
Analysis
https://doi.org/10.1038/s41587-019-0037-y

1Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA. 2Yale Cancer Biology Institute, Yale University, West Haven, 
CT, USA. 3Heidelberg University, Faculty of Biosciences, Heidelberg, Germany. 4Joint Research Center for Computational Biomedicine (JRC-COMBINE), 
Faculty of Medicine, RWTH Aachen University, Aachen, Germany. 5Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, 
Switzerland. 6Institute of Microbiology, ETH Zurich, Zurich, Switzerland. 7Department of Genetic Medicine and Development, University of Geneva 
Medical School, and University Hospitals of Geneva, Geneva, Switzerland. 8IEO, European Institute of Oncology IRCCS, Milan, Italy. 9Institute for Medical 
Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. 10National Center for Tumor 
Diseases, Dresden, Germany. 11Biozentrum, University of Basel, Basel, Switzerland. 12Service of Genetic Medicine, University Hospitals of Geneva, Geneva, 
Switzerland. 13Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese 
Academy of Sciences, Shanghai, China. 14Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy. 15Institute for Computational 
Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant Heidelberg, Germany. 16iGE3 Institute of Genetics and Genomics of Geneva, Geneva, 
Switzerland. 17Faculty of Science, University of Zurich, Zurich, Switzerland. 18These authors contributed equally: Yang Mi, Torsten Mueller, Saskia Kreibich. 
*e-mail: yansheng.liu@yale.edu; aebersold@imsb.biol.ethz.ch

Many technical factors can contribute to poor reproduc-
ibility, but the complexity inherent in biological systems 
also poses a major challenge. The effect of genomic and 

environmental perturbations on the molecular makeup and pheno-
typic response of a cell or organism, and how genetically different 
cells or organisms react to identical perturbations, remains largely 
unknown.

Several recent studies have highlighted problems in human 
cancer cell lines, such as cell line misidentification, cross-contam-
ination and poor annotation, that could impair the reproducibility 
of results obtained from these cell lines between laboratories1–4. 
Consequently, short tandem repeat and single nucleotide poly-
morphism profiles have been proposed to authenticate cells4,5. 
However, the extent to which genotypic variability induces pro-
teotype and phenotype variations in the same cell line cultured 
in different laboratories is unknown. Unsystematic observa-
tions suggest that many cultured cell lines might be genomically  
unstable6,7, and a recent report shows that cancer cell lines may 
undergo rapid genetic diversification as a result of positive clonal 
selection that is highly sensitive to culture conditions8. In such 
cases, even careful experimentation cannot assure reproducibility 
of research results.

HeLa cells present an important example of human cancer cells 
that have widely influenced biological studies. More than 100,000 
publications have used or directly referenced HeLa cells. However, 
owing to extensive genome instability during passaging and transfer 
between laboratories, HeLa cells have been reported to contain a 
very large number of genomic variants7,9–12. The currently widely 
used HeLa variants include HeLa CCL2, the ‘original’ HeLa cell 
line; HeLa S3 (also called CCL2.2), the third clone isolated from an 
early HeLa culture; and HeLa Kyoto. Whole-genome sequencing of  
HeLa Kyoto13 and HeLa CCL214 has been performed, and nota-
ble variation in sequence, copy number and chromosomes were 
reported between the two14. Furthermore, different HeLa Kyoto 
clones were reported to vary in terms of mRNA expression between 
laboratories7. However, little is known about how such genomic 
variability affects the proteomes or cellular phenotypes15 of the dif-
ferent HeLa strains between laboratories, the effect of successive 
passages within a stock-derived line on its molecular makeup, and 
how these would affect a biological research outcome.

Here we perform a system-wide analysis of HeLa cell line vari-
ants collected from 13 laboratories to investigate biological variation 
across these lines. We use SWATH (sequential-window acquisition 
of all theoretical fragments) mass spectrometry (SWATH-MS)16–20 
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to quantify steady-state protein profiles and relate these to copy 
number profiles, transcript profiles, protein turnover rates21–23 and 
phenotypic characteristics such as cell doubling time and a variable 
response to Salmonella infection. The results highlight the biologi-
cal complexities of commonly used human cancer cell lines and 
provide an important basis for discussing how experimental data 
obtained from these lines should be reported and interpreted.

Results
HeLa cell variants from different laboratories have different and 
rapidly evolving genotypes. We surveyed HeLa cells used in 13 lab-
oratories (Fig. 1). Four laboratories shared the seventh passage (P) 
7 of an initial HeLa CCL2 (the original version of HeLa, purchased 
from the American Type Culture Collection (ATCC)). Three of 
these laboratories separately cultured cells until P15 or P20, a stage 
at which cells are generally regarded as still acceptable for biology 
research (HeLa 6, 7, and 13) (Fig. 1a and Supplementary Table 1).  
The fourth group provided both P7 (HeLa 14) and P50 cells  
(HeLa 12), which allowed us to identify molecular alterations occur-
ring after 3 months of continuous culture. In total the 14 HeLa cell 
variants comprised 7 HeLa CCL2 lines, 1 HeLa S3 line and 6 HeLa 
Kyoto lines. To reduce experimental bias, we centrally cultured all 
the cell lines for an additional three passages under the same condi-
tions (Supplementary Note 1).

First, we evaluated HeLa cell heterogeneity by measuring gene 
copy number variation (CNV) by array comparative genomic 
hybridization (aCGH) (Fig. 1b). We discovered pervasive CNV dif-
ferences organized by domains, large chromosomal segments, and 

even whole chromosomes. Particularly notable were ploidy changes 
in chromosomes (Chr) 1, 2, 6, 9, 10, 17, 19, 21, 22 and X. (Fig. 1b). 
On average, the genomes of all cells tested had an overall hypertrip-
loid state, as reported13,14. However, HeLa CCL2 lines had 1.87 times 
as many genes with two copies and 0.7 times as many genes with 
three copies compared to the Kyoto lines (Supplementary Fig. 1).  
Even within CCL2 and Kyoto groups, significant CNVs could be 
observed, albeit at a smaller scale—for example, at the distal region 
on Chr8. Moreover, HeLa 11 deviated in many chromosomes from 
other HeLa CCL2 cells. Overall, we observed widespread DNA dos-
age variation among HeLa cells, although Chr13, 14, 18 and 20 were 
more stable than the other chromosomes (Fig. 1c). Notably, in com-
parison to P7, the P50 HeLa cells gained or depleted entire chromo-
some copies or large chromosome domains (Fig. 1d). Examples are 
copy gains of a whole Chr8 and loss of Chr15, as well as a two-thirds 
gain of Chr 19 and a partial loss of Chr9. The comparison to P20 
cells further reveals progressive accumulation of CNV differences 
with passaging (Supplementary Fig. 2).

In summary, we observed, as a likely consequence of genomic 
instability or clonal selection, a considerable degree of large-scale 
CNV across HeLa cells used in different laboratories, even among 
strains with the same annotation.

Diversity of gene expression patterns at steady state. We then 
analyzed how the diverse CNV patterns influence steady-state gene 
expression between HeLa strains (Fig. 2). Collectively, we quanti-
fied transcripts for 11,365 genes with an average number of reads 
per kilobase of transcript per million mapped reads (RPKM) >1 
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Fig. 1 | HeLa cell lines from different laboratories showed varied and evolving genotypes. a, HeLa cell variants were collected from 13 laboratories and 
arbitrarily numbered from HeLa 1 to HeLa 14. ATCC, American Type Culture Collection; P, passages. b, Circus plot of raw absolute copy numbers across 
all 14 HeLa cell lines. c, Coefficient of variation (CV) distribution of all genes encoded by different chromosomes among all cell lines. d, Log of fold change 
(FC) values for gene copy number changes between HeLa 12 and HeLa 14 at each chromosome.
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Fig. 2 | Heterogeneous transcriptome, proteome and protein turnover profiles between HeLa cell lines across laboratories. a, Expression of genes 
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reproducibility of SWATH-MS for whole-process replicates and HeLa cells from different laboratories (n = 11, 60 and 60 observations for the red, green 
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(Fig. 2a). Using SWATH-MS17–20, we consistently quantified 5,030 
proteins across all samples (1% peptide and protein false discovery 
rate (FDR) controlled by PyProphet17; Methods and Supplementary 
Fig. 3). The absolute label-free quantification determined the num-
ber of protein copies to center at 10,000 and to span from 100 to 
>106 copies per cell (Fig. 2b). Using pulsed stable isotope label-
ing with amino acids in culture (pSILAC) in combination with 
SWATH-MS23, we further quantified the proxy turnover rate (kloss; 
Methods) of a consistent set of 2,084 proteins. Taken together, our 
results present a well-matched dataset for studying gene expression 
in HeLa cells (Fig. 2a and Supplementary Fig. 4). As a technical 
assessment, the sample-to-sample Pearson correlation suggested 
that SWATH-MS achieved a high and consistent reproducibility 
that is sufficient to distinguish whole process replicates and HeLa 
cells from different laboratories, with minimal quantification bias 
against low-abundance proteins (Fig. 2c, Supplementary Fig. 5 and 
Supplementary Note 2).

For a global comparison, we performed principal component 
analysis (PCA) and unsupervised hierarchical clustering analysis 
(HCA) at each omics layer (Fig. 2d–k). Both analyses suggested, 
first, that HeLa CCL2 and Kyoto variants differ substantially at 
every level of gene expression; second, that HeLa S3 (HeLa 5) cells 
are systematically closer to HeLa CCL2 than to Kyoto variants; and 
third, that HeLa 11 resides between CCL2 and Kyoto groups in 
PCA, although it is closer to the CCL2 cluster in HCA at all levels. 
We thus confirmed all the HeLa cells, including HeLa 11, as bona 
fide HeLa cell lineages by the deep mapping of single nucleotide 
variants (SNV) extracted from our RNA-seq dataset relative to the 
COSMIC HeLa reference24,25 (Supplementary Fig. 6).

To understand the CCL2–Kyoto difference, we first noted 
that the transcriptomic and proteomic CCL2/Kyoto ratios at the 
respective gene loci largely followed CNV imbalance (Fig. 2l and 
Supplementary Fig. 7), whereas the kloss ratios showed a higher 
degree of variation. We then benchmarked the CCL2–Kyoto mRNA 
expression difference to the transcriptomic variation of human can-
cer cell lines of the GDSC panel26 by both t-distributed stochastic 
neighbor embedding (t-SNE; Fig. 2m) and PCA (Supplementary 
Fig. 8). This analysis demonstrates that HeLa CCL2 and Kyoto 
groups are as distinct from each other as are cancer cell lines from 
different tissue types (Supplementary Fig. 8). Similar observations 
were made using published protein abundance and turnover datas-
ets in skin fibroblast cells discordant for trisomy 21 (Supplementary 
Fig. 9 and Supplementary Note 3).

Gene expression patterns evolve with cell passages. HeLa cells 
are immortalized cell lines. However, it is not clear how much 
functional variation will be introduced during passaging of cells, 
considering its unstable genome7,9–12. We compared the mRNA-
seq data acquired from three biological replicates each of HeLa 12 
and 14. Strikingly, 731 transcripts (~6.4% of confidently profiled 

transcripts) showed significantly altered expression between HeLa 
14 and 12 (adjusted P < 0.01 by edgeR27, fold change > 2) (Fig. 3a). 
Among these 731, we measured the protein levels of 166. They 
showed a notably positive mRNA–protein correlation (Spearman’s 
ρ = 0.47, Fig. 3b). Thus, the differential transcript profiles between 
P7 and P50 also significantly affect the proteome. For example, the 
integrin-mediated signal pathway, negative regulation of endo-
peptidase activity and inflammatory response are consistently 
regulated (adjusted P < 0.05 for all processes) at both mRNA and 
protein levels (Supplementary Fig. 10). These results argue that 
investigations focusing on these processes can lead to inconsistent 
results if HeLa cells of quite different generations, such as HeLa 14 
or 12, are used.

Global processes shape proteotypes between HeLa cell variants. 
The multilayered HeLa dataset allowed us to analyze global pro-
teome expression control mechanisms and how the cells reconcile 
the large-scale CNVs with their essential metabolic needs. Indeed, 
numerous CNVs leading to significant mRNA changes did not 
translate into corresponding protein levels (for example, those of 
Chr1 and Chr11 in Fig. 4a–c). Moreover, the total variance from 
mRNA to protein and to proteostasis levels followed a reduction 
trend (Supplementary Fig. 11).
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Fig. 3 | Gene expression comparison between HeLa 12 and 14 
representing 3-month passaging. a, Volcano plot of 3 vs. 3 biological 
replicates by transcriptomics data. 415 transcripts showed increased 
expression levels, whereas 316 transcripts showed decreased expression 
levels in HeLa 12 (P50) compared to HeLa 14 (P7). P values were 
calculated by edgeR tests. The red dots denote the significantly altered 
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correlation analysis between quantitative data of mRNA and protein fold 
changes (n = 166 mRNA–protein pairs), showing Spearman’s ρ. The blue-
to-yellow color scale denotes increasing data density by Kernel Density 
Estimation (Methods).

Fig. 4 | Global processes affecting HeLa proteotypes. a–c, Quantitative differences in CNV and mRNA and protein levels between HeLa cells after 
normalizing the data to the mean of the respective values. Chromosome 1 and 11 are shown as representative examples. d, Across-gene Spearman’s 
correlation between CNV, mRNA, protein and kloss values using absolute-scale data for HeLa 1 (a HeLa Kyoto line). e, Within-gene Spearman’s correlation 
between layers using the relative quantification data between HeLa 1 and HeLa 14 (the ATCC CCL2). f, Gene-specific, cross-cell-line Spearman’s ρ 
between layers. The outer violin curve denotes the kernel density of the dataset, the thick black bar in the center represents interquartile range, the 
thin black line represents 95% confidence intervals, and the white dot denotes the median. g, Cross-layer correlations between those proteins that are 
annotated in any stable complex in the CORUM database (“complex_in” group) and those that are not (“complex_out” group); Prot, protein. Box borders 
represent the 25th and 75th quartiles, bar within the box represents the median, and whiskers represent the range (Methods). Two-sided Wilcoxon 
test, P = 1.102 × 10–3, 6.373 × 10–2, 1.096 × 10–2, 7.483 × 10–5, 7.285 × 10–9, 1.770 × 10–4 (approximate values shown at top). h, Gene expression variability 
calculated by s.d. from the average at each level (n = 2,011 genes) suggests regulation preferences. i, Organelle perspective of gene expression variability 
and Spearman’s correlation. Std, standard deviation of the relative quantification. For d, e, f and i, all proteome-centric data points were included (i.e., 
we visualized n = 2,002 CNV–kloss pairs, n = 4,530 CNV–mRNA pairs, n = 4,853 CNV–protein pairs, n = 1,964 mRNA–kloss pairs, n = 4,524 mRNA–protein 
pairs, and n = 2,002 protein–kloss pairs). For g, these numbers are further divided into a complex_in group (n = 818, 1,450, 1,487, 806, 1,449 and 818; purple 
boxes) and a complex_out group (n = 1,184, 3,080, 3,366, 1,158, 3,075 and 1,184; blue boxes).
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To understand post-transcriptional regulation in this context, we 
correlated the absolute-scale data from HeLa 1 (a HeLa Kyoto cell) as 
an example between omics layers in an across-gene manner (Fig. 4d).  
We also correlated the relative fold changes between HeLa 1 and 
HeLa 14 (a CCL2 line) in a within-gene manner28,29 (Fig. 4e). The 
mRNA–protein correlation was quantitatively strong for both abso-
lute and relative scales (Spearman’s ρ = 0.51 and 0.49), reinforcing 
the previous notion that protein abundances at steady state are 
primarily determined by mRNA levels28,30. Notably, CNVs strongly 

determined the mRNA levels when we considered the relative dif-
ference between two cell lines (ρ = 0.45), but only weakly deter-
mined mRNA absolute copies within one cell line (ρ = 0.12). Similar 
trends were found for protein levels (ρ = 0.19 vs. 0.04). This illus-
trates the importance of considering both across-gene and within-
gene analyses. The absolute protein–kloss correlation ρ was –0.18 
(Fig. 4d), confirming that highly abundant proteins are less strongly 
regulated by protein degradation rates than proteins expressed at 
lower levels31. Summarizing the gene-specific Spearman ρ across 14 
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HeLa variants, the CNV–kloss and mRNA–kloss correlations were 0.16 
and 0.11, respectively, supporting the notion that, for many genes, 
protein turnover functions as a buffering step, shaping the quantita-
tive proteome between HeLa cells (Fig. 4f). Using protein complex 
annotation in the CORUM database32, we verified the maintenance 
of protein complex stoichiometries as an efficient buffering mecha-
nism23,28,33,34 (Fig. 4g and Supplementary Note 4).

We next analyzed the biological relevance of variations in 
mRNA, protein and protein turnover (Fig. 4h). The majority 
(~75%) of genes showed a consistent extent of variation between 
mRNA and proteins, whereas kloss particularly strongly affected a 
subset of genes. Furthermore, we used a recently established sub-
cellular atlas to distribute cross-layer correlations according to the 
protein organelle locations35 (Fig. 4i). Notably, we found that the 
mRNA–protein correlation for ribosomal proteins was low whereas 
mRNA–kloss correlation was highest, demonstrating that ribosomes 
are tightly controlled at the protein level. Indeed, compared to CNV 
and mRNA, about 40% of the cytosolic ribosome proteome showed 
a reversed expression pattern between HeLa CCL2 and Kyoto cells 
(Supplementary Fig. 12). Moreover, both kloss variation and mRNA–
kloss correlation of mitochondrial proteins were among the highest of 
the observed values, reinforcing our previous observation that the 
turnover of the mitochondrial proteome can be important in buffer-
ing aneuploidy stress23. Conversely, there was a very weak mRNA–
kloss correlation for plasma membrane proteins, suggesting a weaker 
role of protein turnover in shaping membrane proteome variability 
between HeLa cells. The above results suggest that the proteotypic 
variability is controlled by a multitude of global processes, including 
the control of protein complex stoichiometry and organelle-specific 
proteostasis.

HeLa proteotypic variability tightly links to phenotypic variabil-
ity. To better understand the consequences of molecular heteroge-
neity between HeLa strains, we analyzed their phenotypes. Direct 
molecular imaging analysis showed that the cells were morphologi-
cally different in many aspects, such as the texture contrast of their 
actin structures (Supplementary Fig. 13). Moreover, cell doubling 
time was strikingly different between HeLa strains, with extremes 
being 17.5 and 32.3 h under identical culture conditions (Fig. 5a). 
HeLa Kyoto cells grew faster than CCL2 cells (averaged doubling 
time, 21.1 vs. 28.2 h, respectively; P = 0.018, Welch’s t-test), an 
observation that has not been documented previously. Intriguingly, 
63 proteins annotated to cell cycle could be used to distinguish 
HeLa Kyoto and CCL2 lines, respectively (Fig. 5b). For example, 
the absolute protein copy number of cyclin-dependent kinases 1, 
2 and 7 (CDK1, CDK2 and CDK7) were on average 57.7, 46.8 and 
81.2% higher in the Kyoto than in the CCL2 group (Supplementary 
Fig. 14). Such an observation might help to establish a possible ‘pro-
teotype–phenotype’ link explaining cell doubling time differences 
between HeLa cell variants.

Besides these readily apparent phenotypes, we sought to inspect 
the response consistency of the HeLa cells to the same stimulus or 
perturbation36. We selected mimics of Let7, which is a highly con-
served microRNA (miRNA) that has been shown to play a central 
role in development and tumor suppression, to transfect all the 
HeLa cell lines37,38 (Supplementary Fig. 15). After a 72-h incubation, 
we quantified the abundance ratio of 5,030 proteins between Let7-
treated and control cells for each cell line. Notably, the proteome-
wide abundance ratios again separated HeLa CCL2 and Kyoto strain 
groups. The only exception was HeLa 11, which clustered between 
groups (Fig. 5c). SWATH-MS detected 107 of the top 500 most 
likely Let7 gene targets according to TargetScan39 (Supplementary  
Fig. 16). In transfected cells, ~70% of these targets showed a decrease 
in protein abundance, indicating that the Let7 treatment was effec-
tive. In particular, ten targets showed remarkably strain-dependent 
regulation upon Let7 transfection in CCL2 and Kyoto. Thus, the 

HeLa cell lines tested showed a varied response to a specific pertur-
bation such as Let7 treatment.

Expression of Let7 microRNAs is downregulated upon 
Salmonella Typhimurium (S.Tm) infection in HeLa cells, which 
indicates a role of Let7 in mediating the eukaryotic host response38. 
Using the ATCC HeLa CCL2 (i.e., HeLa 14), we found that Let7 
mimics interfered with S.Tm infection by impairing the docking 
step of S.Tm40,41 (Supplementary Fig. 17). We repeated the infection 
experiment for all except one of the HeLa cells transfected with Let7 
(Fig. 5d,e; only HeLa 6 was not included; Methods). We found that 
the same concentration of Let7 produced similar protective effect in 
most HeLa Kyoto cells, whereas the CCL2 cell lines showed a higher 
degree of phenotypic variability. HeLa 11 again showed an excep-
tional pattern in which the infection rate was not modulated by  
Let7 (Fig. 5d). To explore this, we compared wild-type Salmonella 
and a noninvasive mutant (S.TmΔT1) for their abilities to infect 
HeLa 11, HeLa 3 and HeLa 14 cells over a range of multiplicities 
of infection (MOI) from 4 to 250. Notably, HeLa 11 showed lower 
overall infection rates at a given MOIs (Fig. 5f). Consistent with 
these results, we found that, compared to other CCL2 cells, HeLa 
11 had the lowest expression of the Arp2/3 complex, which has a 
well-established role in bacterial internalization by host cells, act-
ing by initiating membrane ruffles40–42. Remarkably, all seven of the 
protein subunits of the Arp2/3 complex followed the same pattern 
(Fig. 5g), which could explain the reduced S.Tm infection in HeLa 
11. We used the STRING database to perform gene set enrichment 
for the 178 proteins that were differentially expressed between HeLa 
11 and other CCL2 cells (linear model test, adjusted P < 0.05), and 
again the membrane-bound vesicle (GO:0031988)43 was most sig-
nificantly enriched (adjusted P = 3.61 × 10–12, Fig. 5h). Finally, we 
examined docking41 by counting the S.Tm bacteria that remained 
bound to the respective HeLa cells after extensive washing. We 
confirmed a less pronounced S.Tm docking phenotype in HeLa 11 
compared to HeLa 14, which may further indicate that HeLa 11 has 
a different membrane topology or composition (Fig. 5i). Such mem-
brane topology effects are known to affect the rate of S.Tm docking 
to host cells44. These results indicate that the different molecular 
response to Let7 of the tested HeLa cells directly affected a bacterial 
infection phenotype.

Overall, our data show that the set of proteins that constitute 
the cell line specific expression response provide useful informa-
tion about the molecular basis underlying the observed phenotypic 
differences. We make the entire dataset available to the community 
online at https://HelaProt.shinyapps.io/Crosslab/ (Supplementary 
Figs. 18 and 19 and Supplementary Note 5).

Discussion
Although this study focuses on HeLa cells, previous studies sug-
gest that the findings are likely to generalize to other cell lines with 
unstable genomes. One example is the MCF-7 human breast can-
cer cell line. Genetic variability in MCF-7 was recently found to be 
undetectable in routine authentication, and more in-depth systems 
analyses may be needed to fully appreciate the extend of this varia-
tion45. Altered ploidy and signaling pathways has been shown in a 
triple-negative MCF-7 variants46. Recently, 27 MCF-7 strains were 
cultured in the presence of 321 anticancer compounds, and >75% of 
compounds that strongly inhibited certain clones were completely 
inactive in others8. Genomic studies on other cell lines—for exam-
ple, HEK293—have also uncovered dynamic changes of aneuploidy 
in response to cellular manipulations47. Together, these studies pres-
ent multiple lines of evidence that underline the importance of doc-
umenting identity and molecular heterogeneity of commonly used, 
genomically unstable cell lines in research reports.

On the basis of the present findings, we suggest initial, mini-
mal and easy to implement measures to minimize the effects of the 
observed variability on the publication of research results. First, we 
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strongly suggest that all future HeLa related studies should at least 
annotate whether CCL2 or Kyoto cell lines were used. Our results 
demonstrate that HeLa CCL2 and Kyoto cells are consistently and 
notably different at every level, including cell morphology, doubling 
time, karyotype, steady-state mRNA expression, protein expression 
and protein turnover rate. The gene expression variance between 
CCL2 and Kyoto is as large as that between many other cell lines 
originating from different tissues. Furthermore, the difference 
between HeLa CCL2 and Kyoto also results in distinct proteomic 
responses to Let7 transfection.

Second, we suggest the use of early and clearly annotated pas-
sages of cancer cell lines. In this study we detected substantial diver-
gence of HeLa CCL2 cells after 3 months of continuous culture 
that resulted in a substantial accumulation CNV changes and dif-
ferential expression of ~6% of genes. This suggests that even dur-
ing studies of moderate duration the molecular makeup of the cells 
may gradually change, resulting in important proteomic, and there-
fore biochemical, changes. We further recommend that research-
ers investigate, record and document the sources of the resident cell 

lines and report detailed cell culture protocols. In the case of col-
laborative projects involving several groups, both cell passages and 
protocols should be kept consistent among groups48. One example 
might be the Good Cell Culture Practice (GCCP) guideline in toxi-
cology community49.

Third, we suggest that important observations derived from sin-
gle cancer cell lines be repeated in different samples of the cell line, 
in different cell models or in different laboratories. In addition to 
alternative individual cancer cell lines, cell line panels of a particular 
cancer type, primary cells, organoid cultures50 or induced pluripo-
tent stem cells are worthwhile models to consider51.

Finally, we hope that our study fuels the community discussions 
and consideration toward a new level of cell authentication by docu-
menting the precise molecular makeup of the cells, whether carry-
ing the same name or not, used for a study. This step goes beyond 
authentication based on short tandem repeat or single nucleotide 
polymorphism profiles. Transcript profiles could be used to doc-
ument the basic state of the cells used in an experiment8. In this 
study we found that complex phenotypes such as resistance to S.Tm  
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infection could be linked to proteotype patterns. Because of the tight 
relationship between proteotype and phenotype, we also suggest fast 
proteome profiling of the cells used in a particular study by a cost-
effective label-free approach and appending of the resulting data to 
publications as an informative documentation of the biochemical 
state of the cells. This is technically feasible via the SWATH-MS 
technology, for example, and not prohibitively expensive.

Here we quantified ~5,000 proteins (roughly half of the pro-
tein species expressed in HeLa cells) and revealed proteotype 
heterogeneity between different HeLa cell variants at high resolu-
tion. SWATH-MS shows comparable reproducibility to transcrip-
tomics and can distinguish biological signals from technical noise 
in whole-process replicates. The pSILAC-SWATH–based protein 
turnover rate determination also achieved fairly high reproducibil-
ity in differentiating HeLa Kyoto and CCL2 cells. The HeLa cells 
from different laboratories essentially present a cell line panel in 
which the gene dosages are substantially different, but the sequence 
variances are minimal or modest between cells. The thousands of 
dosage-changing events observed at each layer provide the oppor-
tunity to explore gene dosage effects during gene expression. The 
inclusion of protein-specific kloss data that cannot be predicted by 
CNV, mRNA and total protein levels strongly supports protein com-
plex stoichiometry control as a key post-translational regulation in 
the face of aneuploidy. Also, proteome and proteostasis dynamics 
of different cellular compartments appeared to vary among HeLa 
cells. These conclusions would not be transparent if only one layer 
of omics data was acquired.

Our multilayered dataset not only demonstrates the high degree 
of heterogeneity of HeLa cells used in different laboratories but also 
provides a resource for understanding genotype–phenotype rela-
tionships in cancer cells.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41587-019-0037-y.
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Methods
Collection of cells. Frozen HeLa cells were prepared in each laboratory and sent 
to the coordinating laboratory at ETH Zurich in dry ice for centralized culturing. 
A uniform protocol was used at each site to prepare the cells for shipment. Cells 
collected from a 15-cm dish were transferred to 1 mL of the medium used for 
freezing (70% volume of DMEM, 20% FBS, 10% DMSO). Cells were then placed 
at –20 °C for 2–3 h, transferred to –80 °C for 24 h, and stored in liquid nitrogen 
until delivery. The frozen state of the delivered cells and presence of dry ice were 
confirmed upon arrival. Additionally, two aliquots of cell pellets were prepared 
at each site. The HeLa strains were then centrally cultured in the coordinating 
laboratory using standard culture methods according to ATCC. HeLa cells were 
tested upon arrival in the central laboratory for mycoplasma using the GATC 
Biotech service (Germany) and confirmed to be negative. For central culturing, the 
same researcher cultured the cells using the same culture medium and protocol. 
We did not notice routine symptoms of microbial contamination in any of the cell 
lines used upon careful daily inspection of the cultures under a microscope.

Culture conditions were 5% CO2, 37 °C; Dulbecco’s modified Eagle medium 
(DMEM, Gibco, 41965-039). To make the complete growth medium, FBS (Sigma 
Aldrich, F7524) was added to a final concentration of 10%, together with a 
penicillin/streptomycin/glutamine solution (Gibco, 10378016). We used 15-cm 
dishes (Nunclon 100 × 15 mm, Airvent). Detailed protocols are provided in 
Supplementary Note 1. We used 80% confluency to determine cell subculture 
frequency. Cells were seeded based on a split ratio of 1:2 to 1:4. The labeling of cell 
cultures was done through both the initials of the laboratory head (HeLa identity 
unknown to the technician) and an assigned number. Experts in the respective 
multi-omic techniques, blinded to the cell identities, carried out the measurements 
at each layer of gene expression, thus contributing to a multi-layer dataset of 
related cultured cells.

Determination of cell doubling time. The cell doubling time for each HeLa strain 
was determined using a cell counting CCK-8 kit (Dojindo Laboratories, Japan). 
Cells were seeded in triplicate at a density of 2,800 cells per well of a 96-well plate, 
and samples were prepared for counting at five different time points: 2 h, 11 h, 
24 h, 48 h and 72 h. The final doubling time was then calculated (using http://www.
doubling-time.com/compute.php). The entire experiment was repeated on two cell 
lines. Cell doubling time differences between whole-process replicates were all less 
than 2 h.

Phenotypic characterization of HeLa cells. HeLa cell plates were imaged with 
Molecular Devices ImageXpress microscopes, using MetaXpress v5.1 software. 
Imaging settings were adjusted for the highest exposure that did not incur 
overexposure, with 14-bit dynamic range and laser-based focusing. We imaged 
nine sites per well in a 3 × 3 grid with no spacing and no overlap. Three channels 
where imaged, with filters for DAPI for the nucleus, GFP for bacteria, and RFP 
for F-actin. Robotic plate handling was used to load and unload plates (Thermo 
Scientific).

Array-CGH analysis. Array-CGH (aCGH) analyses were performed using the 
Agilent Human Genome CGH Microarray Kit G3 180K (Agilent Technologies, 
Palo Alto, CA, USA) with 13 kb overall median probe spacing. The control was a 
DNA pool from 7 diploid individuals. Labeling and hybridization were performed 
following the protocols provided by the manufacturer.

aCGH processing and gene copy number detection. aCGH measurements of 
173,540 genomic probes were used to compute an aCGH log2-ratio profile that 
compares the DNA copy number of each probe in a specific HeLa cell line to 
normal diploid DNA. aCGH profiles were sorted according to the chromosomal 
locations of probes and further segmented into chromosomal regions of constant 
copy number using DNAcopy52 (R package DNAcopy with settings smooth.
region = 3, outlier.SD.scale = 0.5, smooth.SD.scale = 0.25). Copy number values 
of individual genes (30,237 known canonical genes of hg19/GRCh37) were 
determined by mapping chromosomal location of genes to obtained aCGH 
segments. If a gene was covered by a whole segment, then its copy number value 
was set to the segment-specific log2 ratio. If a gene was covered by more than one 
adjacent segments (breakpoints within a gene), then its copy number value was set 
to a weighted average of log2 ratios of involved segments according to their overlap 
with the gene. Most parts of the HeLa genomes are known to be triploid13,14. This 
was also reflected in our aCGH profiles, but the position of the closest peak to 
the triploid state varied among the different HeLa cell lines. Therefore, we further 
aligned the obtained gene copy number measurements to ensure that this peak was 
located at the triploid state for each cell line.

RNA extraction, library preparation and mRNA sequencing. Total RNA was 
collected using the TRIzol reagent (Life Technologies) following the manufacturer’s 
instructions. RNA quality was verified on an Agilent 2100 Bioanalyzer (Agilent) 
and quantity was measured on a Qubit instrument (Life Technologies).

Libraries were prepared with 4 µg of total RNA using TruSeq RNA kit 
(Illumina) according to the manufacturer’s instructions. Libraries were sequenced 
on an Illumina HiSeq2000 machine as 100-bp single-end reads. The reads 

were aligned to the hg19 human genome using TopHat (v2.1.1)53 with standard 
configurations (no more than two mismatches allowed). The numbers of reads for 
the genes are calculated using the GENCODE v24 release. Only uniquely mapped 
reads were included.

Deep analysis of single nucleotide variants and cell line authentication. The 
RNA sequencing (RNA-seq) results of all HeLa cell lines as well as one Hek293 
cell line were analyzed for small sequence variants (i.e., single nucleotide variants 
(SNV) and small insertions/deletions (indels)). Raw RNA-seq reads for the 
HEK293 cell line were publicly available and obtained through the NCBI sequence 
read archive54 (accession SRX1300887, downloaded 17 January 2017 from  
https://www.ncbi.nlm.nih.gov/sra?term=SRP064410). All RNA-seq reads were 
manually checked with the FastQC55 tool (version 0.11.4). Then reads were 
quality trimmed with Trimmomatic56 (version 0.35) and a second quality check 
was performed with FastQC. Alignment to the GRCh38 reference genome was 
performed with STAR57 (version 2.4.2a).

Single nucleotide variants were called individually for every cell line, according 
to a best practices recommendation within the GATK framework58 (https://www.
broadinstitute.org/gatk/guide/article?id=3891). The pipeline marks duplicate 
reads in the alignment file with the Picard Tools (http://broadinstitute.github.
io/picard, version 2.0.1) MarkDuplicates function. Then the following GATK58 
(version 3.7) tools are sequentially employed: SplitNCigarReads, HaplotypeCaller, 
VariantFiltration. Variants were filtered according to the following criteria: Fisher 
Strand value above 30, Quality by Depth value greater than 2 and clusters no more 
than two variants within a 35-base-pair window.

Pairwise cell line concordance was determined as previously described24. 
Briefly, for every cell line pair, concordance marked the fraction of identical variant 
calls among all variant calls between the cell lines.

SNV mapping to the HeLa cell line dataset in the COSMIC database. Previous 
research has demonstrated the possibility of authenticating cell lines by means 
of comparing SNV profiles derived from RNA-seq to publicly available SNV 
profiles derived from genomic sequencing. To authenticate the cell lines used in 
this study as HeLa, their SNV profiles were compared with the SNV profiles of 
the COSMIC cell lines project25 as previously described24. Mutation data were 
obtained using the GRCh38 assembly with release v85. An overview of the cell 
line characterization can be found at https://cancer.sanger.ac.uk/cell_lines/sample/
overview?id=1298134.

Pairwise cell line concordance and concordance with COSMIC profiles was 
determined using in-house R scripts. Briefly, for every cell line variant, calls from 
COSMIC were subset to the genomic loci where variants were found by RNA 
sequencing. The average coverage of the COSMIC loci was 34.3%, which is in 
accordance with the expected coverage of genomic loci that can be achieved by 
RNA-seq variant calling59. Concordance marks the proportion of the overlapping 
variant calls that are consistent (i.e., the two alleles are identical).

Transfection of Let7d mimics to HeLa cells. Lipofectamine RNAiMAX 
Transfection Reagent (Thermo Fisher Scientific) was used to deliver the microRNA 
human Let7d mimics (cat. no. 4464066) as Let7 treatment, Negative Control 
microRNA (4464058), and Positive Control for transfection efficiency (Kif11; 
4390824) provided by Life Technologies Europe (Zug, Switzerland) to all the HeLa 
strains expect for one GFP-positive stain (HeLa 6). The ratio of RNAiMax and 
DMEM was kept at 1:500 (v/v). The initial seeding concentration was 40 cells/μL  
for all strains and the working concentration of miRNAs was 20 nM. The 6-well 
plate containing 2 mL final transfection medium per well and the 96-well 
plate containing 100 μL DMEM medium were used for perturbed proteomic 
measurements and S.Tm infection, respectively, 72 h after the transfection.

Salmonella Typhimurium (S.Tm) infection. After transfection, HeLa cells in  
96-well plate format were cultured for 72 h before S.Tm infection using the pipeline 
described before40. Cells were infected for 20 min with S.Tm, incubated for 3 h 
and 40 min in medium with 400 μg/ml gentamicin, fixed by 4% PFA containing 
4% sucrose, and stained with DAPI and DY-547–phalloidin. All liquid-handling 
steps, including the infection, fixation and staining, were performed manually. 
The high-throughput image acquisition was performed using a Molecular Devices 
ImageXpress microscope (10× S Fluor). During the internalization of bacteria into 
the host cells, they first form an early SCV (Salmonella containing vacuole), which 
then matures and acidifies over the course of infection, and the acidification serves 
as the main trigger to induce the expression of SPI-2 (Salmonella pathogenicity 
island 2) with its T2 system (type-three secretion system 2). Since the Salmonella 
strain used harbors a gfp reporter under the control of a T2 promoter, the 
Salmonella of the late stage SCV will be green fluorescent (i.e., T2-GFP+) and can 
be detected in the microscope. A CellProfiler-based image analysis pipeline was 
applied to determine the infection rate of S.Tm for each cell line of the control and 
Let7d mimic transfection conditions.

We tested whether Let7 mimics would have a phenotype regarding the docking 
step of Salmonella infection (Supplementary Note 6). To do so, cells were infected 
with S.TmΔ4 (a noninvasive S.Tm mutant that lacks the four main SPI-1 effectors 
SopE, SopE2, SipA and SopB) at an MOI of 125 for 6 min at 37 °C and 5% CO2. 
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This noninvasive mutant strain allowed us to measure the binding capacity of S.
Tm. Afterwards, the cells were washed three times with 60 μL DMEM/10% FCS 
and fixed with 60 μL 4% PFA. To visualize bound S.TmΔT, we performed 
immunofluorescence staining using a primary anti‐LPS antibody (BD, 226601) 
and a FITC‐bound secondary antibody (Jackson ImmunoResearch, 111-095-144). 
Afterwards, cells were permeabilized and then nuclei were stained with DAPI 
(Sigma-Aldrich, D9542).

Pulsed SILAC experiment. For the pSILAC experiment, SILAC DMEM High 
Glucose medium (GE Healthcare) lacking l-arginine and l-lysine was first 
supplemented with light or heavy isotopically labeled lysine and arginine, 10% 
dialyzed FBS (PAN Biotech), and 1% penicillin/streptomycin mix (Gibco). 
Specifically, 146 mg/L of heavy l-lysine (13C6

15N2) and 84 mg/L of arginine 
(13C6

15N4) (Chemie Brunschwig AG) and the same amount of corresponding 
unlabeled amino acids (Sigma-Aldrich)21 were supplemented respectively to 
configure heavy and light SILAC medium. Additionally, 400 mg/L l-proline 
(Sigma-Aldrich) was also added to SILAC medium to prevent potential arginine-
to-proline conversion. HeLa variants were first cultured on 15-cm cell culture 
dishes in pre-prepared light SILAC medium and stabilized in culture for 3–4 d. 
Upon release of cells by 0.25% trypsin/EDTA, cells were counted using a Neubauer 
hemocytometer. Subsequently, six 10-cm dishes were prepared for each cell 
variant with a seeding density of 1.5 × 106 cells per plate, corresponding to three 
time points with two replicates each. The cell culture plates were incubated for 
14 h, at 5% CO2 and 37 °C, overnight. Cells were then washed three times with 
PBS at 37 °C. The medium was then replaced by heavy SILAC (K8R10) medium. 
Cells were harvested and counted in two biological replicates at four different 
time points (0 h, 1 h, 4.5 h and 11 h). Two dishes of whole-process replicate were 
prepared at each time. The cell pellets were snap frozen in liquid nitrogen after 
removal of the PBS and stored at –80 °C.

Protein extraction and in-solution digestion. HeLa cells and cell pellets harvested 
from shipped tubes, centrally cultured conditions, Let7d treated and control 
experiments, and the pSILAC experiment were suspended in 10 M urea lysis buffer 
and complete protease inhibitor cocktail (Roche) and ultrasonically lysed at 4 °C 
for 2 min with two rounds using a VialTweeter device (Hielscher-Ultrasound 
Technology). The mixtures were centrifuged at 18,000g for 1 h to remove insoluble 
material. Protein in the supernatant was quantified by Bio-Rad protein assay. 
Protein samples were reduced with 10 mM tris-(2-carboxyethyl)-phosphine 
(TCEP) for 1 h at 37 °C and 20 mM iodoacetamide in the dark for 45 min at room 
temperature. All samples were further diluted 1:6 (v/v) with 100 mM NH4HCO3 
and were digested with sequencing-grade porcine trypsin (Promega) at a protease/
protein ratio of 1:25 overnight at 37 °C. Digestion was carried out in a 96-well plate 
format to increase experimental reproducibility. Amounts of purified peptides were 
determined using a Nanodrop ND-1000 (Thermo Scientific) and 1 μg of peptides 
were injected in each LC-MS run.

Shotgun proteomics on TripleTOF mass spectrometer. The peptides digested 
from cell lysate derived from the first time point samples in pSILAC experiment 
were measured on an SCIEX 5600 TripleTOF mass spectrometer operated in DDA 
mode16,60,61 by SCIEX Analyst v1.7. The mass spectrometer was interfaced with 
an Eksigent NanoLC Ultra 1Dplus HPLC system. Peptides were directly injected 
onto a 20-cm PicoFrit emitter (New Objective, self-packed to 20 cm with Magic 
C18 AQ 3-μm 200-Å material) and then separated using a 90-min gradient from 
5–35% (buffer A: 0.1% (v/v) formic acid, 2% (v/v) acetonitrile; buffer B: 0.1% (v/v) 
formic acid, 100% (v/v) acetonitrile) at a flow rate of 300 nL/min. MS1 spectra were 
collected in the 360–1,460 m/z range with 250 ms per scan. The 20 most intense 
precursors with charge state 2–5 that exceeded 250 counts per second were selected 
for fragmentation, and MS2 spectra were collected in the 50–2,000 m/z range for 
100 ms. The precursor ions were dynamically excluded from reselection for 20 s.

SWATH mass spectrometry. Normal proteome, Let7d-treated cells and controls, 
and pSILAC samples were all measured by SWATH-MS. The same LC-MS/
MS systems used for shotgun measurements on SCIEX 5600 TripleTOF was 
also used for SWATH analysis16,60,61. For normal proteome samples and pSILAC 
samples, a 90-min LC gradient was used, whereas a 60-min gradient was used for 
the two biological replicates of the Let7d experiment. Specifically, in the present 
SWATH-MS mode, the SCIEX 5600+ TripleTOF instrument was specifically 
tuned to optimize the quadrupole settings for the selection of 64 variable-width 
precursor ion selection windows. The 64-variable window schema was optimized 
based on a normal human cell lysate sample, covering the precursor mass range 
400–1,200 m/z. The effective isolation windows were 399.5–408.2, 407.2–415.8, 
414.8–422.7, 421.7–429.7, 428.7–437.3, 436.3–444.8, 443.8–451.7, 450.7–458.7, 
457.7–466.7, 465.7–473.4, 472.4–478.3, 477.3–485.4, 484.4–491.2, 490.2–497.7, 
496.7–504.3, 503.3–511.2, 510.2–518.2, 517.2–525.3, 524.3–533.3, 532.3–540.3, 
539.3–546.8, 545.8–554.5, 553.5–561.8, 560.8–568.3, 567.3–575.7, 574.7–582.3, 
581.3–588.8, 587.8–595.8, 594.8–601.8, 600.8–608.9, 607.9–616.9, 615.9–624.8, 
623.8–632.2, 631.2–640.8, 639.8–647.9, 646.9–654.8, 653.8–661.5, 660.5–670.3, 
669.3–678.8, 677.8–687.8, 686.8–696.9, 695.9–706.9, 705.9–715.9, 714.9–726.2, 
725.2–737.4, 736.4–746.6, 745.6–757.5, 756.5–767.9, 766.9–779.5, 778.5–792.9, 

791.9–807, 806–820, 819–834.2, 833.2–849.4, 848.4–866, 865–884.4, 883.4–899.9, 
898.9–919, 918–942.1, 941.1–971.6, 970.6–1,006, 1,005–1,053, 1,052–1,110.6, 
1,109.6–1,200.5 (containing 1 m/z for the window overlap). SWATH MS2 spectra 
were collected from 50 to 2,000 m/z. The collision energy was optimized for each 
window according to the calculation for a charge 2+ ion centered on the window 
with a spread of 15 eV. An accumulation time (dwell time) of 50 ms was used for 
all fragment-ion scans in high-sensitivity mode, and for each SWATH-MS cycle 
a survey scan in high-resolution mode was also acquired for 250 ms, resulting in 
a duty cycle of ~3.45 s. A 100-fmol β-galactosidase standard digest (SCIEX) was 
injected between each pair of runs to monitor instrument performance and tune 
the mass accuracy of MS1 and MS2 signals in a real-time manner throughout the 
sample acquisition.

SWATH-MS data extraction of protein expression data. With the exception 
of the pSILAC dataset, all SWATH-MS datasets were analyzed and identified 
by OpenSWATH software19 searching against a previously established SWATH 
assay library that contains mass spectrometric assays for 10,000 human proteins18. 
Profile-mode .wiff files from shotgun data acquisition were centroided and 
converted to mzML format using the AB Sciex Data Converter v.1.3 and converted 
to mzXML format using MSConvert v.3.04.238 before OpenSWATH analysis. 
OpenSWATH from OpenMS (Git OpenMS/develop@ 4bca6fc) was first used to 
the peak groups from all individual SWATH maps with statistical control (see 
below) and then aligned between SWATH maps using a novel TRIC (transfer of 
identification confidence)20. For large-scale targeted proteomics, protein FDR 
control needs specific attention and should be equally important as in shotgun 
proteomics17,18. Therefore, to pursue a strict statistical quality control of peptide- 
and protein-level identification, we used the newly developed PyProphet extended 
version17. This version combines the set of scores from OpenSWATH for each 
peptide query to a single discriminant score using semisupervised learning to 
best separate decoys from high-scoring targets. Particularly for all the label-free 
samples, PyProphet was run to estimate q-values17 for all runs (run-specific 
context) and in a global fashion (global context). A strategy applying two steps of 
filtering was used. For proteins accepted by PyProphet at FDR <1% in the global 
context, the sets of peak groups detected at 1% FDR in the run-specific context 
were included for quantification. This criteria yielded 4,335 proteins. For proteins 
accepted with an FDR <5% in the global context, only those peak groups detected 
at 1% FDR and also identified in >25% of the total MS runs were accepted. The 
requantification feature in OpenSWATH was enabled for the filtered protein list. In 
total 50,225 peak groups were identified, corresponding to 46,951 unique peptides 
(43,521 tryptic peptides) assigned to 5,030 unique SwissProt proteins.

To quantify the protein abundance levels across samples, we summed up the 
most abundant peptides for each protein (i.e., top three peptide groups based on 
intensity were used for those proteins identified with more than three proteotypic 
peptide signals whereas all the peptides were summarized for other proteins). This 
allows a reliable estimate of global protein level changes60,62. The protein expression 
data matrix was log10 transformed and quantile normalized for statistical and 
bioinformatics analysis.

SWATH-MS data extraction of pSILAC data. The centroid-converted mzML 
files from shotgun analysis of the first time point samples in pSILAC experiment 
were searched against different engines including using the iPortal platform63 to 
establish the sample-specific library for pSILAC data. Nine published HeLa runs 
included in the Pan-Human Library18 were also used to generate this library. iPortal 
used the iProphet schema64 to integrate the search results from X!Tandem, Omessa, 
Myrimatch and Comet at a peptide-level FDR of 1% by target–decoy strategy. The 
Xinteract option was “-dDECOY_ -OAPdlIw”. Specially, peptide tolerances at MS 
and MS/MS level were set to be 50 ppm and 0.1 Da, respectively. Up to two missed 
trypsin cleavages were allowed. Oxidation at methionine was set as the variable 
modification whereas carbamidomethylation at cysteine was set as the fixed 
modification. The iPortal identification result finally contained 3,973 proteins and 
42,236 peptides at 1% protein FDR cutoff.

The light version of the consensus spectral library was generated using 
SpectraST65. Then the spectrast2tsv.py function in OpenSWATH19 was used to 
generate the light and heavy MS assays as the final library (including the decoy 
transitions), which was constructed from top six most intense y-ion fragments with 
Q3 range from 400 to 1,200 m/z excluding those falling in the precursor SWATH 
window. This final library was used for targeted data analysis of SWATH maps. 
OpenSWATH analysis was run with target FDR of 1% and extension FDR of 5%19 
(quality cutoff to still consider a feature for alignment) and aligned by TRIC20, 
whereas requantified data points were discarded for protein turnover calculation.

Determining protein turnover rates. In pSILAC, the quantification of heavy 
and light signals of proteins at different time points after pulse labeling permits 
the quantification of protein-specific turnover rates. The protein turnover rate 
was determined similarly to that in our previous study23. The rates of loss of the 
light isotope (kloss) were directly calculated from the output data matrix generated 
by OpenSWATH, following the methods previously described by Pratt et al.66: 
specifically, we modeled the relative isotope abundance (RIA), defined as the signal 
intensity in the light channel divided by the sum of light and heavy intensities, onto 
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an exponential decay model assuming a null heavy intensity (RIA = 1) at time 0; 
i.e., = −tRIA( ) e k tloss .

We used nonlinear least-squares estimation23 to perform the fit and to further 
perform a weighted average of the kloss value of each peptide in the protein, which 
ensured giving more weight to peptides carrying robust information23.

Boisvert et al.67 reported a significant recycling of the unlabeled amino acid 
from the light protein degradation in HeLa cells; they had to use a 0.8 offset to 
calculate the protein degradation rate (kdeg) from kloss. Therefore, we simply used a 
direct proxy of turnover rate—i.e., log2(kloss)—whenever applicable, to perform the 
cross-cell and multi-omics comparisons and illustrations31. This proxy parameter 
essentially avoids the data distortion due to the possible different light amino acid 
recycling speed and inaccuracy of cell doubling time determination. Only those 
kloss values assayed in every cell sample were accepted for cross-comparison.

Estimation of absolute protein copies. HeLa cells are a heavily investigated cell 
line for which many research resources are available. In a study published by Zeiler 
et al.68, the absolute protein copy numbers in a HeLa cell line of unknown identity 
were determined using Protein Epitope Signature Tag (PrEST) and SILAC-based 
absolute quantification68. For all anchor PrEST proteins reported by Zeiler et al.68, 
we covered the full dynamic range in this study. This enabled us to correlate 23 
HeLa anchor proteins with their respective copy numbers reported by Zeiler et al.68 
to our summed top three peptide SWATH-MS intensity estimates for each protein. 
The high Pearson correlation coefficient (average R = 0.872) allowed us to directly 
utilize the correlation equation in each cell line to infer the protein copy numbers 
for all the protein identified by OpenSWATH.

Other bioinformatic analyses. To calculate the Kyoto/CCL2 ratios at all levels, 
HeLa 11 was excluded because of its deviating genome dosage type (Fig. 1b), so 
there were six cell variants in each group. All statistical tests used are two-sided. In 
the box plots, the whiskers represent the range from minimal to maximal values. 
All error bars in Fig. 5 and the Supplementary Figures denote s.d.

Cellular compartment annotation was done by mapping protein identifies 
to a recently established subcellular map of the human proteome35. The David 
bioinformatics resource v6.8 (https://david.ncifcrf.gov) was used to extract the 
protein annotations for other organelles of interest that are not covered by the 
subcellular atlas35. Protein complex information was extracted from the CORUM 
database32 and mapped through SwissProt ID. To compare HeLa cells at each 
omics layer, we performed simple quantile normalization for the CNV, mRNA, 
protein and kloss data, respectively, and visualized their variation through principal 
component analysis (PCA) (Fig. 2d–g) and unsupervised hierarchical clustering 
analysis (HCA, Fig. 2h–k). To combine the RNA-seq datasets from this study 
and the GDSC cell lines available26, we used the log10(RPKM) data and centered 
the HeLa and GDSC cells (for those tissue types represented by at least five 
GDSC cancer cell lines) individually, then combined them (by bind) for quantile 
normalization before all t-SNE and PCA analyses. The t-SNE plots are done using 
the R package Rtsne version 0.13. As parameters, we used a perplexity of 20 and 
500 iterations. PCA was done using the R package FactoMineR version 1.39; we 
chose 5 as the number of principal components. For differential gene expression 
analysis between HeLa 11 and other cells, we fitted a linear model using the R 
package limma version 3.30.13 and then corrected by false discovery rate with 
adjusted P-value at 0.05. The gene set enrichment analysis was performed using 
the STRING database69 (https://string-db.org). For the circle plots, we used R 
package RCircos version 1.2.0 and initialized the cytoband with UCSC.HG19.
Human.CytoBandIdeogram. For HCA, data are centered in both gene and sample 
dimensions before clustering and heat map visualization. Heat maps are made 
using R package pheatmap version 1.0.8. For the website, we used the R packages 
shiny version 1.0.5, shinydashboard version 0.6.1 and shinyBS. The colored 
scatterplots from blue-to-yellow (Figs. 3b and 4d,e) were visualized by “heatscatter” 
function in R “LSD” package using a two-dimensional Kernel Density Estimation.

To generate the box plots in the figures and supplementary figures, we used 
the boxplot function (R package “graphics”) with default parameters. This means 
the central rectangle in the plot spans the first quartile to the third quartile (the 
interquartile range, or IQR). The bold line within the box represents the median 
of each dataset. The single dot within the box, if present, denotes the mean value 
of the dataset. The whiskers are defined as min(max(x), Q_3 + 1.5 × IQR) for the 
upper whisker and max(min(x), Q_1 – 1.5 × IQR) for the lower whisker. Here, Q_1 
and Q_3 represent the 25th and 75th percentiles, respectively, and IQR = Q_3 – 
Q_1. Outliers were defined based on whisker positions.

For violin plot in Fig. 4f, we used vioplot (version 0.2) with default settings. 
This is the standard violin plot, which uses a combination of the box plot and 
kernel density as the violin curve to show the distribution of the data. The thick 
black bar in the center represents the interquartile range, the thin black line 
extended from it represents the 95% confidence intervals, and the white dot is the 
median.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data are available on GEO (GSE111485). The mass spectrometry 
proteomics data have been deposited to the ProteomeXchange Consortium via the 
PRIDE70 partner repository with the dataset identifier PXD009273. The full dataset 
is available at https://HelaProt.shinyapps.io/Crosslab/.
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Cell line source(s) HeLa cells at Ruedi Aebersold lab were purchased from ATCC. Furthermore, the following labs provided HeLa cells: Hui Zhang 
(Johns Hopkins University), Odile Filhol-Cochet (CEA Grenoble), Meliana Riwanto (University Hospital Zurich), Urs Greber 
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Commonly misidentified lines
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