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Abstract  23 

Lysosomal acid lipase (LAL) hydrolyzes cholesterol esters and triglycerides to free cholesterol 24 

and fatty acids,that are then used for the metabolic purposes in the cell. The process also 25 

occurs in immune cells which adapt their metabolic machinery to cope with the different 26 

energetic requirements associated to cell activation, proliferation and/or polarization. 27 

Deficiency of LAL not only causes severe lipid accumulation, but also impacts the 28 

immunometabolic signature in animal models. In humans, LAL deficiency has been recently 29 

associated with a peculiar clinical immune phenotype, secondary hemophagocytic 30 

lymphohistiocytosis. These observations indicate that LAL represents a critical player for 31 

cellular immunometabolic modulation and the availability of an effective enzyme replacement 32 

strategy makes LAL an attractive target to rewire the immunometabolic machinery of immune 33 

cells beyond its role in controlling cellular lipid metabolism.  34 

  35 
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The evolving concept of immunometabolism and the role of sterol metabolism in 36 

immune cells 37 

Dynamic changes in the metabolic machinery of immune cells occur during the 38 

activation, proliferation, mobilization and acquisition of effector or regulatory functions [1, 2]. 39 

The field of research which addresses these aspects is termed “immunometabolism” and 40 

specifically investigates the interplay among different metabolic pathways in supporting the 41 

anabolic versus the catabolic needs of immune cells under different conditions. While 42 

anabolic pathways provide the energy necessary for production of macromolecules, such as 43 

lipids and nucleotides, which mainly occurs in activated and proliferating cells, nutrient 44 

catabolism is directed toward the generation of energy during cell maintenance and it’s typical 45 

of quiescent, non-proliferating immune cells. Mitochondrial tricarboxylic acid (TCA) (see 46 

Glossary) cycle and oxidative phosphorylation (OXPHOS) from fatty acid oxidation (FAO) 47 

are thus maximized in resting conditions to generate ATP. Upon activation, the increased 48 

demand of energy and building blocks is fulfilled by the rapid increase of anaerobic glycolysis 49 

(a metabolic adaptation similar to the Warburg effect described for cancer cells [3]) as well 50 

as of aerobic catabolism of glucose and amino acids through OXPHOS. While in vitro the 51 

preference for glycolysis compared to OXPHOS clearly marks the functional state of 52 

activated immune cells, the picture is less clear in vivo. Indeed, while in in vitro experiments, 53 

glucose and glutamine concentrations, oxygen tension, cell density and the presence of 54 

growth factors and cytokines are strictly defined and controlled, they are extremely variable in 55 

vivo and may also differ among tissues of the body and be influenced by pathological 56 

conditions (i.e. cancer compared to healthy tissue). As example, while in vitro, regulatory T 57 

cells (Treg) engage both glycolysis and fatty acids oxidation (FAO) to support the energy 58 

demand, they are highly glycolytic when isolated from human blood [4, 5].  59 

Nutrients are an additional factor that can profoundly influence immune functions by 60 

shaping both cellular and systemic metabolism and therefore also play a key role in tuning 61 

physiological and pathological immune responses. Among the different nutrients, cholesterol 62 

is an essential component of mammalian cells, indispensable for survival and proliferation but 63 

cytotoxic when present as unesterified form at elevated intracellular levels [6]. Cholesterol is 64 

either synthesized through the mevalonate pathway or is acquired following the uptake of 65 

lipoproteins (where cholesterol is mainly present in the esterified form [7]). Low levels of 66 

intracellular cholesterol activate the sterol regulatory element binding proteins (SREBPs), 67 
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thus leading to transcriptional activation of genes required for cholesterol biosynthesis and 68 

uptake, such as HMGCoA reductase, the key enzyme of the mevalonate pathway and low 69 

density lipoprotein receptor (LDL-R), a key receptor involved in the uptake of lipoproteins [8]. 70 

Vice versa, when intracellular cholesterol is elevated, SREBP is retained in the endoplasmic 71 

reticulum (ER), the mevalonate pathway is inhibited, and oxidized metabolites of cholesterol, 72 

such as the oxysterols, activate the liver X receptors (LXRs), thus promoting the 73 

transcription of genes involved in cholesterol efflux, such as the ATP-binding cassette 74 

transporters ABCA1 and ABCG1 [9]. Of note, esterified cholesterol (CE), derived from 75 

lipoproteins or stored in lipid droplets (LD), can be hydrolyzed mainly within the lysosomal 76 

compartment by the action of the lysosomal acid lipase (LAL) [10]. This enzyme not only 77 

provides free cholesterol (FC) but also free fatty acids (FFA), and thus potentially contribute to 78 

the immunometabolic reprogramming of immune cells. The aim of this review is to discuss 79 

recent evidence linking LAL to cholesterol and fatty acids metabolism in the context of 80 

immunometabolism. 81 

 82 

Lysosomal acid lipase  83 

Expression and role of LAL in cell lipid metabolism 84 

LAL is a 378-amino acid protein which is expressed by all cell types and encoded by 85 

the LIPA gene on chromosome 10 (q23.2-q23.3) [11]. LAL is expressed constitutively [12] and 86 

its expression can be further increased following the activation of the transcription factor EB 87 

(TFEB), the master regulator of lysosomal biogenesis, and of the nutrient-sensitive forkhead 88 

homeobox type protein O1 (FoxO1) [13-15]. Newly synthetized LAL is transferred to the Golgi 89 

apparatus where it is glycosylated. The mannose-6-phosphate (M6P) residues allow the 90 

binding with the M6P receptor (M6PR) and the localization into the lysosome [16]. In the 91 

acidic environment of the lysosome, LAL dissociates from the M6P receptor and is 92 

dephosphorylated, thus generating the mature, active form of LAL. Its activity is rapidly 93 

reduced with the increase in pH, declining to zero at pH values above 4.5. 94 

The role of LAL is to hydrolyze CE and triglycerides (TG) that reach the lysosomes as 95 

the final step of the receptor-mediated endocytosis of very low- and low- density lipoproteins 96 

(VLDL, LDL) (Figure 1). The products of LAL hydrolysis are either actively exported by the 97 

Niemann-Pick type C protein (FC) or likely diffuse into the cytosol (FFA) [17, 18]. FC and FFA 98 

in the cytosol repress SREBPs [10, 19], thus reducing the expression of proteins involved in 99 
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cholesterol and fatty acid biosynthesis and uptake [8], and, when oxidized, favor LXR 100 

activation and ABCA1 expression in macrophages, thus increasing cellular cholesterol efflux 101 

[20, 21].  102 

LAL-derived FFA can be used for different purposes; in most cells FFA are directed 103 

toward the mitochondria where undergo oxidation and contribute to energy production; in 104 

addition, in hepatocytes FFA might be converted into TGs and incorporated in VLDL via MTP, 105 

while in adipocytes are released in the circulation or converted to TG and stored in LD 106 

(Figure 1). Moreover, while the mobilization of lipids from cytosolic LD to generate FFA has 107 

been originally attributed to neutral cytosolic or ER-associated lipases, several evidence 108 

highlighted the critical role of LAL in driving the hydrolysis of LD through the activation of 109 

autophagy/lipophagy [22], culminating with the formation of the autophagosome that 110 

eventually fuses with lysosomes [15, 23, 24] (Figure 1). The activation of lipophagy is 111 

sensitive to the nutritional status of the cell and it is now believed to play a key role in the 112 

metabolic switch related to cell differentiation process [25, 26]. 113 

When LAL is not active, CE and TG accumulate within the lysosomes; in the liver, this 114 

accumulation occurs in both hepatocytes and Kupffer cells (specialized macrophages in the 115 

liver) thus favoring hepatic steatosis. The decreased flux of FC and FFA to the cytosol 116 

activates SREBPs and represses LXRs. The net systemic effect on the hepatocyte is the 117 

increase of VLDL secretion [27] and the reduction of ABCA1-mediated cholesterol efflux 118 

coupled to the reduction of high density lipoproteins (HDL) biogenesis [28]. Both mechanisms 119 

contribute to the dyslipidemic profile observed in LAL defective conditions (see below).  120 

Given the 75% identity and 95% similarity in amino acid sequences of murine and 121 

human LAL [29], the use of lal-/- mice has provided a valuable approach to study the cellular 122 

processes regulated by the enzyme. Lal-/- mice present with a massive accumulation of TG 123 

and CE in the liver, the spleen, the small intestine and the adrenals, which is associated to 124 

the loss of white (WAT) and brown adipose tissues (BAT) [30]. Despite the appearance of 125 

hepatic foamy lysosomes, lal-/- mice show an improved insulin sensitivity and glucose 126 

metabolism [31], paralleled by a shift of lipid storage from hepatocytes to Kupffer cells over 127 

time [30]. This profile mirrors the observations in hepatic biopsies of LAL deficient patients 128 

(discussed below) [11]. Moreover, hematopoietic stem cell transplantation, although limited by 129 

graft failure and severity of pre-transplant liver disease, was successfully used in patients with 130 
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Wolman disease [32, 33] to restore LAL enzymatic activity in circulating cells and in resident 131 

macrophages, thus improving growth and survival rate.  132 

 133 

Role of LAL in immune cell maturation and function 134 

LAL plays a crucial role in controlling cholesterol levels in immune cells. Cholesterol 135 

accumulation, as a consequence of ABCA1, ABCG1 and apolipoprotein E (apoE) 136 

deficiency, results in monocytosis, macrophage activation, increased antigen presentation 137 

[34] and adaptive immune response [35-37]. In agreement, lal-/- mice accumulate cholesterol 138 

in the lysosome and develop a myeloproliferative disorder, characterized by increased 139 

frequency of both circulating and splenic immature monocytes and neutrophils (Figure 2a, 140 

Key Figure; a simplify immune system overview is provided in Box 1). This is paralleled by 141 

increased infiltration of myeloid-derived suppressive cells (MDSCs) in several organs. 142 

Anemia, thrombocytopenia and decreased lymphopoiesis were also detected in these mice 143 

[38, 39].  144 

LAL-dependent hydrolysis of CE in macrophages provides the substrate for the 145 

synthesis of 25-hydroxycholesterol and 27-hydroxycholesterol, both endogenous ligands of 146 

LXR, thus promoting cholesterol efflux and contributing to an efficient efferocytosis (a critical 147 

process for the phagocytosis of apoptotic cells) (Figure 2b) [40]. Further, the 148 

immunometabolic function of LAL also extends to the ability to contribute FFA following CE 149 

and TG hydrolysis, for energetic purposes. Indeed, in macrophages, LAL was shown to be 150 

critical in generating precursor molecules for the synthesis of lipid mediators such as 151 

eicosanoids (Figure 2b) [41]. Moreover, anti-inflammatory M2 macrophages rely on LAL-152 

dependent neutral lipid lipolysis to provide FFA which are used for FAO (Figure 2b) [26]. 153 

These fatty acids can be either synthesized within the cells and then packaged into LD or, 154 

collected from extracellular sources such as lipoproteins via CD36. Of note, only LAL, and no 155 

other lipases (i.e. adipose triglyceride lipase, ATGL, or the hormone-sensitive lipase, HSL), 156 

has been implicated in the hydrolysis of endogenous and exogenous TG for energy supply 157 

purposes in macrophages [26].  158 

In parallel with the impact on macrophage function, LAL has been shown to be crucial for the 159 

acquisition of the memory phenotype of CD8+ T cells (Figure 2c) contributing to the rapid 160 

hydrolysis and release for mitochondrial oxidation of fatty acids de novo synthesized. This 161 

process has been proposed to support a futile cycle where lipogenesis prompted from 162 
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glycolysis-derived acetyl-CoA contributes to the storage of neutral lipids in close proximity of 163 

ER and lysosome where they are later released as free fatty acids to support cell energy 164 

demand [25]. This metabolic adaptation, where both the anabolic and catabolic machineries 165 

are active, may reflect the trait of memory cells, long-living quiescent cells that should rapidly 166 

re-activate and proliferate upon re-exposure to the antigen. By contrast, effector T cells (Teff) 167 

mainly engage fatty acid uptake [42], as demonstrated by CD36 upregulation, which might 168 

fuel a faster activation [25]. In this scenario, adipose tissue derived-FFA might potentially 169 

represent an energetic fuel of immune cells [43]; indeed, compared to T memory cells at other 170 

sites, memory pathogen-specific T cells resident in the visceral adipose tissue (VAT) possess 171 

a higher proliferative capacity which is fulfilled by increased FA uptake and mitochondrial 172 

oxidation [44]. This mechanism has also been shown to be crucial for mitochondrial oxidation 173 

of VAT resident Tregulatory cells (Treg) [45], but not for Tregs in other tissues or under 174 

pathological microenvironment, including the tumors [46], where glycolysis-driven lipogenesis 175 

appears to fuel FAO. These evidences might indicate that immune cells would shape their 176 

metabolic machinery depending on local nutrients availability thus suggesting that LAL activity 177 

might contribute to immune cells’ activation. Indeed, it has been shown that obesity and lipid 178 

accumulation induce lysosome biogenesis in adipose tissue macrophages (ATM) [47] and 179 

that lysosomal-derived TG hydrolysis is essential for both adipose tissue homeostasis [48] 180 

and ATM function. Of note, deficiency of LAL associates with altered levels of Treg in 181 

lymphoid organs (Figure 2c) thus corroborating the crucial role of the enzyme in the 182 

maintenance of cell survival [39]. 183 

Collectively, LAL plays a key role in immune cell biology as it couples intracellular lipid 184 

metabolism to cell function. This suggests that the modulation of its activity may represent a 185 

valuable therapeutic option for the treatment of diseases characterized by dysregulated 186 

immune responses. Is this the case also in humans when LAL is not active? 187 

 188 

Genetics of LAL deficiency  189 

More than 50 different mutations in the LIPA gene affecting LAL expression or activity 190 

have been described in humans to date [11]. Mutations can span the entire gene and include 191 

point mutations and frameshifts [49]. Since two out of the three amino acid residues 192 

responsible for the enzymatic activity (Ser 153, Asp 324 and His 353) are located in the C-193 

terminal region of the protein, almost all nonsense mutations result in complete LAL 194 
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deficiency when present on both alleles [50].According to the residual enzymatic activity, 195 

genetic LAL deficiency (LAL-D, OMIM 278000) can present with a different spectrum of 196 

severity, from lethal Wolman Disease (WD) to less severe Cholesteryl Ester Storage Disease 197 

(CESD).  198 

WD, an extremely rare and recessive disease (1 case every 1,000,000 subjects), 199 

characterized by a neonatal onset which leads to death within the first year of life, is caused 200 

by near absence of LAL. Consequently, the massive accumulation of CE and TG in the liver, 201 

spleen, adrenal glands, bone marrow and lymph nodes cause hepatosplenomegaly, adrenal 202 

calcification, anemia and thrombocytopenia, respiratory failure, vomiting, diarrhea, cachexia 203 

and failure to thrive. Liver histology shows steatosis and fibrosis, rapidly progressing to 204 

cirrhosis. A recent analysis of 35 cases estimated a median age at death of 3.7 months and a 205 

0.26 probability of survival past 6 months of age [51]. 206 

Cholesteryl ester storage disease (CESD) is characterized by a residual LAL activity 207 

usually within 1-12% of the normal range. About 50-60% of CESD cases are carriers of a 208 

splicing variant in the last nucleotide of exon 8 (c.894G > A, p.Ser275_Gln298del) at least on 209 

one allele. The mutation (referred to as E8SJM) causes the skipping of exon 8, generating an 210 

inactive LAL; however, a small percentage of correct splicing (<5%) still assures a residual 211 

activity. The frequency of this mutation was used to estimate the overall prevalence of CESD 212 

in the general population which is 1:200 to 1:420 in heterozygosity, while the occurrence of 213 

homozygosity/compound heterozygosity ranges between 1:40.000 to 1:175.000 [49, 52, 53]. 214 

CESD presents with a wide range of severity, with onset from infancy to adulthood. Clinically, 215 

the accumulation of lipids mainly in the liver and in macrophages throughout the body results 216 

in hepatomegaly and splenomegaly; mortality is usually due to liver failure or cardiovascular 217 

disease. Liver histology shows a peculiar microvescicular steatosis that can rapidly evolve to 218 

fibrosis and micronodular cirrhosis [54, 55]. Biochemically, almost all CESD patients present 219 

with increased plasma levels of transaminases, especially alanine aminotransferase, and 220 

dyslipidemia: elevated plasma levels of total and LDL-cholesterol are associated with reduced 221 

HDL-cholesterol and less frequently to hypertriglyceridemia [54-56]. 222 

Despite the reports of occurrence of anemia, thrombocytosis, and the accumulation of 223 

lipids also in the bone marrow and the lymph nodes, few data are available on the impact of 224 

LAL-D on immune response in humans. Very recently, the presence of secondary 225 

hemophagocytic lymphohistiocytosis (HLH) was described in WD case reports [57-63]. 226 
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HLH is an immune disorder frequently associated with inborn errors of metabolism, including 227 

other lysosomal storage disorders. Since HLH phenotype is overlapping with several other 228 

conditions, the diagnosis is performed by the presence of at least 5 of the following 8 criteria: 229 

fever, splenomegaly, cytopenia, hypertriglyceridemia or hypofibrinogenemia, 230 

hyperferritinemia, reduced NK cell activity, elevated soluble CD25 and the presence of 231 

hemophagocytosis in the bone marrow (giant, lipid-laden histiocytes with cytoplasmic cellular 232 

fragments) . In one of the WD cases with secondary HLH, a 2-month-old Native American 233 

female homozygous for the c.658C>T (p.P220S) mutation in the LIPA gene, a further analysis 234 

of the immunophenotype was performed: a significant reduction in the absolute count of B 235 

lymphocytes, CD4+ and CD8+ T lymphocytes was detected, suggesting a potential 236 

impairment in humoral and cell-mediated adaptive immune response [63]. Although being 237 

limited to a small number of sporadic cases, these reports on such a rare disease as WD 238 

suggest that genetic LAL-D affects the immune phenotype also in humans and pave the road 239 

for further evaluations.  240 

 241 

LAL as a therapeutic target beyond genetic LAL-D  242 

LAL enzyme replacement therapy  243 

In spite of the dramatic phenotypes of LAL-D patients described above, until recently 244 

no therapeutic options were available for WD patients, while CESD patients were usually 245 

treated with lipid-lowering agents to control dyslipidemia (see Box 2). The therapeutic 246 

scenario completely changed in late 2015, when sebelipase alfa, a recombinant human LAL 247 

protein (rhLAL) produced in egg whites of transgenic hens, was approved as enzyme 248 

replacement therapy (ERT) for LAL-D by the Food and Drug Administration and the European 249 

Medicines Agency [64]. As with other enzymes for ERT of lysosomal disorders, sebelipase 250 

alfa is a glycoprotein carrying M6P moieties. Since the M6P receptors are expressed on the 251 

membrane of several cell types, including hepatocytes and macrophages, sebelipase alfa is 252 

taken up by all these cells and transported to the lysosomal compartment, where it can 253 

correct the phenotype resulting from the genetic LAL-D [56]. Sebelipase alfa can be life-254 

saving for WD, as suggested by the results of an open trial on 9 WD newborns: after an initial 255 

infusion of 0.35 mg/kg, sebelipase alfa dose was progressively increased up to 5 mg/kg once-256 

weekly [65]. Six of the patients treated with sebelipase alfa have survived to age ≥12 months 257 

and five to ≥24 months, with a marked improvement in growth parameters and liver function. 258 
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These data are in striking contrast to an estimated 26% probability to survive past 6 months of 259 

age when left untreated (see above).  260 

The efficacy of sebelipase alfa has been tested also in CESD patients. In the Acid 261 

Lipase Replacement Investigating Safety and Efficacy (ARISE) trial (ClinicalTrials.gov number 262 

NCT01757184), 66 patients were treated with 1.0 mg/kg of sebelipase alfa bi-weekly for 20 263 

weeks, followed by an extension period of up to 130 weeks [56]. After 20 weeks of treatment, 264 

sebelipase reduced LDL-cholesterol by 28.4% and TG by 25.5%, with a concomitant increase 265 

of HDL-cholesterol (+19.6%). The treatment also resulted in a significant improvement in liver 266 

function: plasma alanine aminotransferase levels were reduced by up to 60% and hepatic fat 267 

by 32%, leading to a decrease of steatosis in 62% of treated patients. To what extent the 268 

treatment with sebelipase alfa could alter cardiovascular and hepatic consequences of LAL-D 269 

in the long term is presently unknown. The extension period of the ARISE trial is aimed also 270 

at investigating the effect of sebelipase alfa on fibrosis. Preliminary data by Goodman et al 271 

showed a regression of fibrosis of >1-stage in 12 out of 20 patients, no change in fibrosis 272 

severity in 6 patients, while worsening was observed in 2 patients [66].  273 

 274 

Evidence for LAL replacement therapy on immune cell function 275 

To date there are no studies which address the effect of ERT on the immune system of LAL-D 276 

patients. However, in a case of WD with secondary hemophagocytic lymphohistiocytosis, the 277 

treatment with sebelipase for 3 months resulted in the normalization of lymphocytes B cells’ 278 

levels, while no changes were observed in the T cells’ levels [63]. Most of the current 279 

evidence of the impact of LAL restoration on immune cells function, come from studies 280 

performed in mice. Reconstitution of hLAL activity in myeloid cells of lal−/− mice, achieved 281 

through a doxycycline-inducible transgenic system, was shown to ameliorate myelopoiesis in 282 

the bone marrow and to reduce systemic expansion of MDSCs. Myeloid hLAL expression 283 

inhibited the production of reactive oxygen species (ROS) from neutrophils and their tissue 284 

infiltration [67]. The observation that in vitro rhLAL treatment of lal-/- macrophages increased 285 

the expression of ABCA1 transporter, thus enhancing excess cholesterol efflux from the cell 286 

[21], suggests that this effect might depend on an ameliorated handling of intracellular 287 

cholesterol in immune cells. In agreement to this hypothesis, foamy macrophages were 288 

shown to take up rhLAL in the atherosclerotic plaque of ldl-r-/- treated mice, decreasing the 289 

lesion size by 50% when compared to controls [68]. Of note, mice developed anti-rhLAL 290 
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antibodies which however did not appear to inhibit LAL activity [68]; whether this immune 291 

activation might have also affected the functionality of other immune cells in the experimental 292 

setting used has not been investigated. 293 

Taken together, these observations point to the potential role of immune cell-derived LAL in 294 

restoring intracellular cholesterol homeostasis, correcting aberrant immuno-inflammatory 295 

response thus paving the road for considering LAL as a novel immunometabolic target. 296 

 297 

Concluding remarks and future perspectives 298 

An intimate communication exists between cell metabolism and immune function. The 299 

regulation of cellular lipid homeostasis is achieved by several, highly controlled, steps. LAL 300 

represents a key protein controlling the availability of FC and FFA, the building and energy 301 

blocks of the cells. Thus, targeting lipid metabolism in immune cells may offer a therapeutic 302 

option not only for the treatment of metabolic disorders such as dyslipidemia, but also could 303 

potentially rewire the function of the immune system. Restoring LAL activity via ERT not only 304 

improves metabolic parameters in LAL-D patients, but is associated, at least in experimental 305 

models, with the improvement of the immuno-inflammatory responses, characterized by the 306 

decrease of myeloid cell proliferation and activation, as a consequence of increased 307 

cholesterol efflux (Figure 3a), by the production of pro-resolving lipid mediators and involved 308 

in efferocytosis (Figure 3b), and by the boost of Treg and CD8+T memory cells oxidative 309 

metabolism (Figure 3c). Since the cellular uptake of sebelipase alfa requires the expression 310 

of the M6P receptor, translating this approach for immune purposes will be more effective in 311 

those cells where M6P is elevated (See Outstanding Questions). Most of the circulating 312 

leukocytes express the M6PR and, moreover, its expression has been reported to be 313 

upregulated approximately 4-fold on blood monocytes incubated with lipopolysaccharide [69] 314 

and on activated T cells [70]. These observations, together with data showing how modulation 315 

of lipid metabolism impacts on immune activities, offer the rationale to target LAL with ERT as 316 

a novel option for the treatment of immunometabolic diseases. 317 
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 530 
 531 

 TEXT BOXES 532 

 533 

BOX 1. Immune system overview. 534 

The immune system comprises a series of tissues, cells and molecules that protect the body 535 

from not self material and is classically divided in the innate and the adaptive arms. 536 

Granulocytes, monocytes, macrophages represent the key components of the innate arm 537 

while antigen presenting cells, B and T cells belong to the adaptive arm. 538 

Immune cells originate from hematopoietic stem cell precursor (HSP), self-renewing stem 539 

cells that can differentiate into any blood cell type, located in perivascular bone marrow 540 

niches [71]. HSP differentiate in MPPs (multipotent progenitors), that subsequently originate 541 

the CLPs (common lymphoid progenitors) and CMPs (common myeloid progenitors) (Figure 542 

box 1). Whereas CLPs migrate to the thymus to complete the maturation to T cells, NK cells 543 

or B cells, CMPs further differentiate to GMP (granulocyte-macrophage progenitor) or MKEP 544 

(megakaryocyte-erythrocyte progenitor) (Figure box 1). While MKEPs originate 545 
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megakariocytes and erythrocytes, the GMPs differentiate to granulocytes or monocytes that 546 

are released in the circulation. Myeloproliferative disorders are characterized by the 547 

overproduction of one type of blood immune cells, such as leukemias, while anemia, identifies 548 

diseases associated to decreased blood cells production. Hemophagocytic 549 

lymphohistiocytosis (HLH) is an example of myeloproliferative diseases characterized by the 550 

production of excessive activated macrophages (known as histocytes) and lymphocytes. 551 

Patients with HLH usually develop fever, enlarged liver or spleen, cytopenia, and neurological 552 

abnormalities within the first months or years of life. HLH may be inherited in an autosomal 553 

recessive manner or can be acquired. Other abnormalities in hematopoiesis include the 554 

increase of myeloid-derived suppressor cells (MDSC) under pathological conditions, which 555 

might occur in chronic infections or cancer. MDSC, exert a strong immunosuppressive 556 

function thus leading to the inhibition of T cell proliferation and activation.  557 

The different subsets of immune cells are recognized on the basis of the expression of 558 

peculiar patterns of superficial receptors that account for their specific functions, (Figure box 559 

1). Broadly, all leucocytes express CD45, with circulating myeloid cells expressing the CD11b 560 

marker, B lymphocytes expressing CD19 and CD20 and T lymphocytes expressing CD3. 561 

CD11b+ myeloid cells are then divided in granulocytes (CD11b+/Gr-1+ in mice 562 

CD11b+/CD16+ in humans) and monocytes (CD11b+/Ly6C+ and CD11b+/CD14+ in 563 

humans), that further differentiate to macrophages (CD11b+/CD68 in humans and mice while 564 

F4/80+ only in mouse) once migrated into tissue. These cells represent the innate arm of 565 

immune response as they activate in an unspecific manner upon the encounter with any not-566 

self antigen by its phagocytosis, cytokine and ROS (reactive oxygen species) production. By 567 

contrast, cells of the adaptive immune response need to be “instructed” by professional 568 

antigen presenting cells (as dendritic cells, characterized by CD11c expression). Lymphocyte 569 

T cells (CD3+) are further divided in CD4+ (T helper) and CD8+ (T cytotoxic). After activation, 570 

a pool of CD4+ and CD8+ T cells persists as memory cells that can be rapidly re-activated 571 

following encounter with the same not-self antigen. Paralleled to the effector arm, the 572 

adaptive immune response comprises a tolerogenic response carried by regulatory T cells 573 

(Treg), a subset of CD4+ T cells that maintain tolerance to self-antigen thus preventing 574 

autoimmunity and patrolling for exaggerated immune activation. 575 

 576 

BOX 2. Management of CESD with lipid-lowering agents  577 
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Since CESD is characterized by hypercholesterolemia associated with low high density 578 

lipoprotein (HDL)-cholesterol and increased TG, lipid-lowering agents (mainly statins) are 579 

usually prescribed to the patients. Statins are reported to have a variable effect on total and 580 

LDL-cholesterol, with some patients responding well while others not. The average reduction 581 

for TC is around 20-30% [55]. The effect of statins on liver disease in CESD is still debated. 582 

Indeed, one would expect that the statin-mediated inhibition of cholesterol biosynthesis in the 583 

liver, which leads to the SREBP2-mediated upregulation of LDL-R expression, might 584 

contribute to an increase of hepatic uptake of LDL with a consequent worsening of hepatic 585 

steatosis. Consistently, statins were not associated with transaminases normalization in 586 

CESD patients [55]. 587 

Some reports indicate the use of ezetimibe in CESD patients, but robust data are not yet 588 

available on its lipid-lowering efficacy alone or in combination with statins [55, 72]. However, 589 

in lal-/- mice, ezetimibe significantly reduces the amount of CE sequestered in the liver and 590 

small intestine, thus improving liver steatosis and suggesting that intestinal cholesterol 591 

absorption could also play a role in cellular lipid accumulation observed in LAL-D [73]. In line 592 

with this, an amelioration of liver disease was observed in young CESD patients treated with 593 

ezetimibe alone or in association with statins [72, 74, 75]. 594 

 595 

 FIGURE LEGENDS 596 

 597 

Figure 1. Role of LAL in cell lipid metabolism 598 

Lysosomal acid lipase (LAL) is responsible for the hydrolysis of cholesteryl esters (CE) and 599 

triglycerides (TG) carried by apoB-containing lipoproteins, as LDL and VLDL, which are 600 

internalized by receptor-mediated endocytosis. Generated free cholesterol (FC) and free fatty 601 

acids (FFA) are released into the cytosol, where their accumulation regulates their own 602 

synthesis and metabolism through the interaction with different transcription factors. The 603 

activation of autophagy also leads to the transport of lipid droplets (LD) to the lysosomes for 604 

the LAL-mediated hydrolysis and generation of FFA. This pathway is alternative to the 605 

classical mobilization of LD-stored FFA by neutral hydrolases. FFA could have different 606 

metabolic fates according to the cell type and the nutritional state. Cytosolic FFA can enter 607 

the fatty acid oxidation cascade for ATP production. In adipocytes, FFA are released in the 608 
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circulation or are converted to TG. In hepatocytes, TG are packed by MTP into VLDL and 609 

secreted. 610 

Abbreviation used: ABC, ATP-binding cassette; CE, cholesteryl esters; FAO, fatty acid 611 

oxidation; FC, free cholesterol; FFA, free fatty acids; LD, lipid droplets; LDL, low density 612 

lipoproteins; LDL-r, LDL-receptor; LXRs, liver X receptors; MTP, microsomal transfer protein; 613 

SREBPs, sterol-regulatory element binding proteins; TG, triglycerides. 614 

 615 

Figure 2, Key Figure. Consequences of LAL deficiency in immune cells 616 

LAL deficiency (LAL-D) (a) promotes excessive proliferation of myeloid cells and impaired 617 

maturation of monocytes and neutrophils leading to increased circulating levels of MDSC 618 

(myeloid-derived suppressor cells), (b) impairs macrophage polarization toward M2, 619 

efferocytosis and eicosanoids production, (c) decreases lymphopoiesis, the frequency of 620 

CD8+ T cells memory cells and of Tregulatory (Treg) cells in lymphoid organs.   621 

 622 

Figure 3. Potential effects of LAL replacement therapy on immune functions 623 

Recombinant LAL is delivered to the lysosomes via the mannose 6-phosphate receptor 624 

(M6PR). Enhanced LAL activity increases the flux into the cytosol of free cholesterol (FC), 625 

triggering the activation of the LXR pathway, while free fatty acids (FFA) fuel mitochondrial 626 

FAO. (a) In macrophages, this results in increased cholesterol efflux, a mechanism that has 627 

been shown to dampen excessive myeloid proliferation and dyslipidemia. (b) In addition, LAL-628 

dependent activation of the LXR pathway might improve efferrocytosis and promote 629 

macrophage polarization toward anti-inflammatory M2 phenotype. All these mechanisms 630 

could protect toward atherosclerosis development. (c) Fueling FAO in CD8+ memory T cells 631 

and T regulatory cell would represent a potential approach to modulate adaptive immune 632 

responses in the context of auto-immune disorders and cancer.  633 

 634 

  635 
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 Glossary 636 

 637 

Antigen presentation: A process consisting in foreign antigen fragmentation and processing 638 

by phagocytes, usually macrophages and dendritic cells, followed by the binding of peptides 639 

to the major histocompatibility complex (MHC), and transport to the surface of the cell, where 640 

it can be recognized by the T cell receptor or the B cell receptor. 641 

Apolipoprotein E (apoE): An apolipoprotein that plays a key role in cholesterol transport 642 

throughout the body. Liver-derived apoE associate to lipoproteins and promotes the 643 

catabolism of very-low density lipoprotein (VLDL) and low density lipoprotein (LDL); myeloid 644 

cell’ derived apoE is involved in cholesterol efflux from the cells.  645 

ATP-binding cassette transporters A1 and G1 (ABCA1, ABCG1): Transmembrane ATP-646 

dependent lipid transporters which promote the efflux of cellular cholesterol and phospholipids 647 

to extracellular acceptors, as high-density lipoproteins (HDL), apolipoprotein A-I or 648 

apolipoprotein E. 649 

Autophagy: A regulated process used by the cell for degradation and recycling of 650 

unnecessary or altered cellular components. It usually consists in the formation of double-651 

membraned vesicle, the autophagosome, that fuses with lysosomes. Three forms of 652 

autophagy commonly exist: macroautophagy, microautophagy, and chaperone-mediated 653 

autophagy. 654 

Cluster of differentiation 36 (CD36): A glycosylated transmembrane protein which belongs 655 

to the class B scavenger receptor family. It is expressed on the surface of several cell types 656 

and it is a multifunctional receptor, since it recognizes modified phospholipids, fatty acids and 657 

proteins containing thrombospondin-homolog domains. Oxidized LDL, which carry negatively 658 

charged phospholipids, are also recognized and internalized by CD36. 659 

Glycolysis: A sequence of enzyme-catalyzed reactions that converts glucose into pyruvate. 660 

Hemophagocytic lymphohistiocytosis (HLH): A rare but potentially fatal disease where 661 

phenotypically normal histiocytes and lymphocytes are overactive. This disease commonly 662 

appears in infancy and can have a genetic base or be secondary to other conditions such as 663 

LAL deficiency. 664 

Fatty acid oxidation (FAO): The catabolic process by which fatty acids are broken down to 665 

generate acetyl-CoA. 666 
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Futile cycle: A process that occurs when two metabolic pathways run simultaneously in 667 

opposite directions and have no overall effect other than to dissipate energy in the form of 668 

heat. In the context of immune cells, this term has been used to indicate the concomitant 669 

presence of the anabolic and catabolic pathways. 670 

Hepatic steatosis: A pathological condition characterized by excess lipid accumulation in the 671 

liver. Two types of steatosis are reported: the alcoholic liver disease and non-alcoholic fatty 672 

liver disease (NAFLD), which usually develops as a complication of diabetes and obesity. 673 

Lipid droplets (LD): Cytosolic bodies that act as intracellular stores of fatty acids and 674 

cholesterol in the form of neutral lipids. These are directly hydrolyzed in the cytosol by neutral 675 

lipases or are routed to the lysosomes by autophagy to meet energy requirements in the cell. 676 

Lipoproteins: Complex particles made of a central core of esterified cholesterol and 677 

triglycerides surrounded by free cholesterol, phospholipids and apolipoproteins. They allow 678 

the transport of water-insoluble lipids and are classified according to their density and 679 

composition into: chylomicrons, very-low density lipoproteins (VLDL), intermediate density 680 

lipoproteins (IDL), low density lipoproteins (LDL), high density lipoproteins (HDL) and 681 

lipoprotein (a) (Lp(a)). VLDL and LDL contain apolipoprotein B as the main protein component 682 

and their role is to deliver lipids from the liver to peripheral tissues. On the contrary, HDL, 683 

whose main protein component is apolipoprotein A-I, are the vehicles for the so-called 684 

reverse transport of cholesterol from peripheral tissues to the liver. 685 

Liver X receptor (LXR): Nuclear receptor family of transcription factors that are important 686 

regulators of cholesterol, fatty acid, and glucose homeostasis. Two isoforms of LXR have 687 

been identified: LXRα and LXRβ. While LXRβ is ubiquitously expressed, LXRα is expressed 688 

mainly in the liver, but is also found in the kidney, intestine, fat tissue, macrophages, lung, 689 

and spleen. LXRα and LXRβ form heterodimers with the 9-cis retinoic acid receptor (RXR), 690 

following the presence of an LXR agonist (such as oxysterols). LXR controls the transcription 691 

of genes that regulate lipids and cholesterol metabolism thus pinpoint their crucial role in cell 692 

metabolism and metabolic diseases. 693 

Lymphopoiesis: The generation of lymphocytes from a hematopoietic cell precursor. B cell 694 

lymphopoiesis is completed in the bone marrow, whereas T cell lymphopoiesis occurs in the 695 

thymus. 696 

Lysosomal acid lipase (LAL): Enzyme responsible for the hydrolysis of cholesteryl esters 697 

and triglycerides in the lysosomes. 698 
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Mannose-6-phosphate receptor (M6PR): Member of the P-type lectin family involved in the 699 

transport of acid hydrolases from the Golgi to the lysosomes. In the Golgi apparatus, acid 700 

hydrolases are modified with the addition of mannose-6-phoshate (M6P) residues, which 701 

allow their recognition by the M6PR on the surface of lysosomes. M6PR is also expressed on 702 

the surface of several cell types, favoring the cellular uptake of proteins carrying M6P 703 

residues. 704 

Myelopoiesis: The process of blood cells development from a myeloid progenitor cell. 705 

Myeloid-derived suppressor cells (MDSCs): A heterogeneous population of cells defined 706 

by their myeloid origin, immature state and ability to potently suppress T cell responses. 707 

Oxidative phosphorylation (OXPHOS): The metabolic process by which ATP is generated 708 

as the result of the transfer of electrons by a series of electron transport proteins in the 709 

mitochondria. 710 

Sterol element-binding proteins (SREBPs): A family of transcription factors belonging to 711 

the basic-helix-loop-helix leucine zipper class and consisting of two genes, the SREBF1 and 712 

SREBF2, that encode for three different proteins: SREBP1a, SREBP1c and SREBP2. SREB 713 

proteins regulate the transcription of genes involved in cholesterol biosynthesis and uptake, 714 

and fatty acid biosynthesis. 715 

T lymphocytes: A subset of white blood cell that play a central role in adaptive immunity. 716 

They can be differentiated into CD4+ helper T cells that contribute immune response by 717 

secretion of cytokines, CD4+ regulatory T cells that maintain immunological tolerance, and 718 

CD8+ cytotoxic T cells that kill virus-infected and tumor cells and are also implicated in 719 

transplant rejection. 720 

Transaminases: Hepatic enzymes that catalyze a transamination reaction between an amino 721 

acid and an α-keto acid required for amino acid synthesis. Increased transaminanses plasma 722 

levels mark liver or cardiac damage. 723 

Tricarboxylic acid cycle (TCA): A series of chemical reactions used to generate adenosine 724 

triphosphate (ATP) via the oxidation of acetyl-CoA derived from carbohydrates, fats, and 725 

proteins. 726 

Warburg Effect: A phenomenon characterized by increased rate of glucose uptake in which 727 

cells produce energy through increased aerobic glycolysis and preferential production of 728 

lactate, even in the presence of oxygen. 729 


