Table of Contents

1.	General Conditions	page S2
2.	Reagents	page S2
3.	Instruments	page S2
4.	Synthesis of porphyrin complexes	page S2
5.	Synthesis of aziridines	page S5
6.	Synthesis of oxazolidin-2-ones	page S11
7.	Recycle of the catalyst $Ru(TPP)(NAr)_2$ (Ar = 3,5(CF ₃) ₂ C ₆ H ₃)	page S16
8.	¹ H, ¹³ C and ¹⁹ F NMR spectra of reported compounds	page S17
9.	ESI-MS spectra of reported compounds	page S29
10.	References	page S35

1. General Conditions

Unless otherwise specified, all the reactions were carried out under nitrogen atmosphere employing standard Schlenk techniques and magnetic stirring. Anhydrous solvents (acetonitrile, benzene, chloroform, decaline, DMF, dichloromethane, *n*-hexane, methanol) were purified and dried by using standard procedures and stored under nitrogen.

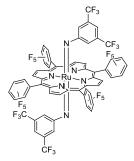
2. Reagents

3,5-*Bis*(trifluoromethyl)phenyl azide,^[1] Fe(F₂₀TPP)Cl,^[2] Fe(F₂₀TPP)OMe,^[3] Ru(TPP)CO),^[4] Ru(TMP)CO,^[5] Ru(OEP)CO,^[6] Ru(TPP)(py)₂,^[7] [Ru(TPP)OCH₃)₂]O,^[8] Ru(TPP)(NAr)₂ (Ar = 3,5(CF₃)₂C₆H₃)^[9] and Ru(TPP)(NAr')₂ (Ar' = 4(*t*Bu)C₆H₄)^[10] were synthesized by methods reported in literature or by using minor modifications of them. Aziridines were synthesized by modifying the procedure reported by L.-N. He^[11] and analytical data were in accordance with those reported in literature. All the other starting materials were commercial products and used as received. Analytical data of oxazolidinones **1A-10A** and **15A** were in accordance with reported data.

3. Instruments

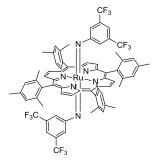
NMR spectra were recorded at room temperature either on a Bruker Avance 300-DRX, operating at 300 MHz for ¹H, at 75 MHz for ¹³C and at 282 MHz for ¹⁹F or on a Bruker Avance 400-DRX spectrometers, operating at 400 MHz for ¹H, at 100 MHz for ¹³C and 376 MHz for ¹⁹F. Chemical shift (ppm) are reported relative to TMS. The ¹H NMR signals of the compounds described in the following were attributed by 2D NMR techniques. Assignments of the resonance in ¹³C NMR were made by using the APT pulse sequence, HSQC and HMBC techniques. Infrared spectra were recorded on a Varian Scimitar FTS 1000 spectrophotometer. UV/Vis spectra were recorded on an Agilent 8453E instrument. Mass spectra were recorded in the analytical laboratories of Milan University.

4. Synthesis of porphyrin complexes


General procedure for the synthesis of ruthenium imido complexes^[9]

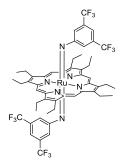
3,5-*Bis*(trifluoromethyl)phenyl azide $(2.54 \times 10^{-4} \text{ mol})$ was added to a benzene (20.0 mL) suspension of Ru(porphyrin)(CO) (8.46 x 10⁻⁵ mol) and the resulting dark mixture was refluxed for

4 hours. After observing the complete Ru(porphyrin)(CO) consumption by TLC analysis (*n*-hexane/CH₂Cl₂ = 1:1), the solution was concentrated to about 5.0 mL and *n*-hexane (20.0 mL) was added. A crystalline violet solid was collected by filtration and dried *in vacuo*.

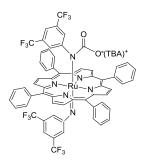

All the complexes, except Ru(TMP)(NAr)₂ (Ar = $3,5(CF_3)_2C_6H_3$) which was purified by chromatography (alumina 0.063-0.200 µm, from *n*-hexane to *n*-hexane/CH₂Cl₂ = 7:3), were directly obtained in pure form.

Synthesis of $Ru(F_{20}TPP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃).

The complex was obtained with 55% yield. The very low solubility of this compound in typical deuterated solvents prevented the NMR spectroscopic analysis and the structure was assigned by IR and mass spectrometry. IR (ATR): v = 1980, 1520, 1493, 1365, 1278, 1171, 1130, 1080, 1064, 984, 946, 885, 763 cm⁻¹. Elemental analysis calcd (%) for C₆₀H₁₄F₃₂N₆Ru: C, 47.17; H, 0.92; N, 5.50. Found: C, 48.50; H, 1.05; N, 5.05. *m/z* (ESI) 1568.94 [M+K⁺].


Synthesis of $Ru(TMP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃).

The complex was obtained with 70% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.64 (s, 8H, H_β), 7.27 (s, 8H, Ar), 6.38 (s, 2H, Ar_{CF3-para}), 3.07 (s, 4H, Ar_{CF3-ortho}), 2.62 (s, 12H, CH_{3para}), 1.71 ppm (s, 24H, CH_{3ortho}). ¹³C NMR (100 MHz, CDCl₃): δ 142.0, 138.2, 138.0, 137.98, 130.5, 127.8, 120.6, 119.9, 117.5, 116.2, 21.40, 21.39, 20.6 ppm; CF₃ signals and two quaternary carbons were not detected. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.91 ppm. IR (ATR): ν = 1367, 1276, 1174, 1132, 1012, 996, 797

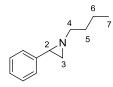

cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (log_{ϵ}) 423 (6.01), 527 (4.69), 628 (4.40), 657 nm (4.49). Elemental analysis calcd (%) for C₇₂H₅₈F₁₂N₆Ru: C, 64.71; H, 4.37; N, 6.29. Found: C, 65.02; H, 4.55; N, 5.93. *m/z* (ESI) 1337.56 [M+H⁺].

Synthesis of $Ru(OEP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃)

The complex was obtained with 60% yield. ¹H NMR (300 MHz, CDCl₃): δ 10.23 (s, 4H, H_{meso}), 6.36 (s, 2H, Ar_{CF3-para}), 4.09 (q, 16H, *J*=7.6 Hz, CH₂), 2.22 (s, 4H, Ar_{CF3-ortho}), 1.93 ppm (t, 24H, *J*=7.6 Hz, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 155.5, 151.9, 139.7, 128.9 (q, *J_{CF}*=33.8 Hz, C-CF₃), 128.7, 122.4 located by ZG-DC sequence (q, *J_{CF}*=278,6 Hz, CF₃), 117.4 (q, *J_{CF}*=3.6 Hz, C-Ar_{CF3}), 117.0, 99.6, 19.9, 18.8 ppm. ¹⁹F NMR (282 MHz, CDCl₃): δ -64.0 ppm (s, 12F, CF₃). IR (ATR): v= 2969, 2933, 2873, 1458, 1450, 1360, 1274, 1167, 1129, 1058, 1018, 992, 960, 886, 846 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (log_{*E*}) 397 (5.27), 516 (4.06), 538 (4.08), 585 nm (3.67). Elemental analysis calcd (%) for C₅₂H₅₀F₁₂N₆Ru: C, 57.40; H, 4.63; N, 7.72. Found: C, 57.95; H, 4.85; N, 7.44. *m/z* (ESI) 1088.23 [M].

Synthesis of complex Ru(TPP)(NAr)(ArNCOO⁻NBu₄⁺) (Ar = $3,5(CF_3)_2C_6H_3$) (16)

In a 100 mL glass liner equipped with a screw cap and a glass wool, tetrabutyl ammonium chloride (120.0 mg, 4.32×10^{-4} mol) were added to a benzene (15.0 mL) solution of Ru(TPP)(NAr)₂ (100.0 mg, 8.64 × 10⁻⁵ mol). The reaction mixture was cooled with liquid nitrogen and the flask was transferred into a stainless-steel autoclave, three vacuum-nitrogen cycles were performed and 0.6 MPa of CO₂ was charged at room temperature. The autoclave was placed in a preheated oil bath at 100°C and stirred for 6 h, then it was cooled at room temperature and slowly vented. The solvent


was evaporated to dryness and the crude was washed with H₂O (3 x 10.0 mL) in order to remove excess of TBACl. Toluene (20.0 mL) was added to the solid and the suspension was refluxed for removing water as an azeotropic mixture. The toluene suspension was evaporated to dryness and the solid resulted to be a mixture of different ruthenium species containing **16** as revealed by the ESI-MS analysis. The ¹H NMR spectroscopy in CD₃OD disclosed the presence of paramagnetic species and the IR (ATR) spectrum showed the C=O stretching at 1604 cm⁻¹. *m/z* (ESI) 242.48 [M⁺]; 1212.29 [M⁻]. Unfortunately, any attempt to isolate **16** in a pure form have failed up to now.

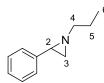
5. Synthesis of aziridines

General procedure^[11]

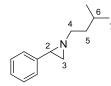
A distilled methylene chloride (40.0 mL) solution of dimethyl sulphide (2.00×10^{-1} mol) was placed in an ice-bath and 10.2 mL of bromine (2.00×10^{-1} mol), dissolved in 40.0 mL of distilled methylene chloride, was added dropwise over 45 minutes during which, the formation of light orange crystals of bromodimethyl sulfonium bromide was observed. The obtained solid was collected by filtration, washed with 150.0 mL of cold diethyl ether, dried and dissolved in 160.0 mL of acetonitrile. Then, the desired styrene (2.00×10^{-1} mol) was added dropwise over 30 minutes to the solution placed in an ice-bath. The resulting mixture was stirred for 10 minutes and the so-formed white solid was collected by filtration, washed several times with cold acetonitrile and dried *in vacuo*. The white crystals of styrene sulphonium bromide (8.62×10^{-3} mol) were suspended in 40.0 mL of water and 20.00 mL of water solution of desired amine (4.30×10^{-2} mol) was added dropwise over 25 minutes. The resulting mixture was stirred overnight and then 40.0 mL of saturated brine was added. The solution was extracted with diethyl ether (3×20.0 mL), the combined organic phases were dried over Na₂SO₄ and the solvent was evaporated to dryness under a reduced pressure. The crude was purified by flash chromatography (silica gel, 60 µm, *n*-hexane/AcOEt = 8:2).

Synthesis of 1-butyl-2-phenylaziridine

The general procedure for the synthesis of aziridines was followed using styrene and butyl amine as reagents to obtain a yellowish oil (60% yield). The collected data are in accordance with those

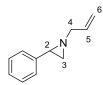

reported in literature.^[11] ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.12 (m, 5H, Ar), 2.45 (dt, 1H, ²*J*=11.5 Hz, *J*=7.3 Hz, H⁴), 2.28 (dt, 1H, ²*J*=11.5 Hz, *J*=7.3 Hz, H⁴), 2.23 (dd, 1H, *J*=6.4, 3.2 Hz, H²), 1.83 (d, 1H, *J*=3.2 Hz, H³), 1.59 (d, 1H, *J*=6.5 Hz, H³), 1.55 (m, 2H, H⁵), 1.35 (m, 2H, H⁶), 0.88 ppm (t, 3H, *J*=7.3 Hz, H⁷).

Synthesis of 1-ethyl-2-phenylaziridine

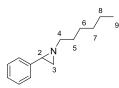

The general procedure for the synthesis of aziridines was followed using styrene and ethylamine as reagents to obtain a yellowish oil (20% yield). The collected data are in accordance with those reported in literature.^[11] ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.12 (m, 5H, Ar), 2.42 (q, 2H, *J*=7.1 Hz, H⁴), 2.27 (dd, 1H, *J*=6.4, 3.3 Hz, H²), 1.87 (d, 1H, *J*=3.2 Hz, H³), 1.62 (d, 1H, *J*=6.5 Hz, H³'), 1.19 ppm (t, 3H, *J*=7.1 Hz, H⁵).

Synthesis of 1-propyl-2-phenylaziridine

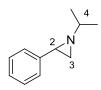
The general procedure for the synthesis of aziridines was followed using styrene and propylamine as reagents to obtain a yellowish oil (21% yield). The collected data are in accordance with those reported in literature.^[11] ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.19 (m, 5H, Ar), 2.48 (dt, 1H, ²*J*=11.5 Hz, *J*=7.5 Hz, H⁴), 2.30 (m, 2H, H⁴' and H²), 1.90 (d, 1H, *J*=3.2 Hz, H³), 1.65 (m, 3H, H^{3'} and H⁵), 0.97 ppm (t, 3H, *J*=7.4 Hz, H⁶).


Synthesis of 1-isoamyl-2-phenylaziridine

The general procedure for the synthesis of aziridines was followed using styrene and isoamylamine as reagents to obtain a yellowish oil (68% yield). The collected data are in accordance with those reported in literature.^[12] ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.31 (m, 4H, Ar), 7.29-7.24 (m, 1H,


Ar), 2.61-2.50 (m, 1H, H⁴), 2.48-2.37 (m, 1H, H⁴[']), 2.35 (dd, 1H, *J*=6.5, 3.3 Hz, H²), 1.94 (d, 1H, *J*=3.1 Hz, H³), 1.77 (heptet, 1H, *J*=6.6 Hz, H⁶), 1.70 (d, 1H, *J*=6.5 Hz, H³[']), 1.65-1.55 (m, 2H, H⁵), 0.99 ppm (dd, 6H, *J*=6.9 Hz, ⁴*J*=1.6 Hz, H⁷).

Synthesis of 1-allyl-2-phenylaziridine

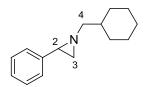

The general procedure for the synthesis of aziridines was followed using styrene and allylamine as reagents to obtain a yellowish oil (60% yield). The collected data are in accordance with those reported in literature.^[13] ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.18 (m, 4H, Ar), 5.96 (ddd, 1H, *J*=22.4, 10.7, 5.5 Hz, H⁵), 5.22 (d, 1H, *J*=17.2 Hz, H^{6trans}), 5.10 (d, 1H, *J*=10.4 Hz, H^{6cis}), 3.14 (dd, 1H, ²*J*=14.3 Hz, *J*=5.4 Hz, H⁴), 2.98 (dd, 1H, ²*J*=14.2 Hz, *J*=5.4 Hz, H^{4'}), 2.35 (dd, 1H, *J*=6.4, 3.4 Hz, H²), 1.93 (d, 1H, *J*=3.3 Hz, H³), 1.71 ppm (d, 1H, *J*=6.5 Hz, H^{3'}).

Synthesis of 1-hexyl-2-phenylaziridine

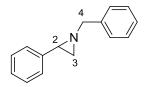
The general procedure for the synthesis of aziridines was followed using styrene and hexylamine as reagents to obtain a yellowish oil (72% yield). The collected data are in accordance with those reported in literature.^[14] ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.05 (m, 5H, Ar), 2.46 (dt, 1H, ²*J*=11.5 Hz, *J*=7.3 Hz, H⁴), 2.28 (dt, 1H, ²*J*=11.5 Hz, *J*=7.3 Hz, H⁴), 2.26 (dd, 1H, *J*=6.4, 3.2 Hz, H²), 1.85 (d, 1H, *J*=3.2 Hz, H³), 1.62 (d, 1H, *J*=6.3 Hz, H³), 1.60 (m, 2H, H⁵), 1.35 (m, 2H, H⁶), 1.31 (m, 4H, H⁷ and H⁸), 0.86 ppm (t, 3H, *J*=6.9 Hz, H⁹).

Synthesis of 1-isopropyl-2-phenylaziridine

The general procedure for the synthesis of aziridines was followed using styrene and isopropylamine as reagents to obtain a yellowish oil (21% yield). The collected data are in

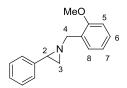

accordance with those reported in literature.^[11] ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.18 (m, 5H, Ar), 2.34 (dd, 1H, *J*=6.4, 3.3 Hz, H²), 1.89 (d, 1H, *J*=3.3 Hz, H^{3'}), 1.66 (d, 1H, *J*=6.6 Hz, H³), 1.61 (m, 1H, H⁴), 1.19 (d, 3H, *J*=1.4 Hz, CH₃), 1.17 ppm (d, 3H, *J*=1.3 Hz, CH₃).

Synthesis of 1-cyclopentyl-2-phenylaziridine

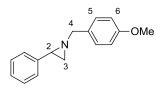

The general procedure for the synthesis of aziridines was followed using styrene and cyclopentylamine as reagents to obtain a yellowish oil (81% yield). The collected data are in accordance with those reported in literature.^[15] ¹H NMR (300 MHz, CDCl₃): δ 7.26-7.24 (m, 4H, Ar), 7.18-7.15 (m, 1H, Ar), 2.34 (dd, 1H, *J*=6.5, 3.3 Hz, H²), 2.09-2.00 (m, 1H, H⁴), 1.81 (d, 1H, *J*=3.1 Hz, H³), 1.79-1.74 (m, 1H, H_{cyclopentyl}), 1.72-1.66 (m, 1H, H_{cyclopentyl}), 1.64 (d, 1H, *J*=6.5 Hz, H³), 1.53-1.49 ppm (m, 2H, H_{cyclopentyl}).

Synthesis of 1-cyclohexylmethyl-2-phenylaziridine

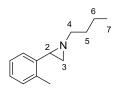
The general procedure for the synthesis of aziridines was followed using styrene and cyclohexylmethylamine as reagents to obtain a yellowish oil (82% yield). The collected data are in accordance with those reported in literature.^[16] ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.17 (m, 5H, Ar), 2.42 (dd, 1H, ²*J*=11.7 Hz, *J*=7.0 Hz, H⁴), 2.25 (dd, 1H, *J*=6.4, 3.2 Hz, H²), 2.09 (dd, 1H, ²*J*=11.7 Hz, *J*=6.4 Hz, H⁴), 1.85 (d, 1H, *J*=6.5 Hz, H³), 1.79-1.58 (m, 5H, H_{cyclohexyl}), 1.62 (d, 1H, *J*=6.5 Hz, H³), 1.20-1.10 (m, 3H, H_{cyclohexyl}), 0.98-0.90 ppm (m, 2H, H_{cyclohexyl}).


Synthesis of 1-benzyl-2-phenylaziridine

The general procedure for the synthesis of aziridines was followed using styrene and benzylamine as reagents to obtain a yellowish oil (80% yield). The collected data are in accordance with those


reported in literature.^{[11] 1}H NMR (400 MHz, CDCl₃): δ 7.47-7.28 (m, 10H, Ar), 3.78 (d, 1H, *J*=13.7 Hz, H⁴) 3.70 (d, 1H, *J*=13.7 Hz, H^{4'}), 2.59 (dd, 1H, *J*=6.4, 3.3 Hz, H²), 2.07 (d, 1H, *J*=3.3 Hz, H³), 1.93 ppm (d, 1H, *J*=6.5 Hz, H^{3'}).

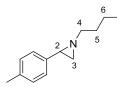
Synthesis of 1-(2-methoxy)benzyl-2-phenylaziridine


The general procedure for the synthesis of aziridines was followed using styrene and (2-methoxy)benzylamine as reagents to obtain a yellowish oil (84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, 1H, *J*=7.5 Hz, H⁸), 7.28-7.25 (m, 4H, Ar), 7.22-7.18 (m, 1H, H⁶), 6.89 (pst, 1H, *J*=7.8, 7.1 Hz, H⁷), 6.83 (d, 1H, *J*=8.1 Hz, H⁵), 3.80 (s, 3H, OCH₃) overlapping with 3.79 (m, 1H, H⁴), 3.53 (d, 1H, *J*=14.9 Hz, H^{4'}) 2.48 (dd, 1H, *J*=6.5, 3.4 Hz, H²), 2.00 (d, 1H, *J*=3.4 Hz, H³), 1.86 ppm (d, 1H, *J*=6.5 Hz, H^{3'}). ¹³C NMR (100 MHz, CDCl₃): δ 156.9, 140.6, 128.9, 128.4, 127.9, 127.8, 126.9, 126.4, 120.7, 109.9, 59.1, 55.3, 41.7, 38.2 ppm. *m*/*z* (ESI) 240.39 [M+H].

Synthesis of 1-(4-methoxy)benzyl-2-phenylaziridine

The general procedure for the synthesis of aziridines was followed using styrene and (4-methoxy)benzylamine as reagents to obtain a yellowish oil (80% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.18 (m, 7H, Ar), 6.85 (d, 2H, *J*=8.6 Hz, H⁶), 3.77 (s, 3H, OCH₃), 3.61 (d, 1H, *J*=13.4 Hz, H⁴), 3.53 (d, 1H, *J*=13.4 Hz, H⁴), 2.48 (dd, 1H, *J*=6.5, 3.3 Hz, H²), 1.95 (d, 1H, *J*=3.3 Hz, H³), 1.82 ppm (d, 1H, *J*=6.5 Hz, H³). ¹³C NMR (75 MHz, CDCl₃): δ 158.8, 140.3, 131.3, 129.2, 128.4, 126.9, 126.4, 113.4, 64.3, 55.3, 41.5, 37.9 ppm. *m/z* (ESI) 240.14 [M+H].

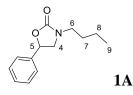
Synthesis of 1-butyl-2-(2-methyl)phenylaziridine


The general procedure for the synthesis of aziridines was followed using 2-methylstyrene and butylamine as reagents to obtain a yellowish oil (55% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.27 (m, 1H, Ar), 7.20-7.09 (m, 3H, Ar), 2.51 (dt, 1H, ²*J*=11.0 Hz, *J*=7.5 Hz, H⁴), 2.41 (s, 3H, CH₃) overlapping with 2.44-2.41 (m, 1H, H^{4'}), 2.38 (dd, *J*=6.5, 3.2 Hz, H²), 1.80 (d, 1H, *J*=3.2 Hz, H³), 1.66 (d, 1H, *J*=6.5 Hz, H^{3'}), 1.65-1.58 (m, 2H, H⁵), 1.50-1.37 (m, 2H, H⁶), 0.95 ppm (t, 3H, *J*=7.3 Hz, H⁷). ¹³C NMR (100 MHz, CDCl₃): δ 138.5, 136.6, 129.6, 126.6, 126.2, 126.1, 61.7, 39.5, 36.7, 32.2, 20.7, 19.2, 14.2 ppm. *m*/*z* (ESI) 190.18 [M+H].

Synthesis of 1-butyl-2-(3-methyl)phenylaziridine

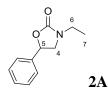
The general procedure for the synthesis of aziridines was followed using 3-methylstyrene and butylamine as reagents to obtain a yellowish oil (46% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.22-7.17 (t, 1H, *J*=7.7 Hz, Ar), 7.08-7.03 (m, 3H, Ar), 2.51 (dt, 1H, ²*J*=11.6 Hz, *J*=7.3 Hz, H⁴), 2.34 (s, 3H, CH₃) overlapping with 2.35-2.31 (m, 1H, H^{4'}), 2.27 (dd, 1H, *J*=6.4, 3.2 Hz, H²), 1.89 (d, 1H, *J*=3.2 Hz, H³), 1.65 (d, 1H, *J*=6.5 Hz, H^{3'}), 1.62 (m, 2H, H⁵), 1.41 (m, 2H, H⁶), 0.94 ppm (t, 3H, *J*=7.3 Hz, H⁷). ¹³C NMR (75 MHz, CDCl₃): δ 140.6, 138.0, 128.2, 127.6, 126.7, 123.5, 61.7, 41.3, 37.8, 32.1, 21.4, 20.7, 14.2 ppm. *m/z* (ESI) 190.24 [M+H].

Synthesis of 1-butyl-2-(4-methyl)phenylaziridine

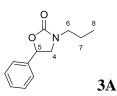

The general procedure for the synthesis of aziridines was followed using 4-methylstyrene and butylamine as reagents to obtain a yellowish oil (54% yield). The collected data are in accordance with those reported in literature.^[15] ¹H NMR (400 MHz, CDCl₃): δ 7.13 (q, 4H, *J*=8.1 Hz, Ar), 2.52 (dt, 1H, ²*J*=11.5 Hz, *J*=7.3 Hz, H⁴), 2.32-2.25 (m, 2H, H⁴' and H²), 2.33 (s, 3H, CH₃), 1.87 (d, 1H, *J*=3.2 Hz, H³), 1.63 (d, 1H, *J*=6.3 Hz, H³'), 1.65-1.68 (m, 2H, H⁵), 1.49-1.33 (m, 2H, H⁶), 0.93 ppm (t, 3H, *J*=7.3 Hz, H⁷).

6. Synthesis of oxazolidin-2-ones

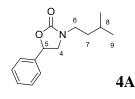
General catalytic procedure


In a 100 mL glass liner equipped with a screw cap and a glass wool, tetrabutyl ammonium chloride (14.2 mg, 5.13×10^{-5} mol) and aziridine (5.13×10^{-4} mol) were added to a benzene (2.50 mL) solution of catalyst (5.13×10^{-6} mol). The reaction mixture was cooled with liquid nitrogen and the glass liner was transferred into a stainless-steel autoclave, three vacuum-nitrogen cycles were performed and 0.6 MPa of CO₂ was charged at room temperature. The autoclave was placed in a preheated oil bath at 100°C and stirred for 6 h, then it was cooled at room temperature and slowly vented. The solvent was evaporated to dryness and the crude was analyzed by ¹H NMR and then purified by flash chromatography (silica gel, 60 µm, *n*-hexane/AcOEt = 8:2).

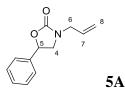
Synthesis of 3-butyl-5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-butyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 71%, **1A/1B** = 90:10). The collected data are in accordance with those reported in literature.^[12] ¹H NMR (300 MHz, CDCl₃) **1A**: δ 7.42-7.28 (m, 5H, Ar), 5.49 (t, 1H, *J*=8.0 Hz, H⁵), 3.92 (t, 1H, *J*=8.8 Hz, H⁴), 3.43 (t, 1H, *J*=8.0 Hz, H⁴), 3.38-3.23 (m, 2H, H⁶), 1.58-1.51 (m, 2H, CH₂), 1.40-1.31 (m, 2H, CH₂), 0.94 ppm (t, 3H, *J*=6.8 Hz, CH₃).

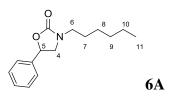
Synthesis of 3-ethyl-5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-ethyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 65%, 2A/2B = 95:5). The collected data are in accordance with those reported in literature.^[12] ¹H NMR (300 MHz, CDCl₃) 2A: δ 7.34-7.65 (m, 5H, Ar), 5.46 (m, 1H, H⁵), 3.93 (t, 1H, *J*=8.8 Hz, H⁴), 3.40-3.39 (m, 3H, H⁴' and H⁶), 1.14 ppm (t, 3H, *J*=7.1 Hz, H⁷).

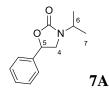
Synthesis of 3-propyl-5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-propyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 60%, 3A/3B = 90:10). The collected data are in accordance with those reported in literature.^[12] ¹H NMR (300 MHz, CDCl₃) 3A: δ 7.42-7.34 (m, 5H, Ar), 5.49 (t, 1H, *J*=8.1 Hz, H⁵), 3.91 (t, 1H, *J*=8.7 Hz, H^{4'}), 3.43 (dd, 1H, *J*=8.5, *J*=7.5 Hz, H⁴), 3.35-3.17 (m, 2H, H⁶), 1.67-1.51 (m, 2H, H⁷), 0.94 ppm (t, 3H, *J*=7.4 Hz, H⁸).

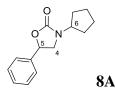
Synthesis of 3-isoamyl-5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-isoamyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 81%, 4A/4B = 92:8). The collected data are in accordance with those reported in literature.^[12] ¹H NMR (400 MHz, CDCl₃) $4A: \delta$ 7.43-7.32 (m, 5H, Ar), 5.47 (t, 1H, *J*=8.1 Hz, H⁵), 3.90 (t, 1H, *J*=8.7 Hz, H⁴), 3.41 (t, 1H, *J*=8.0, *J*=7.5 Hz, H^{4'}), 3.37-3.20 (m, 2H, H⁶), 1.66-1.54 (m, 1H, H⁸), 1.49-1.39 (m, 2H, H⁷), 0.94 (d, 3H, *J*=3.3 Hz, CH₃), 0.92 (t, 3H, *J*=7.4 Hz, CH₃).

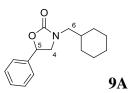
Synthesis of 3-allyl-5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-allyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 70%, **5A/5B** = 94:6). The collected data are in accordance with those reported in literature.^[17] ¹H NMR (400 MHz, CDCl₃) **5A**: δ 7.43-7.35 (m, 5H, Ar), 5.84-5.73 (m, 1H, H⁷), 5.50 (t, 1H, *J*=8.0 Hz, H⁸), 5.28-5.22 (m, 2H, H⁸' and H⁵), 3.98-3.84 (m, 3H, H⁴, H⁴' and H⁶), 3.44-3.38 ppm (m, 1H, H⁶').

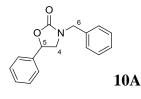
Synthesis of 3-hexyl-5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-hexyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 55%, **6A/6B** = 94:6). The collected data are in accordance with those reported in literature.^[18] ¹H NMR (400 MHz, CDCl₃) **6A**: δ 7.31-7.25 (m, 5H, Ar), 5.37 (t, 1H, *J*=8.0 Hz, H⁵), 3.82 (t, 1H, *J*=8.8 Hz, H⁴), 3.31 (t, 1H, *J*=8.0 Hz, H⁴), 3.23-3.13 (m, 2H, H⁶), 1.47-1.43 (m, 2H, CH₂), 1.24-1.20 (m, 6H, CH₂), 0.79 ppm (t, 3H, *J*=6.6 Hz, H¹¹).

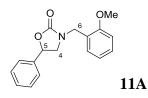
Synthesis of 3-isopropyl-5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-Isopropyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 20%, **7A/7B** = 90:10). The collected data are in accordance with those reported in literature.^[12] ¹H NMR (400 MHz, CDCl₃) **7A**: δ 7.42-7.31 (m, 5H, Ar), 5.47 (t, 1H, *J*=8.1 Hz, H⁵), 4.18 (dt, 1H, *J*=13.5, *J*=6.7 Hz, H⁶), 3.86 (t, 1H, *J*=8.7 Hz, H^{4'}), 3.37 (t, 1H, *J*=8.0 Hz, H⁴), 1.22 (d, 3H, *J*=6.8 Hz, H⁷), 1.16 ppm (d, 3H, *J*=6.7 Hz, H^{7'}).

Synthesis of 3-cyclopentyl-5-phenyloxazolidin-2-one

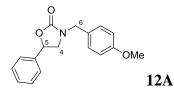

The general catalytic procedure was followed using *N*-cyclopentyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 10%, **8A/8B** = 99:1). The collected data are in accordance with those reported in literature.^[19] ¹H NMR (400 MHz, CDCl₃) **8A**: δ 7.31-7.25 (m, 5H, Ar), 5.47 (t, 1H, *J*=8.0 Hz, H⁵), 4.29 (t, 1H, *J*=8.8 Hz, H⁴), 3.88 (t, 1H, *J*=8.0 Hz, H^{4'}), 3.23-3.13 (m, 1H, H⁶), 1.90-1.87 (m, 2H, H_{cyclopentyl}), 1.67-1.49 ppm (m, 6H, H_{cyclopentyl}).

Synthesis of 3-cyclohexanemethyl-5-phenyloxazolidin-2-one

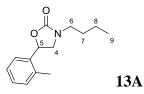

The general catalytic procedure was followed using *N*-cyclohexanemethyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 55%, **9A/9B** = 94:6). The collected data are in accordance with those reported in literature.^[15] ¹H NMR (400 MHz, CDCl₃) **9A**: δ 7.34-7.24 (m, 5H, Ar), 5.44 (t, 1H, *J*=8.0 Hz, H⁵), 3.89 (t, 1H, *J*=8.7 Hz, H⁴), 3.39 (t, 1H, *J*=8.0 Hz, H⁴'), 3.13 (dd, 1H, ²*J*=13.7 Hz, *J*=7.4 Hz, H⁶), 3.03 (dd, 1H, ²*J*=1.7 Hz, *J*=7.2 Hz, H⁶'), 1.67-1.58 (m, 5H, H_{cyclohexyl}), 1.19-1.09 (m, 3H, H_{cyclohexyl}), 0.98-0.92 ppm (m, 2H, H_{cyclohexyl}).

Synthesis of 3-benzyl-5-phenyloxazolidin-2-one

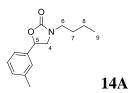
The general catalytic procedure was followed using *N*-benzyl-phenyl aziridine as reagent to obtain a yellowish oil (yield 85%, **10A/10B** = 99:1). The collected data are in accordance with those reported in literature.^[12] ¹H NMR (400 MHz, CDCl₃) **10A**: δ 7.35-7.27 (m, 10H, Ar), 5.43 (t, 1H, *J*=8.1 Hz, H⁵), 4.49 (d, 1H, *J*=15.0 Hz, H⁶), 4.41 (d, 1H, *J*=15.0 Hz, H⁶), 3.75 (t, 1H, *J*=8.7 Hz, H⁴), 3.28 ppm (t, 1H, ²*J*=8.4 Hz, H⁴).


Synthesis of 3-(2-methoxy)benzyl -5-phenyloxazolidin-2-one

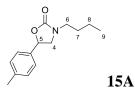
The general catalytic procedure was followed using *N*-(2-methoxy)benzyl-phenyl aziridine as reagent to obtain a yellowish oil (64% yield, **11A/11B** = 99:1). ¹H NMR (300 MHz, CDCl₃) **11A**: δ 7.40-7.26 (m, 7H, Ar), 6.34 (t, 1H, *J*=7.5 Hz, Ar), 6.87 (d, 1H, *J*=8.0 Hz, Ar), 5.43 (pst, 1H, *J*=8.1 Hz, H⁵), 4.54 (d, 1H, *J*=14.7 Hz, H⁶), 4.47 (d, 1H, *J*=14.7 Hz, 1H, H^{6'}), 3.81 (s, 3H, OCH₃) overlapping with 3.78 (m, 1H, H⁴), 3.32 ppm (m, 1H, H^{4'}). ¹³C NMR (75 MHz, CDCl₃): δ 130.3,


129.5, 128.9, 125.7, 120.9, 110.5, 74.6, 55.5, 52.1, 43.2 ppm, quaternary carbons were not detected. *m/z* (ESI) 306.40 [M+Na].

Synthesis of 3-(4-methoxy)benzyl -5-phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-(4-methoxy)benzyl-phenyl aziridine as reagent to obtain a yellowish oil (60% yield, **12A/12B** = 99:1). ¹H NMR (400 MHz, CDCl₃) **12A**: δ 7.38-7.32 (m, 3H, Ar), 7.31-7.28 (m, 2H, Ar), 7.21 (d, 2H, *J*=8.6 Hz, H_{benzyl-orto}), 6.87 (d, 2H, *J*=8.6 Hz, H_{benzyl-orto}), 5.45 (pst, 1H, *J*=8.2 Hz, H⁵), 4.47 (d, 1H, *J*=14.7 Hz, H⁶), 4.35 (d, 1H, *J*=14.7 Hz, H⁶), 3.80 (s, 3H, OCH₃), 3.74 (pst, 1H, *J*=8.8 Hz, H⁴), 3.28 ppm (dd, 1H, *J*=8.7, 7.6 Hz, H⁴). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 129.7, 129.0, 128.9, 127.8, 125.7, 114.3, 74.6, 55.4, 51.6, 48.0 ppm, one quaternary carbon was not detected. *m/z* (ESI) 306.31 [M+Na].

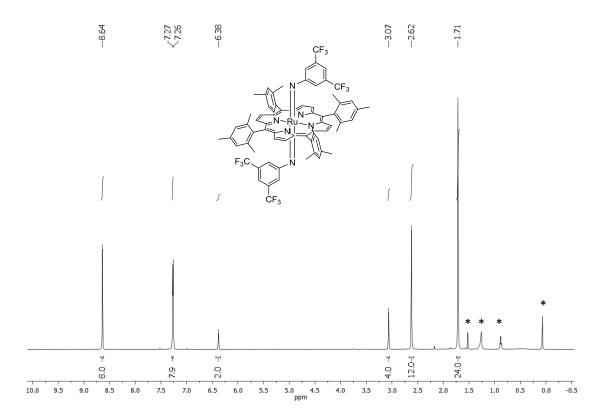
Synthesis of 3-butyl-5-(2-methyl)phenyloxazolidin-2-one


The general catalytic procedure was followed using *N*-butyl-2-(2-methyl)phenyl aziridine as reagent to obtain a yellowish oil (92% yield, **13A/13B** = 90:10). ¹H NMR (400 MHz, CDCl₃) **13A**: δ 7.27 (pst, 1H, *J*=7.6 Hz, Ar), 7.16 (s, 1H, Ar), 7.16-7.08 (m, 2H, Ar), 5.43 (t, 1H, *J*=8.1 Hz, H⁵), 3.89 (pst, 1H, *J*=8.7 Hz, H^{4'}), 3.40 (dd, 1H, *J*=8.6, 7.5 Hz, H⁴), 3.37-3.20 (m, 2H, H⁶), 2.35 (s, 3H, CH₃), 1.58-1.48 (m, 1H, CH₂), 1.38-1.30 (m, 1H, CH₂), 0.93 ppm (t, 3H, *J*=7.3 Hz, H⁹). ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 138.9, 138.7, 129.5, 128.8, 126.1, 122.6, 74.39, 52.2, 43.9, 29.4, 21.4, 19.9, 13.7. *m*/z (ESI) 256.24 [M+Na].

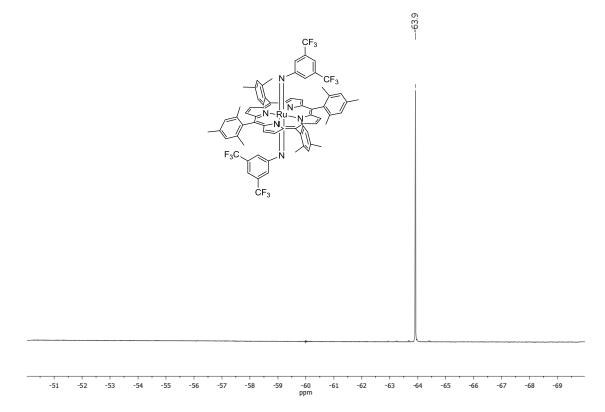
Synthesis of 3-butyl-5-(3-methyl)phenyloxazolidin-2-one

The general catalytic procedure was followed using *N*-butyl-2-(3-methyl)phenyl aziridine as reagent to obtain a yellowish oil (96% yield, **14A/14B** = 90:10). ¹H NMR (400 MHz, CDCl₃) **14A**: δ 7.44 (m, 1H, Ar), 7.26-7.24 (m, 4H, Ar), 7.18 (m, 1H, Ar), 5.67 (pst, 1H, *J*=8.1 Hz, H⁵), 3.95 (pst, 1H, *J*=8.7 Hz, H⁴), 3.40-3.20 (m, 3H, H^{4'} and H⁶), 2.31 (s, 3H, CH₃), 1.53 (m, 2H, H⁷), 1.34 (m, 1H, H⁸), 0.93 ppm (t, 3H, *J*=7.3 Hz, H⁹). ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 137.3, 134.2, 130.8, 128.5, 126.6, 124.7, 72.1, 51.4, 44.0, 29.5, 19.9, 19.0, 13.8 ppm. *m/z* (ESI) 256.27 [M+Na].

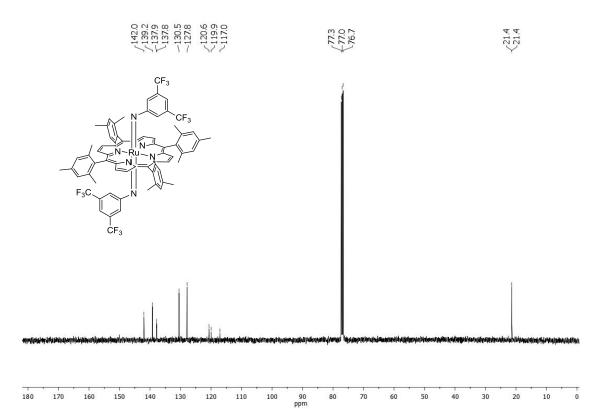
Synthesis of 3-butyl-5-(4-methyl)phenyloxazolidin-2-one

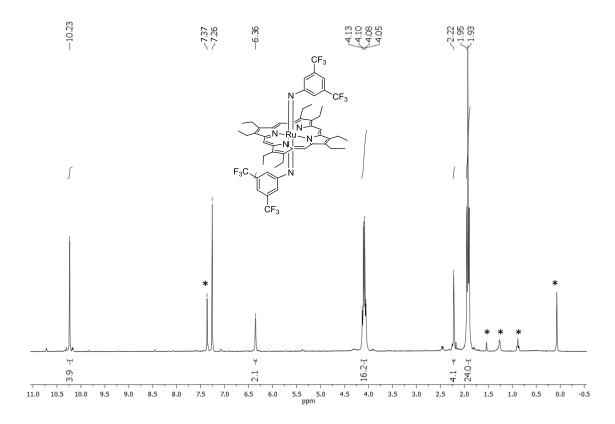

The general catalytic procedure was followed using *N*-butyl-2-(4-methyl)phenyl aziridine as reagent to obtain a yellowish oil (90% yield, **15A/15B** = 90:10). The collected data are in accordance with those reported in literature.^{[15] 1}H NMR (400 MHz, CDCl₃) **15A**: δ 7.23 (dd, 4H, J=17.4 Hz, Ar), 5.44 (t, 1H, J=8.0 Hz, H⁵), 3.88 (t, 1H, J=8.7 Hz, H⁴), 3.41 (t, 1H, J=8.1 Hz, H⁴), 3.38-3.22 (m, 2H, H⁶), 2.36 (s, 3H, CH₃), 1.57-1.50 (m, 2H, CH₂), 1.39-1.33 (m, 2H, CH₂), 0.94 ppm (t, 3H, J=7.3 Hz, H⁹).

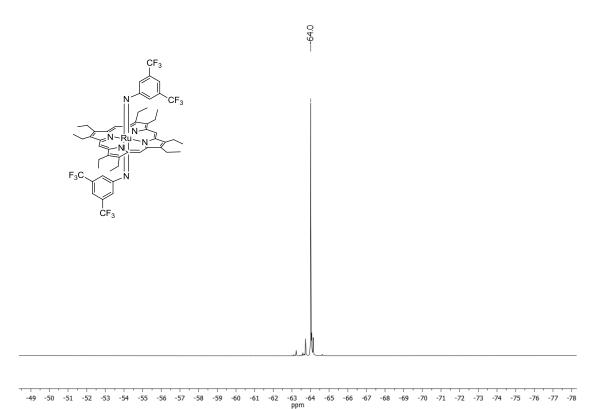
7. Recycle of the catalyst $Ru(TPP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃)

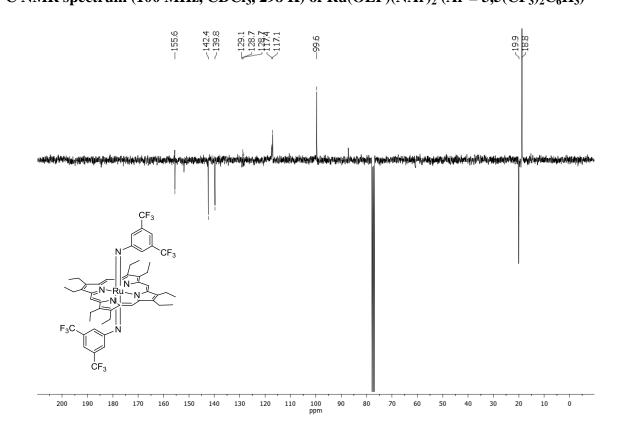

The general catalytic procedure was followed using *N*-butyl-phenyl aziridine as reagent. The consumption of the aziridine was monitored by TLC analysis (*n*-hexane/AcOEt = 8:2). After the consumption of the starting material, *N*-butyl-phenyl aziridine was added again to the catalytic mixture for two more consecutive times. The NMR analysis of the crude revealed 70% of global yield and **1A/1B** ratio of 90:10.

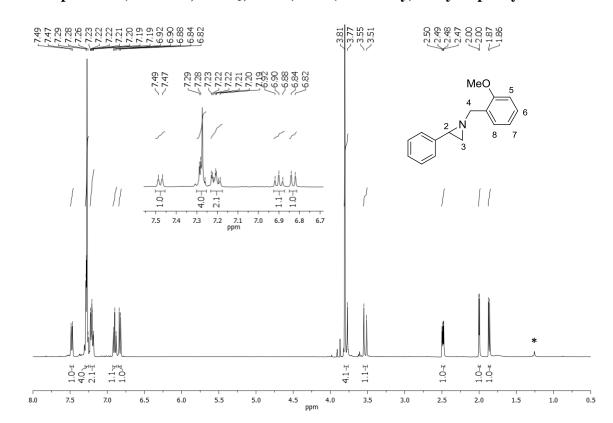
8. ¹H, ¹³C and ¹⁹F NMR spectra of reported compounds


¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of $Ru(TMP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃)

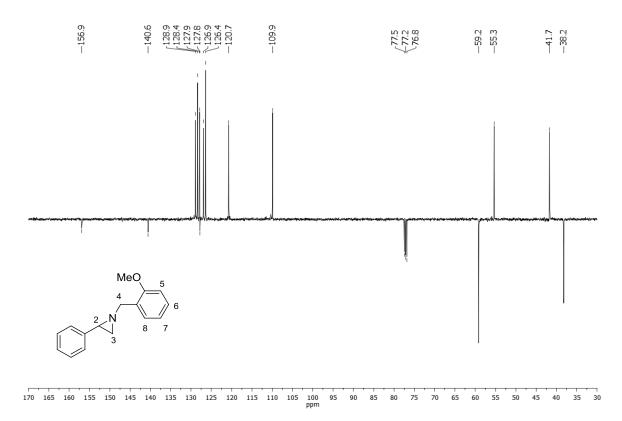

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃, 298 K) of Ru(TMP)(NAr)_2 (Ar = 3,5(CF_3)_2C_6H_3)

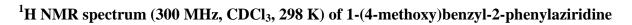

 13 C NMR spectrum (100 MHz, CDCl₃, 298 K) of Ru(TMP)(NAr)₂ (Ar = 3,5-(CF₃)₂C₆H₄)

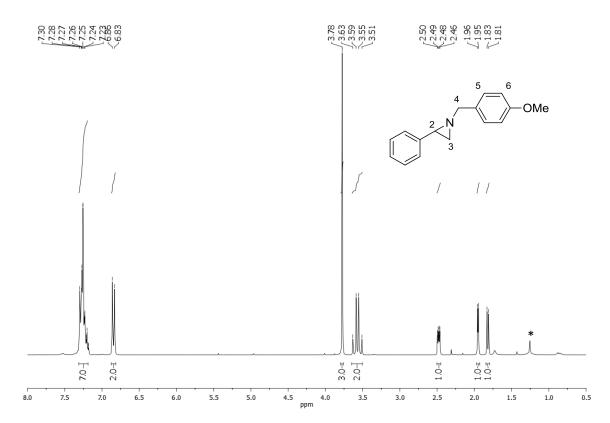

¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of $Ru(OEP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃)



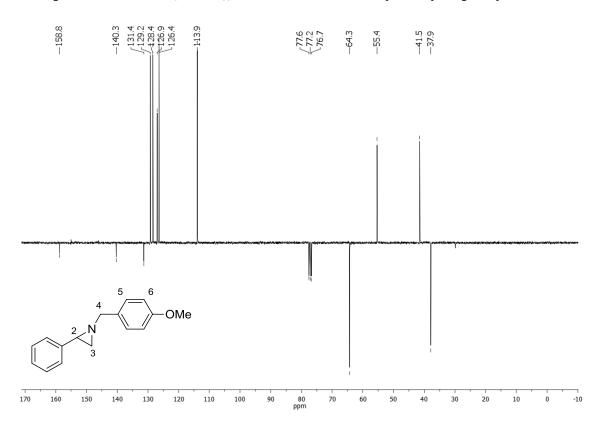
¹⁹F NMR spectrum (376 MHz, CDCl₃, 298 K) of $Ru(OEP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃)

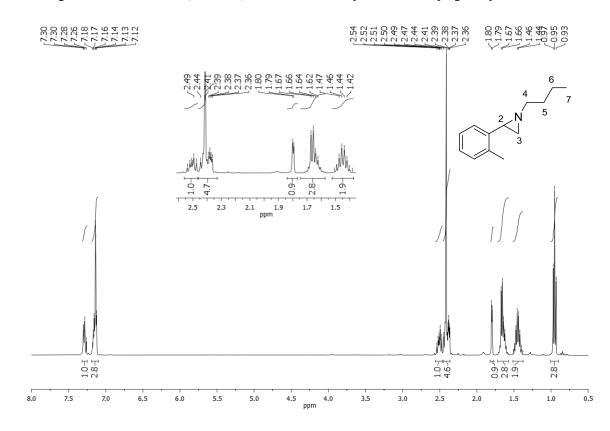

¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of Ru(OEP)(NAr)₂ (Ar = 3,5(CF₃)₂C₆H₃)



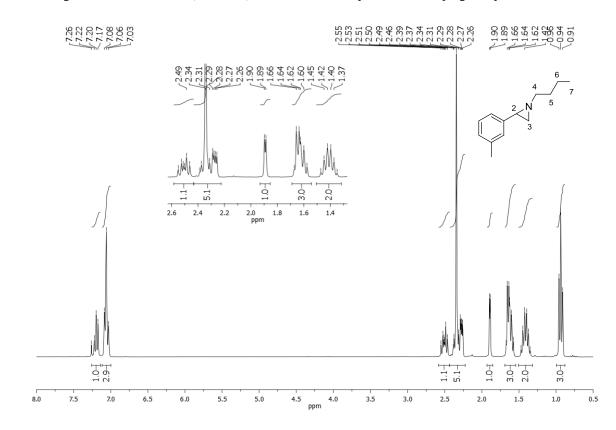


¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 1-(2-methoxy)benzyl-2-phenylaziridine

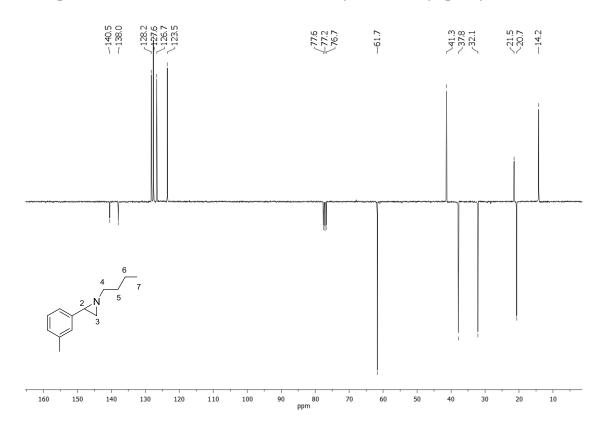

¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 1-(2-methoxy)benzyl-2-phenylaziridine

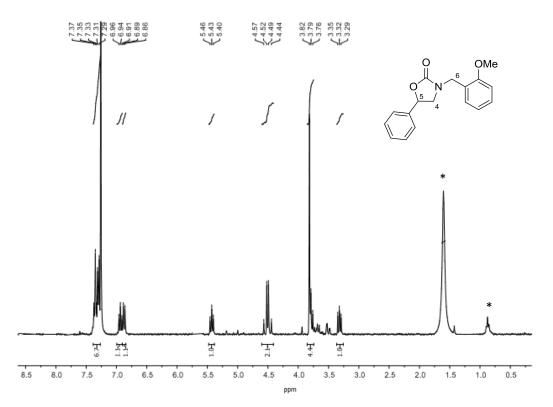


¹³C NMR spectrum (75 MHz, CDCl₃, 298 K) of 1-(4-methoxy)benzyl-2-phenylaziridine

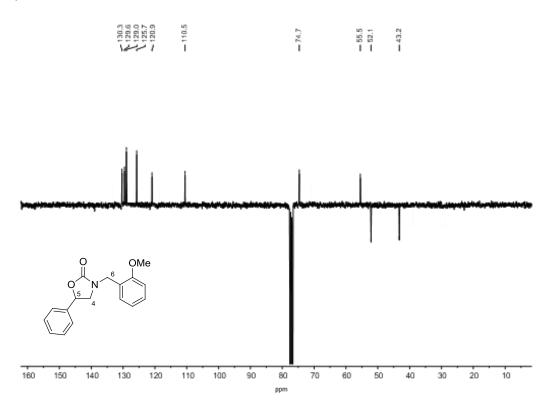


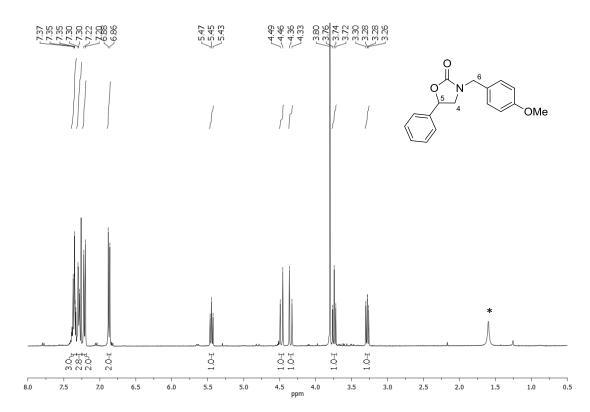
¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 1-butyl-2-(2-methyl)phenylaziridine

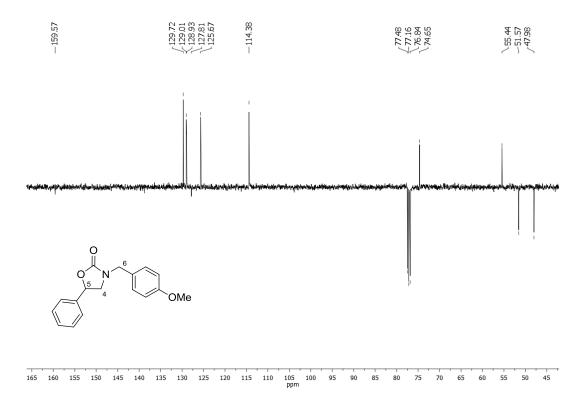

¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 1-butyl-2-(2-methyl)phenylaziridine

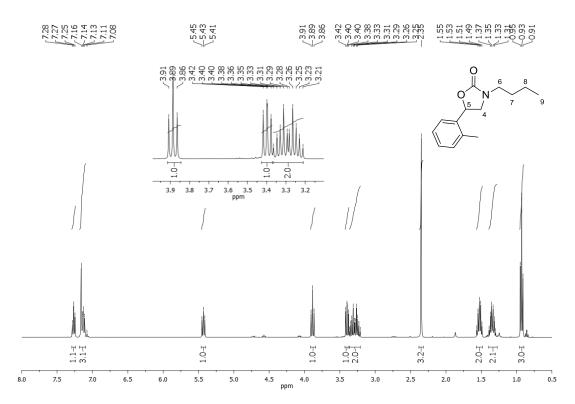


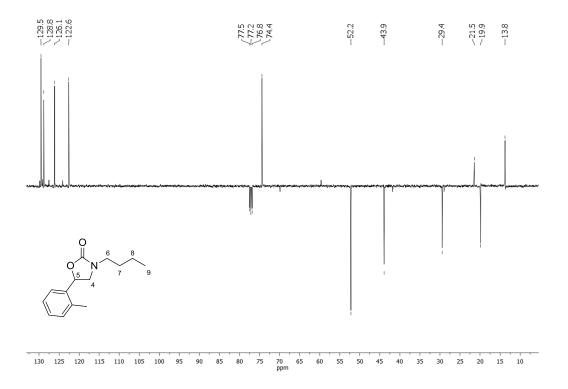
¹H NMR spectrum (300 MHz, CDCl₃, 298 K) of 1-butyl-2-(3-methyl)phenylaziridine

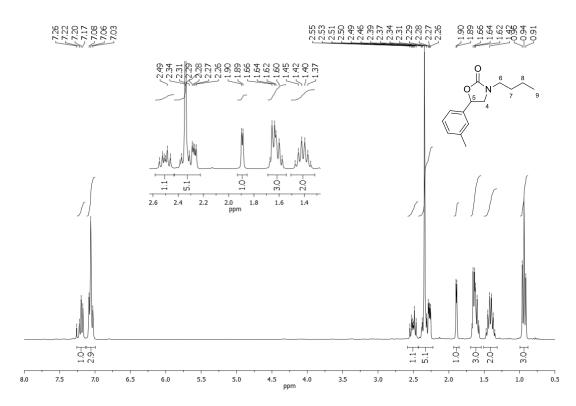

¹³C NMR spectrum (75 MHz, CDCl₃, 298 K) of 1-butyl-2-(3-methyl)phenylaziridine

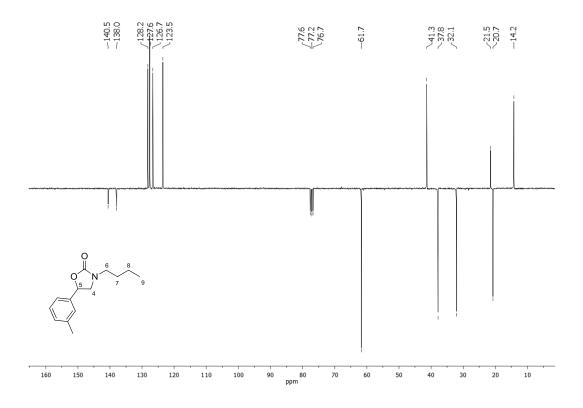

¹H NMR spectrum (300 MHz, CDCl₃, 298 K) of 3-(2-Methoxy)benzyl -5-phenyloxazolidin-2one (11A)

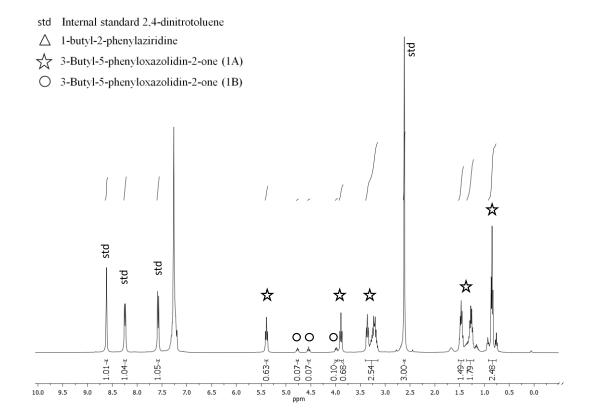

¹³C NMR spectrum (75 MHz, CDCl₃, 298 K) of 3-(2-Methoxy)benzyl-5-phenyloxazolidin-2one (11A)

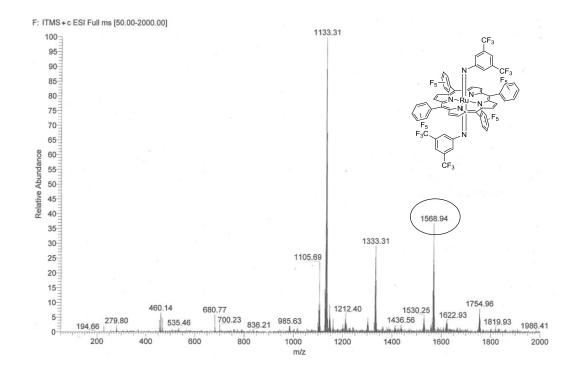

¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 3-(4-methoxy)benzyl-5-phenyloxazolidin-2one (12A)


¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 3-(4-Methoxy)benzyl-5-phenyloxazolidin-2one (12A)

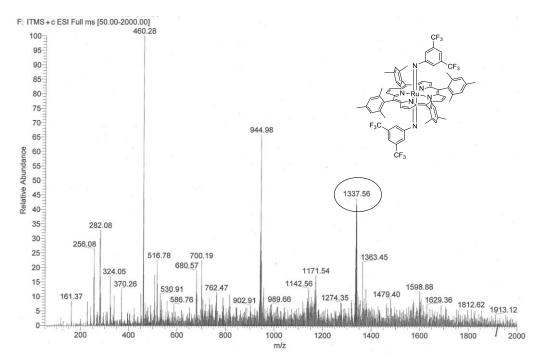

¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 3-Butyl-5-(2-methyl)phenyloxazolidin-2-one (13A)


¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 3-Butyl-5-(2-methyl)phenyloxazolidin-2-one (13A)

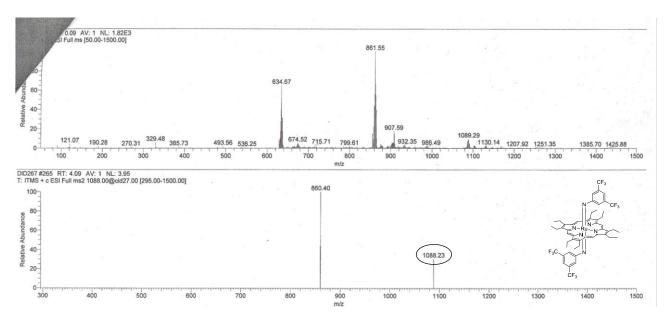

¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 3-Butyl-5-(3-methyl)phenyloxazolidin-2-one (14A)

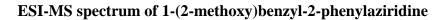

¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 3-Butyl-5-(3-methyl)phenyloxazolidin-2-one (14A)

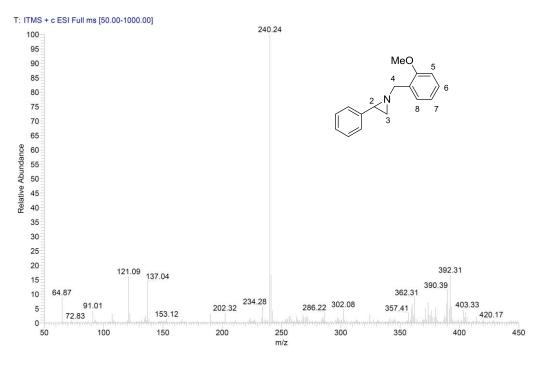
¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of the recycle of $Ru(TPP)(NAr)_2$ (Ar = 3,5(CF₃)₂C₆H₃)

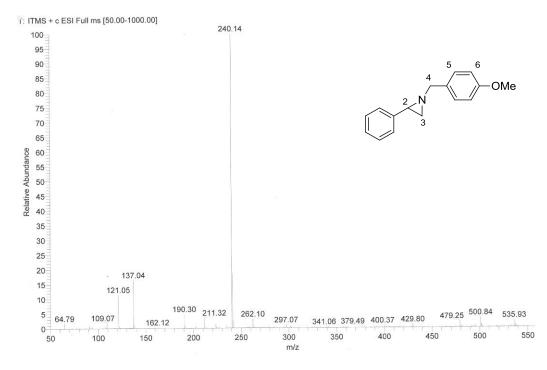


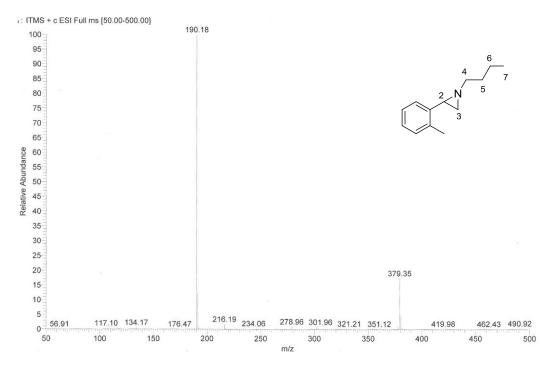
9. ESI-MS spectra of reported compounds

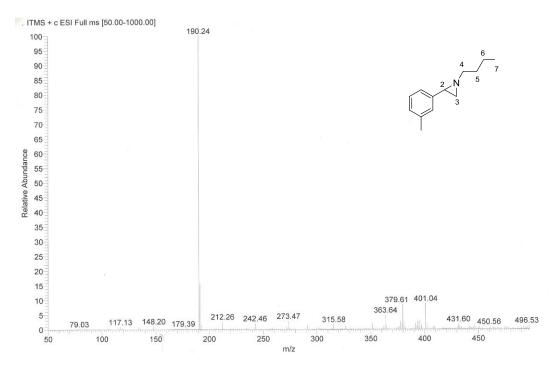


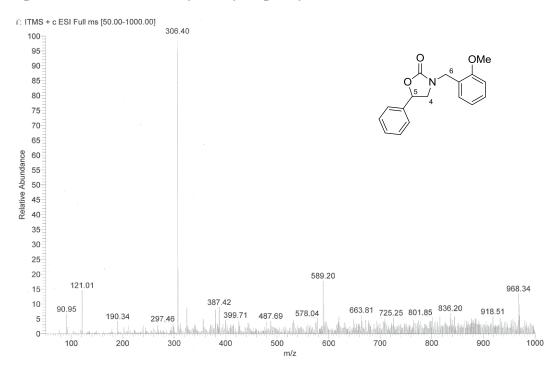

ESI-MS spectrum of Ru(F₂₀TPP)(NAr)₂ (Ar = 3,5(CF₃)₂C₆H₃)

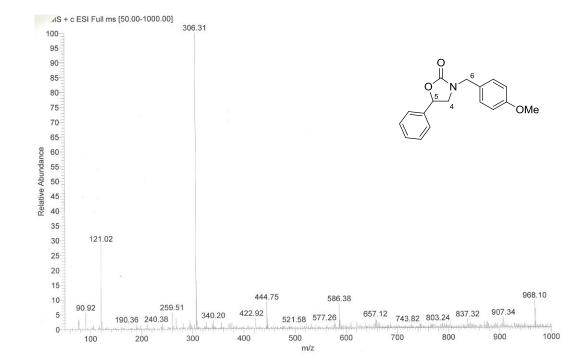



ESI-MS spectrum of Ru(OEP)(NAr)₂ (Ar = 3,5(CF₃)₂C₆H₃)

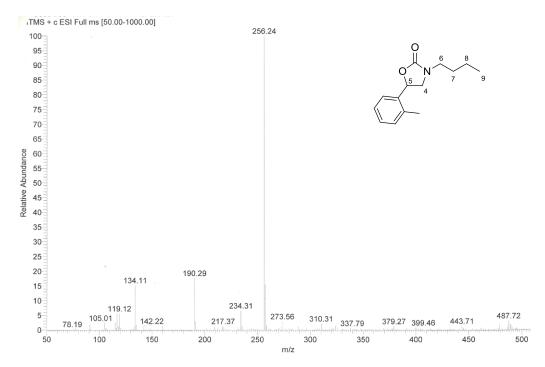


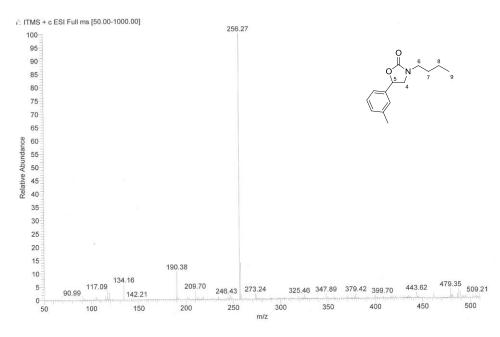

ESI-MS spectrum of 1-(4-methoxy)benzyl-2-phenylaziridine


ESI-MS spectrum of 1-butyl-2-(2-methyl)phenylaziridine

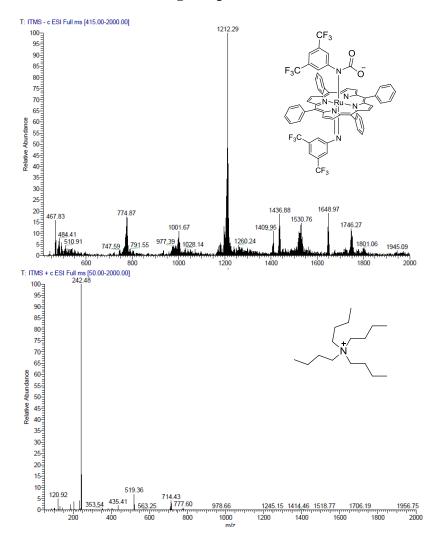


ESI-MS spectrum of 1-butyl-2-(3-methyl)phenylaziridine


ESI-MS spectrum of 3-(2-Methoxy)benzyl-5-phenyloxazolidin-2-one (11A)



ESI-MS spectrum of 3-(4-Methoxy)benzyl-5-phenyloxazolidin-2-one (12A)


ESI-MS spectrum 3-Butyl-5-(2-methyl)phenyloxazolidin-2-one (13A)

ESI-MS spectrum 3-Butyl-5-(3-methyl)phenyloxazolidin-2-one (14A)

ESI-MS spectrum of the crude containing compound 16

References

- [1] M. Tanno, S. Sueyoshi, S. Kamiya, *Chem. Pharm. Bull.* **1982**, *30*, 3125-3132.
- [2] O. Vakuliuk, F. G. Mutti, M. Lara, D. T. Gryko, W. Kroutil, *Tetrahedron Lett.* **2011**, *52*, 3555-3557.
- [3] N. A. Stephenson, A. T. Bell, *Inorg. Chem.* **2006**, *45*, 5591-5599.
- [4] J. P. Collman, A. O. Chong, G. B. Jameson, R. T. Oakley, E. Rose, E. R. Schmittou, J. A. Ibers, J. Am. Chem. Soc. 1981, 103, 516-533.
- [5] Q.-F. Liang, J.-J. Liu, J. Chen, *Tetrahedron Lett.* **2011**, *52*, 3987-3991.
- [6] S. Sorgues, L. Poisson, K. Raffael, L. Krim, B. Soep, N. Shafizadeh, J. Chem. Phys. 2006, 124, 114302.
- [7] S. E. Vitols, R. Kumble, M. E. Blackwood, J. S. Roman, T. G. Spiro, J. Phys. Chem. 1996, 100, 4180-4187.
- [8] J. P. Collman, C. E. Barnes, P. J. Brothers, T. J. Collins, T. Ozawa, J. C. Gallucci, J. A. Ibers, J. Am. Chem. Soc. 1984, 106, 5151-5163.
- [9] S. Fantauzzi, E. Gallo, A. Caselli, F. Ragaini, N. Casati, P. Macchi, S. Cenini, *Chem. Commun.* **2009**, 3952-3954.
- [10] P. Zardi, D. Intrieri, D. M. Carminati, F. Ferretti, P. Macchi, E. Gallo, J. Porphyrins *Phthalocyanines* **2016**, 20, 1156-1165.
- [11] Z.-Z. Yang, Y.-N. Li, Y.-Y. Wei, L.-N. He, *Green Chemistry* **2011**, *13*, 2351-2353.
- [12] Y. Du, Y. Wu, A.-H. Liu, L.-N. He, J. Org. Chem. 2008, 73, 4709-4712.
- [13] D. Stephens, Y. Zhang, M. Cormier, G. Chavez, H. Arman, O. V. Larionov, *Chem. Commun.* **2013**, *49*, 6558-6560.
- [14] R. A. Watile, D. B. Bagal, Y. P. Patil, B. M. Bhanage, *Tetrahedron Lett.* 2011, 52, 6383-6387.
- [15] V. B. Saptal, B. M. Bhanage, *ChemSusChem* **2016**, *9*, 1980-1985.
- [16] D. B. Nale, S. Rana, K. Parida, B. M. Bhanage, *Appl. Catal. A* **2014**, *469*, 340-349.
- [17] A. Baba, K. Seki, H. Matsuda, J. Org. Chem. 1991, 56, 2684-2688.
- [18] C. Qi, J. Ye, W. Zeng, H. Jiang, Adv. Synth. Catal. 2010, 352, 1925-1933.
- [19] Y. Zhang, Y. Zhang, Y. Ren, O. Ramström, J. Mol. Catal. B: Enzym. 2015, 122, 29-34.