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Abstract. We propose a procedure devoted to the induction of a shad-
owed set through the post-processing of a fuzzy set, which in turn is
learned from labeled data. More precisely, the fuzzy set is inferred us-
ing a modified support vector clustering algorithm, enriched in order to
optimize the fuzziness grade. Finally, the fuzzy set is transformed into a
shadowed set through application of an optimal alpha-cut. The procedure
is tested on synthetic and real-world datasets.
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1 Introduction

In the last decades fuzzy sets have been proved to be a powerful means for
knowledge representation, reasoning and decision making in uncertain contexts.
However, as their usage becomes widespread, the trade-off between the detailed
nature of the fuzzy membership function and its symbolic interpretation is get-
ting undisguised. A possible way to address uncertainity trying to manage this
trade-off is to identify three regions of the universe of discourse, namely a be-
longingness region, an exclusion region and a “grey” region where genuine un-
certainity holds. A lot of work as been done in this direction in different re-
search areas (rough sets [22], fuzzy sets [4, 8, 23], three-valued logic [3], type-2
fuzzy logic [21], see [15, 24] for a survey). We will focus on the construct of
shadowed sets introduced by Pedrycz [18,19], and used in different learning con-
texts [5, 9, 10, 13, 25, 26]. Given a shadowed set A, the domain of discourse is
split into three regions, called the core, the exclusion and the shadowed region,
where membership value to A is 1, 0 and unknown, respectively. The shadowed
set is induced by a fuzzy set because its shadowed regions’ position and width
are determined by the constraint of preserving the amount of fuzziness of the
originating fuzzy set. More precisely, the induced shadowed set is completely
determined by an α-cut, namely a value 0 ≤ α ≤ 1/2 used to cut the codomain
[0,1] of the fuzzy membership function into the zones [0, α], (α, 1−α), [1−α, 1]
where full belongingness, uncertainity and full exclusion are, respectively, as-
signed. This gives rise to a membership function SA : X 7→ {0, [0, 1], 1}, where
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X is the universe of discourse and 1, [0, 1], 0 are associated to the three men-
tioned zones.

The search for the α-cut is an optimization problem; moreover, the particular
definition of fuzziness of a fuzzy set obviously affects the resulting procedure.
In [20] analytical formulas are provided to calculate the optimal α-cut using the
gradual grade of fuzziness, and a comparison with other fuzziness measures is
discussed.

We describe a data-driven procedure for the induction of shadowed sets based
on the post-processing of a fuzzy set learned from labeled data. The procedure
exploits a support vector clustering [1] algorithm in which the inference is done
starting from a set of objects in X, labeled with their membership degrees to
A. As a next step, a sphere S in a space H is found so that the images of
objects through a function Φ : X 7→ H are positioned w.r.t. S in function of the
membership degrees. More precisely, in case of unitary membership the image
of an object will belong to S, otherwise it will fall farther from the border of S
as its membership to A decreases from 1 to 0 [16]. This learning algorithm is
further enriched with the optimization of the fuzziness grade of A.

The paper is organized as follows: Sect. 2 is devoted to the derivation of
the fuzziness degree of a piecewise linear membership function and its optimal
α-cut, Sect. 3 is devoted to (a) the description of the modified support vector
clustering optimization problem for learning a membership function and (b) to
its enrichment with a term accounting for fuzziness degree minimization of the
inferred shadowed set. In Sect. 4 we discuss experimental results on a synthetic
and two real-world benchmarks. Some concluding remarks end the paper.

2 Gradual grade of fuzziness of a fuzzy set

The fuzziness grade of a fuzzy set measures the vagueness of the set itself.
Such concept captures the amount of entropy inherently contained in a fuzzy
set: indeed crisp sets have a null fuzziness grade, while on the other hand the
maximal grade is attained by a fuzzy set with membership function constantly
equal to 1/2. As a rule of thumb, the sharper the boundaries of a fuzzy set,
the smaller the related fuzziness. Among the proposed measures quantifying the
fuzziness grade of a fuzzy set (see for instance [12, 14]), we consider the one
introduced in [11] quantifying the fuzziness grade of a continuous, measurable
fuzzy set A whose membership function is µA as

ϕ(A) =

∫
X

(1− |2µA(x)− 1|)dx .

The notion of fuzziness grade is linked to the search of an optimal α-cut trans-
forming a fuzzy set into a shadowed set [20]. Namely, denoted by ω1, ω2 and
ω3 the definite exclusion, the definite belongingness and the uncertainty regions
mentioned in the Introduction and restricting to them the fuzziness degree com-
putation, the optimal α is such that

ϕ(ω1) + ϕ(ω2) = ϕ(ω3) (1)
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holds. In this way, the overall fuzziness of A is equally balanced between the
shadowed (ω3) and unshadowed (ω1 ∪ ω2) regions.

In the rest of this paper we will focus on the family of piecewise linear func-
tions whose general member has the following form

fR2,M (x) =


1 if x ≤ R2 ,

1− x−R2

M−R2 if R2 < x ≤M ,

0 otherwise ,

where R2 > 0 and M > R2 denote the boundaries of the crisp regions of the
fuzzy set (see Fig. 1(a))1. It is easy to show that the fuzziness degree of a fuzzy
set A whose membership function has the form µA(x) = fR2,M (x) is

ϕ(A) =
M −R2

2
(2)

while, for fixed α

ϕ(ω1) = α2
(
M −R2

)
,

ϕ(ω2) = α2
(
M −R2

)
,

ϕ(ω3) = 2(1− α2)
(
M −R2

)
,

thus the optimal cut condition (1) reads α2 = 1 − α2, which corresponds to
α =
√

2/2.

(a) (b)

Fig. 1. Graph of (a) a membership function µA to a fuzzy set in the considered family,
and (b) the membership function SA to a shadowed set obtained from (a) after an
optimal α-cut. Blue curve: graph of µA; green segments: crisp values of SA; gray area:
uncertainty zone of SA.

1 The choice of R2 and M as names for these symbols is linked to a special role they
will play in Sect. 3.
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3 Shadowed set induction

The proposed procedure learns a shadowed set in two phases: the first one infers
a fuzzy set starting from a set of labeled objects, while the second phase performs
on this set the α-cut described in the previous section.

Focusing on the first phase, consider a universe of discourse X, fix n ∈ IN
and denote by {x1, . . . , xn} ∈ Xn a sample of objects. Given also a set of labels
{µ1, . . . , µn} ∈ [0, 1]n whose values are the membership degrees of objects to
an unknown fuzzy set A, the membership function µA can be learned using
the approach proposed in [16] optimizing the square radius R2 of a sphere S
belonging to a space H and centered in a. Namely, the images of objects through
a function Φ : X 7→ H are such that Φ(xi) ∈ S when µi = 1, and Φ(xi) tends to
fall farther from the border of S as µi decreases from 1 to 0. This amounts to
modifying the support vector clustering algorithm proposed in [1] as follows:

minR2 + C

n∑
i=1

(ξi + τi) (3)

µi||Φ(xi)− a||2 ≤ µiR
2 + ξi ∀i = 1, . . . , n , (4)

(1− µi)||Φ(xi)− a||2 ≥ (1− µi)R
2 − τi ∀i = 1, . . . , n , (5)

ξi ≥ 0, τi ≥ 0 ∀i = 1, . . . , n . (6)

In this formulation C > 0 measures the relative importance of the two com-
ponents in the objective function, while ξi and τi are slack variables relaxing
the constraints dealing with the positioning of points inside and outside S, re-
spectively. Once S has been learned, the membership function µA is obtained
by mapping its argument x to 1 if Φ(x) ∈ S, and to a value belonging to [0, 1)
otherwise. This value is computed applying a suitable function f to the squared
distance r2(x) = ||Φ(x) − a||2. We will choose f within the family described in
Sect. 2, dropping subscripts for sake of conciseness. According to (2), the problem
(3–6) can be easily modified in order to take into account also the minimization
of the fuzziness degree of the inferred set as follows:

minR2 + C
n∑

i=1

(ξi + τi) +D(M −R2) (7)

µi||Φ(xi)− a||2 ≤ µiR
2 + ξi ∀i = 1, . . . , n , (8)

(1− µi)||Φ(xi)− a||2 ≥ (1− µi)R
2 − τi ∀i = 1, . . . , n , (9)

||Φ(xi)− a||2 ≤Mψ ∀i = 1, . . . , n , (10)

ξi ≥ 0, τi ≥ 0 ∀i = 1, . . . , n . (11)

In this new formulation, D > 0 is a new hyperparameter jointly ruling with
C the relative importance of the components in (7), namely devoted to the
optimization of radius, slack variables, and fuzziness degree. Analogously, M is
introduced as a new variable, bounded in (10) to be higher than the distance
between a and any of the images Φ(xi). Jointly considering this constraint and
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the objective function (7) amounts to requiring M to equal the maximum of
such distances. Actually, an additional hyperparameter ψ in (10) allows to fine
tune this requirement: ψ > 1 promotes higher values for M , and vice versa.

Letting E = (1−D (1− 1/ψ)) and denoting with k the kernel associated to
Φ (that is, k(xi, xj) = Φ(xi) · Φ(xj)), the Wolfe dual of (7–11) corresponds to
the maximization of

n∑
i=1

(εi + βi)k(xi, xi)− E−1
n∑

i,j=1

(εi + βi)(εj + βj)k(xi, xj) (12)

subject to the constraints

n∑
i=1

εi = 1−D , (13)

n∑
i=1

βi = D/ψ , (14)

−(1− µi)C ≤ εi ≤ µiC ∀i = 1, . . . , n , (15)

βi ≥ 0 ∀i = 1, . . . , n . (16)

It it easy to see that βi is the generic Lagrangian multiplier associated to (10),
while εi = µiγi − (1 − µi)γ̂i, being γi and γ̂i the multipliers for (8) and (9). In
order to be solvable, the dual problem requires D 6= ψ/(ψ − 1), otherwise the
objective function would not be computable.

In the experiments described later on, we will consider two kinds of kernel: the
linear kernel defined by k(xi, xj) = xi · xj , and the family of Gaussian kernels
defined by k(xi, xj) = exp

(
−||xi − xj ||2/σ2

)
, where σ > 0 is an additional

hyperparameter to be considered. This use of the so-called kernel trick allows to
consider a universe of discourse whose members are not necessarily numbers or
numerical vectors. For instance, [17] uses a similar technique in order to solve
the problem of detecting a set of reliable axioms in the context of semantic Web.

Dealing with the KKT conditions [7] is a bit tricky, because these are ex-
pressed in terms of γi, γ̂i, βi, and the remaining Lagrange multipliers. For sake
of conciseness, we just list the salient relations linking primal and dual variables
when we consider the optimal solution:

0 < γi < C → R2 = r2(xi) , (17)

0 < γ̂i < C → R2 = r2(xi) , (18)

βi > 0→M = ψ−1r2(xi) , (19)

where r2(x) = ||Φ(x)− a||2 can be obtained as

r2(x) = k(x, x)− 2E−1
n∑

i=1

(εi + βi)k(x, xi)+

+ E−2
n∑

i,j=1

(εi + βi)(εj + βj)k(xi, xj) .
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Table 1. Relations between the dual variables γi, γ̂i, and βi.

γ̂i = 0 0 < γ̂i < C γ̂i = C

γi = 0 εi = 0 −C(1− µi) < εi < 0 εi = −C(1− µi)
0 < γi < C 0 < εi < Cµi −(1− µi)C < εi < µiC −C(1−µi) < εi < C(2µi−1)
γi = C εi = C C(2µi − 1) < εi < Cµi εi = C(2µi − 1)

The problem here is that (7–11) explicitly depend only on εi and βi, thus only
(19) is directly exploitable. By analyzing all combinations between the critical
values of γi and γ̂i and computing the corresponding values for εi (see Table 1),
it is easy to check that

0 < εi < Cµi → 0 < γi < C , (20)

−C(1− µi) < εi < 0→ 0 < γ̂i < C . (21)

Jointly considering (17–21) it is therefore possible to link the optimal values of
dual and primal variables:

0 < εi < Cµi → R2 = r2(xi) , (22)

−C(1− µi) < εi < 0→ R2 = r2(xi) , (23)

βi > 0→M = ψ−1r2(xi) . (24)

Once R2 and M have been found, a shadowed set can be obtained from the
corresponding fuzzy set through application of the optimal α-cut described in
Sect. 2.

4 Experiments

As a first set of experiments, we tested the sensitivity of the overall learning pro-
cedure to hyperparameters2. Focusing on C, we considered a synthetic dataset
composed by seven points whose crisp membership3 has been fixed according
to an interval, thus suggesting a unimodal membership both to a fuzzy and a
shadowed set. Using a linear kernel and fixing D = 0.3 and ψ = 1, Fig. 2 shows
that rising C has the effect of sharpening the boundaries of the fuzzy set. In
other words, as C grows the membership increases from 0 to 1 (and decreases
from 1 to 0) in a more linear fashion.

Figures 3 and 4 describe analogous experiments focusing on the role of D
and ψ which we can summarize as follows:

2 Code and data to replicate experiments are available at https://github.com/

dariomalchiodi/WILF2018.
3 It is worth highlighting that the learning algorithm of Sect. 3 can in principle be run

on objects labeled using more generic membership grades (that is, values belonging
to [0, 1]). However, as such a rich information is normally not available in public
datasets, all reported experiments rely on crisp membership labels.
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– D is directly related to the amount of uncertainty of the inferred shadowed
set (the higher its value, the lower the fuzziness degree of the set);

– ψ primarily influences the localization of the inferred set, although it also
affects the optimal value of M , thus it has an impact on the uncertainty
described in the previous point, too.

Finally, the kernel choice obviously affects the general form of µA, and thus
also SA. For instance, Fig. 5 shows the effect of decreasing the parameter of a
Gaussian kernel when learning SA on the same dataset of Fig. 2 and 3. The aug-
mented plasticity in the considered class of functions allows the procedure to find
bimodal memberships concentrating around the positive points as σ decreases.

(a) C = 0.3 (b) C = 6

Fig. 2. Effect of changes of C on the membership functions learned using a linear kernel
and setting D = 0.3 and ψ = 1. The fuzzy and shadowed membership functions were
plotted using the same notation of Fig. 1. For each sample point, a bullet on the X-axis
is drawn using black and white color when µi = 1 and µi = 0.

(a) D = 0.1 (b) D = 2

Fig. 3. Effect of changes in the parameter D on the learned unimodal membership
function to a shadowed set, letting C = 10, ψ = 1 and using a linear kernel. Same
notation as in Fig. 2.
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(a) ψ = 0.3 (b) ψ = 0.4

(c) ψ = 0.6 (d) ψ = 1

Fig. 4. Effect of changes in the parameter ψ on the membership function to a shadowed
set learned with a linear kernel and setting C = 1 and D = 4. Same notation as in
Fig. 2.

(a) σ = 5 (b) σ = 3

Fig. 5. Effect of changes in the parameter σ of the used Gaussian kernel on the bimodal
membership function to a shadowed set learned when C = 30, ψ = 1 and D = 0.8.
Same notation as in Fig. 2.

Switching to a non-synthetic dataset, Fig. 6 shows the result of the proposed
technique for a sample from the veterinary domain, in which each observation is
the measurement of the level of kidney function (namely, the rate of glomerular
filtration, measured in mL/min/Kg), in a set of 37 dogs, each one labeled either
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Fig. 6. Membership function for the fuzzy and shadowed sets capturing the concept of
“ill dog” expressed by a real-world dataset. Same notation as in Fig. 2.

as “ill” or “healthy”. In this case the procedure relied on a Gaussian kernel with
parameter σ = 0.3, fixing C = 0.5, D = 0.45 and ψ = 1.

As the described learning algorithm can handle objects of arbitrary dimen-
sion, we also considered the Iris dataset [6], gathering the observations of 150
iris plants, expressed as a 4-dimensional vector (sepal length, sepal width, petal
length, petal width), with length and width measured in centimeters. Each ob-
servation belongs to exactly one of the classes Setosa, Virginica, and Versicolor
(where the first one is linearly separable from the remaining two, and the latter
are linked by a more complex relationship). For sake of visualization, we ex-
tracted the first two principal components from the observations and performed
the shadowed set inference for all the available classes, each time labeling with
µi = 1 the observations referring to the target class and with µi = 0 the remain-
ing observations. Figure 7 shows the obtained results when the whole dataset
is considered, using a Gaussian kernel (the related value for σ, as well as those
of the remaining hyperparameters have been chosen after an exploratory proce-
dure). In the figure, bullets are superimposed to a visualization of the membersip
functions where a dark gray and white background respectively refer to positive
and negative values, while a light gray background shows the uncertain areas.

In order to get quantitative results, we performed a more accurate experiment
in which the following holdout scheme was iterated one hundred times.

– We randomly shuffled data and subsequently performed a stratified sampling
in order to get a training and a test set gathering respectively 80% and 20%
of the available items. Stratification ensured training and test sets to be
balanced (in the sense that the three classes are equally represented).

– We applied the inference procedure to the training set, obtaining three mem-
bership functions to shadowed sets, each linked to a specific Iris class.

– We assessed the joint performance of these three shadowed sets by assigning
each object to the class maximizing the membership function value (using
the obvious order 0 < [0, 1] < 1) and comparing the result with the target
label4.

4 Ties were resolved in favor of the correct class, when possible.
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(a) SSetosa (b) SVirginica (c) SVersicolor

Fig. 7. Inferred shadowed sets for the Iris dataset. Bullets show the two principal
components of each data item, colored in blue, red, and green respectively for the
Setosa, Virginica, and Versicolor classes. Dark gray, light gray and white background
correspond to the positive, uncertain, and negative values for the membership function.

Table 2. Results of one hundred holdout iterations of a joint shadowed set learning
procedure on the Iris dataset. Each row shows average, median, and standard deviation
of test error, in function of the number of principal components (# PC) extracted from
the original sample.

# PC Average error Median error Error std

2 0.07 0.07 0.04
3 0.03 0.03 0.02
4 0 0 0

The experiments were repeated extracting two, three, and four principal com-
ponents from the dataset. Table 2 summarizes the obtained results: the pro-
posed approach definitely learns the Iris dataset, outperforming similar tech-
niques based on the sole induction of fuzzy sets [2, 16].

5 Conclusions

Reducing the complexity of structures described in terms of fuzzy sets has the
desirable effect of allowing an easier interpretation of models induced from data.
With this aim, we propose a learning algorithm for shadowed sets, which are sets
endowed with a three-valued membership function defining full membership, full
exclusion and genuine uncertainty w.r.t. candidate points. This algoritm identi-
fies the shadowed set according to an optimal α-cut performed on a fuzzy set, in
turn inferred from data using a modified support vector clustering approach also
optimizing the fuzziness degree. A preliminary set of experiments on synthetic
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data allowed us to gain better insights on the role of hyperparameters; we also
tested the procedure on real-world datasets, getting improvements with respect
to a previous approach solely based on fuzzy sets. Besides a deeper experimen-
tation phase, we plan to extend the technique considering different families of
membership functions, as well as the jointly learning of several shadowed sets.
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