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Abstract: Face recognition using a single reference image per subject is challenging, above all when
referring to a large gallery of subjects. Furthermore, the problem hardness seriously increases when
the images are acquired in unconstrained conditions. In this paper we address the challenging
Single Sample Per Person (SSPP) problem considering large datasets of images acquired in the wild,
thus possibly featuring illumination, pose, face expression, partial occlusions, and low-resolution
hurdles. The proposed technique alternates a sparse dictionary learning technique based on the
method of optimal direction and the iterative `0-norm minimization algorithm called k-LIMAPS.
It works on robust deep-learned features, provided that the image variability is extended by standard
augmentation techniques. Experiments show the effectiveness of our method against the hardness
introduced above: first, we report extensive experiments on the unconstrained LFW dataset when
referring to large galleries up to 1680 subjects; second, we present experiments on very low-resolution
test images up to 8× 8 pixels; third, tests on the AR dataset are analyzed against specific disguises
such as partial occlusions, facial expressions, and illumination problems. In all the three scenarios
our method outperforms the state-of-the-art approaches adopting similar configurations.

Keywords: face recognition; single sample per person; dictionary learning; optimal directions (MOD);
Deep Convolutional Neural Network (DCNN) features; sparse recovery

1. Introduction

Faces convey a plethora of information, such as expression, gender, age, ethnic origin, and identity.
Indeed these factors co-exist and the ability to recognize each of them is strictly correlated with the
capability to isolate one from the others. This task is made even harder by the different characteristics
of each factor. For example, expressions are transient, change fast and significantly, while aging is
permanent, and affect the face appearance gradually. Performing a person identification requires
to disregard these changes and recover the immutable characteristic of the identity. The problem is
made further complex by the face appearance variations caused by head pose changes and by possible
external factors, such as variation of illumination or presence of partial occlusions. Despite this complex
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scenario, humans are extremely gifted in solving this task, while for automatic systems it is still a
challenging problem, being further complicated by possible image corruption (noisy or blurring) due to
either the employment of low-cost sensors or to large distances between the subjects and the acquisition
cameras. Recently, Face Recognition (FR) has seen a breakthrough mainly thanks to the introduction of
deep neural networks [1,2], thus allowing its adoption in plentiful applications [3]. Even though, there
are still several open problems [4] deserving further investigation. The main challenges concern the
long-standing difficulties of dealing with images acquired in unconstrained conditions [5], implying
the necessity to deal with several illumination conditions, head poses, facial expressions, possible
partial occlusions, and possible low image quality [6]. Furthermore, the matter gets more difficult
by the double hardness of accomplishing the recognition task dealing with large-scale databases [7],
and having only a few images per subject available for the gallery/train construction, facing the so
called Small Sample Size (SSS) problem, or even the extreme case when only one image is available:
the Single Sample Per Person (SSPP) problem [4,8]. Such challenge is of leading interest in application
such as e-passport control, law enforcement, surveillance, human-computer interaction, to name just a
few. Furthermore, even harder challenges are the scenarios where these problems co-exist, requiring
the conception of powerful and robust methods for SSPP, able to deal with images possibly corrupted.
Recently, a large investigation effort has been put on this research field, achieving promising but not
yet satisfactory results [4]. In Section 2 we recall and organize the most recent contributions to draw an
up-to-date picture of this domain.

In this paper we propose a SSPP method robust to low-quality images and disguised face images
(Section 3). It extends a preliminary study [9] where the SSPP problem was faced by combining
deep-learned features with the sparse representation paradigm. Specifically, the VGG-face net [10] was
adopted to achieve highly discriminative features, and the k-LIMAPS algorithm [11,12] to accomplish
the goal of deriving a concise description of a test image on a collection of feature dictionaries.
Consequently, the FR problem was recast as mere counting of presence of labeled atoms over all
codings, i.e., using majority voting. Here two main novelties are introduced:

• Face augmentation step: we enrich the character of the discriminative features by producing a
very large collection of augmented images (considering several scales, crops, displacements and
filtering). This way, besides facing the hurdle of availing of a SSPP for the gallery construction,
we make the system robust to partial occlusions (collecting face sub-portions dual to the occlusions),
multi-poses (parts of the faces are less sensitive to pose than the whole face), and low resolution
(characterizing even very low-quality image versions).

• Sparse sub-dictionary learning step: given the huge quantity of data produced with the face
augmentation step, it is essential to derive a space suitable for the classification, together with
a succinct and effective model underlying the data. The feature space is obtained employing
deep features coupled with the linear discriminant analysis, while the concise model is derived
adopting the method of optimal directions (MOD) [13], which has proved to be very efficient for
low-dimensional input data. The benefits of this approach is that, contrarily to generic learning
algorithms [14], the label consistency between dictionary atoms and training data is maintained,
allowing the direct application of the classification stage based on majority voting (a demo code is
available on the website: https://github.com/phuselab/SSLD-face_recognition).

Essentially, the core idea in our Sparsity-driven Sub-dictionary Learning using Deep features
(SSLD) technique is to work out a large number of face augmentation, characterize them with
very discriminative deep features, derive a succinct sub-dictionary for each subject through
k-LIMAPS sparse optimizer, and deduce the identity of probe images by combining multiple
classifications by the majority voting. This pipeline allows to deal with SSPP problem coupled
with several further nuisances, while keeping the system very efficient, and thus suitable for real-world
applications. A further advantage of this approach is that it does not require any additional generic
dataset for learning, which collection would pose further issues to avoid overfitting while promoting
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a good generalization capability. The effectiveness of the method is proven in Section 4: the LFW
dataset is adopted to evaluate the robustness against uncontrolled conditions with large gallery sets,
the AR database is tested to analyze the method behaviour against natural occlusions (people wearing
sunglasses or scarf), illuminations and face expressions. Finally, we investigate the method robustness
against low-resolution probe images by degrading the LFW images. In Section 5 we highlight the key
points of our work and draw potential future directions in this domain.

2. Related Works

The methods dealing with the SSPP problem can be grouped in three categories [4]: (i) learning
methods, which characterize possible face changes referring to a distinct and rich face image set so to
attribute them to the available scarce labeled data; (ii) generative methods, that devise new synthetic
images starting from the available reference ones, so enriching the gallery set, and (iii) local methods,
which achieve a higher discerning power thanks to face local characterizations.

(i) Learning Methods

These approaches aim at recovering the face without variants (or at least to attenuate them),
and extracting robust features for image representation so to reduce the intra-class variance.
The hypothesis common to these methods is to avail of a generic training set, suitable to characterize
the nuisance variations expected in the test set.

In [15] Deng et al. proposed a method aiming at mapping gallery images to equally distant
positions in an embedding space, disregarding the data structure, and simultaneously reducing to
zero vectors the intra-class facial differences, so to augment the method robustness. These goals are
attained adopting a least square regression technique (LRA) formulated as the generalized inverse of
the training data matrix, incrementally computed adopting the well-known Greville algorithm. This
approach achieves the same performance as the batch LRA, while allowing efficient update when
adding new subjects in the gallery. The authors extensively test their method on four datasets acquired
in controlled conditions (Ext.Yale B, CMU-PIE, AR, and FERET), showing the effectiveness of the
generic learning. In Section 4 we report the results obtained by LRA on the AR dataset, comparing
them with our method. In the same vein, Hu et al. [16] adopted a discriminative transfer learning
(DTL) approach for SSPP. Given a large generic dataset, containing multiple images per subject, and
the gallery set, including a single sample per subject, DTL learns a model that maximizes the intra-class
variation and minimizes the inter-class one on the generic dataset, simultaneously minimizing the
distribution difference between the two datasets in a joint latent subspace via manifold alignment
strategy. A sparsity regularizer is also added to increase the generalization capability. Experiments
conducted on the FERET and CAS-PEAL-R1 datasets show the validity of the method, while the tests
on the LFW highlight the limits of the method (cfr. Section 4.1). In [17] the authors proposed a fully
automatic method for FR in uncontrolled environments. In order to cope with pose variations, cause
of major problems in real-world FR systems, their method first pre-process the images with a pose
normalization technique based on piece-wise affine warping transformation that can work out well
both in-plane and out-of-plane pose changes. The warping is applied on a triangular mesh determined
by an enhanced active appearance model (AAM) where landmark location initialization is performed
with a landmark mixture strategy. The algorithm is then evaluated against the FERET (b-series) and
the CMU-PIE databases on galleries containing respectively 200 and 68 single samples per subject in
normal conditions (neutral expression, frontal pose, ...), outperforming the state of the art. Also the
experiments conducted on the LFW dataset achieve high accuracy, while referring to multi-sample
gallery and so not framed in the SSPP problem. Another effective approach is presented in [18] where
the reduction of the intra-class variability is achieved training a supervised auto-encoder to map
all the faces with their peculiar appearance (e.g., illumination, pose, expression) onto the canonical
face of the person, normalizing them. The authors propose a Stacked Supervised Auto-Encoders
(SSAE) where the activation function of the encoder is applied to both normalized and corrupted data,
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and their outputs are the input to the next layer, determining a deep architecture. FR experiments are
conducted on the Ext.Yale B, CMU-PIE, and AR datasets, while LFW is adopted for the face verification
problem. Performances are not outstanding, while the approach is original and well established.
Chu et al. [6] face the very challenging low-resolution FR with SSPP problem. The authors proposed a
cluster-based regularized simultaneous discriminant analysis (C-RSDA), aiming at regularizing both
the inter-class and intra-class scatter matrices. The method conceives the employment of two scatter
matrices, a cluster-based and a class-based, to learn a mapping suitable to project both high-resolution
(HR) and low-resolution (LR) images into a common space, suitable for performing the recognition
step. Extensive experiments have been conducted highlighting the effectiveness of the method on
controlled databases such as the FERET, and the limits on unconstrained images (cfr. Section 4.2 for
comparisons on LFW the dataset).

(ii) Generative Methods

Methods in this category aim at overcoming the lack of training samples by expanding virtually
the gallery at hand. Specifically, intra-class variations are first learned from a disjoint set of images
and then applied to the gallery single samples to obtain intra-class variations, thus expanding
their expressiveness.

In [19], given single training images and exploiting a sufficiently rich bootstrap set, the method
produces the corresponding 3D face rendering, being potentially able to synthesize images with any
pose or illumination variations. This is achieved coupling a multi-depth 3D generic elastic model
with the quotient image technique, aiming at synthesizing virtual faces with a desired illumination
and expression, given a frontal image. A pose-aware metric learning method then transforms each
model into a single point in a suitable metric space. The single image classification is achieved by first
estimating the pose of the face and then applying the pose-specific metric classification. Experiments
on the Multi-PIE dataset show the effectiveness of the method, that outperforms by 10% recently
proposed deep learning methods. Gao et al. [20] introduced a method to deal with both the SSPP
and the possible presence of nuisance variables (both linear and non-linear). The technique, called
S3RC, is a sparsity-based classification method grounded on a couple of dictionaries: the gallery and
the variation one. The first aims at characterizing the face identity, while the second is conceived to
capture possible variations. The residual error of a sample is modeled as a Gaussian Mixture Model
noise, whose parameters (centroid and covariance matrix) are estimated in maximum likelihood sense
by an EM algorithm initialized with the empirical distribution as class prior. Hence, the estimated
centroids form the gallery dictionary, while the variation dictionary is obtained from single samples or
from standard within-class centering of labeled samples. The so-constructed minimum `2 residual
classifier is experimented on the AR and the LFW databases, while only in the latter case referring to
the SSPP problem (cfr. Table 1). In [21] another method based on sparse coding is proposed. Here,
Yu et al. establish their method on a dictionary learned from a generic unlabeled dictionary, aiming
at modeling possible occlusions. Given a disguised test image, the method is able to localize pixels
affected by occlusions by means of a multi-scale error measurement technique. The method setups
the training on the images corresponding to 20 subjects of the AR dataset, while tests are performed on
other 80 subjects of the same dataset. Despite the performances are very good, we claim the learning
on a subset of a so specific dataset does not allow generalization of the performance to more realistic
and unconstrained scenarios. In [22] a collaborative representation and probabilistic graph model is
proposed. Two dictionaries are constructed: the gallery dictionary, based on the SSPP training images,
and an adaptive probabilistic label dictionary, exploiting a distinct unlabeled image set, congruous
for characterizing possible variants in the test set. To handle the testing phase, a reconstruction-based
classifier is adopted and tested on a subset of 70 subjects of the AR dataset, achieving good but not
outstanding recognition rates (90.65% on images without occlusions, 85.65% and 72.37% on images
with occlusions in the first and second session respectively).
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(iii) Local Methods

Local methods have their strength in characterizing patches of the faces, under the hypothesis
that possible nuisance (e.g., partial occlusions, expression chances, and illumination variations) affect
only a part of the face. Collaborative representation should thus exclude outliers from the decision
and reach a robust classification.

For example, in [23] an iterative `2-regularized CRC method is proposed, grounding on local
structure of decomposed sample images. More specifically, sub-dictionaries built on local patches
are structured in a complete dictionary and referred during testing phase: probe images are first
decomposed in patches as the training ones, then each image portion undergoes an iterative process
where the CRC method is alternated with a pruning phase aiming at promoting sparsity. The process
stops when a satisfactory majority voting is achieved. The experiments on the AR dataset indicate
an improvement compared to state-of-the-art alternatives (cfr. Table 3), while low performances are
attained on the LFW dataset (cfr. Table 1). Another joint collaborative representation model is proposed
in [24], effectively fusing the deep-feature representations corresponding to different image portions.
Among the others, experiments on the AR and LFW datasets are conducted (cfr. Table 1). A block-based
partition of face images is adopted also in [25] and [26]. The first paper proposes to characterize the
blocks applying a kernel principal component analysis network (KPCANet), while the second refers to
a variation dictionary learned from external data. Both methods have been tested on the LFW dataset
as reported in Table 1. Finally, we recall the method proposed by Pei et al. [27] that characterizes each
block extracting the LBP features and attains the FR adopting the decision tree technique. Experiments
on 100 subjects of the AR dataset produced on average 83% of recognition rate.

3. Method

In this section we describe a sparse-driven sub-dictionary learning technique, applied on highly
discriminative characterizations obtained by deep CNN (SSLD). In Figure 1 the classification process
is sketched: we start applying simple transformations (such as scale reduction, cropping and flipping)
to the unique sample available in the gallery.

Probe 
face

Face 
gallery

Face Augmented

VGGface CNN

Dictionary learning

 

Φ = . . . 

. . .
ID1 IDN

Face ID

kLiMapS Classifier

Train
Test

Figure 1. Classification process diagram. First stage: gallery and probe image augmentation. Second
stage: deep-feature extraction via VGG-face net. Third stage: sparsity-driven sub-dictionary learning.
Fourth stage: identity characterization by k-LIMAPS and face identity finding.

Next, a highly discriminative characterization of the augmented image set is obtained applying
the VGG-face net [10], and subsequently the linear discriminant analysis (LDA) that reduces the feature
dimensionality. This paves the way to the dictionary building, applying the MOD as sparse dictionary
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learning technique. Lastly, adopting the learned dictionary, we leverage on the k-LIMAPS algorithm
`0-norm minimizer [12] to derive a sparse coding of the test images, and solve the FR task. We describe
the details of these stages in the remaining subsections hereafter.

3.1. Deep Features on Geometrical Transformations

SSPP can be tackled either using the single-sample reference images available [28], or by enriching
the gallery. Our approach, being based on sparse classification, requires populating the dictionary with
multi-sample per subject, so to derive a low-rank subspace characterizing each subject in the training
gallery. To attain the augmented images, as recalled in Section 2 and well studied in [29], one could
adopt either learning methods, based on the generative adversarial networks, or 3D model-based
methods, or traditional affine transforms. The first two ways constitute challenging open research
problems per se. Besides their intrinsic complexity, a further not negligible aspect is that they both
require a large generic dataset to learn virtual samples. On the contrary, the third method works
directly on the available data, applying to them simple transformations such as flipping, scaling and
multi-cropping, thus enriching the image characterization. Of course, this enrichment covers only
partially the possible face poses and more in general the possible nuisances that could affect the face
images. This challenge motivates the adoption of the subsequent steps, aiming at generalizing from the
augmented data with a dictionary learning step, and dealing with unavoidable discrepancy between
the dictionary and probe image representations with the robust k-LIMAPS sparsity promotion.

Specifically, each face image I is first normalized [30], and then a pool of d transformations is
applied on I providing the set of new augmented images AI = {I1, . . . , Id}. To be successful in
classification, it turns out to be useful to project each augmented face image Ij ∈ AI onto a proper
feature space capturing relevant visual content of the image itself. In the vein of Gao et al. [20],
we derive a highly discriminative feature characterization resorting to deep CNN, adopting the
VGG-face net presented in [10]. It is a public deep convolutional neural network (DCNN) conceived
for the FR task, thus suitable to extract complex and even subtle face characterizations. Specifically,
we refer to the output of the last full connected layer: for each augmented image Ii

j of subject i, with

j ∈ D = {1, . . . , d}, we work out the characterization ϕi
j = VGG-face(Ii

j), which is a p-dimensional

sparse vector (p = 4096). The obtained features are hence arranged in the matrix Fi =
[

ϕi
1 | · · · | ϕi

d

]
.

3.2. Feature Projection into LDA Space

Let C = {1, . . . , q} be a set of subjects, each with a unique reference image, and suppose we are
given a probe image of the subject s ∈ C. Before applying some learning process, it is very common
to transform the data into some suitable space where the power of distinguishing among sample
vectors of different subjects is improved. Such discriminative capability can be pursued by applying
Fisher’s LDA [31], a method largely used in pattern recognition and machine learning. LDA works
out a succinct and highly discriminative characterization, projecting the available data into a space
with strongly reduced dimensions, aiming at having the best-possible class separability. We outline
the application of LDA to our problem according to Fisher’s original approach [32] where no normal
probability distribution assumption is posed at all, but rather a linear combination of explanatory
features is sought to maximize the Fisher’s ratio. This is an empirical measure of between-class
separability over pooled within-class homogeneity in the transformed feature space.

To apply this technique in our setting, given a matrix of features F = [F1 | F2 | · · · | Fq] accounting
for all the q subjects/classes in C, let

µ =
1
qd

q

∑
i=1

d

∑
j=1

ϕi
j and µi =

1
d

d

∑
j=1

ϕi
j
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be the global mean and the mean of class i respectively, and let

SW =
q

∑
i=1

d

∑
j=1

(ϕi
j − µi)(ϕi

j − µi)
T and SB = d

q

∑
i=1

(µi − µ)(µi − µ)T

be the within-class scatter matrix and the between-class scatter matrix, respectively. The Fisher’s
discriminant analysis determines a weight matrix W ∈ R(q−1)×p that projects all high-dimensional
data ϕj ∈ F in the reduced feature space Rq−1 aiming at maximizing class separability of the projected
feature vectors. W is obtained by optimizing the functional

J(W) =
|WTSBW|
|WTSWW| ,

and is proven to be an optimal for the generalized Rayleigh quotient criterion. From numerical
computation viewpoint, this is carried out by solving generalized eigenvalue problems [33]:

SBw = λSWw

and since rank(SB) ≤ q− 1, in the non-degenerate cases we obtain W stacking the q− 1 generalized
eigenvectors w regarded as row vectors.

The LDA technique is adopted to transform feature vectors for both gallery and probe images,
which will be referred in the subsequent learning and classification steps, as detailed in the next section.
The new features, lying in the LDA space and denoted with the superscript LDA, should be computed
as follows:

FLDA = WF (1)

ψLDA,i
j = W ψi

j, for all j = 1, . . . , d (2)

where last equation holds for the features of the probe subject i. For the sake of readability, we relieve
the notational burden by dropping the LDA superscript henceforth.

We remark that, as classical consequence of applying the LDA, the transformed feature vectors
have reduced dimensionality compared to the high dimensionality of VGG-face net features.

3.3. Sparse Sub-Dictionary Learning and Representation

Before describing the learning process applied to LDA features, here we briefly introduce the
linear sparsity model.

3.3.1. Sparse Representation

The general framework of sparse representation consists in exploiting the linear combination
of some prototype samples or atoms to represent a probe sample. Given a collection of known
atoms φi, . . . , φm such that φi ∈ Rn for all i = 1, . . . , m, if m < n the matrix Φ = [φ1, · · · , φm] where
atoms are arranged as columns is called over-complete dictionary. Let us consider a linear system of
equations Φx = s for a given probe sample s ∈ Rm. From the viewpoint of linear algebra the latter
is an underdetermined linear system and then ill-posed because it does not have a unique solution.
To overcome this multiplicity, it is reasonable to impose an appropriate regularization constraint as,
for instance, to require that the obtained representation solution should be sparse. To find a sparse
decomposition of the sample s, that is a solution x with very few nonzero terms, we can solve the
following combinatorial optimization problem

argmin
α∈Rm

‖x‖0 subject to Φx = y. (P0)
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where ‖x‖0 = |{j : xj 6= 0}| denotes the `0-norm (strictly speaking the `0-norm is not actually a norm,
it is the function counting the number of nonzero elements in a vector x, satisfying the norm axioms
but the absolute homogeneity.). This approach to sparsity is often referred as `0-minimization. Note
that problem (P0) is combinatorial in nature and hence NP-hard [34]. Moreover, when at most k atoms
(with k < n) are sufficient to represent the sample s, the previous problem can be recasted in the
following combinatorial problem of finding x:

y = Φx subject to ‖x‖0 ≤ k,

which is often referred to as k-sparse approximation problem. In this case, the feasible set is the union of
lower dimensional subspaces generated by canonical basis vectors.

Since data in real applications often contains noise, the model appearing in the previous equation
is sometime unrealistic. Thus, it is reasonable to revise such exact model introducing a small possible
noise by defining the problem Φα = s + ε, where ε ∈ Rn refers to a representation noise which is in
general a bounded quantity, i.e., ‖ε‖2 ≤ σ. Therefore, under the noisy model assumption, the problem
(P0) can be approximately solved by addressing the combinatorial problem

argmin
α∈Rm

‖Φx− s‖2
2 subject to ‖x‖0 ≤ k. (Pa)

We tackle the sparse representation problem (Pa) by resorting to the k-LIMAPS [12] regularization
method. Essentially, it relies on a fixed-point iteration scheme which combines non-convex
Lipschitzian-type mappings with canonical orthogonal projectors. The first are aimed at uniformly
enhancing the sparseness level by shrinking effects, while the latter to project back into the feasible
space of solutions. A motivated reason to use k-LIMAPS is that we have already demonstrated
in past works its ability to find low-rank approximate solutions in tasks such as biomedical signal
compression [35] and FR problems with very few training samples [36,37], and FR in presence of
partial occlusions [38]. Here we show how to apply it to the SSPP problem which is one of the most
challenging task in the realm of face analysis, as highlighted at the beginning of this paper.

3.3.2. Sparse Dictionary Learning

In particular, in this work we make use of the sparse representation paradigm for deriving
discriminative class-specific sub-dictionaries able to capture the sparsity pattern within the image
classification context designed above. In order to minimize the reconstruction error among all the
classes, we combine the well-known MOD with the sparsity representation on the structured dictionary
provided by k-LIMAPS.

More formally, given a collection of d features Fi in LDA space for each subject i, we want to
learn a corresponding dictionary Φi = [ϕ1, . . . , ϕk] of very few atoms, i.e., for k � d. We define the
structured dictionary as a matrix collecting all sub-dictionaries, one for each subject in the gallery, that
is a frame of kq atoms of the form Φ = [Φ1 | · · · | Φq]. Following the same scheme, we define the
matrix X = [Xi | · · · | Xq] by arranging in a unique row the submatrices Xi ∈ Rkq×d which encode the
features Fi using the dictionary Φ.

The rationale underneath this design is that the subject-specific dictionaries Φi are learned to
well represent the face characteristics in the transformed LDA space through the sparse encoding
submatrices Xi, that trigger only the atoms belonging to each specific subject respectively. This leads
in the identity classification stage to a representation of the probe image that involves the dictionary of
the true subject only.
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Following this rationale we formulate the sparse dictionary learning problem

(Φ̂, X̂) = argmin
Φ∈R(q−1)×kq ,X∈Rkq×dq

‖F−ΦX‖2
F

subject to ‖ϕj‖2 = 1, j = 1, ..., kq

‖xj‖0 ≤ k, j = 1, ..., dq

(3)

where ϕj and xj represent the j-th column of Φ and X, respectively.

3.3.3. Computational Scheme

The search for an optimal solution of problem (3) is a well-known difficult task due both to the
combinatorial nature of the problem and to the strong non-convexity given by the constraint on the
`0-norm. We tackle this problem adopting the well-established alternating optimization scheme [39],
which consists in repeatedly executing the two steps:

1. Sparse coding: solve problem (3) for X only, fixing the dictionary Φ;
2. Dictionary update: solve problem (3) for Φ only, fixing X.

Of course, an effective algorithm prescribes also an initial feasible solution Φ0 used for starting
the iterations, for example selecting a subset of k feature columns from F for every subject. The scheme
is iterated until a stopping criterion is reached, that could be for instance the residual error below an
acceptable threshold or a suitable predefined number of iterations.

To calculate the solution for the Step 1, that is the atom representation coefficients, many
optimization heuristics could be used, each one being characterized by a different type of norm
minimization incorporating the sparsity constraints [40]. In this work we concern with the strict
`0-norm minimization that is undertaken by the above-mentioned iterative algorithm k-LIMAPS
working on feature space both for dictionary and probe images.

The technique we utilize for carrying out Step 2 is the classical MOD [13]. This method consists,
firstly, in locally minimizing the convex objective function of problem (3) regarding each sub-dictionary
Φi, without regard to the constraints. This minimization is quite straight-forward, since it gives rise to
a least squares problem which projects the solution onto the convex set of admissible solutions, i.e.,

Φ̂i = FiX†
i

where X†
i denotes the Moore-Penrose pseudoinverse matrix [33] of Xi. Secondly, it rescales each

atom ϕj to fit the unit `2-norm constraint, i.e., every atom is projected on the unit (q− 2)-sphere Sq−2

centered at the origin of the LDA space. With such rescaling, the dictionary turns out to be no more
optimal regarding the objective function and for the given matrix X, but in the subsequent Step 1
iteration of the alternating scheme, the sparsity encoding matrix X is re-encoded for the pursuit of
reducing the residual error. The learning process described above is sketched in Algorithm 1.
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Algorithm 1: SSLD: Learning Step

Data: Gallery G = {I1, . . . , Iq}, number of subjects q, number of features d
Result: Learned dictionary Φ̂
begin

for i ∈ C do
Ai ←− AUGMENT(Ii) // compute image augmentation
for Ii

j ∈ Ai do
ϕi

j ←− VGG-face(Ii
j) // compute VGG feature

end

Fi ←−
[

ϕi
1 | · · · | ϕi

d

]
end
F ←− [F1 | F2 | · · · | Fq]

W ←− LDA(F) // compute proj matrix W by LDA analysis on features F
FLDA ←−WF
// dictionary initialization picking k LDA features for each subject
for i ∈ C do

Φi ←−
[

ϕi
1 | · · · | ϕi

k

]
end
Φ(0) ←− [Φ1 | · · · | Φq]

// dictionary learning STAGE
t←− 0
while (“stop condition is not met”) do

t←− t + 1
// compute sparse encoding matrix
X(t) ←− KLIMAPS(FLDA, Φ(t−1), k) // encode the features by k-LiMapS
// compute new dictionary by MOD
for i ∈ C do

// compute Moore-Penrose pseudoinverse of submatrix Xi

X†
i ←− PSEUDOINVERSE(i-th submatrix of X(t))

Φi ←− Fi X†
i // Method of Optimal Directions

end
Φ(t) ←− [Φ1 | · · · | Φq] // new dictionary

end
Φ̂←− Φ(t)

end

3.4. Identity Recovery via k-LIMAPS Sparsity Promotion

As motivated in the previous section, the problem of recognizing a probe image against a close set
of subjects, can be tackled seeking the k-sparse solution of a linear system characterizing each reference
subject with k atoms. This consideration paves the way for the conception of our classification method,
procedurally described in the process below:

1. according to (1), for the whole pool D of features F build the LDA projected features FLDA ∈
R(q−1)×dq, where q is the number of subjects in the gallery,

2. for a test face image Ii of identity i ∈ C, work out the LDA projections ψLDA,i
j from the feature

vectors ψi
j for every j ∈ D (Equation (2)),
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3. for each feature, i.e., for all j ∈ D, solve the problem (Pa) consisting of finding the k-sparse
solution α̂j satisfying

α̂j = argmin
α∈Rkq

‖Φ̂LDAα− ψLDA,i
j ‖ subject to ‖α‖0 ≤ k (4)

where Φ̂LDA results from the dictionary learning problem (3) applied to FLDA in the LDA space.

This approach exploits the covariance among atoms belonging to different sub-dictionaries:
setting the sparsity level of the linear system solution at the same value k of the subject sub-dictionary
dimension, aims at activating all and only the atoms in Φ̂LDA corresponding to the identity i of the test
image at hand, as shown in the following

Φ̂LDA =
[

ϕ1 | · · · | ϕk | · · · | ϕ(i−1)k+1 | · · · | ϕik |︸ ︷︷ ︸
subject i

· · · | ϕ(q−1)k+1 | · · · | ϕqk

]
.

In other words, the probe image features [ψLDA,i
1 |, . . . , | ψLDA,i

d ] and those atoms highlighted
above should have a high mutual coherence [41], and therefore the latter atoms pertaining to the
subject i are largely preferable to the remaining ones for the probe image representation.

Notice that generally, when referring to a sparse solution, the matter is to minimize the residual
measures (e.g., least squares minimization) over the weighted linear combination of atoms. Differently,
here we leverage only on the support (for a given of vector α, the support supp(α) = {i : αi 6= 0}
is the index pool of nonzero entries of α.) of the sparse solution of Equation (4), claiming that this
brings to a higher recognition rate even in presence of strong nuisances. Specifically, given the set
A = {α̂1, . . . , α̂d} of d sparse solutions associated with the probe image Ii, we consider the support of
each of them, and define a rather natural voting approach for the identity recognition:

1. Let L : {1, . . . , kq} → C be the function that maps the column-index t of ΦLDA to the subject in C
corresponding to the atom ϕt,

2. define
Vj =

{
L(t) ∈ C : t ∈ supp(α̂j)

}
as the set of identity votes casted by the j-th feature, j = 1, ..., d,

3. collect the votes together in the multi-set V =
⋃

j=1,...,d Vj and, if the mode of V is unique,
determine the subject identity consequently

4. otherwise, apply the least squares residual criterion between the probe features of every winner
and the linear combination of their respective dictionary atoms, so as to achieve a subject ranking.

The identity recovery process described above is sketched in Algorithm 2.
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Algorithm 2: SSLD: Identity Recovery

Data: Test image I, dictionary Φ, LDA projection matrix W, sbj idx C = {1, . . . , q}
Result: Test image identity i ∈ C
begin

A←− AUGMENT(I) // compute image augmentation
for Ij ∈ A do

ϕj ←− VGG-face(Ij) // compute VGG feature
end

F ←−
[

ϕ1 | · · · | ϕd

]
FLDA ←−WF // compute sparse encoding matrix
for ψj ∈ FLDA do

αj ←− KLIMAPS(ψj, Φ, k) // encode the features by k-LiMapS
Vj ←−

{
L(t) ∈ C : t ∈ supp(αj)

}
// votes given by support

end
V ←− ⋃j=1,...,d Vj

if UNIQUE(MODE(V)) then
i←− MODE(V) // identity given by mode

else

i←− arg minj

{
RESIDUE(Φαj, I)

}
// identity given by residues

end
end

4. Experimental Results

In this section, we evaluate the effectiveness of the proposed SSLD method facing the SSPP
problem, together with the three main challenges recalled in the introduction: large gallery cardinality,
LR (low-resolution) probe images, and disguised test images. For the first two experiments we adopt to
the LFW funneled dataset [42], containing more than 13,000 images of 5749 different people acquired in
uncontrolled conditions. The pose, illumination, and expression variations, together with the possible
presence of partial occlusions and disguised faces make SSPP problem extremely challenging. The
third experiment is performed adopting the AR [43], that contains more than 4000 images of 126
subjects acquired in two sessions, each session containing 13 images. The images in the AR database
are characterized according to the illumination changes, the face expression and facial occlusions,
allowing to analyze the system behaviour in each scenario separately. Notice that, while the LFW
funneled images are already centered and normalized, the AR faces require a normalization step that
we accomplish using the landmark detector presented in [30].

Given the localized faces, the very first step common to all the experiments concerns with the
image augmentation, aiming at generating augmented images of size 224× 224, as required by the
VGG-face DCNN. In this regard, each image is flipped, resized by a factor in the set {1.2, 1.4, 1.6, 1.8},
shifted horizontally of a quantity within the set {−10, 0,+10} pixels, and shifted vertically within the
set {−10,+10,+30} pixels. Thus, for each image I we attain d = 2× 4× 9 = 72 augmented images
Ij and consequently 72 features ϕj (Figure 2). We notice that, the parameter setting concerning the
augmentation step is not critical as long as it allows to catch both local details and holistic information.
This is fundamental for dealing with face images presenting partial occlusions or other local variations
such as face expression or illumination changes. Indeed, we have tested several configurations
either adding or changing the scale (e.g., 2, 2.2, 2.5) or the shifts (e.g., 20, 40), while registering no
significant performance differences. This means that such changes add only redundant information.
On the contrary, reducing the augmented image set decreases the performance, proving that a certain
description richness is useful to the system. The drawbacks of dealing with large dictionaries is
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the need for managing complex structures of dictionary chunks (like in [9]) and the increase of
computational costs. This is solved using the dictionary learning, that compresses all the features in k
atoms. Experimentally, we set k = 6, as a good trade-off between performances and computational
costs: as shown in Figure 3, for smaller values we lose effectiveness, while for larger values we do not
have a significant gain in performances while the computational costs increase [9].

Figure 2. Examples of scale and shift transformations. In vertical we plot changes of the image scales,
in horizontal we visualize the shifts.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

91.9

92.0

92.1

92.2

92.3

92.4

92.5

Accuracy with different sparsity levels

Figure 3. Accuracy of the proposed model on a subset of 100 subjects of the LFW database, varying
the value of the parameter k.

4.1. SSPP with Large Gallery Cardinality

To assess the proposed method performances dealing with galleries with different cardinality,
we adopt the LFW dataset. Specifically, we consider the subsets which include no less than 10 or 2
samples per subject respectively (in the following LFW158, and LFW1680), and derive from them the
cases with q = {100, 793}, extracting randomly subsets from LFW158, and LFW1680 respectively. Also
the gallery and test construction is generated randomly, and repeated over 10 trials. The average results
and the comparisons with the most recent contributions adopting the LFW are reported in Table 1.
We observe that our method, besides outperforming all the others, has a slow loss of performances as
the gallery cardinality increases. In particular, for the LFW ≤ 100 we compare our results with the
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one presented in [20] namely S3RC, which is, to the best of our knowledge the state of the art on this
particular subset of LFW for the SSPP-FR problem. As can be seen, our method outperforms the other
by 1.81%. We believe that this comparison is particularly important given that both methods use the
same DCNN features, thus highlighting the robustness of the proposed algorithm. As the cardinality
of the gallery increases the gap between our method and the second-best-performing algorithms
increases significantly achieving a boost in performance of 63.19% for the LFW1680 subset.

Table 1. Percentages of recognition rate on the LFW dataset, varying the gallery cardinality. For
comparison, we report the SSPP state of the art on the LFW. Standard deviation is reported when
available. We summarize in a common row results obtaining referring to galleries with slight dimension
changes, while precising in brackets the real gallery cardinality. In bold we emphasize the best
performance per category.

LFW ≤ 100 sbj
[44] [45] [46] [24] [26] [18] [20] SSLD

32 (50) 37 (50) 74 (50) 86 (50) 50 (80) 31.39 ± 1.74 (80) 92.57 (100) 94.38 ± 0.81 (100)

LFW ≤ 158 sbj

[25] [47] [48] [23] [49] SSLD
46.3 (120) 27.14 ± 1.0 (150) 30 (158) 37.9 (158) 50 (158) 92.78 ± 1.2 (158)

LFW 793 sbj LFW 1680 sbj

[24] SSLD [16] SSLD
65.3 86.43 ± 1.03 21.01 84.2 ± 0.5

4.2. Low-Resolution Test Images

In order to simulate real-world applications where the probe images are captured by surveillance
cameras often placed at large distance from the subjects, we setup an experiment where HR images are
used for the gallery construction, while LR images are referred to as probe images [6]. Experiments
have been conducted adopting the set LFW158, selecting randomly one image for the gallery, and the
remaining for test. LR are obtained resizing the images to 64× 64 pixels, and then downsampling
them to 8× 8, and 16× 16 pixels (Figure 4).

Figure 4. An example of high-resolution images (original), and the corresponding low-resolution ones.

We conducted two tests, one exploiting the dictionary learned on HR images only, as reported
in Section 4.1, and a second, namely SSLD w/LR, where we enlarge the augmented image set of the
training set, including the downsampled versions of the reference images. In this last case, the pool of
augmented images is d = 72 + 72, that is the set of augmented images obtained from the HR and LR
images respectively. The final sub-dictionary dimension k remains equal to 6.

In Table 2 we report the obtained results and comparisons. As we can observe, the dictionary
learned only on HR images, is suitable to deal with LR images up to a certain level of degradation (i.e.,
64 × 64 pixels), losing only 2 percentage points with respect to the result obtained on the HR probe
images (cfr. SSLD result in Table 1 for LFW ≤ 158). On the contrary, when the degradation is stronger,
the SSLD system finds hard to determine the correspondences between features extracted from HR in
gallery and LR probe images, arriving to a classification drawn by chance for the resolution of (8× 8)
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pixels. In this case, augmenting the reference image descriptions with their LR representations solves
part of the ambiguity, producing a great improvement.

Table 2. Experiments on LFW158 with probe images at different level of resolution. In bold we
emphasize the best performance per category.

Method 8× 8 16× 16 64× 64

[6] 12.28 15.06 -
SSLD 0.74 ± 0.18 12.18 ± 6.89 90.84 ± 1.13

SSLD w/LR 9.5 ± 0.69 45.57 ± 1.31 90.62 ± 0.99

The comparison of our method with the one proposed in [6] highlights the effectiveness of the
proposed learning procedure. As can be observed (Table 2) the ad-hoc feature augmentation adopted
for this experiment (SSLD w/LR) allows to reach a boost in performance of 33.39% and 30.51% if
compared with SSLD and [6] respectively, when dealing with face images downsampled to 16 × 16.
A similar result is obtained for images downsampled to 8 × 8 pixels; as before the augmentation of
the gallery with downsampled images has proven to be useful in classifying LR images obtaining
comparable results with the procedure of [6].

4.3. Disguised Test Images

Although the robustness of the SSLD method against possible hurdles is intrinsic in the LFW
experiment (Table 1), here we make it explicit by conducting experiments on the distinct categories of
the AR database (Figure 5).

Figure 5. Examples of AR images (session 1). On the left, the neutral image; the others are the test
images representing the different categories.

In this dataset, each represented individual has been acquired in two sessions, each one composed
of 13 different conditions including face expressions (in the following expr), illumination changes
(in the following ill) and partial face occlusions with sunglasses or scarves. In the literature, AR dataset
has been adopted also in the SSPP context, even achieving very high performance [18,25,26,44,49].
However this accuracy depends on building models of face variations learned on a subset of subjects
showing exactly the same hurdles (same sunglasses, same scarf, same overall conditions) thus not
generalizing well. For this reason we take into account only methods without this kind of training.

Experiments have been conducted following the protocols proposed in [23] and [15]: In the first
case ([23]) we selected 120 subjects (65 men and 55 women randomly chosen among the 126 available
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subjects) putting the neutral images of the first session in the gallery, and executing the test on the
other images divided per session and category (expr, ill, sunglasses, scarf). In Table 3 results and
comparisons with some of the methods outlined in [23] are reported. In the second case, according
to [15], we select 100 subjects; for each subject the neutral image of the first session is chosen for gallery
and the others (from both session 1 and 2) for test. Differently from the previous setting here we build
a category for the occluded images which includes sunglasses and scarf, and a category for occlusions
+ illumination changes. In Table 4 results and comparisons with some of the methods outlined in [15]
are reported.

Table 3. Experiments on AR dataset and comparison with [23]. For each category (Illumination,
Expression, Sunglasses, and Scarf) we report the recognition rate (%) for the sessions 1 and 2 (S1, S2),
and the average performances (avg.). In bold we highlight the best performances.

Method Illumination Expression Sunglasses Scarf

S1 S2 avg. S1 S2 avg. S1 S2 avg. S1 S2 avg.

SRC 94.70 62.20 78.45 95.30 63.60 79.45 88.10 46.90 67.50 50.60 25.80 38.20
GSRC 96.40 61.10 78.75 94.20 64.20 79.20 84.70 41.40 63.05 46.90 20.60 33.75

LS-MPCRC 98.90 80.0 89.45 96.90 80.30 88.60 97.80 72.50 85.15 89.40 65.60 77.50
SSLD 99.66 98.33 98.99 95.0 94.13 94.56 87.0 83.56 85.28 97.0 90.41 93.70

Table 4. Experiments on AR dataset and comparison with [15]. For each category we report the
recognition rate on both sessions and the overall accuracy. In bold we highlight the best performances.

Method Illumination Expression Occlusions Occl + Ill Overall

Pixel+LRA 72.2 66.0 40.8 19.0 47.8
Gabor+LRA 79.2 93.5 70.3 52.5 72.4
LBP+LRA 92.3 94.7 92.5 83.9 90.1

SSLD 98.99 94.56 90.18 82.02 91.43

As can be observed in Table 3, our method is robust with respect to illumination changes, facial
expression variations and partial face occlusions, generally outperforming the best method proposed
in [23]. This achievement is systematic in the second session, and on average; the second session is in
fact harder to classify due to the time which has passed between the acquisition of the two sessions.
This is evident in the results summarized in Table 3; we observe that the accuracy heavily drops
when classifying face images from the second session in all methods except the one proposed here,
this denotes a higher generalization capability and robustness to time variation. Table 4 shows the
results of the proposed method in a different setting in which all the occlusions are grouped together
and a second group is created for the occluded images with, in addition, changes of lighting. The
comparison with the results of [15] shows that our method produces comparable results in terms of
accuracy for the expression and occlusion + illumination categories. The LBP + LRA method obtains
slightly better results (+2.32%) for the occluded images, while our method largely outperforms the
others in the illumination category (+6.69% over the best method). Remarkably, our method is the
one that performs better on average, with an overall accuracy that surpasses the best method of [15]
by 1.33%.

5. Conclusions

This paper presents a method, called SSLD, for solving the SSPP problem coupled with other
hurdles which arise from large-scale datasets, large appearance variations (e.g., illumination, facial
expression and partial occlusions), and LR probe images. The proposed technique consists in a
sparse-driven sub-dictionary learning strategy exploiting the richness of the augmented face image
step, the strength of deep features, the simplicity of the MOD technique for sub-dictionary learning,
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and the effectiveness of the sparse representation via k-LIMAPS on structured dictionaries. The most
time-consuming phase is the dictionary learning, that by the way is worked out only once and offline.
On the contrary, the test phase, keeping k sufficiently small, can be carried out in real time.

Evaluations have been conducted on the LFW and AR datasets proving that the SSLD method
outperforms the state of the art for the SSPP problem, being versatile, data-independent, and scalable.
These encouraging results open to further investigations. The first concerns the extension of the
SSLD method to deal with even larger galleries (e.g., with 5000 subjects or more). Because of the
linear algebra computations, the dictionary learning phase of SSLD would become inefficient dealing
with very large galleries, so we plan to study a variant where the reference images are split into
several dictionaries to be processed separately and possibly in parallel. Naturally, an integration
level is then required to derive the final probe image classification. In addition, other dictionary
learning techniques could be conceived, in order to reduce the computational costs and to further
improve the system performance. Finally, we observe that the increased performances obtained on LR
images when referring to an augmented gallery encoding that hurdle, empirically demonstrates the
opportunity to further extend the augmented image set so to be able to capture other form of hurdles
that could happen in the test set (e.g., noise, non-homogeneous illumination). This is in the vein of the
learning methods presented in Section 2, while having the advantage that we do not rely on a distinct
dataset (possibly not representative of the test scenario), being able to model the hurdles on the labeled
data themselves.
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