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Abstract

Content dissemination in opportunistic networks is a hot research topic
that attracted a lot of interest in the last few years. The key idea is to
optimise the diffusion of content among nodes in opportunistic networks
to ensure that users are always able to obtain the most relevant items
according to their interests. The classical approach is to statically define
a set of interests for each user, and make sure that they receive items
matching those interests. In this paper, we propose a novel approach,
based on the dynamic and automatic identification of interests. To do so,
we exploit the tags that users assign to the items they create, and the
tags of the items that they download. We model these actions through
a folksonomy and the related tripartite graph, with different nodes for
users, items, and tags. We use this graph as the basis for identifying
the relevance of the items. Specifically, we use a tag-based recommender
system on the graph, called PLIERS, that is able to calculate the relevance
of an item for a certain user, with respect to the items that are already
linked to this user.

We validate our approach through a series of simulations. We emu-
late the presence of a variable number of agents which randomly move,
create and tag items, and possibly encounter other agents. Each agent
maintains a tripartite graph locally, representing its actions, and it inte-
grates this graph with information received from other encountered nodes.
The agents use PLIERS on their local graph to assess the relevance of the
items they find, and they decide whether these items are relevant for them
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or not. We evaluate the accuracy of the results by comparing the recom-
mendations on the local graphs with the relevance of the items (calculated
through PLIERS) on a global graph obtained by merging together all the
local graphs of the nodes. This graph represents the complete knowledge
of all actions in the network and it allows us to obtain the best possible
recommendations for a target user, that could be obtained if all the nodes
had the full knowledge of the actions of other nodes. The results indi-
cate that the recommendations on the local graph are accurate and that
the local knowledge of nodes reaches the global knowledge in the network
through a sufficiently high number of contacts.

1 Introduction

In an opportunistic environment, devices encounter and exploit all the com-
munication opportunities offered by the available wireless technologies to com-
municate and exchange data, also under intermittent connectivity conditions.
In this scenario, user mobility represents mainly an additional communication
opportunity that the system can exploit in order to transfer data towards un-
reachable users and devices (i.e., data dissemination). To this aim, it is essential
for the system to dynamically discover the context characterising the local user
and her device, in terms of user’s interests in content and resources available on
the network, user’s social behavior, and the surrounding environment, in order
to appropriately define efficient data dissemination algorithms.
As shown in [5] and similar works, the effectiveness of opportunistic routing
and forwarding algorithms greatly increases if they take into account context
information as defined above, and similarly for content dissemination. However,
one of the main limitations of actual context-aware systems, in opportunistic
networking scenarios in particular, is the lack of mechanisms for the automatic
and dynamic definition and classification of context data. Most of the existing
solutions manually define a static “knowledge base”, that represents the cor-
pus of context entities of the system and their relations, the basis on which
context-reasoning is performed. Actually, in a highly dynamic environment like
opportunistic networks, in which it is not possibile to have a complete knowledge
of the network and of the available content/resources, services and applications
must be able to adapt in order to provide appropriate feedback to the users.
Content dissemination represents a big example in this direction: if the system
is able to detect changes in the context and in the users interests, they can be
used to automatically discover new interesting content in the network and/or to
limit the transmission of undesired or useless content between peers, and thus
avoiding to waste resources.
In this paper, we propose a novel solution for content dissemination in op-
portunistic networks in which the context is represented by the information
that characterises the users’ interests and the available content. The context
is not known a priori and it dynamically changes over time, depending on the
single user’s action. This solution is based on the definition of folksonomies
(i.e., a user-defined taxonomy in order to allow users to freely assign tags to
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resources/content[12]), on the use of a recommender system for reasoning upon
these information representing the context of a single user and of the network.
This solution is inspired by the way content and users are categorised and as-
sociated in Online Social Networks (hereinafter OSNs). The advent of OSNs
fostered the users generation of annotations on web content. Thanks to OSNs,
users can easily create, share, and access multimedia content. Users interact
with a content by leaving annotations on it. For example, they can post com-
ments or reviews concerning products, places, people, or other. Perhaps more
importantly, users can actively contribute in the categorisation of content by
adding tags (i.e., short text labels that assign the content to user-defined cat-
egories). These tags are useful both to identify the content type (e.g. “mov”,
“jpg”, “text”, etc. . . ) and to give a semantic meaning to the data (e.g. “cat”,
“politics”, “football”, etc. . . ). This metadata can be automatically generated
by the applications or manually created by the users.
In contrast with the traditional taxonomies and ontologies used to model a com-
plex knowledge, a folksonomy does not require any explicit relationship between
the terms that constitute it (e.g., generalization, specialization and correlation).
Therefore, starting from a folksonomy characterising users’ interests and gen-
erated content, we want to identify in an opportunistic network the potential
new interests of the local user related to content generated by other encountered
users. To this aim, we define an optimised tag-based recommender system for
opportunistic network, based on the success of these systems on the Web [17]
(especially for commercial applications), but able to overtake their limitations
in a highly dynamic environment. This system is called PLIERS and it has
been defined in [11] after a deep analysis of tag-based recommender systems
already proposed in literature, which have been also used to validate PLIERS
performances in a Web-based scenario.
In order to validate the efficacy of the proposed solution, in this paper we
describe the state of the art on context-aware content dissemination for oppor-
tunistic networks and how PLIERS can be used in this environment. Then, we
provide a detailed performance evaluation in a simulation scenario.

2 Related Work

Content dissemination systems have been proposed both for the legacy Inter-
net networks [3], and for conventional MANETs [14]. In general, these systems
assume that network paths are rather stable, and in some cases generate a sig-
nificant amount of traffic to maintain knowledge of the other nodes and caches.
Therefore, they are not suitable to opportunistic networks. In the last few years,
researchers proposed some solutions also for opportunistic networks, where there
is no stable path, and forwarding algorithms are mainly based on the store-
carry-forward paradigm [6]. Specific attention has been paid to context-aware
forwarding and content dissemination but mainly starting from a predefined
knowledge of users’ interests and their associations with generated content. In
these cases the main idea is to use context information to characterise the proba-
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bility of users’ encounters and the possibility to move messages closer and closer
to their destinations following a path based on the social interactions between
nodes (as in the famous six degrees of separation experiment [13]). Although this
approach is feasible for forwarding, since messages have a specific destination
node, it is not for content dissemination solutions, which mainly follow the User
Generated Content approach. In this case content generators might be unaware
of the nodes interested in their data, and so might be the content consumers
about the nodes that generate the content they are interested in. For this rea-
son some solutions exploit the approach of Pub/Sub systems: users explicitly
declare their interests in a set of content (i.e., channel subscription) and each
content is registered as belonging to a specific set. Then, additional context
information is used to optimise the dissemination among the network nodes.
PodNet project [9] is one of these solutions in which users subscribe to channels
they are interested in (i.e., content category) and, upon pair-wise contacts, they
exchange their interests and select which data objects to exchange. Content-
Place [4] further extends this approach by exploiting social information related
to users’ encounters and sharing interests as context information to enable the
communication and to disseminate potentially interesting content. Specifically,
it exploits a community detection algorithm defined in [15] to classify users’
relationships and define social communities of users. In addition, it collects
information about the available content and related channels during pair-wise
contacts and, based on this information, it defines an utility function of each
data object for all the social communities any given user is in touch with. In this
way, it is able to drive the content dissemination through the network following
various socially-inspired policies mainly based on the social profile of the local
user and her social communities.
In the solution we propose, we approach the content dissemination problem
from a completely different perspective: we assume that there is no a-priori
knowledge of the user’s interests but it is dynamically created by using a folk-
sonomy defined by the network users while generating and sharing their own
content. The folksonomy represents the set of information characterising a user,
her generated content, and the associated tags. Then, through opportunistic
communications, users exchange their local information, defining thus on each
node a ”knowledge base” that can be naturally represented through graphs.
Specifically, users, items and tags can be seen as nodes of the graph and their
relations (i.e, user-item, user-tag links) represent the interests of each user in
specific items and tags. This is due to the fact that the user generated the
content and/or she downloaded it from another user. Moreover, links between
items and tags indicate that a certain item has been tagged with one or more
tags, thus classifying it into user-defined categories. Since users, items and tags
belong to different categories, tripartite graphs are typically used, assuming that
the links between a user and a set of item reflect the user’s interests in the tags
associated to the same items. In this representation, nodes of different types
can be linked to each other, but no links can exist between nodes of the same
type. Separate bipartite graphs could also be used to express relations between
two out of the three types of nodes (e.g., user-item and user-tags relations).
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Once defined the use of a folksonomy and its representation through bipartite
and tripartite graphs, we decided to use a recommender system able to reason
upon this type of knowledge in order to identify relevant content for a target
user within the context of an opportunistic network. This type of recommender
systems are generally defined as tag-based recommender system. In the next
section we briefly explain the basic principles of those systems and our optimised
solution called PLIERS. Then, we detail the use of PLIERS in an opportunistic
environment.

3 PLIERS: PopuLarity-based ItEm Recommender
System

In the literature, several approaches have been proposed for Tag-based Recom-
mender Systems [17]. The most promising solutions are based on the definition
of a score value for each item on the network calculated through the diffusion
of fictitious resources generally on a bipartite graph, from a node representing
a target user (i.e., the target of the recommendation) and the items/tags on
the graph. These solutions cab be categorised as network- and diffusion-based
algorithms. This allows the recommender system to identify relevant items/tags
in the network that are indirectly connected to the target user via other users
sharing with it one or more connections. The higher the number of links con-
necting an item to the items of the target user, the higher the score that this
item will receive for the recommendation. In this way, the recommender system
exploits the structure of the network to identify the most relevant content for
the user.
ProbS [18] and HeatS [16] represent two of the most used tag-based recom-
mender systems. Both these algorithms have strong limitations that are mainly
related to the fact that they base their scores on the general popularity of a
content on the network, independently of the impact of the target user inter-
ests on the network structure. As a result of their algorithms, ProbS tends
to recommend the most popular content among those available on the network
and HeatS, on the contrary, tends to highlight those with minimal popular-
ity (i.e., with the smallest possible number of users connected to them). To
overcome these limitations, a hybrid ProbS + HeatS solution has been recently
proposed [10]. It calculates a linear combination of ProbS and HeatS, inheriting
thus both the positive and the negative effects of them. In addition, it requires
the definition and the dynamic tuning of a parameter representing the weight
of each algorithm in the linear combination.
In [11] we propose a new tag-based recommender system called PLIERS: PopuLarity-
based ItEm Recommender System that solves the dilemma between the choice
of popular or unpopular items in a more natural way with respect to the hy-
brid ProbS+HeatS solution, and without requiring any parameters to tune. It
guarantees that the popularity of the recommended items is always compatible
and comparable with the popularity of items belonging the target user. This
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introduces an additional evaluation of the item relevance for the target user
by assuming that she will be interested (with a high probability) in items that
have similar popularity in the network to those generated by the user herself.
By following the user behavior on OSN we can assume that a user interested
in a very popular item or tag (i.e., connected to many users), can semantically
relate to a more “generic” topic, compared to a less popular item that, instead,
is intended to describe a more “specific” topic. For example, any content re-
lated to the football club Millwall can be tagged with both tags “Millwall” and
“Football” but the opposite is not always true: all content concerning football
will not always be tagged with “Millwall”. According to this assumption, we
can therefore say that the tag “Football” refers to a more generic topic than that
referred by the tag “Millwall”. Users interested in the Millwall football club,
but not connected to items tagged with “Football”, are clearly not interested in
all the items tagged with the latter tag, as these could contain information of
other football clubs. Recommending items with popularity compatible to that
of the items of the users permits to overcome this problem, and leads to better
recommendations. Simulation results on real and heterogeneous datasets in [11]
show that PLIERS outperforms the other solutions proposed in literature by
providing more accurate recommendations to the target users.

4 Using PLIERS to Improve Content Dissemi-
nation in Opportunistic Environments

In the reference scenario of content dissemination in opportunistic networks, a
user generally performs a restricted set of actions: she may move in the en-
vironment, encounter other users, generate and share items, download items
from other encountered users through device-to-device communications (as an
explicit user action or as an automatic system operation), tag items, both gen-
erated by herself or by others. We assume that tags identify user interests in
specific topics and content. Thus, when a user generates a new item and she tags
it, we assume that she is actually interested in the other content available in the
network with the same tags. Moreover, when a user downloads an item from an-
other node, she can be also interested in all the other items in the network with
the same tags. This means that the interests of the user may be automatically
and dynamically discovered by looking at the tags of the items she generated
or downloaded, and they can change over time. This is also a consequence of
the use of a recommender system, allowing the user to become aware of the
availability of content that are not strictly related to her tags. The ensemble of
the actions users can perform in the opportunistic environment can define the
context data that are relevant for the purpose of content dissemination and it
can be fully described by a folksonomy modelled through bipartite and tripar-
tite graphs. Clearly, these graphs are not static, and they evolve over time as
nodes perform their actions. Therefore, to maintain an updated version of the
knowledge graph of a target user in terms of own-generated content and those
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downloaded from others, each node must be aware of the actions performed by
the other nodes of the network.
To this aim we implement a context-aware content dissemination protocol that
exploits the recommending features of PLIERS based on the dynamic generation
of a local knowledge of the users’ interests and the available content. Specifically,
the protocol is implemented on each node as a software agent that allows nodes
to exchange and integrate their local graph with those of the nodes that they
meet through the following actions:

a. Context-information exchange: Each node sends its local graph to
the other node.

b. Local knowledge update: Each node merges its local graph with the
information received from the other node.

c. Execution of PLIERS: Each node runs PLIERS to evaluate whether
the new items carried by the other node may be of interest for it.

d. Download: Each agent asks to download relevant items (if any), accord-
ing to the scores obtained through the use of PLIERS.

Figure 1 depicts the operations performed by the content dissemination protocol
running on two nodes when they come across each other.

Download Request

Download Request

Items

Items

Agent 1 Agent 2

Figure 1: Sequence of actions during an opportunistic contact between a pair
of nodes.

Therefore, each agent is in charge of maintaining and updating the knowledge
graph of the local user every time she encounters a new user on the network
and to evaluate the recommending score of each available content through the
execution of PLIERS. Naturally, each agent can have only a limited view of the
actions occurring in the whole network that is bounded to the set of nodes that
each user directly encounters over time. For this reason, the graph representing
user-item-tags relations that each node carries (called local knowledge graph)
only partially reflects the whole knowledge of actions in the network (i.e., the
global knowledge graph). In addition, we assume that each agent is responsible
for the creation of links in the local graphs between the local user and the
generated and/or downloaded items and between those items and related tags.
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By using PLIERS the content dissemination algorithm is thus able to dynami-
cally model the user’s interests based on her generated content (if any) and on
the download of additional content available on the network and suggested by
the system itself. In this way, the user’s interests can change over time together
with the availability and popularity of the content, and the dissemination on
the network dynamically adapts to the user requirements. In this case the folk-
sonomy represents the main context information used to optimise the content
dissemination but, at the same time, it can be further extended through addi-
tional context information, like social information and resource availability, as
presented in previous works on context-aware content dissemination. In addi-
tion, the methodology defined by PLIERS can also be adopted to reason upon
other types of context information that can be modelled through a folksonomy
or simply through a bipartite or tripartite graph.
However, the use of PLIERS in the opportunistic environment and especially
on mobile devices introduces a set of issues mainly related to: (i) the accu-
racy of PLIERS recommendations in a highly variable environment, and (ii)
the management of the local knowledge graph. In the following sections we
present specific features of PLIERS that we introduce to optimise its behavior
in the opportunistic environment, while for details on the definition of PLIERS
algorithm and its performances in a Web-based scenario please refer to [11].

4.1 Suggestion buffer

It is worth noting that tag-based recommender systems generally operate on
a complete, global knowledge graph derived from centralised datasets. This is
not possibile in an opportunistic environment where the number of relevant and
available items for the local user varies at each encounter, and the average value
of their relevance with respect to the local user interest (i.e., PLIERS scores)
could greatly vary over time depending on several factors: node’s mobility,
encountered nodes, items owned by the local node, and the items available on
the other nodes. To ensure that users always obtain the most interesting items
for them out of the set of items available on the network, we introduce the
concept of Suggestion Buffer in PLIERS, used to calculate the average score of
the items available for download.
Every time the content dissemination agent finds a new available item (during an
opportunistic encounter), it calculates its PLIERS score and it adds this scores
to the buffer together with the item identification number and the timestamp of
its encounter. If the item is already present in the buffer, the agent updates the
score and the timestamp. In this way, the agent will request for download only
items with PLIERS score higher than the average score of the last n encountered
items. This value is called current avg and it is calculated as follows:

current avg = (1 − β) · old avg + β · new avg

where old avg refers to the value of current avg calculated at the previous step,
new avg is the average value of the items currently present in the buffer and
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β controls the update rate for the new value with respect to the value at the
previous step.
The value of current avg is used to evaluate the relevance for the local user
of the items which will be encountered in the future. In this way, the system
is able not only to recommend the most relevant items for the local user at a
certain time, but also to dynamically adapt the recommendations according to
the availability of interesting content in the network.
The first time old avg is equal to current avg. After this first calculation, when
new items are found, the least recently seen items are removed from the buffer
to make room for the new ones, and the new value of current avg is calculated
at each insertion or update. When the buffer is still not completely full, the
agent may decide to either download all the encountered items or none of them.
For the sake of simplicity, in our simulations the agent does not download any
item until the buffer is full.
Figure 2 depicts an example of how the buffer and the calculation of current avg
work. At t0, the buffer is empty. At t2, the node has encountered other nodes,
and it has seen two items (I1 and I2), and calculated their PLIERS scores (0.02
and 0.03). At this step, the buffer is still not completely full, and no calculations
are performed on current avg. The agent does not download the items, but it
only stores their PLIERS scores (s in the figure) and the timestamp related to
their calculations (ts in the figure). After adding other items to the buffer, when
the buffer is full (t13 in the figure), the new value of current avg is calculated,
and the items whose score is higher than this value are identified as relevant.
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1110987650 31 42

t0:

current_avg = 0.0 old_avg = 0.0 new_avg = NULL
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0.12

I1, t1
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I3, t2
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I5, t2

0.11

1110987650 31 42

current_avg = 0.0 old_avg = 0.0 new_avg = NULL

current_avg = 0.08 old_avg = 0.0 new_avg = 0.08

tn: I10, t13

0.13

I9, t2

0.09

I8, t2

0.02

I7, t2

0.05

I6, t2

0.07

I4, t2

0.05

I2, t2

0.12

I1, t1

0.14

I3, t2

0.10

I5, t2

0.11

1110987650 31 42

current_avg = 0.08 old_avg = 0.0 new_avg = 0.08

Figure 2: Suggestion buffer.

4.2 Local graph management

As previously described, when nodes come across each other, they exchange and
merge their local knowledge graph. These graphs could continuously grow over
time, and this could saturate the nodes’ resources. To prevent this, we propose
two possible solutions to maintain a limited size of the graph.

Limited update During the update of the local graph (i.e., during each op-
portunistic contact), the agent adds or updates only the new nodes related to
items that are connected to users or tags that share at least one item with the
local user. In fact, items not sharing any link to users or tags connected to at
least one of the items of the local user are not considered by PLIERS for the
recommendations (PLIERS score is equal to 0). In this way, the growth of the
graph can be limited by not considering useless information for the actual rec-
ommendations. A downside of this approach is that the discarded information
could be useful for the local user in the future, as some discarded nodes could
become connected to the user once she changes her interests.
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U1

I1 I2

U2

I3 I4

T1 T2 T3 T4 T5 T6

Figure 3: Pruning of the tripartite graph.

Pruning With this solution, each node maintains a maximum number of nodes
and links in memory. To do so, the local graph is enriched with temporal
information. Specifically, each link in the graph is associated with a timestamp.
When a user generates an item, or the system downloads it from other nodes,
the agent creates the related nodes in the graph if they do not exist yet, it adds
a link in the local graph connecting the local user to the item, and it associates
it with the current timestamp. When a node meets other nodes and it receives
their local graphs, it checks, for each link user-item in the graph, if it is already
present in its local graph. If not, it adds the link and, in case, the nodes at their
endpoints. If it already has the link, it compares the timestamps and maintains
the most recent one. When the maximum number of nodes and links is reached,
the node checks whether the graph received from another node contains more
recent information than the graph it owns and, if so, it deletes the links with the
oldest timestamps to make room for the new links. This procedure implements,
as defined in [8], the Most Recent Contacts (MR) policy. Alternatively, the
Most Frequent Contacts (MF) policy could be implemented by maintaining the
information related to the nodes most frequently seen.

For those pruning policies it is important that the local graph maintains a certain
level of consistency. Specifically, for the proper execution of PLIERS, at the end
of the pruning, no node can remain disconnected from the other components of
the graph. Referring to the example in Figure 3, if U2 (User 2) is deleted by
pruning the graph, the items linked to it and not connected to other users must
be deleted as well, along with the tags that will eventually remain disconnected.
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Table 1: Simulation parameters

N. of Agents Size of the area N. of contacts

50 500 m x 500 m 95,316
50 1,000 m x 1,000 m 24,296
50 2,500 m x 2,500 m 3,932
50 5,000 m x 5,000 m 1,008

100 1,000 m x 1,000 m 94,872
100 2,000 m x 2,000 m 23,808
100 5,000 m x 5,000 m 3,792
100 10,000 m x 10,000 m 948
200 2,000 m x 2,000 m 93,636
200 4,000 m x 4,000 m 23,696
200 10,000 m x 10,000 m 3,788
200 20,000 m x 20,000 m 916

5 Performance evaluation through opportunis-
tic simulations

In order to validate the proposed solution and to test the accuracy of the rec-
ommendations of PLIERS, we performed a set of experiments in a simulated
opportunistic environment. Specifically, we simulated the presence of 50, 100,
and 200 agents moving in a limited area, and possibly encountering each other.
The parameters of the performed simulations are reported in Table 1. Each
agent emulates the actions of a node in our content dissemination protocol, and
maintains its own local graph. We simulate the nodes mobility in the oppor-
tunistic network by assigning a random mobility trace to each agent, generated
through a random walk model, with the parameters reported in Table 2. When
agents come across each other (i.e., their distance is lesser than or equal to
30m), they exchange and merge their local graphs, and they download relevant
items from each other. We simulate the creation of content for each node by
using real traces obtained from Twitter. Specifically, we used the same dataset
used in [7, 1, 2]. We sample from the Twitter dataset a number of users equal
to the agents in each simulation setting. In Table 3, we report the number of
items (tweets) and tags (hashtags) extracted from the dataset for the different
configurations. In Twitter, the creation of tweets, that we consider as items, is
associated with a timestamp. We normalized the timestamps of the tweets in
the dataset to fit the simulation time of 28, 800s. Then, we associated each agent
of the simulator with a Twitter user. During the simulations, each agent creates
items at the times related to the creation of the Tweets. When an agent creates
an item, it updates its local graph, adding a link between the node representing
itself and the created item, and between the item and the tags identified by the
hashtags of the tweet. The simulations end when the agents generate all their
items.
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Table 2: Simulation parameters

Parameter Value

Simulation time 28,800 s
Minimum node speed 1.0 m/s
Maximum node speed 1,86 m/s

Transmission range 30 m

We performed two types of simulations: (i) each agent updates the interests
of the local user when it creates an item, by adding a link in its local graph
between the user and the related item. (ii) Each agent updates the interests of
the local user also when it downloads items from other nodes.

5.1 Simulation 1: Interests updated when items are cre-
ated

In this simulation, the agents generate items and tags, updating their local
graphs consequently to these operations. Moreover, they exchange and merge
their local graphs (without limiting the updates) with other encountered agents,
but they do not download any item from them. We use this particular setting to
assess the extent to which each agent is able to approximate the global knowl-
edge graph with the information of the local graphs received from the other
encountered agents. Figure 4 shows the results in terms of average similarity
(calculated with the Jaccard’s coefficient) between the local graph of the agents
and the global knowledge graph, as a function of the number of opportunistic
contacts occurring in the simulations. It is worth noting that the agents are
able, after a certain number of contacts, to have a complete view of the global
knowledge. However, the higher the density of agents in the area of the simula-
tion, the higher the number of contacts needed to reach the global knowledge.

Table 3: Samples used for the opportunistic simulations.

Agents Items Tags

50 3193 2059
100 4520 2059
200 13213 7561
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Figure 4: Similarity between local and global graphs
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(a) buffer size = 5
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(c) buffer size = 25
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Figure 5: Similarity between local and global graph varying the number of
contacts and the suggestion buffer size. In blue it shows the trend for 50 agents,
in black that for 100 and in orange for 200.
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Figure 6: Mean percentage of items in the global resource vector that have
been downloaded by agents at the end of the simulations, varying the number
of contacts and suggestion buffer size. In blue it shows the trend for 50 agents,
in black that for 100 and in orange for 200.

5.2 Simulation 2: Interests updated also for downloads

In this type of simulation each agent acts as in the case of the previous simula-
tion, but, in addition, it downloads from the agents it encounters the relevant
items it finds, recommended by PLIERS. In this case, it updates its interests
also by adding links between the node in its local graph representing itself and
the downloaded items. For this kind of simulation, we assess, in addition to the
similarity between the local graphs and the global graph, the goodness of the
recommendation given by PLIERS comparing them with the recommendations
which each item would receive if the agent had access to the global knowledge
graph and it could use PLIERS on it. Figure 5, depicts the average similarity
(the Jaccard’s coefficient) between the local graphs of the agents and the global
graph for the diffent number of agents in the simulations and for different buffer
sizes. For relatively small buffer sizes (5 and 10), the agents reach the global
knowledge, even if, compared to the previous simulations, the graphs receive
a much higher number of updates, due to the changes associated to the down-
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loads. On the other hand, with relatively large buffers (size 25 and 50), the local
knowledge of the agents approaches the global knowledge, but, after a certain
number of contacts, they start diverging from it. This can be explained by the
fact that with larger buffers the system is more selective in the choice of rele-
vant items, for the average score current avg is calculated on a higher number
of visited items and the probability to have an item with high PLIERS score in
the buffer, that could significantly increase the value of the average, is higher.
Figure 7 shows the degree to which the lists of relevant items recommended by
PLIERS using the local graphs of the agents (local vectors) are similar to the
lists of recommended items obtained from the global knowledge (global vectors).
This similarity between the two lists is calculated through the Jaccard’s index.

5.3 Adaptability of the suggestion buffer

We further analysed the performance of our solution by looking at the ability of
the value of current avg to vary over time in order to adapt to the availability of
relevant items in the network. Figure 7 depicts the trends of the average value
of current avg during the simulations for three randomly selected agents and for
different sizes of the buffer. It is worth noting that, for larger buffers, the value
of curent avg is more stable over time, while it varies with a higher frequency
for small buffer sizes. Thus, the buffer smooths the adaptability of the value of
current avg and controls the sensitiveness of the system to changes in the items
availability in the network.

6 Conclusions

In this work, we presented a novel protocol for context-aware content dissemi-
nation in opportunistic networks, based on the use of a new tag-based recom-
mender system: PLIERS. The main innovation of our protocol is the ability to
automatically and dynamically discover the users’ interests in the network, by
collecting and reasoning upon their context data. This is in contrast to existing
solutions in the literature, where interests are generally assumed to be static
and defined a priori by the users. We assume that users can generate items,
download them from other encountered nodes, and tag them with user-defined
labels. When a user creates or downloads an item with a set of tags, we consider
that she could also be interested in all the other items in the network tagged
by similar tags or items owned by similar users. Thus, we can represent the
context relevant for content dissemination through a folksonomy that can be
represented with a tripartite graph with three categories of nodes: users, items,
and tags. Moreover, links between these nodes represent the actions concerning
the generation or download of items in case of user-item links, and the presence
of tags for items in case of item-tag links. On this tripartite graph, we apply
a tag-based recommender system (PLIERS), suitable for identifying relevant
content on these kinds of graph, whereby the similarity between items is cal-
culated considering the overlap between the set of users and tags connected to
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Figure 7: Variation of current avg over time in the simulations for three ran-
domly selected agents.

the considered items and the items of the user for which the recommendation
is performed (i.e. the “target user”). PLIERS, compared to other existing tag-
based recommender systems, is able to recommend items also minimising the
difference in terms of popularity between the recommended items and the items
of the target user.
The protocol is implemented as a software agent running on each user device and
being able to maintain and update a graph representing the system/user actions
local graph, augmented with the information derived from the exchange of the
local graph of other users. The local graph represents the partial knowledge that
the node has with respect to all the actions occurred in the network, represented
by the global knowledge graph. In addition, every time a node encounters other
nodes, it evaluates the relevance of the items that they are carrying calculating
their PLIERS score on its local graph. In this way, it can autonomously discover
interesting content in the network, without the need for the user to specify its
interests in those content or in their tags.
We assessed the accuracy of the recommendations calculated on local graphs
with respect to the recommendations that nodes would have obtained if they
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had been able to access the global graph (i.e., the global knowledge of actions
occurred in the network). Of course, the recommendations on local graphs are
suboptimal to the recommendations on the global graph since, in opportunistic
networks, each node can access a limited amount of items, depending on the
number of other nodes it encounters, and the relevance of the items it sees could
be different if it considered all the information available in the network.
We performed a series of experiments to prove the accuracy of our protocol,
simulating the behavior of nodes in opportunistic networks. Specifically, in our
simulations, we assume the presence of a variable number of users, moving within
a limited area according to a random walk model. Moreover, each node generates
items in accordance with the behavior of users in Twitter. We performed two
types of simulations. In the first one, each node updates its interests only when
it generates new items. In the second one each node updates its interests also
when it downloads items from the network. Then, we assessed the degree to
which the local graph of the nodes approximates the global graph of the network.
This allowed us to discover that, after a certain number of contacts, all the nodes
are able to have a complete view of the global knowledge for all the explored
configurations. In addition, we compared the lists of recommended items for
each node calculated on their local graphs with the list of recommendations that
they would have received if they had been able to access the global knowledge.
The results indicate that the accuracy of the recommendations increases with
the number of contacts between nodes.
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