Notizen

Thermoelectric Power of the Molten Systems (Cu, Me)Cl and (Cu, Me)Br (Me = Na, K, Rb, Cs)

Elisabetta Pezzati, Aldo Magistris and Alberto Schiraldi

Centro di studio per la termodinamica et elettrochimica dei sistemi salini fusi e solidi del CNR c/o Istituto di Chimica Fisica, Università di Pavia (Italy)

(Z. Naturforsch. 30 a, 388-390 [1975]; received January 22, 1975)

The initial thermoelectric power of the molten systems (Cu, Me) Cl and (Cu, Me) Br (Me=Na, K, Rb, Cs) was determined using copper electrodes. The results are compared with previous results obtained from the systems (Cu, Me) I and (Ag, Me) X (X=Cl, Br, I).

The investigation about the initial thermoelectric power of the molten systems (Ag, Me)X and (Cu, Me)I (Me = Na, K, Rb, Cs; X = Cl, Br, I), reported in previous papers¹, is now extended to the binaries (Cu, Me)Cl and (Cu, Me)Br.

Measurements are carried out in thermocells with copper electrodes and experimental data are worked out by means of the function $\psi \equiv F(\varepsilon - {}^{\theta}\varepsilon) - R \ln x_{\rm CuX}$, where ε and ${}^{\theta}\varepsilon$ are the thermoelectric powers of the mixture and of the pure CuX, respectively, F is the Faraday constant, and $R \ln x_{\rm CuX}$ is the ideal partial configurational entropy².

Experimental

The measurements were carried out under Argon atmosphere using a previously described apparatus¹.

	Cu	Cl + NaCl	Cu	aCl + KCl	Cu	Cl + RbCl	Cu	Cl + CsCl
x_{CuCl}	-8	ψ	-ε	ψ	-ε	ψ	- ε	ψ
1.00	440	_	440	_	440	-	440	-
0.80	410	1.14	357	2.36	370	2.06	365	2.18
0.60	405	1.83	350	3.09	352	3.05	346	3.19
0.40	410	2.51	360	3.67	342	4.08	340	4.08
0.20	415	3.77	378	4.63	350	5.27	345	5.39
0.10	440	4.57	403	5.43	373	6.12	355	6.10
0.05	460	5.49	430	6.10	410	6.60	400	6.80
	Cul	Br + NaBr	Cu	Br + KBr	Cul	Br + RbBr	Cu	Br + CsBr
xCuBr	- ε	ψ	-ε	ψ	- ε	ψ	-ε	ψ
1.00	494	_	494	_	494		494	_
0.80	405	2.50	400	2.62	390	2.85	388	2.89
0.60	377	3.72	350	4.34	350	4.34	340	4.57
0.40	380	4.45	353	5.07	335	5.80	329	5.63
0.20	430	4.67	390	6.00	402	6.50	360	6.29
0.10	485	4.78	450	5.59	470	6.00	420	6.28
0.05	520	5.36	510	5.59	510	5.60	480	6.28

ROC/RIC CuCl and CuBr, and Merck p. a. alkali chlorides and bromides were employed. The copper salts were dried by keeping them several days under vacuum in the cell. Usual precautions were taken for the alkali halides.

Results and Discussion

The pure CuCl and CuBr experimental data agree with those by Kvist et al.³ and by Nichols and Langford ⁴ and are fitted by the following linear relations:

CuCl:
$$-{}^{0}\varepsilon(\mu V/\text{deg}) = 451 - 0.016 t (^{\circ}\text{C})$$
, (1)

CuBr:
$$-{}^{0}\varepsilon(\mu V/\text{deg}) = 452 + 0.056 t ({}^{\circ}\text{C})$$
. (2)

As for the mixtures, Tables 1 and 2 report the experimental ε and the calculated ψ values at the melting temperature of the pertinent sodium halide (801 °C for the chloride containing and 750 °C for the bromide containing mixtures). The ε values are reproducible within 1-2% and slightly depend on temperature. For 1000 K they are plotted in Figs. 1 and 2.

A picture of the ψ functions is given in Figure 3. According to our usual procedure, ψ^0 (limiting value of ψ obtained by graphical extrapolation for $x_{\text{CuX}} \rightarrow 0$) is related to the cationic heats of transport in the pure molten salts, ${}^{0}Q_{\text{Cu}^+}^*$ and ${}^{0}Q_{\text{Me}^+}^*$, through the expression:

$$\psi^{0} = ({}^{0}Q^{*}_{\mathrm{Cu}^{+}} - {}^{0}Q^{*}_{\mathrm{Me}^{+}})/T - (S^{\mathrm{e}}_{\mathrm{Cu}^{+}})_{0}$$
(3)

Tab. 1 and 2. Values of $\varepsilon(\mu V/\text{deg})$ and ψ (entropic units) for various compositions of the systems (Cu,Me) Cl and (Cu,Me)Br, taken at T=801 °C and T=750 °C, respectively.

Reprint requests to Elisabetta Pezzati, Istituto di Chimica Fisica della Università di Pavia, Viala Taramelli, 1-27100 Pavia, Italien.

Notizen

Fig. 2. \$750 °C vs xCuBr.

where $(S_{Cu^+}^e)_0$ is the partial excess entropy at $x_{CuX} = 0$. The obtained ψ^0 values increase in the order Na, K, Rb, Cs, independently of the anion, and are reported in Table 3.

Tab. 3. ψ° values (entropic units) obtained by means of graphical extrapolations of ψ vs x_{CuX} plots.

Me	ψ° (Cu, Me) Cl	ψ° (Cu, Me) Br	ψ^{o} (Cu, Me) I	
Na	5.8	5.6	6.0	
K	6.5	6.3	7.1	
Rb	6.8	6.4	7.4	
Cs	7.2	6.6	7.5	

Fig. 3. ψ vs composition for the systems (Cu, Me) X.

The quantity ${}^{0}Q_{Cu^{+}}^{*}$ in (3) can be approximately obtained from the corresponding ${}^{0}\varepsilon$ value, when Pitzer's relation ⁵ for the partial ionic entropy is employed. The values obtained in the above way (3.2; 3.6; 3.3 kcal/mole for CuCl, CuBr and CuI respectively) allow to draw from (3) a value of -3 ± 1 kcal/mole for the quantities $[{}^{0}Q_{Me^{+}}^{*} + T(S_{Cu^{+}}^{e})_{0}]$.

Aside from experimental uncertainties, the differences between the above values and the ${}^{0}Q_{Me^{+}}^{*}$'s (obtained from ε measurements on pure molten alkali halides with halogen electrode thermocells 6,7 and lying in the interval ± 1.5 kcal/mole) may be attributed either to the unknown excess entropy term or to the uncertainty affecting the evaluation of ${}^{0}Q_{Cu^{+}}^{*}$ and ${}^{0}Q_{Me^{+}}^{*}$ through Pitzer's relation ⁸. It was already suggested in previous papers that, should ψ behave ideally (dashed straight lines in Fig. 3), the following conditions would be valid in the whole composition range:

$$S_{Cu^{+}}^{e} = 0; \quad {}^{0}Q_{i}^{*} = Q_{i}^{*}; \quad t_{i} = x_{i}$$
 (4)

where Q_i^* and ${}^0Q_i^*$ are the heats of transport in the mixture and in the pure halide, respectively, t_i represents the ionic Hittorf transport number (referred to the anion) and x_i is the ionic fraction of the i-th ionic species.

- a) C. Sinistri and E. Pezzati, Z. Naturforsch. 25 a, 893 [1970]. b) E. Pezzati, Z. Naturforsch. 25 a, 898 [1970].
 c) E. Pezzati, A. Schiraldi, and A. Magistris, Z. Naturforsch. 28 a, 1334 [1973].
- ² C. Sinistri, Z. Naturforsch. 21a, 753 [1966].
- ³ A. Kvist, A. Randsalu, and J. Svenson, Z. Naturforsch. 21 a, 184 [1966].

With respect to the ideal behaviour, the function exhibits: (a) small positive (for $x_{CuX} > 0.5$) or small negative (for $x_{CuX} < 0.5$) deviations in the case of mixtures containing chlorides, (b) larger positive deviations in the case of mixtures containing bromides or iodides.

Since a quite similar picture was already obtained for the systems (Ag, Me)X, it may be suggested as a general conclusion that in the mentioned series of molten mixtures silver can be substituted by copper without any significant variation of the transport properties.

- ⁴ A. R. Nichols Jr. and C. T. Langford, J. Electrochem. Soc. 107, 10, 842 [1960].
- ⁵ K. S. Pitzer, J. Phys. Chem. 65, 147 [1961].
- ³ W. Fischer, Z. Naturforsch. 21 a, 281 [1966].
- ⁷ R. Connan, J. Dupuy, J. Leonardi, and G. Poillerat, J. Chim. Phys. Special issue, Oct. 1969, p. 64.
- ⁸ C. Wagner, Progr. Solid State Chem. 7, 1 [1972] (see pp. 28, 29).

390