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This paper presents a methodology that incorporates temporal feature integration for automated generalized sound recognition.
Such a system can be of great use to scene analysis and understanding based on the acoustic modality. The performance of three
feature sets based on Mel filterbank, MPEG-7 audio protocol, and wavelet decomposition is assessed. Furthermore we explore the
application of temporal integration using the following three different strategies: (a) short-term statistics, (b) spectral moments,
and (c) autoregressive models. The experimental setup is thoroughly explained and based on the concurrent usage of professional
sound effects collections. In this way we try to form a representative picture of the characteristics of ten sound classes. During the
first phase of our implementation, the process of audio classification is achieved through statistical models (HMMs) while a fusion
scheme that exploits the models constructed by various feature sets provided the highest average recognition rate. The proposed
system not only uses diverse groups of sound parameters but also employs the advantages of temporal feature integration.
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1. Introduction

Humans have the ability to detect and recognize a sound
event quite effortlessly. Moreover we can concentrate on a
particular sound event, isolating it from background noise,
for example, focus on a conversation while loud music is
playing. During the last decades emphasis has been placed
upon methods for automated speech/speaker recognition.
This is due to the fact that speech plays an important role as
regards to both human-human and human-machine interac-
tions. While this area has reached the maturity of launching
commercial products, the area of nonspeech audio process-
ing still needs attention since it has the potential to provide
solutions to a number of various applications. The domain
of audio recognition is currently dominated by techniques
which are mainly applied to speech technology [1]. This fact
is based on the assumption that all audio streams can be
processed in a common manner, even if they are emitted
by different sources. In general, the goal of generalized
audio recognition technology is the construction of a system
that can efficiently recognize its surrounding environment

by solely exploiting the acoustic modality (computational
auditory scene analysis [2]). Every sound source exhibits a
consistent acoustic pattern which results in a specific way of
distributing its energy on its frequency content. This unique
pattern can be discovered and modeled by utilizing statistical
pattern recognition algorithms. However there exists a vari-
ety of obstacles that need to be tackled when such a system
operates under real world conditions. When we have to deal
with a large number of different sound classes, the recogni-
tion performance is decreased. Moreover, the categorization
of sounds into distinct classes is sometimes ambiguous (an
audio category may overlap with another) while composite
real-world sound scenes can be very difficult to analyze. This
fact has led to solutions which target specific problems while
a generic system is still an open research subject.

Lately, generic audio classification technology has been
used for the needs of several emerging real-world applica-
tions, such as environmental monitoring, bioacoustic identi-
fication, acoustic surveillance, applications to music, context
awareness by robots, and so forth [3–8]. The purpose of
this work is the extensive evaluation of sound parameters of
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diverse domains and properties for identifying a wide variety
of sound classes. Furthermore three types of early integration
methodologies are employed. We first analyze their perfor-
mance before utilizing them to solve a real-world problem.
The closest paper to our work is [9] which examines MPEG-
7 audio standard upon the classification of ten sound cate-
gories. The low-level descriptor audio spectrum projection is
explained and combined with a generative approach (hidden
Markov models), while the audio corpus consisted of a
sound effects database. With a conventional maximum log-
likelihood estimation, a class is assigned to all test samples
and high recognition rates are achieved. Kim and Sikora
[10] evaluate the performance of MPEG-7 Audio Spectrum
Projection (ASP) descriptors which are extracted by utilizing
several basis decomposition methods (principal component
analysis, independent component analysis, and nonnegative
matrix factorization) for automatic indexing of video sound
tracks. MFCC parameters are employed in parallel while
the probability density functions of both sets are estimated
using continuous hidden Markov models. The data were
acquired from a speech database and general sound effects
library. They conclude that MFCC parameters demonstrate
better performance under several practical constraints, that
is, simplicity as well as time and memory consumption.

The next two approaches do not employ a generative pat-
tern recognition technique but are based on either distance
or heuristic measures. Wold et al. [11] present a framework
for audio classification using a variety of acoustical features
(loudness, pitch, brightness, bandwidth, and harmonicity).
Their mean and covariance matrices are calculated over the
training set while test sounds are classified using two distance
measures (weighted L2 or Euclidean distance). Audio data
from various sound effects and musical instrument libraries
are used to make up several sound classes which represent
animals, machines, musical instruments, speech, and nature.
An online audio analysis system is explained in [12] where
audio recordings are identified as speech, music, silence, and
several types of environmental sounds. The authors used
statistical and morphological features of the temporal curves
of the energy function, zero-crossing rate, and fundamental
frequency while identification is based on a threshold
heuristic procedure. Another kind of approach which tries
to optimize the feature extraction stage with respect to a
given classification problem is given in [13]. The authors
apply two dissimilarity measures for selecting the time-
frequency subspaces with the highest discrimination power.
The outcome of their algorithm is the construction of a new
wavelet packet tree. Subsequently, on the basis of this tree,
the features are extracted and sent to a linear discriminant-
based classifier for a three-level hierarchical classification of
audio signals into ten classes. The audio database consists of
213 audio signals almost equally divided amongst artificial
(113) and natural (100) sounds.

While the issue of generalized sound recognition has
been addressed by quite a lot of studies, temporal integration
of features has been covered by only a few studies, which are
mainly focused on processing of music audio signals. In [14]
Meng et al. explore the usage of two integration methods:
simple statistics and autoregressive models for classification

of musical genres. Their dataset is divided into two parts:
(a) 100 sound clips distributed equally among rock, classical,
pop, jazz, and techno music genres and (b) 1210 music
clips representative of 11 music genres. Four classifiers were
used (linear mode, Gaussian with full covariance, Gaussian
mixture model with full covariance, and a generalized linear
model) which were trained with the first six coefficients of
MFCC parameters. Joder et al. [15] utilized both early (on
the feature level) and late (on the classifier level) temporal
integration methodologies that are applied to the problem
of musical instrument recognition on solo musical phrases.
A total of 162 features of different domains are computed
which are fed to the Fisher feature selection algorithm.
For pattern recognition they used support vector machines
and hidden Markov models while their database contained
recordings of 8 different instruments which describe the
main categories of instruments.

The main contribution of the present work is the appli-
cation of temporal integration of features to the case of gen-
eralized sound recognition. Ten audio classes were organized
while feature sets of different domains were evaluated. Our
database is thorough and concise after combining several
well-documented professional sound effect collections which
contain audio of high quality. A complete explanation is
given in Section 4 while we believe that there exists a need
for a reference generic audio database in order to compare
results between different approaches. In addition to MPEG-7
audio standard and Mel filterbank, we investigated a novel
method which encompasses the usage of multiresolution
analysis of audio signals using critical-band-based wavelet
packets. The experimental protocol was carefully designed
while the parameters of each stage were selected after con-
ducting extensive experimentations. Lastly, a fusion schema
which exploits three feature sets, each one temporarily inte-
grated in an optimal way, is proposed. Our main objective
is to study and understand the effect of temporal integration
of sound parameters which belong to different domains—
frequency and wavelet—for classifying generic sound events.
Utilizing the results of this study we should be able to apply
the described techniques to a number of diverse applications
that generalized sound recognition technology can address.

The rest of this paper is organized as follows: in Section 2
a complete overview of the system is given along with
a description of all sets of sound parameters. Section 3
describes the temporal integration methods and Section 4
explains the experimental protocol and reports detailed
classification results, while our conclusions are drawn in
Section 5.

2. SystemDesign Analysis

In this section we provide details regarding the design of the
audio recognition system. In Figure 1 the training as well as
the testing procedures of the proposed system are illustrated.
After subtracting the mean value (dc-offset elimination), the
sound samples are chopped into overlapping frames where
the feature extraction algorithms are applied. In this paper
we consider audio analysis of diverse domains; thus, param-
eters which are derived from time, frequency, and wavelet
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Figure 1: Block diagram of the audio classification system.

domain are calculated. The different feature coefficients are
not juxtaposed but used in parallel for constructing three
separate models for each sound class. Subsequently three
types of temporal integration methodologies are utilized: (a)
statistical, (b) spectral, and (c) two autoregressive functions.
They are applied to all three groups of descriptors while
the probabilistic models are created for each group and
for each temporal integration methodology. At this stage a
dimensionality reduction technique was applied (principal
component analysis) to the extracted feature values following
MPEG-7 standard recommendation. A basis called audio
spectrum basis is created out of the training data for all
of the sound classes. This phase serves also the decrement
of the computational complexity that is inserted during the
creation of the statistical models. PCA technique has the
ability to efficiently maintain the variance of the data while
using a relatively small number of feature coefficients. The
approach described here is equivalent to identifying a set of
uncorrelated sound parameters for the specific task, instead
of selecting the best individual parameters and combining
them.

The probability density function of the sound categories
descriptors is approximated by hidden Markov models [16].
HMMs constitute a powerful technique for modeling not
only the static aspects of a feature sequence but also its
temporal behavior. Finally the prediction on the test samples
is made by selecting the density function which outputs the
highest likelihood to have generated the particular feature
sequence. The next paragraph analyzes the procedures
that were followed during the different feature extraction
methods.

2.1. Feature Extraction Analysis. Three types of sound
parameters were computed: (a) Mel-scale filterbank was
selected because of its ability to sustain the most important
information as regards human perception. (b) The MPEG-
7 standard is currently considered to be the state-of-the-
art methodology for automatic content-based sound recog-

nition, while (c) the third set is based on multiresolution
analysis. The parameters that were used (frame, overlap, FFT
size) were identical for having a reliable comparison between
the sets. However a direct comparison between MFCC and
MPEG-7 descriptor would not be fair since a data-dependent
technique (PCA) is involved during the computation of
the standard’s descriptor. Hence, we altered the algorithm
as regards the MFCC extraction and replaced the discrete
cosine transform (DCT) stage with PCA, inspired by Audio
Spectrum Basis (ASB; see Figure 2). PCA was also used for
the extraction of our third group of parameters.

2.1.1. Audio Spectrum Projection (ASP). MPEG-7 proto-
col provides standardized tools for automatic multimedia
content description and offers a degree of “explanation”
of the information meaning. It eases navigation of audio
data by providing a general framework for efficient audio
management. In particular, it includes a group of funda-
mental descriptors and description schemes for indexing
and retrieval of audio data. The ASP descriptor constitutes
a powerful audio signal representation technique, which
was introduced as a part of the standard. ASP is based on
the projection of signal’s spectrum onto a low-dimensional
feature space using decorrelated basis functions. In Figure 2,
we depict the stages which are involved in the derivation
of the particular descriptor. Initially the Audio Spectrum
Envelope (ASE) descriptor is computed via short-time
Fourier transform (STFT). ASE belongs to the basic spectral
descriptors and is derived for the generation of a reduced
spectrogram of the original audio signal. It is a log-frequency
power spectrum and is calculated by summing the energy
of the original power spectrum within a series of logarith-
mically distributed frequency bands utilizing a predefined
resolution. Subsequently ASE is normalized and PCA basis is
derived from the training data. Finally spectrum’s projection
is obtained by multiplying the normalized ASE (NASE) with
the extracted basis functions and a so-called summarization
of the feature vector is achieved.
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Figure 2: Block Diagram of ASP extraction.

Table 1: Frequency limits used for perceptual wavelet packet
integration analysis.

Band
Lower (Hz) Center (Hz) Upper (Hz)

Number

1 0 125 250

2 250 375 500

3 500 625 750

4 750 875 1000

5 1000 1125 1250

6 1250 1375 1500

7 1500 1625 1750

8 1750 1875 2000

9 2000 2250 2500

10 2500 2750 3000

11 3000 3250 3500

12 3500 3750 4000

13 4000 4250 4500

14 4500 4750 5000

15 5000 5500 6000

16 6000 6500 7000

17 7000 7500 8000

2.1.2. Mel Filterbank-Based Features. For the derivation of
this feature set, twenty three Mel filterbank log energies are
utilized. The extraction method is the following: firstly the
STFT is computed for every frame while its outcome is
filtered using triangular Mel-scale filterbank. This process is
proven to emphasize components which play an important
role to human perception [17]. Consecutively we obtain
the logarithm to adequately space the data. At this point
we explore the usage of an orthogonal decomposition
technique instead of DCT. PCA is employed to reduce the
dimensionality of the data while projecting them on axes
derived from the data. The basic kernel, which is composed
of all the eigenvectors, is computed from the feature values
coming from the training set. With this procedure the data
are mapped onto a new coordination system based on the
relationships between them. It should be noted that PCA is
a data-driven procedure unlike DCT which compacts data’s
energy with a standard weighting schema.

2.1.3. Perceptual Wavelet Packets Integration Analysis. Rega-
rding the third feature set, we introduce the usage of critical-
band-based multiresolution analysis for automated sound
classification. Lately, digital signal processing using wavelets
has become a common tool in many diverse research areas.
Some examples are bioacoustic signal enhancement [18],
applications in geophysics (tropical convection, the disper-
sion of ocean waves, etc.) [19], speech/music discrimination
[20], voice activity detection [21], audio coding [22], audio
watermarking [23], audio fingerprinting [24], and a lot
more. The main advantage of the wavelet transform is that it
can process time series, which include nonstationary power
at many different frequencies. The fundamental property of
the Fourier transform is the usage of sinusoids with infinite
duration. While they are smooth and predictable, wavelets
tend to be irregular and asymmetric. They comprise a
dynamic windowing technique which can treat with different
precision low- and high-frequency information. The first
step of the wavelet packet analysis is the choice of the
original (or mother) wavelet, and by utilizing this function,
the transformation breaks up the signal into shifted and
scaled versions of it. In this paper we utilized Daubechies 1
(or Haar) function as the original wavelet while its optimal
choice will be a subject of our future work. Unlike discrete
wavelet transform (DWT), when wavelet packets (WPs) are
employed, both low- and high-frequencies coefficients are
kept. In our case the DWT is applied three subsequent times
and consists of three-stage filtering of the audio signals as we
can see in Figure 3.

The idea behind the third set is the production of a
vector that provides a complete analysis of the audio signal
across different spectral areas while they are approximated
by WP. We should also take into account that not all parts
of the spectrum affect human perception in the same way
(which is crucial for sound recognition). Consequently, the
division of the spectrum requires a fine partitioning. In
[25, 26] it is observed that the human auditory system
filters the entire audible spectrum into many critical bands.
Based on this observation, we employed a critical-band-
based filterbank with the frequency ranges denoted in
Table 1 using Gabor bandpass filters. Subsequently three-
level wavelet packets are extracted out of each spectral band.
Downsampling is applied on each coefficient at each stage
in order not to end up having the double amount of data,
as Nyquist theorem requests. The wavelet coefficients are
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Figure 3: Perceptual wavelet packet integration audio analysis.

then segmented and the autocorrelation envelope area is
computed and normalized by half the segment size. N-
normalized integration parameters are calculated for each
frame, where N is the total number of the frequency bands
multiplied by the number of the wavelet coefficients (17 ×
8 = 136). This series of parameters comprises the PWP-
integration feature vector and the entire calculation process
is depicted in Figure 3. These parameters reflect upon the
degree of variability of a specific wavelet coefficient within
a frequency band. Since the audio signals we try to classify
exhibit great differences among the critical bands, we decided
to utilize the normalized autocorrelation envelope area.

2.2. Construction of Probabilistic Models. Automatic sound
recognition is based on the assumption that each sound event
follows a distinct pattern across different frequencies, which
is often called audio signature. The aforementioned audio
feature vectors try to capture this property and, subsequently,
can be utilized by statistical pattern recognition algorithms
in order to be used to categorize unknown sound events.
A powerful technique that approximates the probability
density function which is followed by the descriptor values is
hidden Markov models. With this procedure a probabilistic
model is constructed for each sound class using the training
data. This model contains the a priori knowledge that we
have about the class, and as long as the data are representative
of the particular sound class, the model is considered to
be an adequate description of such audio events. Unlike
Gaussian mixture models which do not have the ability to
model the temporal evolution of a sound, HMMs break
up the feature sequence into a predefined number of states
and learn the associations between them. This results in a
k × k transition matrix whereas each one of its elements
reflects upon the probability of transition across different
states. Thus, the element (i, j) is the probability of moving
to state j at time t + 1 given state i at time t. In the current
paper we use left-right HMMs which means that there are
no directed loops in the automation while the distribution of
each state is modeled by one GMM with diagonal covariance
matrix. During classification the trained models are used

for computing a degree of resemblance (e.g., log likelihood)
between each model and an unknown input signal. The
model that generates the highest probability comprises the
system’s prediction regarding the input signal. This pattern
recognition technique belongs to the generative approaches,
whose main property is that they handle the samples of each
class independently of the other classes.

Torch [27] implementation of HMM, written in C++,
was used during training and testing. The maximum number
of k-means iterations for initialization was 50 while the
Baum-Welch algorithm had and upper limit of 25 iterations
with a threshold of 0.001 between subsequent iterations.
Extensive experiments were conducted: (a) for constructing
the model of each sound class with respect to each feature
set, (b) to test each temporal integration method, as well as
to (c) decide on the size of the temporal integration window
(the number of frames that were merged). In particular the
range of the number of states was between 3 and 7 while the
numbers of Gaussian components tested, respectively, was
{2, 4, 8, 16, 32, 64, 128}. The final values of these parameters
were chosen using the highest recognition rate criterion.

3. Strategies for Temporal Feature Integration

Lately it has become a common practice to train and
test an audio classification system using per frame signal
analysis [28]. Although this kind of processing appears
to provide adequate results [29], it would be of great
interest to experiment with more compact as well as scalable
audio processing frameworks. Such a signal representation
technique would require less memory for storage and further
processing while it could provide a more characteristic
structure of the signal we want to analyze. It is based on
postprocessing low-level features which are computed from
frames of a small duration. Inside almost every sound sample
there are parts which are not representative of the particular
event. These segments are the ones which are most likely to
be misclassified. We try to avoid this burden by incorporating
the knowledge that is offered by several frames into one.
Furthermore we experiment on the optimal value of the
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frames to be integrated with respect to audio feature sets of
different domains as well as various integration strategies.

More specifically, we study the effect of temporal integra-
tion of features in order to achieve a global representation of
an audio sequence using a smaller number of time instances.
By integrating the features in the temporal sense we capture
a more characteristic-global view of the signal which can
be more representative than frame values of small duration.
Thus the within-class variability is reduced which results
in finer modeling of the shared characteristics amongst the
samples of the same sound category. The time slot over which
the integration takes place is called texture window. This
technique belongs to the early integration category since the
integration does not take place on the classifier level but on
the feature extraction level.

Each integration function is applicable to a predefined
number of frames and transforms them according to the
following equation:

Xk = F
(
xt, . . . , xt+p−1

)
, (1)

where Xk denotes the integrated vector of the kth texture
window and xi is the value of feature x at frame t. The
number of frames over which the integration is applied
is denoted as p. This equation provides a higher-level
description of the feature series. Several integration strategies
are based on the computation of statistics over the texture
window. Other strategies are based on the assumption that
the feature sequence can be viewed as a random process
(e.g., autoregressive models). The three different integration
strategies which are investigated in this work are explained
below.

3.1. Computation of Short-Term Statistics. A relatively simple
way to merge the information which is provided by many
subsequent frames into one is the computation of their
statistical instances. We consider the next five statistical
measurements: mean (or expected value), variance, median,
as well as the first and third quartiles over each texture
window. Although they are relatively simple to calculate,
they can be representative of the feature sequence. Except for
mean and variance, which are of high importance (see [30,
31]), we also make use of three percentiles. They reflect upon
the value below of which a certain percent of observations
may be found. The first, second (median), and third quartiles
correspond to 25, 50, and 75 percent, respectively. The short-
term statistics integration function is the following:

Fstat

(
xt, . . . , xt+p−1

)

=
[

mean
(
xt, . . . , xt+p−1

)
, var

(
xt, . . . , xt+p−1

)
,

q1
(
xt, . . . , xt+p−1

)
, . . . , median

(
xt, . . . , xt+p−1

)
,

q3
(
xt, . . . , xt+p−1

)]
.

(2)

Its outcome is a vector with size five times the initial
dimension (R = 5 × D). The main disadvantage of simple
statistics is their inadequacy to capture the dynamicity

of an audio signal since another combination of several
observations can result in the same integrated vector. The
next two integration strategies share the fact that they try to
capture the temporal behavior of a given series.

3.2. Spectral Moments. The temporal dependency between
successive feature observations can be extracted using the
information provided by the spectrum of these features.
The method employed here was used in [14] for automatic
musical genre classification and is an extension of the
modulation energy of several features used by McKinney and
Breebaart [32]. Initially the STFT of the sound parameters is
calculated over the texture window. Its outcome forms the
basis for calculating the spectral moments and includes the
entire information which is provided by the spectrum of
each feature. In this way we can determine the sinusoidal
frequency and phase content of local sections of a given
feature sequence as it changes over time. It should be noted
that here another parameter is inserted; the size of the FFT
which is irrelevant to the FFT employed by the feature
extraction algorithms comprises the number of frames that
can be included in the texture windows.

First, the power spectrum in dB of the series of a
particular descriptor is calculated and its mean value μ is
stored. Subsequently the next four statistics over the texture
size of the amplitude spectrum are calculated: the mean
m, variance v, skewness γ, and kurtosis κ. The last two
measurements are taken because they basically express the
dispersion of the instance across their expected value. If
skewness is negative, the data are spread out more to the left
of the mean than to the right. If skewness is positive, the data
are spread out more to the right. For a perfectly symmetric
distribution, it is zero. Kurtosis describes the pdf of a random
variable while emphasis is placed upon the deviation that
its variance exhibits. If the case is that the variance exhibits
infrequent extreme deviations, then kurtosis is more than
3. On the contrary when the variance is of frequent small-
sized deviations, kurtosis is characterized by lower values.
Conclusively the final integrated vector has five times larger
dimension than the starting one like the previous strategy
(R = 5×D) as

Fspec

(
xt, . . . , xt+p−1

)
= [μ,m, v, γ, κ

]
. (3)

3.3. Autoregressive Models (AR). Another methodology for
integrating audio parameters, which was proposed in [14],
is fitting AR models to capture their evolution in time.
The algorithms that were used are based on a stepwise
least-square approximation which is computational efficient
when we are dealing with high-dimensional data [33].
Furthermore confidence intervals for the estimated model
parameters can be inferred for measuring how well the fitted
model corresponds to the given data. The coefficients of
the autoregressive process are computed for forming the
integrated feature vector. Two types of processes are con-
sidered in this work: multivariate autoregressive (MAR) and
diagonal autoregressive (DAR). The formula for calculating
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the coefficients of an autoregressive model of order O is
shown below:

x[t] = w +
O∑

n=1

x[t − n]An + et, (4)

where w is the intercept vector, An are the D × D coefficient
matrices of the autoregressive model, and et is a white noise
vector of dimension D. Thus the integrated feature vector is

FMAR

(
xt, . . . , xt+p−1

)
=
[
⇀
w,

⇀
A1, . . . ,

⇀
AO

]
, (5)

which is of dimension R = D(O × D + 1). The same least-
square approximations are computed for the case of DAR
but a further assumption is made: the sound descriptors
are independent with respect to each other. As a result
the constraint exists that the model coefficients should
be diagonal matrices. Hence, we calculate the parameters
for each feature alone each time and the outcomes are
concatenated. In this case we have a vector of significantly
lower dimension, R = D(O + 1), as

FDAR

(
xt, . . . , xt+p−1

)
=
[
⇀
w,

⇀
D1, . . . ,

⇀
DO

]
. (6)

4. Experimental Setup and Comparative
Evaluation

This section covers the details regarding both testing and
training phases of our experimentations. Our aim is to assess
the performance of the three different feature sets on the
same database when they have been temporarily integrated.
For each classification stage the left-right HMMs were
optimized in terms of number of states and components.
The data were split into 70% for training and 30% for
testing in a random way while these sequences were the
same for all stages. Our corpus consists of audio acquired
from professional sound effects collections which are of high
quality and are mainly employed by the movie industry. They
are used to process or even replace the audio stream that was
recorded at the actual scene. These sources combined com-
prise a vast corpus of vocal and nonvocal audio events which
can be utilized for the construction of trained probabilistic
classification models. We should underline the fact that there
is a need for a common database in order to be able to
directly compare the performance of different frameworks.
We believe that the audio corpus used here has the potential
to become a reference database which is essential for reliable
comparison of related papers. Our corpus is acquired from
the following collections: (i) BBC Sound Effects Library,
(ii) Sound Ideas Series 6000, (iii) TIMIT, and (iv) Sony
Sound Effects Library. The following ten audio classes were
organized: bird call, applause, dog bark, explosion, footstep,
cat meowing, gunshot, speech of both genders, laughter, and
telephone ring. Our intention was to have as many common
categories to previous studies as possible. A dataset that
would be fully identical with other publications could not
be formulated due to the different databases that have been
utilized in other papers and/or their unavailability. The main

Table 2: Statistics of the final dataset.

Audio category
No. of sound

Duration (sec)
samples

Bird call 55 7,913.4

Applause 64 1,467.5

Dog barking 102 1,103.6

Explosion 131 1,803.9

Foot step 152 4,865.5

Cat meowing 141 977.1

Gunshot 187 2,290.8

Male and female
1680 5,174.4

Speech

Laughter 118 941.64

Telephone 89 1,629.59

Total 2719 28,167.4

difference is that we decided not to use the category glass
smash (as used in [9]) since glass breaking sounds are present
in many explosion sound events. Instead, we decided to add
another animal sound category: cat meowing. Care has been
taken in order to include sounds from all the databases in
both train and test sets so that the models do not depend
on the acoustics conditions of each database. Statistics of
the final corpus are tabulated in Table 2. The sound files
were downsampled to 16 KHz with 16-bit quantization while
they were preprocessed so that any possible dc offset would
be canceled. The databases were exhaustively searched for
samples that correspond to our problem and all the relevant
parts were identified and isolated for later usage. Our main
concern was for the sample to be “clean” without any type
of background noise. Lastly a statistical-model-based silence
elimination algorithm described in [34] was used so that the
pdf estimation techniques can elaborate on the structure of a
particular sound event alone.

4.1. Parameters for Feature Extraction and Temporal Inte-
gration. Following the MPEG-7 standard recommendation,
the low-level feature extraction window is 30 ms with
10 ms overlap, so the system is robust against possible
misalignments. The sampled data are hamming windowed
to smooth any discontinuities while the FFT size is 512.
As regards the number of principal components that is to
be considered, we put a restriction that at least 95% of
the variance should be accounted for. The smallest number
of components that complied with this restriction was the
final choice. By running an experiment on the training data
for each group of descriptors, we arrived to the following
results: 15 components for the Mel-filterbank-based set, 16
for MPEG-7 ASP, and 61 for PWP integration analysis. For
each experimental phase a PCA kernel was derived from the
training data and then employed for transforming the testing
sequences to a training data-dependent coordination system.

The ARfit toolbox [33] was employed to estimate the
parameters of the MAR and DAR processes. ARfit toolbox
is a package of Matlab functions for analyzing time series
of multiple variables using AR processes. Next, the FFT
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Table 3: System’s performance with respect to each feature set and the integration window with the best accuracy.

Feature set
Integration
strategy (order O)

Texture window
(frames)

No. of states No. of modes Average recognition
rate (%)

Mel filterbank

No integration — 4 64 80.21

Statistics 60 5 128 86.44

Spectral
moments

90 6 8 79.2

MAR (1) 50 5 16 71.1

DAR (1) 60 5 128 85.29

DAR (2) 90 5 128 83.55

DAR (3) 10 6 32 76.86

MPEG-7 audio
spectrum projection

No integration — 5 64 82.06

Statistics 10 3 32 87.13

Spectral
moments

90 3 64 81.98

MAR (1) 50 5 32 67.21

DAR (1) 120 3 16 79.78

DAR (2) 40 4 16 80.59

DAR (3) 120 5 32 80.26

PWP integration
analysis

No integration — 4 32 75.63

Statistics 90 4 32 83.96

Spectral
moments

20 5 8 83.77

MAR (1) 40 3 16 69.21

DAR (1) 90 6 16 78.26

DAR (2) 120 4 16 79.03

DAR (3) 120 5 8 80

DAR (4) 90 4 8 79.31

length for integrating a given feature sequence using the
spectral moments strategy was set to 128. In this way the
system can integrate up to 128 frames which corresponds
to about 2.5 seconds. The values of the frames that are to
be integrated into a texture window were taken from the set
{10, 20, 30, 40, 50, 60, 90, 120} while a constant hop size of
10 frames was adopted, so that the final number of texture
windows was kept the same independently of the included
number of frames. In case the sound sample is of smaller
duration, then it is integrated into one texture window only.
It should be mentioned that for each experimental phase the
performance of the system is measured using per frame (or
texture window) analysis. For the MAR method the lower
limit of frames that are to be integrated is 30 since this
method requires a larger number of subsequent observations
for estimating the model coefficients.

4.2. Classification Results. This section presents the classifica-
tion results over the different levels of our study. We first
compare the performance of the feature sets that were emp-
loyed to model each sound class as well as the integration
strategy. Subsequently the effect of the length of the texture
window is discussed. Finally we draw our conclusions as re-

gards the integration strategy that provides the best per-
formance in terms of both computational complexity and
recognition rate. The performance of the system with respect
to each feature set using the texture window length that
provided the best average recognition rate is tabulated in
Table 3. The respective results without using an integration
methodology are also depicted for comparison reasons.
Furthermore the parameters of the HMMs (number of states
and Gaussian components) are given for each case. As we
can observe the best overall accuracy is achieved by the
MPEG-7 ASP descriptor and corresponds to 87.13%. Mel-
filterbank-based set provided the second best performance
(86.44%) while the group extracted out of the wavelet
domain demonstrated the worst performance (83.96%). The
rates were averaged across all ten sound categories so that
all the classes would contribute to the final result equally
independently of the number of the test samples. Consider-
ing the various databases which insert a great diversity into
our experiments, the results are more than encouraging. It
should be noted that many of the misclassifications occur
due to the great variability among sound samples of the same
class. Additionally, several sound clips are acoustically similar
even though they belong to different categories, for example,
explosions sounding like gunshots and vice versa. The results
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confirm that MPEG-7 audio protocol provides for each audio
class a representation that follows a consistent pattern which
can be modeled by left-right HMMs and used afterwards for
classification of novel data.

A property that is shared by all the groups of the sound
parameters is that they exhibit their best performance when
the short-term statistics method for temporal integration
is employed. Although this method is relatively simple and
does not take under consideration the possibility of temporal
dependency among the feature values, it was proven to
enhance the recognition performance in a domain indepen-
dent way. The spectral moments method demonstrates the
second best results as regards PWP integration and MPEG-
7 ASP descriptors on the contrary to Mel-filterbank-based
set where this is achieved by the first-order DAR method.
The lowest recognition rates across all feature sets are given
by the MAR method: 71.1%, 67.21%, and 69.29% for Mel,
MPEG-7, and PWP groups, respectively, despite its high
dimensionality needs.

Furthermore it should be emphasized that the classifiers
which are trained on temporarily integrated data perform
better in almost every case (exception is the MAR method).
This clearly reveals that the integrated vector better captures
the aspects of an audio class which are needed for recog-
nition. The improvement reaches 6.23%, 5.7%, and 8.33%
for Mel, MPEG-7, and PWP integration sets, respectively.
Thus the usage of temporal integration techniques is useful
for generalized sound recognition unlike musical instrument
classification where almost identical results are obtained
[15].

An interesting observation is that as we increase the order
of the autoregressive processes we obtain lower classification
accuracies as regards Mel and MPEG-7 sets. However the
PWP integration set was providing better performance, so
we decided to carry out an additional experiment using a
4th-order DAR model. Unfortunately this process provided
lower accuracy than the 3rd-order one. These facts lead to
the conclusion that autoregressive functions are not able to
capture the temporal behavior of the feature sequence of an
audio signal.

One can make the logical assumption that the larger the
value of the integration window, the higher the recognition
rates will be, since more information can be exploited.
However this assumption is not true in every case. During
this phase of the experimental results analysis, we isolated the
best recognition rate for each texture window with respect
to each group of parameters according to the short-term
statistics method. Figure 4 illustrates the variation that the
average recognition rate exhibits when the length of the
texture window changes. The set based on multiresolution
analysis exhibits a big improvement as the length increases up
to the value of 90 frames and then the performance falls. The
opposite case is that of the MPEG-7 ASP descriptor where its
maximum discrimination capability is when only 10 frames
are integrated. Mel filterbank comprises the intermediate
case while it presents maximum performance when 60
frames are integrated. During our experimentations the
number of the training texture windows that were employed
for HMM construction was constant due to the fixed value
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Figure 4: Average recognition rate as a function of the length of
texture window with respect to each feature set.

of the hop size; hence, we avoided overfitting because of
insufficient data.

Figure 5 depicts the classification results in more details
as regards the best overall performance that each feature
set achieved. As we can see there are some sound classes
that are recognized with high accuracy by all the groups
of descriptors, like explosion, speech, and laughter sound
events. On the other hand several sound events are correctly
classified by one or two feature sets but not by the third one.
Mel filterbank demonstrated its best performance in speech
(98%) and bird call (94.44%) classification while it cannot
recognize cat meowing (75.77%) and footstep (78.34%)
sound events adequately. ASP descriptor recognized correctly
all (100%) sound samples of speech and dog bark categories
but achieved the lowest rate as regards the bird call class. We
obtained the highest score for footstep sound recognition
from the group of descriptors which is based on wavelet
packet analysis. These observations indicate that the feature
sets share some common characteristics but exhibit many
differences when it comes to discriminate particular sound
classes. Hence we decided to explore the usage of several
fusion techniques which elaborate on the HMMs outputs.
This experimental phase is described in the next paragraph.

To conclude, we found that temporal feature integration
can be of considerable benefit as regards generalized sound
recognition. The MPEG-7 audio protocol’s set demonstrated
the best performance while we concluded that different
feature sets can classify different sound classes with different
accuracy. Additionally the increase of the number of frames
that are to be integrated can provide improved results only to
some extent which heavily depends on the feature set. After
a certain limit the integrated information does not exhibit
a consistent pattern, which hinders the model construction
procedure.
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(a) Mel-filterbank-based feature set
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(b) MPEG-7 audio spectrum projection
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(c) Perceptual wavelet packet integration analysis

Figure 5: Recognition rates per sound class for (a) Mel filterbank,
(b) MPEG-7 ASP, and (c) PWP Integration sets using the param-
eters (length of texture window, number of states, and number of
modes) that demonstrated the best overall accuracy.

4.3. Fusion of HMM Outputs. Following the conclusions of
the previous section we experimented on fusing the outputs
of the HMMs build by utilizing different feature sets which
are integrated over the texture window length that provided
the highest recognition rate. The same data were used during
both training and testing procedures. The difference is that
instead of having sequences of features, this time we only
elaborated on the probability that is generated by each
HMM. We evaluated the performance of two fusion schemes:
J48 tree and multilayer perceptron [35]. Decision trees can be
easily constructed in a supervised way while no assumption
is made a priori about the distribution of the data. Their
main disadvantage is that slight alterations of the training
set can result to a decision tree structure that exhibits a large
number of differences. However we reduce this risk since we
elaborate on probabilities of feature sequences and not on the
features themselves. Multilayer perceptron (MLP) method
follows the logic of the linear perceptron while it employs
nodes with nonlinear activation functions for discriminating
data that are not linearly separable. Additionally, artificial
neural networks can be very useful where the patterns are

Table 4: Average recognition rates reached by the four fusion
methods.

Fusion method Recognition rate (%)

Majority voting 79.48

Simple concatenation 85.12

(no temporal integration) (4 states, 32 modes)

J48 tree 95.67

MLP 96.95

not evident. The backpropagation algorithm was used to
train the neural network with one hidden layer of twenty
nodes (half the total of the number of features plus the
number of classes) at a learning rate of 0.3. These methods
were chosen because of their ability to handle redundant
data, which means that in the case where the feature sets
capture overlapping information of the acoustic signal that
they represent, the algorithm can effectively exploit it and
the performance of the recognizer is usually increased when
compared to employing each feature set alone. A redun-
dant feature set may provide improved performance under
adverse conditions (where parts of the signal’s spectrum are
absent or distorted) as in the case of real life. Two simpler
approaches were also evaluated: majority voting and simple
concatenation of all the parameters before the temporal
integration stage. Regarding the case of majority voting, if an
agreement was not reached, that is, if we resulted into having
three different decisions for the same test sequence, then the
decision was made in a random way.

In Table 4 the average recognition rates that were
achieved while fusing the HMM outputs with four different
methods are illustrated. The highest performance is reached
by MLP-based fusion (96.95%) while the J48 decision tree
method reached the second best score (95.67%). The HMMs
that were constructed by concatenating all the feature sets
into one provided a considerable improvement of 3.06%
when compared to the MPEG-7 set alone (82.06%). The
majority voting method exhibited the worst performance
(79.48%) since it suffers from the fact that the first-stage
HMM classifiers tend to disagree.

A direct comparison of the proposed framework with
other sound classification systems is not feasible due to
the different datasets that are employed by each of these
works. In [9] they use the MPEG-7 ASP feature set without
temporal integration reaching 82.06% on our dataset, which
is considerably lower than the recognition rate achieved by
the MLP-based fusion scheme.

With respect to the MLP-based fusion scheme, we
observe that many of the classification errors produced by the
HMMs were corrected by the fusion scheme (the confusion
matrix is tabulated in Table 5). The performance of the
system is high due to the concurrent usage of diverse groups
of sound parameters. This suggests that the problem of
generalized sound recognition is better handled when using
a multidomain group of descriptors. We conclude that the
final classification results are satisfying since our database is
characterized by a great within-class variability.
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Table 5: Confusion matrix of the final system with MLP-based fusion of probabilities (%).

Presented

Responded

Bird
Applause Dog barking Explosion Footstep

Cat
Gunshot Speech Laughter Telephone

call meowing

Bird call 95.3 0 0 0 0 2.7 2 0 0 0

Applause 0 100 0 0 0 0 0 0 0 0

Dog
0 0 96.2 0 0 0 0 0 4.8 0

barking

Explosion 0 0 0 94.89 0 2.11 3 0 0 0

Footstep 0 0 0 0 97.52 0 2.28 0 0 0

Cat
0 1.1 1.5 0 0 95.4 0 1.3 0 0.7

meowing

Gunshot 0 0 0 2.1 0 0.1 97.8 0 0 0

Speech 0 0 0 0 0 0 0 100 0 0

Laughter 0 1.2 0 0 0 0.6 1.3 0 96.9 0

Telephone 0 0 0 0 0 3.2 1.3 0 0 95.5

5. Conclusions

A framework for generalized sound recognition which leads
to high accuracy was proposed. A combination of several
well-documented sources of high quality was employed for
coming up with a thorough dataset. The merits of temporal
feature integration were exhibited as regards different audio
features. The experimental protocol was carefully designed
and all the aspects of the suggested methodology were
evaluated in details. The results reveal that different texture
windows are appropriate for each feature set while the
temporal integration strategy based on short-term statistics
demonstrated the best average recognition rates. The rest of
the techniques, although more complex and computational
intensive, could not provide a representation of the structure
of the audio signals that can be modeled and subsequently
identified efficiently. The first stage of the system utilizes
left-right HMMs for estimating the distribution of the
features that belong to each sound class. Following the
outcomes of the extensive experimentations, a further step
was investigated: the concurrent usage of sound parameters
based on spectral and multiresolution analysis. The MLP-
based fusion scheme elaborated on the probabilities that
were generated by the previously constructed HMMs and
provided high classification rates as regards to all the sound
categories that were considered in our study. This indicates
that automated generalized sound recognition is better
addressed while utilizing multidomain groups of descriptors.
Sound classes which are currently not included in our work
can be easily incorporated as long as a sufficient amount
of training data is collected. The same methodology can
be used for processing the unseen audio sequences (feature
extraction with temporal integration) and a probabilistic
model for each new sound class can be constructed. The
proposed implementation is flexible and can facilitate many
sound recognition applications.

The aim of this work was the evaluation of various
integration techniques for automatic audio classification.

The objective now is to use the results reported in this work
to build up autonomous systems able to form an accurate
description of the surrounding space based solely on their
“auditory sense”. Such systems could ease our everyday life by
providing solutions to a number of real-world applications.
Our next step is to integrate the proposed methodology into
the framework of the Prometheus project which aims at the
analysis of human behavior in unrestricted environments,
including recognition of their activities using heterogeneous
sensors.
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