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WITH LINEAR FINITE ELEMENTS
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Abstract. Preserving positivity precludes that linear operators onto contin-
uous piecewise affine functions provide near best approximations of gradients.

Linear interpolation thus does not capture the approximation properties of

positive continuous piecewise affine functions. To remedy, we assign nodal val-
ues in a nonlinear fashion such that their global best error is equivalent to a

suitable sum of local best errors with positive affine functions. As one of the

applications of this equivalence, we consider the linear finite element solution
to the elliptic obstacle problem and derive that its error is bounded in terms

of these local best errors.

1. Introduction

Finite element functions are very useful in the numerical solution of partial dif-
ferential equations. In the context of linear elliptic equations of second order, a
basic result about their approximation properties is

(1) ∀u ∈ H1
0 (Ω) inf

s∈S0

|u− s|1;Ω ≈

( ∑
K∈M

inf
p∈P1(K)

|u− p|21;K

) 1
2

,

where M is a simplicial face-to-face mesh of a domain Ω ⊆ Rd, d ≥ 2, and S0

denotes the space of piecewise affine functions that are continuous and vanish on
∂Ω. Employing the H1-seminorm as a measure, this equivalence relates the global
best error in S0 to the local best errors with affine functions over elements. Note
that the left-hand side involves continuity across interelement faces and a boundary
condition, while the right-hand side does not. This simpler nature of the left-hand
side prepares the ground for at least the following applications:

• derivation of a priori error bounds in terms of broken extra regularity,
• adaptive tree approximation of Binev and DeVore [1],
• parallel approximate computation of the global best error in S0.

The proof of the nontrival part ‘.’ of (1) relies on the construction of a suitable
element v in S0. Assuming that this construction is represented by the operator
Π : H1

0 (Ω) → S0, we readily see that the following global invariance and stability
conditions are necessary:

∀s ∈ S0 Πs = s and ∀u ∈ H1
0 (Ω) |Πu|1;Ω . |u|1;Ω .

The linear interpolation operator of Scott and Zhang [9] verifies these conditions
and even local counterparts thereof. The latter allows to prove ‘.’; see Veeser [10].

The elliptic obstacle problem motivates to establish a counterpart of the best
error decomposition (1) for the following setting. In order to simplify the discussion,
let us neglect the boundary condition for the rest of this introduction and replace

• H1
0 (Ω) by H1(Ω)+ := {v ∈ H1(Ω) | v ≥ 0},

• S0 by the space S+ of positive continuous piecewise affine functions and
• P1(K) by P+

1 (K) := {p ∈ P1(K) | p ≥ 0}.
1
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Moreover, since | · |1;K is insensitive to additive constants and so

inf
p∈P1(K)

|u− p|1;K = inf
p∈P+

1 (K)
|u− p|1;K ,

we augment the H1-seminorm with an L2-contribution that scales in the same way:

(2) ‖v‖1;ω :=
(
|v|21;ω + diam(ω)−2 |v|20;ω

) 1
2

, v ∈ H1(ω), ω ⊆ Ω.

In other words: we are interested in the best error decomposition

(3) ∀u ∈ H1(Ω)+ inf
s∈S+

‖u− s‖1;Ω ≈

( ∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K

) 1
2

,

where target function, global and local approximants are positive.
In order to prove it, we may mimic the proof of the best error decomposition (1)

without constraints. Then the construction of a suitable v = Π+u element in S+

has to satisfy

(4) ∀s ∈ S+ Π+s = s and ∀u ∈ H1(Ω)+
∥∥Π+u

∥∥
1;Ω
. ‖u‖1;Ω .

If Π+ is a linear operator from H1(Ω) onto the space S of continuous piecewise
affine functions, then these conditions strengthen to

(5) Π+
(
H1(Ω)+

)
⊂ S+, ∀s ∈ S Π+s = s, ∀u ∈ H1(Ω)

∥∥Π+u
∥∥

1;Ω
. ‖u‖1;Ω .

Exploiting the results of Nochetto and Wahlbin [8], we derive that the linearity and
the first two conditions force Π to be the Lagrange interpolation operator. Since
Lagrange interpolation is not H1-stable for d ≥ 2, this is in contradiction with the
third condition.

Given the impossibility of an appropriate linear operator, we resort to a nonlinear
projection operator in the vein of the Scott-Zhang construction. It satisfies (4) and
local counterparts thereof. Using this nonlinear projection in the approach of [10],
we then establish the best error decomposition (3), where positivity is preserved.

Turning back to the elliptic obstacle problem, let us consider the case of a lower
obstacle χ, continuous and piecewise affine for the sake of simplicity. The preceding
results then yield the following error bound for the finite element approximation:

(6) |u− U |1;Ω .

[ ∑
K∈M

e(K)

(
e(K) +

∑
z∈L1∩ωK

‖µ‖−1;ωz

)] 1
2

,

where e(K) is the best ‖ · ‖1;K-error with affine functions that are larger than the
obstacle, L1 ∩ ωK denotes the vertices of the patch ωK around K, ωz is the star in
M around z, and µ is the Lagrange multiplier associated with the obstacle. Notice
that this bound

• consists of local terms and is free of extra regularity,
• vanishes whenever the error is zero,
• is essentially independent of load perturbations that do not affect the error,
• implies first order convergence under suitable smoothness assumptions.

The rest of this article is organized as follows. Section 2 fixes the notation for
piecewise affine functions and characterizes their positivity. Section 3 first shows
that there is no linear operator satisfying (5) and then establishes the constrained
best error decomposition (3). The concluding Section 4 discusses the application
to the elliptic obstacle problem, establishing in particular the error bound (6).
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2. Continuous piecewise affine functions and positivity

We introduce our notations around continuous piecewise affine functions over
simplicial meshes and discuss their positivity.

Let d ∈ N denote the dimension. Given n ∈ {0, . . . , d}, an n-simplex C ⊆ Rd is
the convex hull of n+ 1 points z1, . . . , zn+1 ∈ Rd spanning an n-dimensional affine
space. The uniquely determined points z1, . . . , zn+1 are the vertices of C and form
the set L1(C). If n ≥ 1, we let FC denote the set of the (n− 1)-dimensional faces
of C, which are the (n − 1)-simplices arising by picking n distinct vertices from
L1(C). We write hC := diam(C) for the diameter of C, ρC for the diameter of its
largest inscribed n-dimensional ball, and γC for its shape coefficient γC := hC/ρC .

P1(C) indicates the space of affine functions on C. An affine function p ∈ P1(C) is
determined by its point values at the vertices L1(C). For each vertex z ∈ L1(C), its
barycentric coordinate λCz is the unique affine function on C such that λCz (y) = δzy
for all y ∈ L1(C). It is well known, see [5], that

{λCz }z∈L1(C) forms a basis of P1(C)

with the representation formula

(7) ∀p ∈ P1(C) p =
∑

z∈L1(C)

p(z)λCz

and

(8)
∑

z∈L1(C)

λCz = 1 where 0 ≤ λCz ≤ 1 in C.

We thus have the following simple description of

P+
1 (C) := {p ∈ P1(C) | p ≥ 0}.

Lemma 1 (Positivity and vertices). Any affine function p ∈ P1(C) is positive if
and only if it is positive at the vertices of C.

Let d ≥ 2 and Ω ⊂ Rd be a nonempty, open, connected, bounded and polyhedral
set with Lipschitz boundary ∂Ω. Furthermore, let M be a simplicial, face-to-face
mesh of Ω. More precisely, M is a finite collection of d-simplices in Rd such that

• Ω =
⋃
K∈MK,

• the intersection of two arbitrary elements K1,K2 ∈ M is either empty or
an n-simplex with n ∈ {0 . . . , d},
• L1(K1 ∩K2) = L1(K1)∩L1(K2) whenever the intersection of K1,K2 ∈M

is nonempty.

We let F :=
⋃
K∈M FK denote the (d− 1)-dimensional faces ofM and distinguish

between boundary faces F∂Ω := {F ∈ F | F ⊆ ∂Ω} and interior faces FΩ :=
F \ F∂Ω. The shape coefficient of M is

γM := max
K∈M

γK .

The space of continuous functions that are piecewise affine over M is

S =
{
s ∈ C0(Ω) | ∀K ∈M s|K ∈ P1(K)

}
and a subspace of the Sobolev space H1(Ω). The global counterpart of the local
bases λKz , z ∈ L1(K), is given as follows. We let L1 :=

⋃
K∈M L1(K) denote the

vertices of M and, for every vertex z ∈ L1(K), we define a function λz by

λz |K :=

{
λKz , if K 3 z,
0, otherwise,

K ∈M.
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Again, it is well known that

{λz}z∈L1 forms a basis of S

with the representation formula

(9) ∀s ∈ S s =
∑
z∈L1

s(z)λz.

The support of the basis function λz is the star ωz :=
⋃
K′3zK

′ around z ∈ L1.
Since ∂Ω is Lipschitz, stars are face-connected in the sense of [10]: given a vertex
z ∈ L1, an element K ∈M, and a face F ∈ F with z ∈ K ∩ F , there exists a path
(Ki)

n
i=1 ⊂M such that

K1 = K and Kn ⊃ F ,(10a)

each Ki contains z,(10b)

each Ki ∩Ki+1 ∈ FΩ is an interior face.(10c)

All supports of the basis functions associated with the element K ∈ M are con-
tained in the patch ωK :=

⋃
K′∩K 6=∅K

′.
If V is some linear space of real-valued functions, then

V + := {v ∈ V | v ≥ 0}
denotes its convex cone of positive functions. If V = S, Lemma 1 implies

(11) S+ =
{
s ∈ S | ∀z ∈ L1 s(z) ≥ 0

}
.

In other words: S+ is the conical hull of the functions {λz}z∈L1
.

If not specified differently, C∗ stands for a function which is not necessarily the
same at each occurrence and possibly depending on ∗ ⊆ {d, γM}, increasing in γM
if present. For instance, we have, for K,K ′ ∈M,

(12) K ∩K ′ 6= ∅ =⇒ |K| ≤ CγM |K ′| and hK ≤ CγMρK′

and, for K ∈M, z ∈ L1(K) and the norm from (2),

(13) cd |K|
1
2 h−1

K ≤ ‖λz‖1;K ≤ Cd |K|
1
2 ρ−1

K .

If there is no danger of confusion, A ≤ C∗B may be abbreviated as A . B.

3. Positivity preserving gradient approximation

We are interested in the following conical approximation problem: given a func-
tion u ∈ H1(Ω)+, find a function from S+ that is close-by with respect to the norm
‖·‖Ω from (2). An approximation operator Π+ : H1(Ω)+ → S+ is P+

1 -quasi-optimal
whenever there exists a constant D ≥ 1 such that

∀u ∈ H1(Ω)+
∥∥u−Π+u

∥∥
1;Ω
≤ D

( ∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K

) 1
2

.

It is the goal of this section to devise an operator that satisfies this property and
is local.

3.1. Impossibility of linearity. Generally speaking, linearity is considered to be
a desirable property for approximation operators. For the above approximation
problem, it is however precluded by the following observation.

Lemma 2 (No quasi-optimal positive linear interpolation). There is no linear
operator L : H1(Ω)→ S such that

(14) ∀u ∈ H1(Ω)+ Lu ∈ S+ and ‖u− Lu‖1;Ω ≤ C inf
s∈S+

‖u− s‖1;K

with some constant C ≥ 1.
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Proof. Let us assume that L : H1(Ω) → S is linear and satisfies (14) and look
for a contradiction. We first show that the quasi-optimality in (14) requires the
invariance

(15) ∀s ∈ S Ls = s.

To this end, we note that, since S+ ⊆ H1(Ω)+, it readily gives the partial invariance

(16) ∀s ∈ S+ Ls = s.

In order to generalize to the full one, we introduce

I±s :=
∑
z∈L1

max{0,±s(z)}λz, s ∈ S,

such that s = I+s − I−s. Combining this identity with the linearity of L and the
partial invariance (16), we infer (15): for all s ∈ S,

Ls = L(I+s) + L(−I−s) = I+s− I−s = s.

Next, we prove that L is defined on all C0(Ω) and satisfies there

(17) sup
Ω
|Lu| ≤ sup

Ω
|u| and u ≥ 0 =⇒ Lu ≥ 0.

We start by showing that L is defined on C0(Ω) and satisfies there the stability
estimate. As H1(Ω) ∩ C0(Ω) is a dense subspace of C0(Ω), c.f. [7, §7.2] and L
linear, it suffices to verify the stability bound for u ∈ H1(Ω) ∩ C0(Ω). Writing
M := supΩ |u| ∈ [0,∞[, we have u −M ≤ 0. Hence, by the first part of (14) and
(16),

Lu = LM + L(u−M) ≤M.

Similarly, −u −M ≤ 0 implies Lu ≥ −M and so the stability bound on H1(Ω)
in (17) is verified. In order to show the positivity, let u ∈ C0(Ω) be positive and
choose (uk)k ⊆ H1(Ω) ∩ C0(Ω) such that supΩ |u − uk| → 0 as k → ∞. From the
first parts of (14) and (17), we then obtain

Lu = L(u− uk) + Luk ≥ − sup
Ω
|u− uk|+ inf

Ω
uk

≥ − sup
Ω
|u− uk|+ inf

Ω
(uk − u) ≥ −2 sup

Ω
|u− uk| → 0 as k →∞.

In view of (15) and (17), the operator L : C0(Ω)→ S is bounded, linear, positive
and reproduces all continuous piecewise affine functions. Consequently, Corollary 2
of Nochetto and Wahlbin [8] reveals that L is the Lagrange interpolation operator
relying on the point evaluations:

(18) ∀z ∈ L1 Lu(z) = u(z).

On the other hand, the quasi-optimality of (14) entails also that L is H1-stable
with

(19) ‖Lu‖1;Ω ≤
√

2(1 + C) ‖u‖1;Ω .

To see this, we proceed similarly as for the full invariance. We first note that the
quasi-optimality of (14) readily implies

∀u ∈ H1(Ω)+ ‖Lu‖1;Ω ≤ ‖u‖1;Ω + ‖Lu− u‖1;Ω ≤ (1 + C) ‖u‖1;Ω

because of 0 ∈ S+. Thus, given a general u ∈ H1(Ω), we may write u = u+ − u−,
where u± = max{±u, 0} ≥ 0 are the positive and negative parts u and obtain

‖Lu‖1;Ω ≤
∥∥Lu+

∥∥
1;Ω

+
∥∥Lu−∥∥

1;Ω
≤ (1 + C)

(∥∥u+
∥∥

1;Ω
+
∥∥u−∥∥

1;Ω

)
=
√

2(1 + C) ‖u‖1;Ω .
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In the last step, we have used ∇u = ∇u+ −∇u−, where the supports of ∇u+ and
∇u− are disjoint; see [7, Lemma 7.6].

Since d ≥ 2, the H1-stability (19) is in contradiction with the point evaluations
in (18). In fact, given any vertex z ∈ L1, the functions

uk := min{k, u}, k ∈ N, with u(x) := ln

∣∣∣∣ln( |x− z|
2 diam(Ω)

)∣∣∣∣ , x ∈ Ω,

satisfy, on the one hand, limk→∞ uk(y) = u(y) for all y ∈ Ω \ {z} and uk(z) = k
and, on the other hand, ‖uk‖1;Ω ≤ ‖u‖1;Ω < ∞, cf. Example (1.4.3) of [2]. Hence,
we have

k ‖λz‖1;Ω −
∥∥∥∑y∈L1\{z} uk(y)λy

∥∥∥
1;Ω
≤ ‖Luk‖1;Ω ≤

√
2(1 + C) ‖u‖1;Ω <∞

and obtain a contradiction for k →∞. �

Condition (14) in Lemma 2 does not specify a boundary condition. Incorporating
one reduces the contained information. Nevertheless, the conclusion of Lemma 2
persists. Let us illustrate this in the special case of vanishing boundary values.

Lemma 3 (. . . with vanishing boundary values). Assume that there exists a vertex
z ∈ L1 such that ωz ∩ ∂Ω 6= ∅. Then there is no linear operator L : H1

0 (Ω) → S0

such that

(20) ∀u ∈ H1
0 (Ω)+ Lu ∈ S+

0 and ‖u− Lu‖1;Ω ≤ C0 inf
s∈S+

0

‖u− s‖1;K

with some constant C0 ≥ 1.

Proof. Proceed as in the proof of Lemma 2 with obvious replacements of the spaces
H1(Ω), S, their cones of positive functions, and C0(Ω). The only important change
is in the use of Nochetto and Wahlbin [8]: instead of Corollary 2, apply Corollary 3
therefore and obtain

∀z ∈ L1 ωz ∩ ∂Ω 6= ∅ =⇒ Lu(z) = u(z)

in lieu of (18). �

3.2. Positive Scott-Zhang-like approximation. Scott-Zhang interpolation [9]
enjoys local stability and invariance properties as well as linearity. While the latter
was not actually used in proving the best error localization (1), the other two appear
to be crucial. In view of the preceding section, we thus drop linearity but otherwise
mimic Scott-Zhang interpolation as closely as possible.

To this end, the key devices are the following local approximation operators.
Given any face F ∈ F , define a map Q+

F : L2(F )→ P+
1 (F ) by

(21) Q+
F v ∈ P+

1 (F ) such that
∥∥v −Q+

F v
∥∥

0;F
= inf
q∈P+

1 (F )
‖v − q‖0;F ,

where |·|0;F indicates the L2(F )-norm. Since P+
1 is a nonempty, closed and convex

subset of the Hilbert space L2(F ), the projection theorem implies the following
lemma.

Lemma 4 (Face projections). For each F ∈ F , the map Q+
F is well-defined, in-

variant on P+
1 (F ), and satisfies the stability estimate

(22) ∀v1, v2 ∈ L2(F )
∥∥Q+

F v1 −Q+
F v1

∥∥
0;F
≤ ‖v1 − v2‖0;F .

The operators QF , F ∈ F can be applied to any u ∈ H1(Ω) thanks to the trace
theorem [2, (1.6.6)]. For this purpose, we pick a face Fz ∈ F for any vertex z ∈ L1

such that

(23) Fz 3 z and z ∈ ∂Ω =⇒ Fz ⊂ ∂Ω.
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These chosen Fz are intended to be fixed with respect to the meshM. The role of
the implication in (23) will be clarified in §3.4 below. Given u ∈ H1(Ω)+, we then
set

(24) Π+u :=
∑
z∈L1

(
Q+
Fz
u
)
(z)λz.

We readily see that the face projections impart their positivity and invariance,

(25) Π+u ∈ S+ and ∀s ∈ S+ Π+s = s

so that Π+ is a projection onto S+. In light of the second condition in (23), the
trace Π+u|∂Ω of the approximant depends only on the trace u|∂Ω of target functions,
with corresponding invariance.

The construction of Π resembles the one of Scott-Zhang interpolation. The next
remark shows that it may be viewed even as a generalization.

Remark 5 (Π+ and Scott-Zhang interpolation). Given F ∈ F and z ∈ L1(F ), let
ΨF,z ∈ P1(F ) be given by

∀q ∈ P1(F )

ˆ
F

qΨF,z = q(z).

Then the Scott-Zhang interpolation operator from [9] is

Πu =
∑
z∈L1

(ˆ
Fz

uΨFz,z

)
λz, u ∈ H1(Ω).

On the other hand, if we replace in (21) the closed convex cone P+
1 (F ) by the linear

space P1(F ) and call the resulting operator QF , then QF is the L2(F )-orthogonal
projection onto P1(F ) and we haveˆ

Fz

uΨFz,z =

ˆ
Fz

QFzuΨFz,z =
(
QFzu

)
(z).

In other words: Π+ arises from Scott-Zhang interpolation Π only by the change of
the admissible shape functions on faces.

3.3. P+
1 -quasi-optimality of Π+. This section analyzes the approximation error

of the projection Π+. The most local result is formulated with the help of the best
approximant on an element K ∈M, which is the output of P+

K : H1(K)+ → P+
1 (K)

given by

(26) P+
Ku ∈ P+

1 (K) such that
∥∥u− P+

Ku
∥∥

1;K
= inf
p∈P+

1 (K)
‖u− p‖1;K

with ‖·‖1;K as in (2). Similarly as for Q+
F , the projection theorem ensures that P+

K

is well-defined, invariant on P+
1 (K), and ‖·‖1;K-stable.

Theorem 6 (Nodal quasi-optimality). For any u ∈ H1(Ω)+ and every vertex
z ∈ L1(K) of an element K ∈M, we have

|Π+u(z)− P+
Ku(z)| ≤ Cd

∑
K′∈M:K′3z

hK′

|K ′| 12
inf

p∈P+
1 (K′)

‖u− p‖1;K′

Proof. Let (Ki)
n
i=1 be a minimal path from K to Fz satisfying (10) and, abbrevi-

ating the subscript Ki to i, write

(27)
∣∣Π+u(z)− P+

Ku(z)
∣∣ ≤ ∣∣Q+

Fz
u(z)− P+

n u(z)
∣∣+

n−1∑
i=1

∣∣P+
i+1u(z)− P+

i u(z)
∣∣.
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We derive suitable bounds for the absolute values on the right-hand side and start
with the first one. Using an inverse estimate in P1(F ), Lemma 4, and the trace
identity [11, Proposition 4.2], we derive

(28)

∣∣Q+
Fz
u(z)− P+

n u(z)
∣∣ ≤ Cd |F |− 1

2
∥∥Q+

Fz
u−Q+

Fz
P+
n u
∥∥

0;Fz

≤ Cd |F |−
1
2
∥∥u− P+

n u
∥∥

0;Fz
≤ Cdhn |Kn|−

1
2
∥∥u− P+

n u
∥∥

1;n
.

In order to bound the other absolute values, let i ∈ {1, . . . , n−1}, set Fi := Ki+1∩Ki

and abbreviate also the subscript Fi to i. Here we derive

(29)

∣∣P+
i+1u(z)− P+

i u(z)
∣∣ ≤ Cd |F |− 1

2
∥∥P+

i+1u− P
+
i u
∥∥

0;i

≤ Cd |F |−
1
2
( ∥∥P+

i+1u− u
∥∥

0;i
+
∥∥u− P+

i u
∥∥

0;i

)
≤ Cd

(
hi+1

|Ki+1|
1
2

∥∥u− P+
i+1u

∥∥
1;i+1

+
hi

|Ki|
1
2

∥∥u− P+
i u
∥∥

1;i
.

)
Inserting (28) and (29) into (27), we conclude the claimed bound, which is inde-
pendent of the chosen path. �

Next, we consider the error of Π+ within elements. Note that the following
results implies a local stability estimate in terms of a broken H1-norm.

Corollary 7 (Quasi-optimality within elements). For any u ∈ H1(Ω)+ and every
element K ∈M, we have∥∥u−Π+u

∥∥2

1;K
≤ Cd,γM

∑
K′∩K 6=∅

inf
p∈P+

1 (K′)
‖u− p‖21;K′ ,

where K ′ varies in M.

Proof. We start with∥∥u−Π+u
∥∥

1;K
≤
∥∥u− P+

Ku
∥∥

1;K
+
∥∥Π+u− P+

Ku
∥∥

1;K

and it remains to bound the second term suitably. Exploiting Π+u−P+
Ku ∈ P1(K),

(7), Theorem 6, (12), and (13), we infer∥∥Π+u− P+
Ku
∥∥

1;K
≤

∑
z∈L1(K)

|Π+u(z)− P+
Ku(z)| ‖λz‖1;K

.
∑

K′∩K 6=∅

inf
p∈P+

1 (K′)
‖u− p‖1;K′ .

We conclude by applying the Cauchy-Schwarz inequality on the sum and noting

�(30) #{K ′ ∈M | K ′ ∩K 6= ∅} ≤ Cd,γM .

We conclude this section with the resulting bound of the global error, which in
particular shows that Π+ is superior to any linear approximation operator in that
it provides near best approximations.

Corollary 8 (Global quasi-optimality). For any u ∈ H1(Ω)+, we have

∥∥u−Π+u
∥∥

1;Ω
≤ Cd,γM

( ∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K

) 1
2

.

Proof. We sum the local bound in Corollary 7 over all K ∈M and obtain∥∥u−Π+u
∥∥2

1;Ω
≤
∑
K∈M

∥∥u−Π+u
∥∥2

1;K
.
∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K ,

where we used also (30). �
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The operator Π+ is defined via an implicit local procedure. This procedure can
be replaced by an explicit one, preserving positivity and P+

1 -quasi-optimality.

Remark 9 (Alternative construction). Another possibility to modify the Scott-
Zhang construction to achieve positivity of the approximation is

Π̃+u :=
∑
z∈L1

max

{
0,

ˆ
Fz

uΨFz,z

}
λz,

where we use the same notation as in Remark 5. Then Theorem 6, Corollaries 7

and 8 hold also with Π̃+ in place of Π+. This follows just by replacing (28) with∣∣max
{

0, QFz
u(z)

}
− P+

n u(z)
∣∣ =

∣∣max
{

0, QFz
u(z)

}
−max

{
0, P+

n u(z)
}∣∣

≤
∣∣QFz

u(z)− P+
n u(z)

∣∣ ≤ Cd |F |− 1
2
∥∥QFz

u−QFz
P+
n u
∥∥

0;Fz

≤ Cd |F |−
1
2
∥∥u− P+

n u
∥∥

0;Fz
≤ Cdhn |Kn|−

1
2
∥∥u− P+

n u
∥∥

1;n
.

Therefore, in what follows, Π+ can be always replaced by Π̃+.

3.4. Best error decompositions. Resorting to the approximation properties of
Π+, we show that gluing, or coupling, elements via continuity and prescribing
boundary values do not impair the approximation potential provided by the admis-
sible shape functions P+

1 (K), K ∈M.
Let us first verify the best error localization (3) of the introduction.

Theorem 10 (Best error decomposition with positivity). For any u ∈ H1(Ω)+,
we have

inf
s∈S+

‖u− s‖1;Ω ≤ Cd,γM

( ∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K

) 1
2

.

Proof. We simply use Π+u ∈ S+ and apply Corollary 8:

inf
s∈S+

‖u− s‖21;Ω ≤
∥∥u−Π+u

∥∥2

1;Ω
≤ Cd,γM

∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K . �

Next, we incorporate prescribed boundary values. For this purpose, we note first
that the construction of Π+ yields an approximation operator for boundary values
as side-product. Indeed, given v ∈ L2(∂Ω)+, we set

Π+
∂Ωv =

∑
z∈L1∩∂Ω

(
QFz

v
)
(z)λz |∂Ω,

which is well-defined thanks to the second part of (23) and satisfies

Π+
∂Ωv ∈ S

+
∂ and ∀s ∈ S+

∂ Π+
∂Ωs = s.

with S∂ := {s ∈ C0(∂Ω) | ∀F ∈ F∂Ω s|F ∈ P1(F )}. Moreover, we have

∀u ∈ H1(Ω)+ Π+u|∂Ω = Π+
∂Ω(u|∂Ω).

thanks to (7). As restriction of Scott-Zhang interpolation to the boundary, Π+
∂Ω can

be applied to all admissible boundary values, in contrast to Lagrange interpolation,
which is not defined for boundary values in H

1
2 (∂Ω) \ C0(∂Ω).

Given g ∈ H 1
2 (∂Ω)+, we set

H1
g (Ω) := {u ∈ H1(Ω) | v = g on ∂Ω} and Sg := {s ∈ S | s = Π+g on ∂Ω}.

Although S+
g is strictly smaller than S+, we can still bound the global best error

es before if the target function is from H1
g (Ω)+.
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Theorem 11 (Decoupling with positivity and boundary values). Let g ∈ H 1
2 (∂Ω)+.

For any u ∈ H1
g (Ω)+, we have

inf
s∈S+

g

‖u− s‖1;Ω ≤ Cd,γM

( ∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K

) 1
2

.

Proof. Here we use the fact Π+u ∈ S+
g and conclude again with Corollary 8:

inf
s∈S+

g

‖u− s‖21;Ω ≤
∥∥u−Π+u

∥∥2

1;Ω
≤ Cd,γM

∑
K∈M

inf
p∈P+

1 (K)
‖u− p‖21;K . �

4. Application to the elliptic obstacle problem

Corollary 8 splits a global approximation problem into many local ones, which are
independent of each other. Obviously, this can be used for the parallel approximate
computation of the best error infs∈S+ ‖u− s‖1;Ω with continuous, piecewise affine
and positive functions. The splitting and the reciprocal independence is also useful
in adaptive tree approximation. It can be applied exactly as in [10, §4.2]. One
only has to employ infp∈P+

1
‖u− p‖1;K instead of infp∈P1

|u− p|1;K as local error

functionals.

An application with new aspects concerns the elliptic obstacle problem, which
reads as follows; see [4]: given a force f ∈ H−1(Ω) = H1

0 (Ω)?, a lower obstacle

χ ∈ H1(Ω), and g ∈ H 1
2 (∂Ω) with g ≥ χ on ∂Ω, set

A := {v ∈ H1(Ω) | v ≥ χ in Ω, v = g on ∂Ω}
and

(31) find u ∈ A such that ∀v ∈ A
ˆ

Ω

∇u · ∇(v − u) ≥ 〈f, v − u〉.

Since A is nonempty, closed and convex, the solution exists and is unique by [4,
Theorems 1.1.1 and 1.1.2]. It is useful to introduce the functional µ ∈ H−1(Ω)
given by

(32) 〈µ, ϕ〉 := 〈f, ϕ〉 −
ˆ

Ω

∇u · ∇ϕ,

which can be viewed as virtual force exerted by the obstacle and Lagrange multiplier
associated with the constraint u ≥ χ. We have

∀ϕ ∈ H1
0 (Ω)+ 〈µ, ϕ〉 ≤ 0 and ∀ϕ ∈ H1

0 ({u > χ}) 〈µ, ϕ〉 = 0,

where {u > χ} :=
⋃
ε>0{u − χ − ε ≥ 0} and {u − χ − ε ≥ 0} is the largest open

set U such that
´
U

(u − χ − ε)ϕ ≥ 0 for all ϕ ∈ C∞0 (U)+. The set {u > χ} is the
non-coincidence set, while the coincidence set {u = χ} is the largest open set U
such that

´
U

(u− χ)ϕ = 0 for all ϕ ∈ C∞0 (U). Here µ may be strictly negative.
A remarkable feature of the obstacle problem is that the solution may not change

under certain perturbations of the force. For example, if u is the solution corre-
sponding to f , it is also the solution for f + δf whenever δf ∈ H−1(Ω) such that
supp δf ⊆ {u = χ} and δf ≤ −µ in H−1(Ω), i.e. 〈δf +µ, ϕ〉 ≤ 0 for all ϕ ∈ H1

0 (Ω).
In other words: the solution operator of the obstacle problem losses information
and so the force f cannot be recovered from the solution only.

We discretize problem with linear finite elements, using the notations from §3.4.
In order to minimize technicalities in presenting the application of §3, we assume

χ ∈ S and g ∈ S∂ .
Then

(33) AS := {s ∈ S | s ≥ χ in Ω, s = g on ∂Ω} ⊂ A
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is conforming as well as nonempty, closed and convex. Hence

(34) find U ∈ AS such that ∀v ∈ AS
ˆ

Ω

∇U · ∇(v − U) ≥ 〈f, v − U〉

defines a unique conforming approximation to u in (31).
We are interested in the error

|u− U |1;Ω :=

(ˆ
Ω

|∇(u− U)|2
) 1

2

.

The departure point of our analysis is the following relationship between |u−U |1;Ω

and the approximation properties of AS , which already appears in Falk [6] implic-
itly. We provide a proof for the sake of completeness.

Proposition 12 (Error of U and approximation with AS). We have

|u− U |1;Ω ≤ inf
v∈AS

(
|u− v|21;Ω + 2〈µ, u− v〉

) 1
2

.

Proof. Choosing v = U ∈ A in (31) and v ∈ AS arbitrary in (34), we derive

|u− U |21;Ω =

ˆ
Ω

∇u · ∇(u− U) +

ˆ
Ω

∇U · ∇U −
ˆ

Ω

∇U · ∇u

≤ 〈f, u− U〉+

ˆ
Ω

∇U · ∇v + 〈f, U − v〉 −
ˆ

Ω

∇U · ∇u

≤ 〈f, u− v〉+

ˆ
Ω

∇U · ∇(v − u)

=

ˆ
Ω

∇(u− U) · ∇(u− v) + 〈µ, u− v〉,

where in the last step we have used u − v ∈ H1
0 (Ω) and the definition (32) of µ.

Applying Cauchy-Schwarz on the integral then gives

|u− U |21;Ω − |u− v|1;Ω |u− U |1;Ω − 〈µ, u− v〉 ≤ 0.

Preferring simplicity to sharpness with respect to constants, we deduce

|u− U |21;Ω ≤ |u− v|
2
1;Ω + 2〈µ, u− v〉

and the proof is finished. �

It is worth noting that Proposition 12 is not a quasi-optimality result like Céa’s
lemma. In view of the augmentation 〈µ, u − v〉 ≥ 0, it is not clear the right-hand
side is bounded by the left-hand side. We shall therefore assess the sharpness of
the given bound by other criteria below.

We next provide bounds for the best error of the approximation problem in
Proposition 12 with the help of the approximation operator Π+ of §3. To this end,
we fix the solution u of (31) and introduce the local errors

(35) e(K) := inf
{
‖u− p‖1;K | p ∈ P1(K), p ≥ χ in K

}
, K ∈M,

and the local dual norms

(36) ‖µ‖−1;ωz
:= sup

{
〈µ, ϕ〉 | ϕ ∈ H1

0 (ωz), |ϕ|1;ωz
= 1
}
, z ∈ L1.

Proposition 13 (Localization of augmented gradient error). In the above notation,
we have

inf
v∈AS

(
|u− v|21;Ω + 2〈µ, u− v〉

)
≤ Cd,γM

∑
K∈M

e(K)

e(K) +
∑

z∈L1(K)

‖µ‖−1;ωz

 .
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Proof. Let us start with an observation regarding the local best errors (35). As
χ|K ∈ P1(K) and u− p = (u− χ)− (p− χ), we see that p = χ+ P+

K (u− χ) and

(37) e(K) =
∥∥u− χ− P+

K (u− χ)
∥∥

1;K
= inf
q∈P+

1 (K)
‖w − q‖1;K

for w := u− χ ∈ H1(Ω)+. Moreover, we have

χ+ Π+(u− χ) ∈ AS and w −Π+w ∈ H1
0 (Ω),

which yields

inf
v∈AS

(
|u− v|21;Ω + 2〈µ, u− v〉

)
≤
∣∣w −Π+w

∣∣2
1;Ω

+ 2〈µ,w −Π+w〉.

For the first term on the right-hand side, Corollary 8 and (37) imply

(38)
∣∣w −Π+w

∣∣2
1;Ω
≤ Cd,γM

∑
K∈M

e(K)2,

while the second term has to be localized ‘ad hoc’. For the purpose we may use the
partition of unity

∑
z∈L1

λz = 1 in Ω and write

(39) 〈µ,w −Π+w〉 =
∑
z∈L1

〈µ, (w −Π+w)λz〉.

Let z ∈ L1 be arbitrary. In view of 0 ≤ λz ≤ 1 and |∇λz| ≤ ρ−1
K for all K ∈ M

containing z as well as Corollary 7, we obtain∣∣(w −Π+w)λz
∣∣2
1;ωz
≤ 2

∣∣(w −Π+w)
∣∣2
1;ωz

+ 2
∑
K3z

ρ−2
K

∣∣w −Π+w
∣∣2
0;K

≤ CγM
∑
K3z

∥∥w −Π+w
∥∥2

1;K
≤ CγM

∑
K:ωK3z

e(K)2,

where K varies in M. Hence, a norm equivalence in some Rn yields

〈µ, (w −Π+w)λz〉 ≤ CγM ‖µ‖−1;ωz

( ∑
K:ωK3z

e(K)2

) 1
2

≤ Cd,γM
∑

K:ωK3z
‖µ‖−1;ωz

e(K),

Inserting this bound into (39) and rearranging terms, we arrive at

(40) 〈µ,w −Π+w〉 ≤
∑
K∈M

e(K)

( ∑
z∈L1∩ωK

‖µ‖−1;ωz

)
.

Summing the two localizations (38) and (40), we conclude the claimed bound. �

Combining Propositions 12 and 13, we obtain the main result of this section, an
a priori error bound in terms of the local best errors and local dual norms of the
Lagrange multiplier given in (35) and (36), respectively.

Theorem 14 (Localized and regularity-free a priori bound). If u is the solution of
(31) and U its approximation from (34), then

|u− U |1;Ω ≤ Cd,γM

[ ∑
K∈M

e(K)

(
e(K) +

∑
z∈L1∩ωK

‖µ‖−1;ωz

)] 1
2

.

The error bound in Theorem 14 can be used, in the setting at hand, instead of,
e.g., of Falk [6, Theorem 1]. Confronting with this and the bound in Brezzi et al.
[3, Theorem 2.1], we note:
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• The best errors e(K), K ∈ M, and the dual norms ‖µ‖−1,ωz
, z ∈ L1, are

local and do not involve regularity beyond u ∈ H1
0 (Ω) and µ ∈ H−1(Ω),

which are required or follow from the problem formulation (31).
• The discrete solution U does not appear on the right-hand side.
• In the special case χ = −∞ and thus µ = 0 which corresponds to the Pois-

son problem, the bound and the local Poincaré inequality
∥∥v − ffl

K
v
∥∥

0;K
≤

π−1 diam(K) |v|1;K imply

|u− U |1;Ω ≤ Cd,γM

[ ∑
K∈M

inf
p∈P1(K)

|u− p|21;K

] 1
2

i.e. that the error is P1-quasi-optimal. This reproduces the application of
(1) after Céa’s lemma.
• Introducing the two-layer neighborhood

NM;+ :=
⋃

K∈M:u6=χ onK

ω̃K with ω̃K :=
⋃

z∈L1∩ωK

ωz

of the non-coincidence set {u > χ}, we have the following implication: if
δf ∈ H−1(Ω) such that δf ≤ −µ and supp δf ∩NM;+ = ∅, then the bound
yields the same value for the forces f and f + δf .

The abstract bound in [6, Theorem 1] assumes that the Lagrange multiplier
µ ∈ L2(Ω) is a function in order to derive first order error decay; cf. comment (iv)
after Theorem 23.1 in [5]. Let us check that the bound in Theorem 14 also implies
this decay rate. To this end, we derive an error bound involving hK := diam(K)
and ∥∥hD2u

∥∥
0;K

:=

∑
|α|=2

‖∂αu‖20;K

 1
2

,

where K ∈M and we used multi-index notation.

Corollary 15 (Localized a priori bounds with regularity). Let u and U be as in
Theorem 14. If µ ∈ L2(Ω), then

|u− U |1;Ω ≤ Cd;γM

[ ∑
K∈M

e(K)
(
e(K) + hK ‖µ‖0;ω̃K

)] 1
2

.

Furthermore, if in addition d ∈ {2, 3}, u ∈ H2(K) for all K ∈M, then

|u− U |1;Ω ≤ Cd;γM

[ ∑
K∈M

h2
K

∥∥D2u
∥∥

0;K

(∥∥D2u
∥∥

0;K
+ ‖µ‖0;ω̃K

)] 1
2

.

Proof. We only have to provide bounds for the local quantities in Theorem 14 and
start with the local dual norms. Given z ∈ L1 and ϕ ∈ H1

0 (ωz), the Poincaré-
Friedrichs inequality

‖ϕ‖0;ωz
≤ diam(ωz) |ϕ|1;ωz

yields

〈µ, ϕ〉 =

ˆ
Ω

µϕ =

ˆ
ωz

µϕ ≤ ‖µ‖0;ωz
‖ϕ‖0;ωz

≤ diam(ωz) |ϕ|1;ωz
.

Therefore

‖µ‖−1;ωz
≤ diam(ωz) ‖µ‖0;ωz

and the first bound is proved since diam(ωz) ≤ Cd,γMhK whenever z ∈ ωK .
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Next, we consider a local best error e(K), K ∈M. Since d ∈ {2, 3}, the Lagrange
interpolation IKu ∈ P1(K) of u ∈ H2(K) is well-defined and we have IKu ≥ χ on
K, whence

e(K) ≤ ‖u− IKu‖1;K ≤ Cd,γMhK
∥∥D2u

∥∥
0;K

;

cf. [5, Theorem 16.1]. With this, the second bound follows from the first one. �

Comparing the bounds of Corollary 15 with previous asymptotic error bounds,
the following comments are in order.

• If the exact solution u happens to be in AS , both bounds vanish thanks
to the fact that the approximation or the regularity of u enters only in a
piecewise manner.

• Assume shape regular and uniform refinement such that γM ≈ 1 and
h := maxK∈M hK ≈ minK∈M hK tends to 0. Then the second bound

and
∑
K∈M ‖µ‖

2
0;ω̃K

. ‖µ‖20;Ω yield the maximal decay rate

|u− U |1;Ω = O(h)

when approximating in H1 with piecewise affine functions.
• Assume shape regular and uniform refinement as in the preceding item

and, additionally, that the Lagrange multiplier is bounded, µ ≥ −µ0 with
µ0 ∈ R, and that the free boundary is a hyper surface. Then there are
O(h−(d−1)) elements K ∈M with K ⊂ {u 6= χ} and ω̃K 6⊆ {u > χ}. Since
K ⊆ {u = χ} entails e(K) = 0 and ω̃K ⊂ {u > χ} entails µ = 0 on ω̃K , we
infer ∑

K∈M
e(K)hK ‖µ‖0;ω̃K

≤ 1

2

∑
K∈M

e(K)2 +
1

2

∑
K⊂{u6=χ},ω̃K 6⊆{u>χ}

h2
K ‖µ‖

2
0;ω̃K

.
∑
K∈M

e(K)2 + µ2
0h

3.

Inserting this inequality into the first bound, we arrive at

|u− U |1;Ω .

( ∑
K∈M

e(K)2

) 1
2

+ µ0h
3
2 .

As the first term has at most the rate h, we may say that the error |u− U |1;Ω

is asymptotically P+
1 -quasi-optimal for shape regular and uniform refine-

ment.

In summary, the presented approach relying on Corollary 7 maintains the ad-
vantages of Falk’s method, offering additional locality and covering any regularity.
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edged.
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