aquifer
zones by mass transfer. One of these models, the multirate mass transfer (MRMT) model conceptualizes the
aquifer as a multiporosity system made up of a continuum superposition of a mobile and multiple immobile
domains [Haggerty and Gorelick, 1995; Zinn and Harvey, 2003]. Each immobile domain exchanges mass with
the mobile domain at a different rate. The ratio of the sum of all immobile porosities and the mobile poros-
ity defines a parameter called the capacity coefficient (b). This parameter controls the relative amount of
mass that is present in the late-time BTC tail [Pedretti et al., 2013]. The superposition of rates at which mass
exchanges between these zones is described by a functional parameter called the memory function [Carrera
et al., 1998]. MRMT is also popular because chemical reactions can be readily incorporated [Donado et al.,
2009; Willmann et al., 2010].

Mass-transfer models are widely used because of their versatility and ability to fit BTC tailing. However,
mass transfer is a short name for a suite of complex physical processes linked to the existence of randomly
distributed microscopic zones characterized by different pore-water velocities. Macroscopic evidence of
mass-transfer processes includes heavily tailed BTCs observed during tracer tests; this phenomenological
evidence has led some authors to postulate that heavily tailed BTCs may indicate the presence of mass-
transfer processes at local scales. Nonetheless other processes can lead to tailing (e.g., advection in hetero-
geneous media) and can be confused with mass transfer. Additionally, a concrete relationship between the
mathematical and aquifer physical parameters can be built only for a relatively limited number of cases, for
instance when mass transfer is dominated by diffusion-like processes [Nkedi-Kizza et al., 1984; Haggerty and
Gorelick, 1995; Carrera et al., 1998]. In this case, experimental evidence has validated this approach [e.g.,
Gouze et al., 2008; Zhang et al., 2007], and its use as a predictive tool is physically justifiable.

When tailing occurs in advection-dominated field experiments, a common situation widely observed in field
and numerical experiments [e.g., Becker and Shapiro, 2000; Zinn and Harvey, 2003; Fern�andez-Garcia et al.,
2004; Pedretti et al., 2013], mass-transfer-based formulations can be still used for fitting purposes but mass-
transfer parameters become empirical, or apparent as they are not directly linked to any measurable physi-
cal property of the subsurface. This is generally why their validity as predictive tools is limited and why their
use as effective upscaling approaches is highly criticized [e.g., Neuman and Tartakovsky, 2009]. Despite this,
the possibility of generalizing non-Fickian model descriptions as practical predictive tools is highly appeal-
ing due to their relative simplicity. Several authors [e.g., Zinn and Harvey, 2003; Willmann et al., 2008; Flach,
2012] have numerically explored phenomenological links between simulated aquifer properties and appa-
rent parameters of non-Fickian upscaled models, but their general conclusion is that no unique solutions to
fit model data exists. Experimental attempts to deal with this issue have also been documented [e.g., Zinn
et al., 2004], and while powerful due to methodological and technical limitations the results were somewhat
unsatisfactory.

To date, it is generally not possible to establish a direct link between aquifer parameters and apparent
mass-transfer parameters for advection-dominated problems. The aim of this paper is to show that it is pos-
sible to find a phenomenological correlation between the statistical anisotropic K distribution characterizing
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heterogeneous porous media at intermediate scales and the anisotropic distribution of certain nonlocal
parameters under a convergent flow scheme. We limit our paper to the analysis of the capacity coefficient
b, which is a parameter based on the concept of mobile and immobile porosity; recall that porosities have
been found to display directional properties in anisotropic aquifers [Sanchez-Vila and Carrera, 1997] under
radial convergent flow.

Specifically, this paper aims to address the following two questions:

1. Does the apparent b depend upon anisotropy when estimated from CFTTs, as advection porosity does in
single-porosity models?

2. What physical features control b?

Our approach is based on numerical models that solve for flow and transport in heterogeneous formations
characterized by known anisotropic statistics, with a numerical setup similar to the one used by Pedretti
et al. [2013]. The paper is structured as follows. In section 2, we develop our model and define the moment-
based approach to find approximate estimates of b from the numerical BTCs. In section 3, we define impor-
tant dimensionless variables. In section 4, we discuss statistical features controlling the value of b with dis-
cussion linking connectivity and b in section 5. Section 6 focuses on results from a single realization and
conclusions are presented in section 7.

2. Directional and Anomalous Behavior of BTCs in Anisotropic Aquifers

2.1. Conceptual Model and Numerical Setup
Let us consider that CFTTs are performed in heterogeneous formations characterized by an oriented statisti-
cal distribution of the hydraulic conductivity, with similar patterns to the geological structures shown in Fig-
ure 1 (cases a and b). We assume that the tests are performed with ideal conservative tracers. A passive well
(e.g., a piezometer) is used to inject the compounds and an active well, located at a planar distance (R), is
used to capture the tracer over the time. We assume both wells to be fully screened along the entire vertical
section of the aquifer, which has constant thickness (b). The active well pumps at a constant imposed rate
(Q), until steady state flow conditions are attained before the tracer is injected. If R is small and Q is large, a
typical natural background flow can be neglected and a purely convergent flow is assumed. The tracer test
is performed by introducing a finite and known mass of solute (M) as a pulse input from the passive well, at
a rate that does not affect the local groundwater level around it; we use a flux-averaged injection scheme
[Parker and Van Genuchten, 1984]. The depth-integrated flux-averaged concentration is measured at the
active well to obtain a breakthrough curve (BTC).

This conceptual setup can be modeled numerically following the methodology presented by Pedretti et al.
[2013]. Full details regarding the numerical implementation of the log-transformed K fields, the numerical
flow solution, and the evaluation of the BTC from a particle tracking algorithm are available therein. All fields
are made up of a three-dimensional regular mesh of 251 3 251 3 100 cubic cells of unit volume. The log-
transformed hydraulic conductivity (Y 5 ln (K)) values in each individual realization are drawn from a multi-
Gaussian distribution with zero mean, finite variance r2

Y 54, and anisotropic exponential variograms. Within
each cell Y is isotropic (Yx 5 Yy 5 Yz), with the exception of the active well location at the center of the domain,
where a vertical local K value five orders of magnitude larger than the mean value is imposed. A sink term is
imposed at the bottom of the well, where the discharge rate is fixed. The use of high vertical local K in the
cells corresponding to well position in the other layers simulates a fully penetrating well, without the need of
imposing additional boundary conditions. Additional details can be found in Pedretti et al. [2013].

All simulations are carried out with a total constant porosity / 5 0.1 and local dispersivity a 5 0.25 (iso-
tropic). These parameters control characteristic dimensionless numbers such as the Peclet numbers), which
can influence on BTC shapes [e.g., Riva et al., 2008] and/or on b [e.g., Pedretti et al., 2013]. We do not present
their specific influence in this context, as its qualitative influence can be understood from the results of
cited papers. We leave detailed quantification open for future investigations.

To reproduce domains similar to those in Figure 1, we run stochastic simulations with different integral
scales in the x, y, z directions (respectively, Ix, Iy, and Iz). Defining the anisotropy ratio between pairs of inte-
ger scales as �ij5Ii=Ij , we focus on two sets of geometries:
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1. Fields (A) with enhanced correlation along a horizontal direction y (Iy 5 40, Ix 5 4, and Iz 5 4, correspond-
ing to �xy50:1, �xz51, and �yz510).

2. Fields (B) with large correlation along two directions, those marked by the plane yz (Iy 5 40, Ix 5 4, and
Iz 5 40, corresponding to �xy50:1, �xz50:1, and �yz51).

Examples of these fields are illustrated in Figure 2, where it can be seen on the top-left that field (A) corre-
sponds to a geologic setting similar to the one reported in Figure 1(top left), while field (B) more closely
resembles the outcrop in Figure 1(top right).

Transport is simulated using a random-walk approach (using code RW3D) [Fern�andez-Garcia et al., 2005; Sal-
amon et al., 2007]. At time zero particles are introduced into the system as a vertical line using a flux-
weighted scheme. Figure 2 highlights the eight specific injection locations that are chosen for analysis of
the BTCs:

Injection points U1, U2, U3, U4 are oriented collinear with the y axis, at the same x coordinate of the well
and at distances, respectively, of R 5 5, 12.5, 25, 75 units from the well.

Injection points R1, R2, R3, R4 are oriented collinear with the x axis, at the same y coordinate of the well and
at distances, respectively, of R 5 5, 12.5, 25, 75 units from the well.

Using particle tracking methods, depth-integrated time-dependent concentrations (C(t)) are measured at
the extraction well (i.e., the BTCs); these are equivalent to particle density functions ðp̂Þ estimated from the
arrival time distributions of particles at the well. This is achieved assuming that

p̂ðtÞ5 QCðtÞð
QCðtÞdt

: (1)

To resolve the curves adequately without using a prohibitively large number of particles we used a kernel
density estimator (KDE) approach described in Pedretti and Fern�andez-Garcia [2013]. This technique is based
on optimized Gaussian kernel functions that reconstruct BTCs from a limited particle data set. KDE is espe-
cially effective in capturing features of heavy-tailed BTCs in an efficient manner. After some preliminary

Figure 2. Example of simulations of different architecture of random hydraulic conductivity fields (a) and (b) reproducing the corresponding geological setups in Figure 1. I indicates
integral scales and e anisotropy ratios of the integral scales. W marks the location of the fully penetrating pumping well, and Ri and Ui are the different injection locations (i 5 1, . . ., 4).

Water Resources Research 10.1002/2013WR014578

PEDRETTI ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 1210



runs it was found that adequate, converged results were obtained with NP 5 104 particles and an adaptive
weighting factor a 5 0.5 (see Pedretti and Fern�andez-Garcia [2013] for details on the selection of a).

2.2. Definition and Estimation of the Directional Capacity Coefficient
A common approach to upscale anomalous transport in heterogeneous aquifers is by means of MRMT solu-
tions. The models assume the presence of different volumes within an individual cell where water either
flows (mobile zones) or does not flow (immobile zones). There is a linear mass transfer of solutes between
these zones and each zone is characterized by a particular mass-transfer coefficient. The flexibility of this
model arises from the distribution of the mass-transfer coefficients, which weight the relationship between
immobile and mobile zones over the time (i.e., the temporal storage of solute in the immobile zones). Sev-
eral distributions have been postulated to include multiple domains with continuous or discrete distribu-
tions of mass-transfer parameters [e.g., Haggerty and Gorelick, 1995; Cameron and Klute, 1997; Carrera et al.,
1998; Haggerty et al., 2000]. A mathematical formulation for a multirate mass-transfer model under radial
coordinates (r-MRMT) reads

@Cm

@t
1bCðCm; r; tÞ5vmðrÞ

@Cm

@r
1

ar vmðrÞ
r

@

@r
1
r
@Cm

@r

� �
(2)

where b is the capacity coefficient, which is given by b 5 /im//m. Cm is the solute concentration in the
mobile (flowing) zone, ar is the (longitudinal) dispersivity, vm is a representative (mean) mobile velocity, and
CðCm; r; tÞ is a sink-source term which accounts for the mass-transfer from and to the immobile zones. From
(2), b sets the amount of mass that can be stored in the immobile domain. It does not control the shape of
the concentration curve at late-times; this is controlled by the memory function embedded in C [e.g., Carrera
et al., 1998]. In general, the time corresponding to the peak in a BTC is controlled by the value of /m (‘‘mobile
porosity’’), while the mean arrival time is controlled by the total porosity (/m 1 /im), where /im is the ‘‘immo-
bile porosity’’). Note that alternative and equally valid formulations may embed b into the memory function;
however, we prefer here to separate them for the sake of our analysis, as we mainly focus on the behavior of b.

Specifically, our focus here is on finding directional patterns of the apparent b from numerical simulations
performed in fields (A) and fields (B) (Figure 2). One possible way of obtaining b would be to fit each of the
experimental random BTCs by solving (2) directly to obtain a distribution of apparent best-fitting parame-
ters. This approach is challenging and can result in inaccurate solutions as solving (2) is not always straight-
forward. Analytical solutions [e.g., Haggerty and Reeves, 2002] are usually restricted to a finite combination
of parameters and can rely on numerical inversion of Laplace transformed solutions, which are prone to
numerical instabilities. Other numerical techniques can be adopted instead [e.g., Silva et al., 2009] but this
can be computationally burdensome. Moreover for CFTTs, BTCs [e.g., Pedretti et al., 2013] can display very
different shapes from the typical BTCs that are implemented in existing codes [e.g., Haggerty et al., 2000].

As an alternative to the full numerical solution, we propose an approximate, faster approach based on travel
time moments that yields a unique value for b for each BTC. Because the first moment of solute travel time
depends exclusively on b and not on the mass-transfer rate coefficients [Valocchi, 1985; Goltz and Roberts,
1987; Harvey and Gorelick, 1995; Rubin et al., 1997], b can be directly found from BTCs using the ratio
between the first moment and the mean mobile time (tMT) as

b5
l1

t

tMT
21; (3)

where lt
1 is the first-moment of the travel time distribution defined as [Aris, 1956]

l1
t 5

Ð
tCðtÞdtÐ
CðtÞdt

: (4)

The derivation of (3) is presented in Appendix A. Note that this solution is not practical for our purposes
since it requires the estimation of tMT from the BTCs. The latter is an additional apparent parameter that
would be obtained after model fitting using (2) (similar to a fitting procedure to obtain b, as explained
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above). It is convenient here to assume that tMT � tm (i.e., the mean mobile time being similar to the peak
time). This approximation results in

b � l1
t

tm
21: (5)

This approximate solution is more versatile as it involves tm, which is more easily and uniquely identifiable
from the estimated BTCs, and avoids a fitting procedure using (2). We tested and successfully verified the
accuracy of this approximation against a classical fitting procedure. A small subset of illustrative examples is
reported in Appendix B (supporting information).

3. Dimensionless Variables

To compare results let us define the following dimensionless variables. A dimensionless time, tc, is calculated as

tc5t=tadv ; (6)

where

tadv5
pb/R2

Q
(7)

represents the mean advection time for a solute to travel within an homogeneous cylindrical aquifer under
convergent flow conditions using Dupuit’s assumption [e.g., Moench, 1989]. Recall that that throughout the
simulations, porosity is assigned a deterministic spatially constant value (/ 5 0.1).

Let us also introduce the normalized horizontal injection-extraction distance, defined as

rk5
R
Ir
; (8)

where Ir is the integral scale collinear with the injection-extraction axis. For injection locations R1 to R4, this
means Ir 5 Ix, while for injection locations U1 to U4, this means Ir 5 Iy. It is also important to compare the rel-
ative length of the injection line (which corresponds to the model thickness, b) with the vertical integral
scale, Iz. A variable, Lz, is defined as

Lz5
b
Iz
: (9)

The larger Lz, the more the solute is injected through a few preferential flow path, such as in fields (A); con-
versely, the smaller Lz, the more homogenized is the injection, such as in fields (B).

4. Statistical Features Controlling the Spatial Distribution of b

Our first goal was to understand if the apparent b depends on anisotropy when estimated from CFTTs. To
achieve this, it is useful to first indicate whether useful phenomenological evidence can be obtained from
statistical inference. Two hundred and fifty realizations of each field (A) and (B) were produced. In each one,
particles were injected at different points drawn from a grid of points representing fully penetrating piez-
ometers and tracked until they reached the well. The value of b was then estimated for each BTC using (5).
From this a 2-D map was drawn indicating b at each injection point. To emphasize the widely contrasting
values found and visually highlight the anisotropic structures, we present results as the logarithm (base 10)
of the capacity coefficient (denoted log (b)).

The two resulting maps for the ensemble average of the log-transformed capacity coefficient, E (log (b)),
from the 250 simulations of field (A) and field (B) are plotted in Figure 3. The structure of both maps is
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clearly and qualitatively anisotropic. Only at injection locations close to the pumping well is no apparent
anisotropic structure is visible. This is likely a combination of local isotropy of the blocks and the resolution
of the numerical grid (discussed in more detail further on). From a quantitative perspective, although both
log (b) maps are anisotropic, they show very distinct values, as emphasized by the use of a common color
scale; note for instance that the log (b) map for field-type (A) displays fewer negative log (b) values, while
such negative values are more common in field-type (B).

The quantitative difference between the maps presented in Figure 3 is associated with the different vertical
integral scales Lz values, which are 10 times smaller in fields (A) as compared to those of fields (B). From a
statistical perspective, this means that the ensemble statistics of fields (A) should display less variability
than the ones of fields (B).

The distribution of the second moment of the experimental Monte Carlo distribution (not shown here) indi-
cates that, while E (log (b)) is highly structured for both fields, this is not the case for the variance ðr2

log ðbÞÞ.
We observed no significant spatial organization for r2

log ðbÞ values in either fields (A) and fields (B); the differ-

ence is found in the average values r2
log ðbÞ

� �
which was found to be smaller for fields (A) r2

log ðbÞ50:80
� �

with respect to those for fields (B) r2
log ðbÞ51:12

� �
. Again, while the number of realizations (250) used to

obtain these numbers might be considered small, we want to stress that the objective was to find whether
the maps of b displayed a spatial structure at all, rather than finding the actual values of b at given
locations.

From these results, it should be clear that from a statistical perspective, there is a clear dependence of the
spatial anisotropic organization of log (b) on the structure of ln K. However, this result alone does not really
explain what physical processes controls b for a given tracer test performed at a given location (x, y). A
deeper understanding of this would be fundamental to understanding what soil parameters actually control
the size of the mass-transfer capacity coefficient, which would give additional insights to understand how
one might begin to build predictive versions of an MRMT model. This is explored in the following sections.

5. Exploring the Role of Connectivity in Controlling b

From the previous section, we know that apparent b values derived from individual tracer tests depend on
Lz, but also on rk, because the structure of log (b) depends on whether the injection-extraction direction is
collinear or orthogonal to the main planar anisotropic axis. When rk is small and/or Lz is large, transport can
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be highly nonergodic, as the solutes sample only a relatively small portion of the heterogeneity between
the injection and the extraction well. From a qualitative perspective, this gives rise to connected structures,
which may influence the distribution of particle travel times.

Some of these concepts have been recently discussed by Pedretti et al. [2013], who analyzed the apparent
joint effects of stratification and connectivity due to lack of ergodicity in these systems. In addition, Pedretti
et al. [2013] showed that the concentration peaks obtained after analyzing particle travel times transported
over different layers in 3-D formations are very representative of the total connectivity of the system from
the injection point to the extraction well, as related by the system stratification. Similar concepts are used
here to explain the quantitative link that exists between directional connectivity and the apparent direc-
tional capacity coefficient.

This part of the study is based on the concept of ‘‘point-to-point connectivity’’ [e.g., Knudby and Carrera,
2006; Trinchero et al., 2008]. For the specific case of convergent radial transport, this method postulates that
a dynamic connectivity indicator [Renard and Allard, 2013] can be obtained from the relative temporal scal-
ing of the BTCs peak time (tm) in a heterogeneous medium compared to an equivalent homogeneous
medium. Recall the definition of dimensionless time used in this analysis (6); in an homogeneous field all
BTCs plotted on a double-log plot would be symmetric around the concentration peak, which would occur
at tc 5 1. Similarly, connectivity can be quantitatively measured as the relative position of tm with respect to
tc 5 1: the shorter the peak time (tm/tc< 1), the more hydraulically connected are the injection-extraction
wells; and vice versa, the larger the peak time (tm/tc> 1), the less connected are these two locations. We
direct the interest reader to the cited works for a more exhaustive description of these concepts.

5.1. Qualitative Analysis
First, let us focus on qualitative aspects of the BTCs (from which b is obtained) associated with two orthogo-
nal injection points R4 and U4. These are located at the same distance from the well (R 5 75 cells), but have
different rk values. For these cases, 1000 realizations are simulated, and all the BTCs for these two injection
locations are depicted in Figure 4. Plots are presented one a double-log axis to emphasize any anomalous
late-time behavior.

On Figure 4 (top left), we plot the BTCs associated with injection point R4 ðrk5r=Ix518:75Þ in fields of type
(A) (Lz 5 25). As one might expect, we observe that most curves are located around tc 5 1 (marked by the
vertical dashed line), and only a few show significantly different peak times. This also means, consistent
with the above definition of connectivity, that from this graph only a few simulations offer a noticeable
deviation from the homogeneous case, and thus there is a limited effect of connected features. For illustra-
tive purposes, we highlight with different colors three individual BTCs, representing, respectively, highly
connected, mildly connected, and less connected simulations. The red line highlights the BTCs from a real-
ization showing one of the shortest peak times (tc << 1) found in the ensemble of BTCs, indicating the
highest degree of connectivity among all cases. In this well-connected case, the BTC displays a fast early
arrival time followed by a prolonged late-time tailing behavior. Tailing in this case is defined as the persis-
tent slope observed on these plots. Tailings seems to scale as straight line in double-log plots, thus similar
to power-law distributions; however, since most of the BTCs span only a few logarithmic time cycles, cau-
tion should be taken when inferring a power-law distribution in this narrow time interval [e.g., Clauset et al.,
2007].

A similar behavior can be seen on the BTC represented by the blue line. Here the peak time is closer to
tc 5 1 than for the red curve, and the anomalous tailing is less defined than in the previous case (indeed for
this case, no apparent power-law behavior can be easily identified). In the other highlighted realization, the
peak of the black BTC occurs at tc> 1 and the shape of the curves appears more symmetric (like an homo-
geneous case). The behavior of the latter curve is also representative of the majority of BTCs within the
ensemble, thus indicating that only a few cases display anomalous behavior, defined by the nonsymmetric
nature of the BTCs.

A different behavior is observed when the injection location switches to U4 ðrk5r=Iy51:88Þ on the same
fields (A). These plots are shown at the top-right of Figure 4. The solute travels <2 integral scales to the
extraction well. The main difference with respect to the curves when the tracer is injected at R4 is that most
of the BTCs display peak times shorter than tc 5 1 (indicating higher connectivity), and most of them also
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display heavy tailing. Looking at the same four fields discussed for the previous location, it can be seen the
peak times of all these BTCs are lower than tc 5 1. Even for this location it can be seen than the qualitative
relationship between peak time (connectivity) and development of asymmetric tailing can be observed,
meaning that, also for this case, as a general rule simulations where the peak time is smaller are also those
displaying stronger tails.

On the bottom of Figure 4, we show the BTCs obtained from injection locations R4 and U4, respectively, for
field (B) (Lz 5 2.5). Here the effect of the vertical homogenization of the injection can be seen, observing
that at R4 BTCs look more symmetric in field (B) than their counterparts in field (A). However, BTCs from
point U4 still display the strong effects of connectivity. We highlight three specific and representative cases
for fields (B). Violet and light-blue curves represent fields where BTCs are quasisymmetric for both R4 and
U4 injection locations. It can be seen that at U4 the violet BTCs display, at very late-time, anomalous tailing
for a very limited time extent. On the other hand, the green line at U4 displays strong anomalous behavior
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with a heavy-tailed distribution; once again, this is the case with the highest degree of connectivity from
this ensemble.

5.2. Quantitative Analysis
We qualitatively observed from the previous section that larger nonsymmetric distributions (larger b) are
found when connectivity was also larger (lower tm). To seek a more quantitative description of the relation-
ship between b and connectivity, let us first observe the statistics of the distribution of the three main trans-
port variables considered in this analysis (b, tm, and l1

t ) for locations R1 to R4 and for locations U1 to U4, for
both fields (A) and (B). The application of a chi-squared test suggests that all these distributions are log-
normal (a-level of significance equal to 5%), so that for each parameter we report the statistics of the log-
transformed counterpart.

The complete results of these statistics are reported in Tables S1 and S2 (supporting information). We
observe that these data have large uncertainty around the mean values (reflected by the large CV value).
This is true particularly for fields (B) (e.g., at point U3), confirming that the large integral scales applied both
in the horizontal and the vertical directions relative to injection distance from the well and domain thick-
ness result in lack of ergodicity in the transport solutions, making the ensemble a somewhat meaningless
measure with poor applicability for predictive purposes. On the other hand, for fields (A), such variability is
much lower, and the ensemble means are more representative of the BTCs recorded in each realization
than in the previous case.

Comparing how these variables are correlated by pairs, we can observe that a robust relationship appears
to exist between b and the connectivity indicator tm for fields (A) and position R4 (Figure 521). The best-fit
model using a linear least-square regression method for this correlation turned out to be an exponential
model with a Pearson’s coefficient of R2 5 0.61 and a low root mean square error (RMSE). The correlation
highlights that the higher the connectivity, the larger b; and vice versa. That means that a weak (apparent)
separation of transport in mobile and immobile zones occur for less connected points; as connectivity
increases (shorter tm), b increases, indicating a higher degree of (apparent) separation in mobile/immobile
subdomains.

This inverse dependence between b and connectivity is still visible for injections associated with point U4 in
fields (A) (Figure 522), but with a much higher degree of uncertainty (larger RMSE and much smaller R2

than the R4 case). In this case, all values are found between b 5 1 and b 5 10. Another important aspect
shown in Figures 523 and 524 is that b appears very poorly correlated with l1

t , even though Figures 525
and 526 indicate that there exists a strong correlation between the tm and l1

t . The fact that tm and b are
better correlated than l1

t and b is linked to the propagation of errors of the correlation between tm and l1
t .

This issue is consistent with our analysis, since tm is a better estimator of connectivity than l1
t , and connec-

tivity has greater influence on b than the position of the center of mass. This is similar to the observations
drawn the individual realization analysis, which will be provided in the next section.

For fields (B) (Figure 6), the correlation between variables for both injection locations for R4 and U4 is gener-
ally worse. In this field, no significant correlation is found between b and connectivity (Figures 621 and
622), nor between b and l1

t (Figures 623 and 624). Similar to what was observed for field (A), on the other
hand, there is a solid relationship between tm and l1

t (Figures 625 and 626). This is explained again by the
fact that the realizations from fields (B) display much less vertical variability of K. Particle injection and trans-
port is much more homogenized, on average, for fields (B) than in fields (A). This also indicates that the flux-
weighted injection that happens preferentially in small channels (low Lz) rather than in more homogenized
formations (high Lz) is a fundamental aspect controlling the dependence of b on the connectivity.

This general behavior is in line with other previous studies on anisotropic formations under uniform flow,
which pinpoint the relationship between tailing and statistical anisotropy of the system [e.g., Guswa and
Freyberg, 2002]. Our results extend the analysis by Pedretti et al. [2013] and Pedretti and Fiori [2013] which
highlighted the importance of stratification on tailing under convergent radial flow. In Pedretti et al. [2013],
it was observed that the formation of tailing on BTCs is controlled primarily by the dimensionless injection
distance rk. When rk � 1, such as in the case of injections U4, particles travel only a few integral scales and
are thus subjected to plume stratification. As the difference in connectivity among layers becomes more
important, the solute tends to be more stratified, giving rise to a larger separation of the peak time from
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the center of mass of the plume (i.e., b). As the injection distance approaches 0, the injected plume
becomes perfectly stratified and b is largest. The anisotropic distribution of b is therefore a consequence of
the ability of the injected solute to be stratified around the well.

Figure 5. Correlation between b, tm, and l1
t at locations R4 and U4 (all simulations for fields (A) are plotted). The red line represents the best-fitting curve for each case. RMSE 5 root

mean square error, R2 5 Pearson coefficient.
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Consequently, we observed here that the physical link between b and K is related to the statistical heteroge-
neity scales, which control the tradeoff between vertical mixing and transport stratification. Vertical mixing
tends to homogenize the transport and thus renders BTCs more symmetric; this occurs when the dimen-
sionless injection distance rk >> 1. On the other hand, the variable connectivity of the layer composing the
formation (intimately related to stratification) tends to maintain a separation of the contribution to each sin-
gle layer of the depth-integrated BTCs, as explained in Pedretti et al. [2013]; this occurs when rk � 1. In

Figure 6. Correlation between b, tm, and l1
t at locations R4 and U4 (all simulations for fields (B) are plotted). The red line represents the best-fitting curve for each case. RMSE 5 root

mean square error, R2 5 Pearson coefficient.
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addition, the shorter the injection distance compared to the vertical domain size (fields (A)), the more signif-
icant this stratification effect is; therefore, the vertical dimensionless injection length also plays a fundamen-
tal role in determining the ability of the system to separate apparent mobile and immobile transports under
convergent radial flow.

6. What Happens in an Individual Random Realization?

From our observations, so far we conclude that there exists a correlation between connectivity and b in a
statistical sense. From a qualitative perspective, our conclusion matches those of Zinn and Harvey [2003]
and Willmann et al. [2008], among others, but here we have also quantified this dependence. This is a criti-
cal issue because it provides a physical explanation for a mass-transfer parameter, b, derived in advection-
dominated problems. This is promising in the path toward improving the predictive capacity of models in
these types of transport regimes.

To test how generally true our findings are and to what extent they hold, we now analyze what happens in
an individual realization. We chose one random realization selected from the ensemble of field (A). We ran
a CFTT with an injection at each (x, y) grid location and explored the correlation of b, tm, and l1

t . For the
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single realization case, we compared the values obtained for all (x, y) pairs, including those points close to
the well.

The resulting b map for this field is shown in Figure 7-2. For comparison purposes, we also plotted the
vertically averaged ln K for this chosen field (Figure 7-1), as well as the maps for l1

t (Figure 7-4) and tm

(Figure 7-3). The latter represents also the ‘‘point-to-point connectivity’’ map, as point-to-point connectiv-
ity is directly related to the inverse of the BTC peak time, as explained in the previous sections. Visually,
all three plots display certain structural similarities, although l1

t appears much smoother than the other
two; this is due to the fact that the average time taken by the plume to migrate from the injection to the
extraction point is not only influenced by the irregular random shape of preferential channels (fast flow
zones) but is dispersed into all the less mobile zones between the two points in a more continuous way.

Larger b and tm values in the maps show a channeled structure along the y axis (brighter and darker colors,
respectively, in the relative maps, also highlighted by the green ellipse drawn on the maps), which is also
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the main preferential statistical correlation of Y used to build this field. Conversely, lower b values are found
in the presence of larger BTCs peak times, such as in the lower-left regions of these maps.

To quantify our purely visual inferences of correlations in the previous paragraph, in Figure 8, we plot bivari-
ate plots of b, tm, and l1

t and present best-fit models of this data (as for the ensemble analysis). It was found
that a power-law function is the best-fit model when tm is plotted against the two other variables. However,
the Pearson coefficient R2 is low, indicating large dispersion of data around the power-law trend. Also, no
significant correlation between b and l1

t was found, indicating that the distribution of advection time does
not control the distribution of the capacity coefficient as significantly as connectivity does. This is despite
the fact that advection and mobile times have a much stronger correlation, as shown in the bottom plot of
Figure 8.

As such, connectivity is the primary responsible factor for the distribution b, also in this individual realiza-
tion. This suggests that it is the physical parameter that most strongly controls the apparent mass-transfer
parameter.

Single-realization correlations are smaller than those of the ensemble. Measurements corresponding to all
locations in the map are plotted together, while in the ensemble analysis we focused on several random
outcomes from a few injection locations; the development of tailing due to heterogeneity is largely con-
trolled by the relative injection distance for CFTTs, as shown by Pedretti et al. [2013].

7. Conclusions

Upscaling of anomalous transport in heterogeneous formations under radially convergent flow is a complex
issue; it is important for making practical and effective decisions for risk assessment and remediation of pol-
luted heterogeneous aquifers [Bolster et al., 2009; de Barros et al., 2011]. We conducted a numerical study to
check the existence of phenomenological links between the capacity coefficient b (which is an important
parameter used in common upscaling approaches), and the directional-dependent statistical correlation of
the natural log-transformed hydraulic conductivity, Y. This link is only apparent (hence the name of ‘‘appa-
rent capacity coefficient’’) since formally speaking b is mathematically based on diffusive-like mass transfer
processes giving rise to anomalous transport, while the latter occurs in our analysis under advection-
dominated conditions.

We developed a quick and efficient method to estimate b, demonstrated in Appendix B, which is
expressed as the ratio between the first moment of the arrival time distribution and the concentration
peak time from each breakthrough curve. The latter provides an indication of ‘‘point-to-point connectiv-
ity,’’ i.e., how fast/slow the response time is between the injection and the extraction locations during a
convergent-flow tracer tests. We measured this parameter after reconstructing BTC peak times from
particle travel time distributions after being injected at different locations in a convergent flow radial
setup.

Our analysis spanned both individual and a representative ensemble of realizations from two different types
of anisotropic fields. Among them, we analyzed fields showing preferential correlation along one planar
axis, thus resembling a stream-channeled system, and fields showing preferential correlation along the pla-
nar axis and the vertical direction, thus resembling vertically tilted fractures.

Our simulations help to illustrate that b effectively displays an apparent directional behavior in anisotropic
formations, for both types of fields. The directionality of b is remarkable, since b is usually adopted as an iso-
tropic parameter in nonlocal formulations used to fit BTCs from tracer tests in heterogeneous media. The
key aspect is that b behaves in a qualitatively similar manner to the anisotropic distribution of K, thus prov-
ing that a link between physical (K) and mathematical (b) can be built in the limit of CFTTs in anisotropic
formations.

Our setup is far from ergodic transport and therefore unlikely to provide universally exportable quantitative
conclusions. Nonetheless, two main parameters seem to play a major role in controlling the behavior of b:

(1) the dimensionless parameter rk, which expresses the ratio between travel distance (radius between the
injection and the extraction locations) relative to the underlying correlation distances. This result is in agree-
ment with the analysis by Pedretti et al. [2013], who found that rk is a characteristic value indicating the
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apparent effect of stratification in controlling anomalous tailing in BTCs during convergent flow tracer tests.
The more stratified the injection, the larger b; as a consequence, b is maximum as rk! 0 (perfectly stratified
transport), while b tends to a minimum value as rk!1 (due to effects of vertical mixing and plume
homogenization);

(2) the dimensionless parameter lz, which sets the relative ‘‘homogenization’’ during the injection of the sol-
ute in the aquifer. It was found that the ensemble mean values for b for fields (A) are substantially different
(generally lower) from those for fields (B).

A more detailed analysis showed that a strong relationship may exist between b and BTC peak times. This
relationship is stronger for fields (A) than fields (B), which is consistent with the fact that when the
injected solutes are less homogenized (fields A), solutes tends to be more stratified, giving rise to more
transport variability between layers making up the aquifer. This is consistent with the analysis of Pedretti
et al. [2013].

We can conclude from our analysis that these results give new insights into understanding how to relate
upscaled parameters to physical soil parameters, which is a critical step to understanding how to
adequately use these effective solutions for predictive purposes. In this type of setting, connectivity and
stratification, which are intimately related, seem to determine how likely the system tends to behave as an
apparent single-porosity or multiporosity domain. From a practical perspective, the directional behavior of
b in anisotropic settings provides empirical evidence of physical constraints to one of the parameters used
in multirate mass-transfer models, which to date have not been proven to be predictive under advection-
dominated transport conditions.

Appendix A: Derivation of (5)

Benson and Meerschaert [2009] show that the continuum MRMT equation is equivalent to a two-state
Markov chain model wherein a particle transfers between mobile and immobile states. They show that
a particle has exponentially distributed mobile times M

i

(with mean 1/bk), and random times in the
immobile phase W

i

with mean waiting time (if it is well defined) of 1/k. This defines b in this model as
the ratio of mean times in the immobile and mobile zones 1

k =
1
bk 5b

� �
. We may define the first arrivals

as those particles that spend little or no time in the immobile phase with arrival time
P

Mi and those
particles that spend ample time in the immobile zone on their journey as having mean arrival timeP

Mi1Wi . Taking expectations and the ratio, and eliminating the sum (which is an identical number for
each):

X
E½Mi �1E½Wi�X

E½Mi�
5

1=bk11=k
1=bk

511b5
l1

t

tMT
(A1)

On the far right-hand side, we recognize that the mean arrival time is the sum of the mean mobile and mean
immobile times. Note that b is independent of any mass-transfer rate distribution or memory functions.
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