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Abstract. We consider the K3 surfaces that arise as double covers of the
elliptic modular surface of level 5, R5,5. Such surfaces have a natural elliptic

fibration induced by the fibration on R5,5. Moreover, they admit several other

elliptic fibrations. We describe such fibrations in terms of linear systems of
curves on R5,5. This has a major advantage over other methods of classification

of elliptic fibrations, namely, a simple algorithm that has as input equations of

linear systems of curves in the projective plane yields a Weierstrass equation
for each elliptic fibration. We deal in detail with the cases for which the double

cover is branched over the two reducible fibers of type I5 and for which it is

branched over two smooth fibers, giving a complete list of elliptic fibrations
for these two scenarios.

1. Introduction

Let S/C be a smooth projective surface and B/C be a smooth projective curve.
We say that a proper flat map E : S → B is an elliptic fibration if the generic fiber
Sb is a smooth genus 1 curve and a section O : B → S is given. Given a section, we
regard the generic fibre of E as an elliptic curve over the function field k(B) and
so we can work with a Weierstrass form of E . We will say that an elliptic fibration
is relatively minimal if there are no contractible curves contained in its fibers. For
the remainder of this paper all elliptic fibrations will be assumed to be relatively
minimal and not of product type.

Not all surfaces S admit elliptic fibrations and if S admits an elliptic fibration,
a lot is known about the base curve and about the maximal number of elliptic
fibrations on it. More precisely if S is of general type, then S admits no elliptic
fibrations; if the Kodaira dimension of S is non-positive, then the curve B is ra-
tional; if a surface S admits more than one elliptic fibration as above, then it is
a K3 surface (a surface with trivial canonical bundle and trivial irregularity). In
particular if S is either a K3 surface or a rational surface, then B ' P1. Every
relatively minimal rational elliptic surface is the total space of a pencil of plane
cubics; such surfaces admit only the obvious elliptic fibration. We refer to [6] and
to [11] for more on the theory of elliptic fibrations on surfaces.

1.1. K3 surfaces arising from rational elliptic surfaces, and their elliptic
fibrations. In this paper we will consider K3 surfaces S that are double covers
of rational elliptic surfaces R, branched over two fibers of the elliptic fibration
ER : R → P1. More precisely, such K3 surfaces are the minimal resolution of
the fiber product S̄ of a rational elliptic surface ER : R → P1 and a degree two
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map P1 → P1, which is necessarily branched over two points. We recall that an
involution on a K3 surface is non–symplectic if it acts by −1 on H0(S,KS) ' C. Call
ι the involution on S agreeing with the cover involution of the 2 : 1 map S̄ → R;
then this involution is non–symplectic and fixes the inverse image of two fibers of
the fibration ER : R → P1, which are the branch curves. The quotient surface S/ι

is rational and is either R or a blow-up of R (denoted by R̃ in what follows).
It was proved by Zhang (see [15]) that every K3 surface S admitting a non–

symplectic involution ι whose fixed locus contains curves of genus at most 1 arises
by a base change of order two from a rational elliptic fibration ER : R → P1 as
described above.

The K3 surface S obtained as above is naturally equipped with one elliptic
fibration ES : S → P1, induced via pullback from ER. In [4] the relationship between

elliptic fibrations on S and linear systems on the rational surface R (or R̃) is studied.
The elliptic fibrations on S fall into one of the three categories below according to
the action of ι on the fibers. Note that ES belongs to the second one:
• if ι preserves each fiber of the fibration, then it acts on the fibers as the elliptic
involution. The elliptic fibration on S is therefore induced by fibrations in rational

curves on R̃. We will call these pencils “conic bundles” if they are rational fibrations

on R and “generalized conic bundles” if they are rational fibrations on R̃ (but not
on R);
• if ι preserves the fibration, but not each fiber of the fibration, this implies that
ι acts on the base of the fibration (with two fixed points). In this case the elliptic
fibration on S is induced by a pencil of genus 1 curves on R, whose members split
in the double cover. We call these pencils “splitting genus 1 pencils”;
• if ι does not preserve the elliptic fibration, we call the fibration of type 3. A
fibration is of type 3 if and only if the class of the fiber of the fibration, in the
Néron-Severi group of S, is not preserved by ι.

As a result of this classification and of the technique introduced in [4], in good
cases one may classify the singular fibers of all elliptic fibrations E : S → P1 in terms
of the singular fibers of more tractable linear series on S/ι. Our focus here is on even
finer information: obtaining explicit Weierstrass equations of elliptic fibrations on
such K3 surfaces. Using Tate’s algorithm, one may then read off the singular fibers
from the order of vanishing of the coefficients and discriminant of the Weierstrass
equation (see, for example, the table on page 41 of [6]). In Sections 5.2 and 6.1.2 we
give methods and algorithms for determining Weierstrass equations coming from
conic bundles and splitting genus 1 pencils on rational elliptic surfaces, under some
assumptions. This is our main result.

Theorem 1.1. Let S be a K3 surface arising from the rational elliptic surface
ER : R → P1 as described above. Let E be an elliptic fibration on S that is not of
type 3. Then, under certain conditions, one obtains a Weierstrass equation for E
by applying

• the Algorithm of Section 5.2 if E is induced by a (generalized) conic bundle
with prescribed properties (see Section 5.2 for details);

• the Algorithm of Section 6.1.2 if E is induced by a splitting genus 1 pencil.

1.2. Outline of the paper. We focus particularly on K3 surfaces arising as double
covers of R5,5, the elliptic modular surface of level 5. This is the universal elliptic
curve over the modular curve X1(5) and the evident map ER5,5

: R5,5 → X1(5) ' P1
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is the unique elliptic fibration. The fibers of ER5,5
are smooth except for two nodal

rational curves (type I1) and two 5-gons (type I5); this property also determines
R5,5 and implies that the Mordell-Weil group MW(ER) = Z/5Z. The geometry of
this surface as the total space of a pencil of plane cubics is described in Section 2.

In Section 3 we classify the conic bundles on R5,5 up to automorphisms. The
main result of this Section is Proposition 3.1.

In the remainder of the paper we study elliptic fibrations on different K3 surfaces
arising from R5,5 by choosing different base changes. In Section 4 we describe such
K3 surfaces, writing their equations as double covers of P2, as well as giving the
Weierstrass form of the elliptic fibrations induced by ER.

In Section 5 we consider the elliptic fibrations induced on K3 surfaces by the
conic bundles classified in Section 3. We observe directly that the same conic bundle
induces elliptic fibrations with very different properties on K3 surfaces according
to the choice of the branch curves. In Sections 6 and 7 we restrict our attention to
two K3 surfaces obtained by choosing maximally different branch fibers: in Section
6 we consider the very special case where the branch fibers are 2I5 and in Section
7 we consider the generic case where the branch fibers are 2I0.

When the double cover is branched over the two 5-gons, the K3 surface is called
S5,5 and the involution ι fixes the union of 10 rational curves. There is a unique such
K3 surface possessing such a non–symplectic involution. This K3 surface admits 13
types of elliptic fibrations, classified by Nishiyama in [9]. In this special case we are
able to determine equations for all elliptic fibrations on S5,5 using our techniques
and algorithms. We observe that in this case there are no fibrations of type 3. The
main result of this Section is Proposition 6.1.

When the double cover is branched on two smooth fibers, the K3 surface moves
in the 2-dimensional family of the K3 surfaces admitting an elliptic fibration with a
5-torsion section. We call a very general member of this family X5,5 and using the
lattice-theoretic technique of [9] we list all the admissible configurations of fibers of
an elliptic fibration on X5,5 in Table 7.1 proving Proposition 7.1. In this case the
elliptic fibrations cannot be induced by splitting genus 1 pencils or by generalized
conic bundles. On the other hand there are plenty of elliptic fibrations of type 3
and we describe one of them in detail.

Acknowledgements. This work was initiated during the Women in Numbers Eu-
rope 2 workshop. We thank the organizers and the Lorentz Center in Leiden for
providing such a stimulating research environment. We also thank Bernd Sturmfels
for drawing our attention to the connections with tropical geometry, and the referee
for many helpful suggestions and comments that have improved this article.

2. The surface R5,5

Let R5,5 be the elliptic modular surface of level 5. We know from [1, Tableau]
(with coordinates X = x0, Y = x0−x1, Z = x2) that the surface R5,5 is the blow-up
of P2 in the basepoints of the pencil P of cubics

(2.1) λx1x2(x0 − x1) + µx0(x0 − x1 − x2)(x0 − x2) = 0.

We will denote this blow-up morphism by β : R5,5 → P2. The cubic correspond-
ing to λ = 0 is reducible and consists of the three lines m1 : x0 = 0, m2 :
x0 − x1 − x2 = 0, m3 : x0 − x2 = 0; the cubic corresponding to µ = 0 is reducible
and consists of the three lines `1 : x0 − x1 = 0, `2 : x1 = 0, `3 : x2 = 0.
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Figure 1. The reducible cubics and basepoints of the pencil P.

The nine basepoints of this pencil of cubics are: Q1 := (0 : 0 : 1); the point Q′1,
infinitely near to Q1 and corresponding to the tangent direction m1; Q2 := (1 : 1 :
0); the point Q′2, infinitely near to Q2 and corresponding to the tangent direction
m2; Q3 := (0 : 1 : 0); the point Q′3, infinitely near to Q3 and corresponding to
the tangent direction `3; Q4 := (1 : 0 : 1); the point Q′4, infinitely near to Q4 and
corresponding to the tangent direction `2; Q5 := (1 : 1 : 1).

In the following we will denote by T1 the point (1 : 0 : 0), which is not a basepoint
of the pencil and corresponds to the intersection of the lines `2 and `3, and by T2

the point (0 : 1 : −1), which is not a basepoint of the pencil and corresponds to the
intersection of the lines m1 and m2.

Let h denote the preimage of the class of a line; then NS(R5,5) is spanned by h
and the components of the exceptional divisors of the blow up β : R5,5 → P2. We
will denote the (irreducible) exceptional divisor corresponding to Qi (resp. Q′i) by
Ei (resp. Fi) for i = 1, 2, 3, 4. At Q5 there is only E5. Note that F 2

i = −1, E2
i = −2

for i = 1, 2, 3, 4, E2
5 = −1, EiEj = 0 if i 6= j, FiFj = 0 if i 6= j, EiFi = 1. By slight

abuse of notation, let `1, `2, `3 and m1,m2,m3 denote the proper transforms on
R5,5 of the corresponding lines in P2. We have the following relations in NS(R5,5):

`1 = h− E1 − F1 − E2 − F2 − E5 m1 = h− E1 − 2F1 − E3 − F3

`2 = h− E1 − F1 − E4 − 2F4 m2 = h− E2 − 2F2 − E4 − F4

`3 = h− E1 − F1 − E3 − 2F3 m3 = h− E3 − F3 − E4 − F4 − E5.

(2.2)

The Weierstrass equation of the elliptic fibration of R5,5 is obtained by (2.1)
choosing x2 = 1 and applying standard transformations. It is

(2.3) y2 = x3 +A(λ : µ)x+B(λ : µ), where

A(µ) :=
−1

48
µ4 − 1

4
µ3λ− 7

24
µ2λ2 +

1

4
µλ3 − 1

48
λ4, and

B(µ) :=
1

864
µ6 +

1

48
µ5λ+

25

288
µ4λ2 +

25

288
µ2λ4 − 1

48
µλ5 +

1

864
λ6.
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The discriminant is 1
16µ

5λ5(−λ2 + 11µλ + µ2), so there are two fibers of type I5
over (λ : µ) = (0 : 1) and (λ : µ) = (1 : 0). Moreover there are two fibers of type I1
over (λ : µ) = (1 : − 11

2 ±
5
2

√
5).

Now the function

µ 7→ (x(λ : µ); y(λ : µ)) =

(
µ2 − 6µλ+ λ2

12
;
µ2λ

2

)
is a 5-torsion section of this fibration. It is known, see e.g. [11, Section 9.5] that
the elliptic fibration on R5,5 has Mordell–Weil group equal to Z/5Z.

The negative curves on R5,5 are

(1) the ten components of the two fibers of type I5 denoted by Θ
(1)
0 , Θ

(1)
1 , Θ

(1)
2 ,

Θ
(1)
3 , Θ

(1)
4 on the first fiber and Θ

(2)
0 , Θ

(2)
1 , Θ

(2)
2 , Θ

(2)
3 , Θ

(2)
4 on the second

fiber (these are all (−2)-curves);
(2) the five sections P0, P1, P2, P3, and P4, where P0 meets the components

Θ
(1)
0 and Θ

(2)
0 , P1 meets the components Θ

(1)
1 and Θ

(2)
2 , P2 meets the com-

ponents Θ
(1)
2 and Θ

(2)
4 , P3 meets the components Θ

(1)
3 and Θ

(2)
1 and P4

meets the components Θ
(1)
4 and Θ

(2)
3 (these sections are all (−1)-curves).

The dual graph of this configuration is given in Figure 2. We observe that the
Figure 2 is a generalization of the Petersen graph (it is exactly the Petersen graph if
one does not consider the empty edges) and we point out that this graph represents
several intersecting objects in algebraic geometry and in tropical geometry, see eg.
[10].

•

•

••

•

◦

◦

◦◦

◦

•

•

••

•

Θ
(1)
0

P0

Θ
(2)
0 Θ

(1)
1

P1

Θ
(2)
2

Θ
(1)
2

P2

Θ
(2)
4

Θ
(1)
3

P3

Θ
(2)
1

Θ
(1)
4

P4

Θ
(2)
3

Figure 2. Dual graph of negative curves on R5,5. The symbol •
denotes a (−2)-curve, and ◦ denotes a (−1)-curve.

We may then make the following choice of identifications:

Θ
(1)
0 = m1 Θ

(1)
1 = E3 Θ

(1)
2 = m3 Θ

(1)
3 = E4 Θ

(1)
4 = m2

Θ
(2)
0 = E1 Θ

(2)
1 = `2 Θ

(2)
2 = `3 Θ

(2)
3 = E2 Θ

(2)
4 = `1

P0 = F1 P1 = F3 P2 = E5 P3 = F4 P4 = F2.

(2.4)

We observe that there is an automorphism σ5 on R5,5 of order 5, which is the

translation by the section P1. It acts on the negative curves as follows: σ5(Θ
(1)
i ) =
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Θ
(1)
i+1 and σ5(Θ

(2)
i ) = Θ

(2)
i+2, where i+1 and i+2 are considered modulo 5; σ5(Pk) =

Pk+1, where k + 1 is considered modulo 5.
There is also an automorphism σ2 of order 2 on R5,5 which is the elliptic involu-

tion on the elliptic curve (2.3) over the function field k(µ). Note that σ2 restricts
to the elliptic involution on each smooth fiber of the fibration (2.3). It acts on

the negative curves as follows: σ2(Θ
(j)
i ) = Θ

(j)
−i , where i ∈ Z/5Z, j = 1, 2 and

σ2(Pk) = P−k, where k ∈ Z/5Z.
There is also an automorphism α of R5,5 lying above the involution of P1 α : (λ :

µ) 7→ (−µ : λ). In terms of the Weierstrass equation (2.3), we have

α : (x, y, µ) 7→ (x/µ2,−y/µ3,−1/µ).

Note that the automorphism σ2
5ασ

3
5 is induced by the element

(
0 1 0
−1 1 1
1 0 0

)
∈ PGL3(C).

From this description, the action on NS(R5,5) is apparent: α(Θ
(1)
0 ) = Θ

(2)
0 and

α(Θ
(2)
0 ) = Θ

(1)
0 ; α(Θ

(1)
i ) = Θ

(2)
i and α(Θ

(2)
i ) = Θ

(1)
−i ; and finally Θ(P0) = P0 while

the remaining sections are permuted so as to preserve intersections.

3. Conic bundles on R5,5

In this section we classify the conic bundles on R5,5 by considering their reducible
fibers proving Proposition 3.1

The key result we use is that on a rational elliptic surface, every conic bundle
has at least one reducible fiber. Further, any reducible fiber must be of type An or
Dm, as shown in Figure 3, see e.g. [4].

◦ • • • ◦

An

•

•
•2 •2 •2 ◦2

Dm

Figure 3. Possible reducible fibers of conic bundles on (minimal)
rational elliptic surfaces. The number n and m refer to the number
of components. Multiplicity of a component is indicated above the
corresponding vertex if it is not 1. The symbol • denotes a (−2)-
curve, and ◦ denotes a (−1)-curve.

Proposition 3.1. There are exactly three conic bundles on R5,5 up to automor-
phisms, i.e. the conic bundles B1, B2 and B3 induced by the pencils of plane rational
curves with equations 3.1, 3.2 and 3.3 respectively.

Proof. Step 1: classification of the reducible fibers. Every conic bundle has
at least one reducible fiber, so in order to classify the conic bundles it suffices to
find all the possible reducible fibers. The components of the reducible fibers are
negative curves. As R5,5 (and in fact any extremal rational elliptic surface, see
[6, VIII.1.2]) has only finitely many curves of negative self-intersection, one simply
must find all possible An and Dm (for m ≥ 3) configurations among the curves
with negative self intersection.

Every reducible fiber contains at least a (−1)-curve, as shown in Figure 3. Since
we are looking for a classification up to automorphisms, and the automorphism σ5
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permutes the (−1)-curves on R5,5, we can always assume that one of the reducible
fibers of the conic bundle contains the (−1)-curve P0. Moreover we recall that the

action of σ2 switches Θ
(j)
i with Θ

(j)
5−i and the action of α switches the two I5-fibers.

Up to the action of σ2 and α, the reducible fibers of type An that contain P0 as a
component are necessarily of one of the following type:

• P0 +
∑k
i=0 Θ

(1)
i + Pk, k = 1, 2, 3 and in this case we have a fiber of type Ak+3.

Up to the action of σ2 the reducible fibers of type Dm that contain P0 as a
component are necessarily of the following types:

• 2P0 + Θ
(1)
0 + Θ

(2)
0 and in this case we have a fiber of type D3;

• 2P0 + 2Θ
(1)
0 + Θ

(1)
1 + Θ

(1)
4 and in this case we have a fiber of type D4.

Step 2: at most three conic bundles. We consider the conic bundles associ-
ated to the possible singular fibers described above and show that some of them are
equivalent up to the action of σ5 and σ2. Moreover we describe the conic bundles
that we find and we gives equations for them:

(1) |B1| = |P0 +Θ
(1)
0 +Θ

(1)
1 +P1|. The components of one reducible fiber are P0,

Θ
(1)
0 , Θ

(1)
1 , P1. This fiber is of type A4. The curves Θ

(1)
2 , Θ

(1)
4 , Θ

(2)
0 and Θ

(2)
2 are

sections of the bundle. There is another reducible fiber of type A4 which is formed

by the curves P2, Θ
(2)
4 , Θ

(2)
3 , P4, and one of type D3 which is formed by P3 (with

multiplicity 2), Θ
(1)
3 , Θ

(2)
1 .

Using the identifications made earlier, this class can also be written as:

B1 = F1 +m1 + E3 + F3 = F1 + (h− E1 − 2F1 − E3 − F3) + E3 + F3 = h− E1 − F1.

Unwinding what this means geometrically: |B1| comes via proper transform from
the pencil of lines through Q1 in P2 which has equation

(3.1) x1 = τx0.

Under this description we can also understand the singular fibers: they correspond
to the special lines m1, `1, and `2. For example the line `2 corresponds to the

reducible fiber β∗(`2)− E1 − F1 = `2 + E4 + 2F4 = Θ
(2)
1 + Θ

(1)
3 + 2P3.

The conic bundle |B1| is sent to other conic bundles by σ5, by σ2 and by their
powers. Each of these has exactly three reducible fibers of types A4, A4 and D3.

We observe that the fiber of type D3 of the conic bundle |B1| is sent to 2P0 +

Θ
(1)
0 + Θ

(2)
2 by the automorphism σ2

5 , so the conic bundle with reducible fiber

2P0 + Θ
(1)
0 + Θ

(2)
0 is equivalent to |B1| up to automorphisms.

Similarly the A4-fiber P2 + Θ
(2)
4 + Θ

(2)
3 + P4 is sent to P3 + Θ

(2)
1 + Θ

(2)
0 + P0 by

σ5, so also the conic bundle with reducible fiber P0 + Θ
(2)
0 + Θ

(2)
1 +P3 is equivalent

to |B1| up to automorphisms.

(2) |B2| = |P0 + Θ
(1)
0 + Θ

(1)
1 + Θ

(1)
2 +P2|. The components of one reducible fiber

are P0, Θ
(1)
0 , Θ

(1)
1 , Θ

(1)
2 , P2. This fiber is of type A5. The curves Θ

(1)
3 , Θ

(1)
4 , Θ

(2)
0 ,

Θ
(2)
4 and P1 are sections of the bundle. There is another reducible fiber of type A5

which is formed by the curves P3, Θ
(2)
1 , Θ

(2)
2 , Θ

(2)
3 , P4.

Similarly here we can write:

B2 = F1 +m1 + E3 +m3 + E5 = 2h− E1 − F1 − E3 − 2F3 − E4 − F4.
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Hence B2 corresponds to the pencil of conics through Q1, Q3, Q
′
3, and Q4. More

explicitly this is given by conics passing through Q1 and Q4, and tangent to `3 at
Q3 and in P2 this pencil is given by the equation

(3.2) x1x2 = τ(x0x2 − x2
0).

The two reducible fibers correspond to the reducible conics m1 ∪m3 and `2 ∪ `3.

The A5-fiber of |B2| whose components are P3, Θ
(2)
1 , Θ

(2)
2 , Θ

(2)
3 , P4 is sent to

the reducible fiber P0 +
∑2
i=0 Θ

(2)
i + P1 by σ2

5 .

(3) |B3| = |P0 +Θ
(1)
0 +Θ

(1)
1 +Θ

(1)
2 +Θ

(1)
3 +P3|. The components of one reducible

fiber are P0, Θ
(1)
0 , Θ

(1)
1 , Θ

(1)
2 , Θ

(1)
3 , P3. This fiber is of type A6. The curves Θ

(2)
0 ,

Θ
(2)
1 , P1 and P2 are sections of the bundle. The curve Θ

(1)
4 is a multisection of

degree 2. There is another reducible fiber of type D4 which is formed by the curves

P4, Θ
(2)
3 , Θ

(2)
4 , Θ

(2)
2 .

We can also describe this using:

B3 = F1 +m1 + E3 +m3 + E4 + F4 = 2h− E1 − F1 − E3 − 2F3 − E5.

Therefore B3 comes from the pencil of conics in P2 through Q1, Q3, Q
′
3 and Q5;

that is conics through Q1 and Q5, tangent to `3 at Q3, and in P2 this pencil is
given by the equation

(3.3) x1x2 = (τ + 1)x0x2 − τx2
0.

We can again understand the reducible fibers as coming from reducible conics `1∪`3
and m1 ∪m3.

The D4-fiber is sent to the fiber 2P0 + 2Θ
(2)
0 + Θ

(2)
1 + Θ

(2)
4 by σ5.

Step 3: exactly three conic bundles. It remains only to prove that the
conic bundles Bi for i = 1, 2, 3 are all inequivalent up to automorphisms. Since
the reducible fibers of |B1| are (2A4, D3), the reducible fibers of |B2| are (2A5)
and the reducible fibers of |B3| are (A6, D4), they cannot be equivalent up to
automorphisms. Hence there are three conic bundles on R5,5 up to automorphisms.

�

4. K3 surfaces obtained by R5,5

Now we consider K3 surfaces obtained from R5,5 by a base change of order 2
branched on two fibers. Of course the K3 surface obtained depends on the branch
fibers. Let us explicitly give the description of the K3 surfaces that we can obtain
in this way. They will be both described as elliptic fibrations (induced by the one
of R5,5) and as double covers of P2.

4.1. The branch fibers are 2I5: the K3 surface S5,5. Let us consider the
K3 surface S5,5 obtained by a base change of order 2 of R5,5 whose branch locus
corresponds to the two fibers of type I5. This means that all the components of
the fibers of type I5 are in the branch locus of the double cover S5,5 99K R5,5.

4.1.1. The surface R̃. The double cover of R5,5 branched over the two fibers of
type I5 has ordinary double point singularities at the 10 points over the nodes in
the branch fibers. In order to obtain a K3 surface one can blow-up these 10 points
on the double cover, introducing 10 exceptional divisors. Equivalently one may
first blow-up the 10 nodes of the branch fibers to obtain a non-minimal rational

elliptic surface R̃ and then normalize the double cover of this surface branched over
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the preimage of the branch fibers. Note that in the preimage the 10 exceptional
curves all occur with multiplicity 2, and so they are not in the branch locus after
normalization.

We will make use of this non-minimal rational elliptic surface R̃; it is simply
the blow-up of P2 in 9 + 10 points, some of which are infinitely near to each other.
The 10 additional points are T1, T2 and the 2 points on each of the exceptional
divisors Ei for i = 1, 2, 3, 4 corresponding to the tangent directions at Qi specified
by respectively `1 and `2, `1 and `3, m1 and m3, and finally m2 and m3.

We will denote by EQ5
, ET1

and ET2
the exceptional divisors over Q5, T1 and

T2 respectively. These three divisors are (−1)-curves.
We will denote by Ei, Fi, Gi and Hi the four exceptional divisors over Qi for

i = 1, 2, 3, 4. For each i, the divisor Ei is a (−4)-divisor intersecting Fi, Gi, and
Hi, which are orthogonal (−1)-curves. We make the identification that Fi is the
tangent direction corresponding to the basepoint of the pencil of cubics, and Hi

and Gi correspond to the tangent directions specified in the following table:

i 1 2 3 4
Gi `1 `3 m1 m3

Hi `2 `1 m3 m2.

Note that the Ei and Fj are the strict transforms of the curves of the same name
on R5,5.

The strict transforms of the lines `j and mj , j = 1, 2, 3 on R̃ are the following:

`1 : = h− E1 − F1 − 2G1 −H1 − E2 − F2 −G2 − 2H2 − EQ5 ;
`2 : = h− E1 − F1 −G1 − 2H1 − E4 − 2F4 −G4 −H4 − ET1

;
`3 : = h− E2 − F2 − 2G2 −H2 − E3 − 2F3 −G3 −H3 − ET1

;
m1 : = h− E1 − 2F1 −G1 −H1 − E3 − F3 − 2G3 − 2H3 − ET2

;
m2 : = h− E2 − 2F2 −G2 −H2 − E4 − F4 −G4 − 2H4 − ET2 ;
m3 : = h− E3 − F3 −G3 − 2H3 − E4 − F4 − 2G4 −H4 − EQ5 .

The sections of the non–relatively minimal fibration on R̃ are Fj , j = 1, 2, 3, 4 and
EQ5 (i.e. the strict transform of the sections of the fibration on R5,5).

4.1.2. Geometric description of S5,5 and its Néron–Severi group. The surface S5,5

admits a non-symplectic involution ι which is the cover involution of the double

cover S5,5 → R̃. This involution fixes 10 rational curves (the curves mi, `i,i = 1, 2, 3
and Ej with j = 1, 2, 3, 4) and it acts trivially on the Néron-Severi group.

The elliptic fibration ES5,5
: S5,5 → P1 induced by ER5,5

: R5,5 → P1 has two
fibers of type I10 (induced by the fibers of type I5 on R5,5) and four other singular
fibers, all of type I1. The trivial lattice of the fibration (generated by the class
of the generic fiber, the class of the zero section and the classes of the non trivial
components of the reducible fibers) has rank 20. The trivial lattice is a sublattice
of the Néron–Severi group, and since the Néron–Severi group of a K3 surface has
rank at most 20, we conclude that it is exactly 20. By the Shioda-Tate formula
there are no sections of infinite order for the fibration ES5,5

: S5,5 → P1. The 5-
torsion sections of the fibration on R5,5 induce 5-torsion sections of ES5,5 . Hence,
MW(ES5,5) ⊇ Z/5Z. The possible torsion parts of the Mordell–Weil group of an
elliptic fibration on a K3 surface are Z/nZ for 2 ≤ n ≤ 8, and Z/2Z × Z/mZ, for
m = 2, 4, 6, (Z/kZ)2 for k = 3, 4 (see for example [12, Thm 7.1]). So we conclude
that MW(ES5,5

) = Z/5Z.



10

•

•

••

•

•

•

••

•

•

•

••

• •
Ω

(2)
3,2

•Ω
(2)
4,0

•
Ω

(2)
2,1

•
Ω

(2)
4,3

•Ω
(2)
1,0

•
Ω

(1)
3,2

•
Ω

(1)
4,3

•
Ω

(1)
4,0

•
Ω

(1)
1,0

•
Ω

(1)
2,1

Ω
(1)
0

Q0

Ω
(2)
0 Ω

(1)
1

Q1

Ω
(2)
2

Ω
(1)
2

Q2

Ω
(2)
4

Ω
(1)
3

Q3

Ω
(2)
1

Ω
(1)
4

Q4

Ω
(2)
3

Figure 4. Dual graph of relevant negative curves on S5,5.

The curves Θ
(j)
i are in the branch locus and we denote by Ω

(j)
i the rational curve

on S5,5 which maps 1 : 1 to Θ
(j)
i . Moreover, we have 10 other rational curves on

S5,5 : the curves Ω
(j)
i1,i1−1, for i1, i1 − 1 ∈ Z/5Z, j = 1, 2, which are the curves

resolving the singularities of the intersection point between Θ
(j)
i1

and Θ
(j)
i2

and are

the double cover of the 10 exceptional curves of the blow up R̃→ R5,5. The curves
Pi are not in the branch locus and we denote by Qi their 2 : 1 cover in S5,5. The
dual graph of this configuration is given in Figure 4. We observe that this gives
exactly the diagram given in [14, Figure 1] as dual graph of certain rational curves
on the K3 surface whose transcendental lattice is 〈2〉2, which is a different way to
describe the surface S5,5.

Let π : S5,5 → R̃ denote the double cover. As can be deduced from (2.4) and the
above identifications, pushing forward curve classes has the following effect:

π∗Ω
(1)
0 = m1 π∗Ω

(1)
3,2 = 2G4 π∗Ω

(2)
0 = E1 π∗Ω

(2)
3,2 = 2G2 π∗Q0 = 2F1

π∗Ω
(1)
1,0 = 2G3 π∗Ω

(1)
3 = E4 π∗Ω

(2)
1,0 = 2H1 π∗Ω

(2)
3 = E2 π∗Q3 = 2F4

π∗Ω
(1)
1 = E3 π∗Ω

(1)
4,3 = 2H4 π∗Ω

(2)
1 = `2 π∗Ω

(2)
4,3 = 2H2 π∗Q1 = 2F3

π∗Ω
(1)
2,1 = 2H3 π∗Ω

(1)
4 = m2 π∗Ω

(2)
1,0 = 2ET1

π∗Ω
(2)
4 = `1 π∗Q4 = 2F2

π∗Ω
(1)
2 = m3 π∗Ω

(1)
4,0 = 2ET2

π∗Ω
(2)
2 = `3 π∗Ω

(2)
4,0 = 2G1 π∗Q2 = 2E5.

(4.1)

4.1.3. Weierstrass equation of S5,5. By the Weierstrass equation (2.3) the fibers of
ER5,5

of type I5 are the fibers over µ = 0 and µ =∞. So the base change branched

on these fibers is given by µ→ µ2 and the elliptic fibration on S5,5 induced by the
one on R5,5 is

(4.2) y2 = x3 +A(µ)x+B(µ), where

A(µ) :=
−1

48
µ8 − 1

4
µ6 − 7

24
µ4 +

1

4
µ2 − 1

48
, and
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B(µ) := − 1

864
µ12 − 1

48
µ10 − 25

288
µ8 − 25

288
µ4 +

1

48
µ2 − 1

864
.

The discriminant is 1
16µ

10(−1 + 11µ2 + µ4), so there are, as expected, two fibers
of type I10 over µ = 0 and µ = ∞. Moreover there are four fibers of type I1 over

µ = ±
√
− 11

2 ±
5
2

√
5.

4.1.4. Double cover of P2. On the other hand, R̃ andR5,5 are blow-ups of P2 and the
branch fibers of π : S5,5 99K R5,5 corresponds to the cubics f3 := x1x2(x0−x1) = 0
and g3 := x0(x0 − x1 − x2)(x0 − x2) = 0. This exhibits S5,5 as a double cover of
P2 branched along the union of these two cubics. So we obtain a different equation
for S5,5, as a double cover of P2, i.e.

(4.3) w2 = x1x2(x0 − x1)x0(x0 − x1 − x2)(x0 − x2).

We observe that S5,5 is rigid (both in the moduli space of the elliptic K3 surfaces
with prescribed reducible fibers and in the moduli space of the K3 surfaces with a
non–symplectic involution with a prescribed fixed locus), since both R5,5 and the
choice of the branch fibers are.

4.2. The branch fibers are 2I0: the K3 surface X5,5. Let us consider the
K3 surface X5,5 obtained by a base change of order 2 of R5,5 whose branch locus
corresponds to two fibers of type I0. Let us assume it is very general among the
K3 obtained in this way. This K3 surface lies in a 2-dimensional family of K3
surfaces (see [3]), whose parameters depend on the choice of the two branch fibers
(see (4.5)).

4.2.1. Geometric description of X5,5 and its Néron–Severi group. The surface X5,5

admits a non-symplectic involution ι which is the cover involution of the double
cover X5,5 → R5,5 and which fixes two elliptic curves.

The elliptic fibration EX5,5
: X5,5 → P1 induced by ER5,5

: R5,5 → P1 has four
fibers of type I5 and four fibers of type I1. Moreover it has a 5-torsion section,
induced by the one of sections of the elliptic fibration on ER5,5

. The Néron–Severi
group and the transcendental lattice of this K3 surface are computed in [3] and a
set of generators of the Néron–Severi group is given by the class of the fiber of the
fibration, the zero section, one section of order 5 and the irreducible components
of the reducible fibers of the fibration.

The curves Θ
(j)
i are not in the branch locus and we denote by Ω

(j,k)
i for k = 1, 2

the two disjoint rational curves which are mapped to Θ
(j)
i by the quotient map

X5,5 → R5,5. The curves Pi are not in the branch locus and we denote by Qi their
2 : 1 cover in X5,5. The dual graph of this configuration is shown in Figure 5.
This diagram is also a tropical surface, similar to the one given in [10, Figure 1],
as pointed out by B. Sturmfels.

4.2.2. Weierstrass equation of X5,5. Let us denote by µ1 and µ2 two arbitrary
points of P1

µ such that the fibers of (2.3) over µ1 and µ2 are smooth. Let X5,5 be
the surface obtained from R5,5 by a base change of order 2 branched in µ1 and µ2.
We already observed that the surface X5,5 lives in a 2-dimensional family of K3
surfaces and its equation depends on the two parameters µ1 and µ2.
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Figure 5. Dual graph of relevant negative curves on X5,5.

Let us consider the base change P1
(α:β) → P1

(µ:λ) branched over (µ : λ) = (µ1 : 1)

and (µ2 : 1), i.e. the base change given by

(4.4) µ = µ1α
2 + β2, λ = α2 + β2/µ2.

It induces on X5,5 the elliptic fibration

(4.5) y2 = x3 +A(α : β)x+B(α : β)

whose discriminant is

((
α2µ2 + β2

)5 (
µ1α

2 + β2
)5 (

α4µ2
1µ

2
2 + 11α4µ1µ

2
2 − α4µ2

2 + 11α2µ1µ2β
2+

+2µ1α
2µ2

2β
2 + 11α2µ2

2β
2 − 2α2µ2β

2 + µ2
2β

4 + 11β4µ2 − β4
))
/
(
16µ7

2

)
(4.6)

For generic values of µ1 and µ2 the elliptic fibration has 4I5 + 4I1 as singular
fibers.

4.2.3. Double cover of P2. On the other hand, X5,5 is the double cover of P2

branched on the union of the two cubics x1x2(x0−x1)+µ1x0(x0−x1−x2)(x0−x2) =
0 and x1x2(x0 − x1) + µ2x0(x0 − x1 − x2)(x0 − x2) = 0. So X5,5 can be described
by the equation

(4.7) w2 =
(
x1x2(x0 − x1) + µ1x0(x0 − x1 − x2)(x0 − x2)

)(
x1x2(x0 − x1) + µ2x0(x0 − x1 − x2)(x0 − x2)

)
.

4.3. Branch fibers I5 and I1. If one uses as branch fibers a fiber of type I5 and
one of type I1 one obtains a rigid K3 surface (in the moduli space of the elliptic K3
surfaces with prescribed reducible fibers), whose singular fibers are I10+2I5+I2+2I1
and theoretically one has four different admissible choices to do that. Indeed one
can choose the fiber of type I5 which is the branch fiber to be the fiber either
over µ1 = 0 or over µ1 = ∞ and similarly one can choose the fiber of type I1
which is the branch fiber to be the fiber either over µ2 = (−11 + 5

√
5)/2 or over
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µ2 = (−11 − 5
√

5)/2. In order to obtain the Weierstrass equation of these elliptic
fibrations it suffices to apply the base change (4.4) with the chosen values for µ1

and µ2.
We assume that µ2 = (−11+5

√
5)/2 and we obtain the following two Weierstrass

equations. If µ1 = 0 the base change (4.4) applied to µ1 = 0 and µ2 = (−11 +

5
√

5)/2 gives an elliptic fibration:

y2 = x3 +A(α : β)x+B(α : β)

whose discriminant is

− 1

512

(
−α2 + 5β2

√
5
)(
−2α2 − 11β2 + 5β2

√
5
)5

α2β10.

In order to choose µ1 = ∞, one has to slightly change the equation of the base
change (4.4), which now is µ = α2 and λ = α2/µ2 + β2 and one obtains

y2 = x3 +A(α : β)x+B(α : β)

whose discriminant is

1

5120

(
−375125 + 167761

√
5
)(
−25α2 + β2

√
5
)(
−2α2 + 11β2 + 5β2

√
5
)5

β2α10.

We observe that in the first case the K3 surface obtained is described as a double
cover of P2 by the equation

w2 = x1x2(x0−x1)
(
x0x1x2(13 + 5

√
5)− x2

1x2(11 + 5
√

5) + 2x3
0 − 4x2

0x2 − 2x1x
2
0 + 2x0x

2
2

)
,

in the second by the equation

w2 = x0(x0−x1−x2)(x0−x2)
(
x0x1x2(13 + 5

√
5)− x2

1x2(11 + 5
√

5) + 2x3
0 − 4x2

0x2 − 2x1x
2
0 + 2x0x

2
2

)
.

4.4. Branch fibers I5 and I0. If one chooses as branch fibers one fiber of type
I5 and one of type I0 one obtains a 1-dimensional family of K3 surfaces, whose
singular fibers are I10 + 2I5 + 4I1 and theoretically one has two different admissible
ways to do that. Indeed one can chose that the fiber of type I5 which is the branch
fiber is the fiber either over µ1 = 0 or over µ1 = ∞, while µ2 is the parameter of
the family. In order to obtain the equations of these elliptic fibrations one has to
apply the base changes (µ = β2, λ = α2 + β2/µ2) or (µ = α2, λ = α2/µ2 + β2) to
the equation (2.3), exactly as in the previous sections.

Similarly one can describe these K3 surfaces as a double cover of P2 substituting
in (4.7) the appropriate values of µ1 and µ2.

4.5. Branch fibers I1 and I0. If one chooses as branch fibers one fiber of type
I1 and one of type I0 one obtains a 1-dimensional family of K3 surfaces, whose
singular fibers are 4I5 + I2 + 2I1 and theoretically one has two different admissible
ways to do that. Indeed one can choose that the fiber of type I1 which is the branch
fiber is the fiber either over µ1 = (−11−5

√
5)/2 or over µ1 = (−11+5

√
5)/2, while

µ2 is the parameter of the family. In order to obtain the equations of these elliptic
fibrations one has to apply the base change (4.4) with the chosen µ1 to the equation
(2.3) and to obtain an equation of this surface as a double cover of P2 one has to
substitute the chosen µ1 in (4.7).
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4.6. Branch fibers 2I1. If one chooses as branch fibers the two fibers of type I1
one obtains a rigid K3 surface, whose reducible fibers are 4I5 + 2I2. In order to
obtain the equation of this elliptic fibration one has to apply the base change (4.4)

with the chosen µ1 = (−11 − 5
√

5)/2 and µ2 = (−11 + 5
√

5)/2 to the equation
(2.3). Similarly to obtain an equation of this surface as a double cover of P2 one

has to substitute µ1 = (−11− 5
√

5)/2 and µ2 = (−11 + 5
√

5)/2 in (4.7).

5. Elliptic fibrations on K3 surfaces induced by the conic bundles

The aim of this section is to describe both geometrically and by the Weierstrass
equations the elliptic fibrations induced by the conic bundles Bi (described in Sec-
tion 3) on the K3 surfaces described in Section 4. We also provided a general
method to find these Weierstrass equations, under some assumption on the conic
bundles, see Section 5.2.

5.1. An example. Let us consider the K3 surface S5,5, whose equation as a double
cover of P2 is given by (4.3). Let us consider also the conic bundle |B1| from Section
3. By [4, Theorem 5.3], the conic bundle |B1| induces an elliptic fibration on S5,5

with three reducible fibers of type I∗2 : one whose components are Q0, Ω
(1)
4,0, Ω

(1)
0 ,

Ω
(1)
1,0, Ω

(1)
1 , Q1, and Ω

(1)
2,1, one whose components are Q2, Ω

(2)
4,0, Ω

(2)
4 , Ω

(2)
4,3, Ω

(2)
3 , Q4,

and Ω
(2)
3,2, and one whose components are Ω

(1)
4,3, Ω

(1)
3,2, Ω

(1)
3 , Q3, Ω

(2)
1 , Ω

(2)
2,1, and Ω

(2)
1,0.

5.1.1. Equation of the elliptic fibration on S5,5 induced by |B1|. Let us consider the
conic bundle B1 on R5,5 associated to the pencil of lines x1 = τx0 ⊂ P2. It induces
an elliptic fibration on S5,5. To find the equation of this elliptic fibration we use
the equation of S5,5 as double cover of P2, i.e. the equation (4.3) and we substitute
in x1 = τx0 in (4.3).

This gives:

w2 = (τx0)x2(x0 − τx0)x0(x0 − τx0 − x2)(x0 − x2).

We put x2 = 1 and we obtain

w2 = τ(1− τ)x3
0(x0 − τx0 − 1)(x0 − 1).

Let us consider the change of coordinates w 7→ wx0 and divide both the members
by x2

0. We obtain

w2 = τ(1− τ)x0(x0 − τx0 − 1)(x0 − 1).

This is the equation of an elliptic fibration over P1
τ . Moreover one can explicitly

compute the Weierstrass form: first one uses the change of coordinates w 7→ τ2(1−
τ)w and x0 7→ τx0 obtaining

w2τ4(1− τ)2 = τ2(1− τ)x0(τx0(1− τ)− 1)(τx0 − x2)

and so

w2 = x0

(
x0 −

1

τ(1− τ)

)(
x0 −

1

τ

)
Second, one considers the change of coordinates w 7→ w/τ3(1 − τ)3 and x0 7→
x0/τ

2(1− τ)2 and multiplies all the equation by τ6(1− τ)6. So one obtains

w2 = x0(x0 − τ(1− τ))(x0 − τ(1− τ)2).(5.1)

The discriminant is τ8(1 − τ)8 and so, by Tate’s algorithm, there are three fibers
of type I∗2 over τ = 0, τ = 1, τ =∞.
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5.2. An algorithm to compute Weierstrass equations. The aim of this sec-
tion is to formalize systematically what we did above.
Setup. Let V be a K3 surface obtained by a base change of order 2 from a rational
elliptic surface R. Therefore, V can be described as double cover of P2 branched
on the union of two (possibly reducible) plane cubics from the pencil determining
R. It has an equation of the form

(5.2) w2 = f3(x0 : x1 : x2)g3(x0 : x1 : x2).

Let B be a conic bundle on R, e.g. a basepoint-free linear system of rational
curves giving R → P1

τ . Pushing forward to P2, B is given by a pencil of plane
rational curves with equation h(x0 : x1 : x2, τ). The polynomial h(x0 : x1 : x2, τ)
is homogeneous in x0, x1, x2, say of degree e ≥ 1 and linear in τ .

As the anticanonical series on R coincides with the elliptic fibration, the ad-
junction formula implies that every curve with equation h(x0 : x1 : x2, τ) meets
both of the branch curves (the proper transforms on R of) f3 = 0 and g3 = 0
in two additional points. It therefore meets (the proper transform of) their union
f3g3 = 0 in four points. (Note that there may be additional points of intersection
on P2 which are separated in the blow-up R). Therefore the preimage in V is the
double cover of a rational curve branched over 4 points, e.g. the standard presen-
tation of an elliptic curve. For general τ , we must find an isomorphism of the curve
h(x0 : x1 : x2, τ) = 0 with P1, and extract the images of the four intersection points
with f3g3 = 0.

When e ≤ 3, an isomorphism with P1 is provided by projection from a point of
order e− 1 on the curve (e.g. any point in P2 if e = 1, a point on the conic if e = 2,
and a double point of the cubic if e = 3). Such a point necessarily exists (in the
case e = 3 the singularity must be a basepoint of the pencil) and is also necessarily
a basepoint of the original pencil of cubics giving ER. Up to acting by PGL3(C),
we may assume that this point is (0 : 1 : 0).
Algorithm when e ≤ 3.

(1) Compute the resultant of the polynomials f3(x0 : x1 : x2)g3(x0 : x1 : x2)
and h(x0 : x1 : x2, τ) with respect to the variable x1. The result is a
polynomial r(x0 : x2, τ) which is homogeneous in x0 and x2, corresponding
to the images of all of the intersection points {f3g3 = 0} ∩ {hτ = 0} after
projection from (0 : 1 : 0).

(2) Since B is a conic bundle, r(x0 : x2, τ) will be of the form a(x0 : x2, τ)2b(x0 :
x2, τ)c(τ), where a and b are homogeneous in x0 and x2, the degree of a
depends upon e and the degree of b in x0 and x2 is 4.

(3) The equation of V is now given by w2 = r(x0 : x2, τ), which is birationally
equivalent to

(5.3) w2 = c(τ)b(x0 : x2, τ),

by the change of coordinates w 7→ wa(x0 : x2, τ). Since for almost every τ ,
the equation (5.3) is the equation of a 2 : 1 cover of P1

(x0:x2) branched in 4

points, (5.3) is the equation of the genus 1 fibration on the K3 surface V
induced by the conic bundle B.

(4) If there is a section of fibration (5.3), then it is possible to obtain the
Weierstrass form by standard transformations.
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Remark 5.1. The algorithm can be applied exactly in the same way to the gen-
eralized conic bundles, and not only to the conic bundles.

When e ≥ 4, projection from a point may suffice, for example if all curves have
a basepoint of degree e− 1. However there are several conic bundles whose general
member can not be parametrized by lines.

We now consider a parametrization which can be done by conics. Let P be a
pencil of rational curves of degree e passing through the (possibly infinitely near)
basepoints T1, . . . Tr with certain multiplicities. Let C be a pencil of conics whose
basepoints are among T1, . . . Tr and such that 2e− 1 intersection points between a
generic curve in P and a generic curve in C are in {T1, . . . Tr}. So there is exactly one
extra intersection between a generic curve in P and a generic curve in C. This allows
to parametrize the curves in P by the curves in C. If moreover the base points of C
are three distinct points and one infinitely near point we will say that the condition
(?) is satisfied. So (?) is satisfied if the curves in P can be parametrized by a pencil
of conics passing through 4 points, exactly two of which are infinitely near.

If the condition (?) is satisfied, up to changing coordinates by some matrix
M ∈ PGL3(C), we may assume that the basepoints of C are p1 = (0 : 0 : 1), p2 =
(0 : 1 : 0), p3 = (1 : 0 : 0) and the infinitely near point p′1 corresponds to the line
x0 = x1. The pencil of degree 2 maps P1

z → P2 sending

1 7→ p1, ∞ 7→ p2, 0 7→ p3

with derivative at z = 1 in the direction of the line x0 = x1 is given by

(x0 : x1 : x2) = (z − 1 : z(z − 1) : p · z), p ∈ P1.

In the following we are interested in pencils of quartics which satisfy the condition
(?), so we study the effect of this condition on quartic curves. We say that a pencil
of quartics satisfies (†) if, up to a change of coordinates, it is of one of the following
types: (1) each quartic is double at p2 and has a tacnode at p1 with principal
tangent specified by p′1; (2) each quartic is double at p2 and p3 and has a cusp at
p1 with principal tangent specified by p′1.

We recall that, by the construction of the conic bundles, all the basepoints of P
(and thus also of C) are also singular points for the sextic f3 · g3 = 0.
Algorithm assuming (†).

(1) Factor h(z − 1 : z(z − 1) : pz, τ) = c(τ)za(z − 1)br(z, p, τ) where r(z, p, τ)
is linear in z and a + b is 5 or 6 depending on the multiplicity of h at
p2. The solution z0 of r(z, p, τ) = 0 gives the rational parameterization
h(z0 − 1 : z0(z0 − 1) : pz0, τ) = 0 with parameter p ∈ P1.

(2) A birational equation of the K3 surface is given by

w2 = (f3 · g3)(z0 − 1 : z0(z0 − 1) : pz0).

(3) If there is a section of fibration (5.3), then it is possible to obtain the
Weierstrass form by standard transformations.

This algorithm can be generalized to pencil of curves satisfying (?).

5.3. The elliptic fibrations induced by conic bundles. Here we can describe
and compute the equations of all the elliptic fibrations induced by the conic bundles
on the different K3 surfaces introduced. For this purpose, we apply the algorithm,
described in the previous section, to the equations of the conic bundles given in
Section 3 and to the Weierstrass equations given in Section 4.
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5.3.1. The K3 surface S5,5. The conic bundle |B2| induces an elliptic fibration on

S5,5 with two reducible fibers of type I∗4 : one whose components are Q0, Ω
(1)
0,4, Ω

(1)
0 ,

Ω
(1)
1,0, Ω

(1)
1 , Ω

(1)
2,1, Ω

(1)
2 , Q2, and Ω

(1)
3,2, and one whose components are Q3, Ω

(2)
1,0, Ω

(2)
1 ,

Ω
(2)
2,1, Ω

(2)
2 , Ω

(2)
3,2, Ω

(2)
3 , Q4, and Ω

(2)
4,3.

The Weierstrass equation is computed applying the algorithm to f3g3 = x0x1x2(x0−
x1)(x0 − x2)(x0 − x1 − x2), by (4.3), and h(x0 : x1 : x2, τ) = x1x2 − τ(x0x2 − x2

0).
One obtains the Weierstrass equation

(5.4) y2 = x3 − τ2(−τ2 + τ4 + 1)

3
x− (1/27)

τ3(−2 + τ2)(−1 + 2τ2)(τ2 + 1)

27
.

So the discriminant ∆(τ) is −τ10(−1 + τ)2(τ + 1)2. Hence, by Tate’s algorithm,
this fibration has two fibers of type I∗4 over τ = 0,∞ and two fibers of type I2 over
τ = ±1.

The conic bundle |B3| induces an elliptic fibration on S5,5 with two reducible

fibers: one of type I∗6 whose components are Q0, Ω
(1)
0,4, Ω

(1)
0 , Ω

(1)
1,0, Ω

(1)
1 , Ω

(1)
2,1, Ω

(1)
2 ,

Ω
(1)
3,2, Ω

(1)
3 , Q3, and Ω

(1)
4,3, one of type III∗ whose components are Q4, Ω

(2)
3 , Ω

(2)
3,2,

Ω
(2)
4,3, Ω

(2)
2 , Ω

(2)
4 , Ω

(2)
2,1, and Ω

(2)
0,4.

The Weierstrass equation is

(5.5) y2 = x3 − τ3(τ3 + 6τ2 + 9τ + 3)

3
x− τ5(τ + 3)(2τ3 + 12τ2 + 18τ + 9)

27
.

So the discriminant ∆(τ) is −τ9(τ + 4)(τ + 1)2. Hence, by Tate’s algorithm, this
fibration has one fiber of type I∗6 over τ = ∞, one fiber of type III∗ over τ = 0,
one fiber of type I2 over τ = −1 and one fiber of type I1 over τ = −4.

5.3.2. The K3 surface X5,5. Here we consider the elliptic fibrations induced by
Bi on X5,5. We recall that in this case one has to apply the algorithm to (4.7).
We summarize the results in the following table, where r denotes the rank of the
Mordell-Weil group of the fibration.

(5.6)
∆ singularfibers r

B1

−τ6(τ − 1)6(µ1 − µ2)
4

(τ3 − 2τ2 − 2τ2µ2 + 6τµ2 + τ + τµ2
2 − 4µ2)

(τ3 − 2τ2 − 2τ2µ1 + 6τµ1 + τ + τµ2
1 − 4µ1)

1I∗0 τ = 0
2I6 τ =∞, 1
6I1

2

B2
−τ8(−τ3 + 2τ2 + τ2µ2 + 2τµ2 − τ + µ2)(−τ + µ2)

(−τ3 + 2τ2 + τ2µ1 + 2τµ1 − τ + µ1)(−τ + µ1)(µ1 − µ2)
4

2I8 τ = 0,∞
8I1

2

B3
−τ8(τ + 2τ2 + τ3 − 6µ2τ − 2µ2τ

2 + 4µ2
2 + τµ2

2)
(τ3 − 6µ1τ + 2τ2 + τ + µ2

1τ + 4µ2
1 − 2µ1τ

2)(µ1 − µ2)
4

I10 τ =∞
I∗2 τ = 0

6I1

1

5.3.3. Other K3 surfaces. As we saw above, all the equations for K3 surfaces that
are double covers of R5,5 branched over some special fibers can be obtained from
the general equation for X5,5 by substituting particular values of µ1 and µ2. In
particular in order to find the Weierstrass equations of the elliptic fibrations induced
by the conic bundles Bi on a specific K3 surface it suffices to substitute in (5.6)
the appropriate values of µ1 and µ2. As an example here we construct a table
analogous to (5.6) if the K3 surface is obtained by R5,5 branching along one fiber of
type I5 and one smooth fiber. We already noticed that one has two different choices
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for the I5 branch fiber. Once one chooses the branch fiber I5, the construction is
not symmetric in I5. For i = 1, 2 the reducible fibers of the conic bundle |Bi| are
symmetric up to switching the I5-fibers, so the conic bundle |Bi| is associated to
elliptic fibrations with the same property choosing differently the I5 branch fiber.
For the conic bundles |B1| and |B2| we will choose the I5 branch fiber to be the
one over µ1 = 0. The conic bundle |B3| has a unique reducible fiber, supported
over one specific I5, so the elliptic fibrations induced by this conic bundle have not
necessarily the same properties if one change the I5 branch fibers. So we give the
equations of the elliptic fibrations if one chose both µ1 = 0 and µ1 =∞.

For all the conic bundles µ2 is the parameter of the 1-dimensional family of K3
surfaces we are considering. So we obtain the following (where r = rank(MW ) and
both the reducible fibers and r are given for generic choice of µ2):

(5.7)
∆ singularfibers r

B1 −τ7µ4
2(−1 + τ)8(τ3 − 2τ2 − 2τ2µ2 + τ + 6τµ2 + τµ2

2 − 4µ2)
I∗1 τ = 0, I∗2 τ = 1
I6 τ =∞, 3I1

1

B2 −τ10µ4
2(−1 + τ)2(µ2 + τ2µ2 + 2τµ2 − τ3 − τ + 2τ2)(µ2 − τ)

I∗4 τ = 0, I2 τ = 1
I8, τ =∞, 4I1

1

B3,
µ1 = 0

−µ4
2τ

9(τ + 1)2(τ + 2τ2 + τ3 − 6µ2τ − 2µ2τ
2 + 4µ2

2 + τµ2
2)

III∗ τ =∞, I2 τ = −1
I10 τ = 0, 3I1

1

B3,
µ1 =∞ −τ8(4 + τ)(τ + 2τ2 + τ3 − 6µ2τ − 2µ2τ

2 + 4µ2
2 + τµ2

2)
I∗6 τ = 0
I∗2 τ =∞, 4I1

1

6. The K3 surface S5,5 and its elliptic fibrations

The aim of this section is to prove the following results, computing the equations
of all the elliptic fibrations on S5,5.

Proposition 6.1. The K3 surface S5,5 admits 13 different elliptic fibrations. One
of them is induced by ER, 3 are induced by conic bundles, 3 by splitting genus one
pencils and 6 by generalized conic bundles. The equations of these elliptic fibrations
are given in 4.2 (the one induced by ER), in 5.1, 5.4, 5.5 (the ones induced by the
conic bunldes), in 6.7 (the ones induced by splitting genus 1 pencil) and in 6.8, 6.9
(the ones induced by generalized conic bundles).

To prove this, we deeply analyze the elliptic fibrations on S5,5 induced by splitting
genus 1 pencils and generalized conic bundles, in particular giving an algorithm to
find the Weierstrass equation of any elliptic fibration induced by a splitting genus
1 pencil.

The K3 surface S5,5 can be also described as the (unique!) K3 surface which
admits a non-symplectic involution fixing 10 rational curves. Indeed, by our con-
struction it is clear that ι fixes 10 rational curves (the inverse image of the com-
ponents of the two I5 fibers). The fact that this K3 surface is unique is classically
known, and due to Nikulin, see [8]. The transcendental lattice of this K3 surface is
TS ' 〈2〉⊕〈2〉. The elliptic fibrations on this K3 surface are classified by Nishiyama,
see [9, Table 1.2], who used a lattice theoretic method that we will apply later to a
different K3 surface, in Section 7. The complete list of the elliptic fibrations is the
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following:

(6.1)

no singular fibers MW
1 2II∗ + 2I2 {1}
2 II∗ + I∗6 + 2I1 {1}
3 I∗12 + 2I2 + 2I1 Z/2Z
4 2III∗ + I∗0 Z/2Z
5 III∗ + I∗6 + I2 + I1 Z/2Z
6 I18 + I2 + 4I1 Z/3Z

no singular fibers MW
7 I∗14 + 4I1 {1}
8 I∗8 + I∗2 + 2I1 Z/2Z
9 2I∗4 + 2I2 (Z/2Z)

2

10 I16 + I4 + 4I1 Z/4Z
11 IV ∗ + I12 + 4I1 Z× Z/3Z
12 3I∗2 (Z/2Z)

2

13 2I10 + 4I1 Z/5Z

Since the involution ι acts as the identity on the Néron–Severi group of S5,5,
there are no fibrations of type 3 on this K3 surface.

The fibration 13 in Table (6.1) is the one induced by the fibration ER5,5
and it

has equation (4.2). By Section 5, the fibrations 5, 9, and 12 are induced by conic
bundles and their equations are (5.5), (5.4), and (5.1), respectively.

The other fibrations are induced either by generalized conic bundles or by split-
ting genus 1 pencils.

An elliptic fibration induced by a splitting genus 1 pencil corresponds to a fibra-
tion of genus 1 curves on a non-relatively minimal rational elliptic surface (that is,
this fibration admits (−1)-curves as components of some fibers). The original rela-
tively minimal rational elliptic surface R5,5 can be recovered from this non-minimal
surface by blowing down some divisors. A different choice of divisors to blow-down,
namely the (−1)−curves which are components of the fibers of the splitting genus 1
pencil, gives us another rational elliptic surface on which the splitting genus 1 pencil
above corresponds to a relatively minimal elliptic fibration. Hence each fibration
given by a splitting genus 1 pencil is indeed induced by a rational elliptic surface
(different from R5,5) by a base change of order 2 whose branch locus consists of
10 curves. Considering the list of elliptic fibrations on S5,5 given in Table 6.1 one
observes immediately that the fibrations 6, 10 and 11 could be of this type, i.e.,
they could be induced by splitting genus 1 pencils, (this is in fact proved in [4]).
Indeed they present some fibers which appear in pairs (each pair is good candidate
to be the inverse image of a unique fiber on the rational elliptic surface) and at
most two other fibers, which do not appear an even number of time, but which are
either of type I2n or of type IV ∗. These fibers are the one obtained by base change
of order 2 branched over In or IV -fibers, so they could be the ramification fibers
of the base change. The others fibration in Table 6.1 have not the same properties,
thus can not be induced by rational elliptic surface by a base change of order 2. We
already observed that the fibration 13 is induced by the elliptic fibration on R5,5

and that the fibrations 5, 9 and 12 are induced by conic bundles, so the fibrations
1, 2, 3, 4, 7, 8 are induced by generalized conic bundles.

6.1. Splitting genus 1 fibrations.

6.1.1. An example, the fibration 6. We give an example of splitting genus 1 pencil
of curves: we are looking for a fiber of type I18 and it is given by

WX := Q0 + Ω
(2)
0 + Ω

(2)
4,0 + Ω

(2)
4 + Ω

(2)
4,3 + Ω

(2)
3 + Ω

(2)
3,2 + Ω

(2)
2 + Ω

(2)
2,1 + Ω

(2)
1 +

+Q3 + Ω
(1)
3 + Ω

(1)
3,2 + Ω

(1)
2 + Ω

(1)
2,1 + Ω

(1)
1 + Ω

(1)
1,0 + Ω

(1)
0 .
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Using (4.1), the class WR := π∗WX is

(6.2)
2F1+E1+2G1+`1+2H2+E2+2G2+`3+2ET1

+`2+2F4+E4+2G4+m3+2H3+E3+2G3+m1 =

5h−2E1−2F1−2G1−4H1−E2−2F2−G2−H2−2E3−4F3−2G3−2H3−E4−F4−G4−2H4−2EQ5−ET2 .

Since we know that the curves in the linear system described split in the double
cover, we can assume that the class WR is both the push down and the geometric
image of a fiber of our fibration (i.e. π∗(WX) = π(WX) = WR).

This class is the strict transform on R̃ of quintics in P2 with the following prop-
erties: they have a tacnode in Q1 with principal tangent `2; they have a tacnode
in Q3 with principal tangent `3; they have a node in Q5; the tangent in Q2 is m2;
the tangent in Q4 is m2; they pass through T2.

This gives the following families of quintics

(6.3) − bx5
0 + bx4

0x1 + bx4
0x2 − ex3

0x1x2 + ex2
0x

2
1x3 + ex2

0x1x
2
2+

(−3b− e)x0x
2
1x

2
2 + bx3

1x
2
2 + bx2

1x
3
2 = 0.

This is the equation of the splitting genus 1 pencil that we are looking for. It
indeed corresponds to a pencil of curves of genus 1 parametrized by (b : e).

We now have to intersect the branch sextic given in equation (4.3) with (6.3).
The resultant of the polynomials (4.3) and (6.3) with respect to the variable x0 is

−x12
1 x

12
2 b

3(x1 − x2)4(x2 + x1)2(e+ 2b).

We observe that all the solutions in (x1, x2) have even multiplicities, as is necessarily
if the double cover splits into two curves, isomorphic to the base curve, see [4,
Section 3]. More precisely, the curve splits after the base change of order two
branched in (b : e) = (0 : 1) and (b : e) = (1 : −2), cf. Lemma 6.2 below. In
order to write down explicitly the Weierstrass form of the elliptic fibration on X5,5

one first finds the rational elliptic fibration given by the splitting pencil of genus
1 curves (6.3), and then one performs the base change of order two. This can be
computed by any computer algebra system and it is

y2 = x3 +A(b : e)x+B(b : e),

where

A(b : e) :=
23

48
b4 − 5

12
b3e− 1

8
b2e2 +

1

12
be3 − 1

48
e4

and

B(b : e) := −181

864
b6 − 17

144
b5e+

31

288
b4e2 − 1

54
b3e3 − 5

288
b2e4 +

1

144
be5 − 1

864
e6.

The discriminant of this rational elliptic fibration is

1

16
b9(e+ 2b)(e2 − 5be+ 13b2)

and the fibration has one fiber of type I9 and three other singular fibers, all of type
I1.

Now we consider the base change of order 2 branched in (b : e) = (0 : 1) and
(b : e) = (1 : −2). It can be directly written as a map P1

(β:ε) → P1
(b:e), where b = β2

and e = −β2 + 2βε+ ε2.
So we obtain a new elliptic fibration on S5,5 whose equation is

(6.4) y2 = x3 +A′(β : ε)x+B′(β : ε),



ELLIPTIC FIBRATIONS ON COVERS OF THE ELLIPTIC MODULAR SURFACE 21

A′(β : ε) :=
23

48
β8 − 5

12
β6(−β2 + 2βε+ ε2)− 1

8
β4(−β2 + 2βε+ ε2)2+

+
1

12
β2(−β2 + 2βε+ ε2)3 − (1/48)(−β2 + 2βε+ ε2)4

and

B′(β : ε) := −(1/108)β12−(5/9)β11ε−(7/18)β10ε2+(28/27)β9ε3+(7/12)β8ε4−(11/12)β7ε5+

−(35/72)β6ε6+(1/3)β5ε7+(5/24)β4ε8−(5/108)β3ε9−(1/18)β2ε10−(1/72)ε11β−(1/864)ε12.

The discriminant is

(1/16)β18(19β4 − 14β3ε− 3β2ε2 + 4βε3 + ε4)(ε+ β)2.

This fibration has a fiber of type I18, as expected, one fiber of type I2 (in (β : ε) =
(1 : −1)), and four fibers of type I1. By construction this elliptic fibration exhibits
S5,5 as the double cover of a rational elliptic surface with one fiber of type I9 and
three fibers of type I1.

6.1.2. Splitting genus 1 fibration: an algorithm. The aim of this section is to gen-
eralize the previous construction to other splitting genus 1 pencils.
Setup. Let π : V → P1 be a K3 surface which is a double cover of a (not necessarily

minimal) rational elliptic surface R̃ branched over two fibers. If H : R̃→ P1
(b:e) is a

splitting genus 1 pencil, then the induced elliptic fibration on V comes via pullback
from a double cover P1

(β:ε) → P1
(b:e). Hence given an equation for the fibration H,

it suffices to find the branch points of the map P1
(β:ε) → P1

(b:e) in order to find the

Weierstrass equation for the elliptic fibration on V . We now explain how to do this
in general, when the branch curves and equations for H are given in P2.

Assume that the equation of V as double cover of P2 is given by w2 = f3(x0 : x1 :
x2)g3(x0 : x1 : x2). Let h((x0 : x1 : x2), (b : e)) be the equation of the pushforward

of a splitting genus 1 pencil from R̃ to P2. The equation h is homogeneous of
some degree in the coordinate (x0 : x1 : x2) on P2 and linear in the coordinate
(b : e) of the base P1 of the pencil. For every (b : e), the curve with equation
h((x0 : x1 : x2), (b : e)) is of arithmetic genus 1.

Write ∪k∈KCk for the irreducible components of the branch curves f3g3 = 0.
For D ⊂ P2, write multCk

(D) for the multiplicity of the component Ck in D. Then
we have the following.

Lemma 6.2. A plane curve D(b:e) ⊂ P2 that is member of the pencil H is a branch
curve for the double cover

V R̃

P1
(β:ε) P1

(b:e)

H

2:1

induced by the splitting genus 1 pencil if and only if there exists k ∈ K such that
multCk

(D(b:e)) 6= 0.

Proof. If D meets the branch curves transversely, it does so only in points of even
multiplicity, and so splits in the double cover as two disjoint elliptic curves. It
suffices, therefore, to show that if D contains at least one component Ck, the
support of the preimage of D under the 2 : 1 map π : V → P2 is connected. This
follows from the fact that the preimage of Ck is a double curve, the support of
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which maps isomorphically onto Ck, and so every component of π∗D must meet
this curve. �

We will also make use of the following elementary fact. Let D(b0:e0) ⊂ P2 be a
plane curve in the pencil H with equation h((x0 : x1 : x2), (b0 : e0)). Denote by
r((x1 : x2)(b : e)) the resultant of f3(x0 : x1 : x2)g3(x0 : x1 : x2) and h((x0 : x1 :
x2), (b : e)) with respect to x0.

Lemma 6.3. The resultant r((x1 : x2)(b : e)) vanishes to order

=
∑
k

multCk
(D(b0:e0)) ·

{
degCk : (1 : 0 : 0) 6∈ Ck
(degCk − 1) : (1 : 0 : 0) ∈ Ck

at (b : e) = (b0 : e0).

Proof. This follows from the geometric description of the zeros of the resultant in
terms of projecting the scheme-theoretic intersection of h = 0 and f3g3 = 0 from
the point (1 : 0 : 0). �

Writing ord(b0:e0) for the order of vanishing at (b0 : e0), we may combine these
two Lemmas to show the following:

Corollary 6.4. If ord(b0:e0)

(
r((x1 : x2)(b : e))

)
> 0, then the curve D(b0:e0) is a

branch curve for the double cover induced by the splitting genus 1 pencil.
If (1 : 0 : 0) 6∈ ∪kCk and D(b0:e0) is a branch curve for the double cover induced

by the splitting genus 1 pencil, then ord(b0:e0)

(
r((x1 : x2)(b : e))

)
> 0.

We can therefore determine the relevant branch points from the resultant. This
leads to the following algorithm.
Algorithm.

(1) Compute the resultant r((x1 : x2)(b : e)) of the two polynomials f3(x0 :
x1 : x2)g3(x0 : x1 : x2) and h((x0 : x1 : x2), (b : e)) in one variable, say x0.

(2) Observe that r((x1 : x2)(b : e)) = c1(b : e)c2(b : e)s((x1 : x2), (b : e))2,
where ci(b : e) are homogeneous polynomials each with a unique root,
denoted by (bi : ei). (If (1 : 0 : 0) is in the branch curves, it may be
necessary to change coordinates first.)

(3) Write the Weierstrass form of h((x0 : x1 : x2), (b : e)), by applying the
standard transformations. This is the equation of a rational elliptic surface,
and the base of the fibration is P1

(b:e).

(4) Consider the base change P1
(β:ε) → P1

(b:e) given by (b = β2(b1/e1) + ε2, e =

β2 + (e2/b2)ε2) (cf. (4.4)). Substituting this base change in the previ-
ous Weierstrass equation, one finds the Weierstrass equation of the elliptic
fibration on the K3 surface V whose base is P1

(β:ε).

6.2. The elliptic fibrations on S5,5. In this section we want to describe all the
elliptic fibrations on S5,5 giving equations for each of them.

In [2] a model of S5,5 as a double cover of P2 was given and the elliptic fibrations
induced by (generalized) conic bundles are already studied geometrically in that
context. Here we explicitly describe in our context both the fibrations induced by
generalized conic bundles and the ones induced by splitting genus 1 curves, giving
also a Weierstrass equation for each of them.
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6.2.1. Elliptic fibrations induced by splitting genus 1 pencils. The fibration 11 of
Table (6.1) is induced by the class of the fiber

M1 := Q0 + Ω
(1)
0 + Ω

(1)
1,0 + Ω

(1)
1 +Q1 + Ω

(2)
2 + Ω

(2)
3,2 + Ω

(2)
3 + Ω

(2)
4,3 + Ω

(2)
4 + Ω

(2)
4,0 + Ω

(2)
0

which is the class of a fiber of type I12. The curves Ω
(1)
3 , Ω

(1)
3,2, Ω

(1)
2 , Ω

(1)
3,4, Ω

(1)
4 ,

Q3, and Ω
(2)
1 are orthogonal to the components of the I12-fiber and form a fiber

of type IV ∗. The classes Q2, Q4, Ω
(1)
1,2, Ω

(1)
4,0, Ω

(2)
1,0, Ω

(1)
2,1 are sections of the elliptic

fibration induced by |M1|. We observe that there are 6 curves fixed by ι among the

components of the fiber of type I12 (the curves Ω
(j)
i for (i, j) = (0, 1), (1, 1), (2, 2),

(3, 2), (4, 2), (0, 2)) and 4 among the components of the IV ∗-fiber (the curves Ω
(j)
j

for (i, j) = (3, 1), (2, 1), (4, 1), (1, 2)).
The push-down of the class M1 is

3h−E1−F1−G1−2H1−E2−2F2−G2−H2−E3−F3−G3−H3−ET1−ET2−E5

which corresponds to a pencil of cubics passing through Q1 with tangent line `2,
through Q2 with tangent line m2, through Q3, ET1

, ET2
, and Q5. The equation of

this pencil is

(6.5) b(x2
0x1 − x0x

2
1 + x2

1x2 + x1x
2
2 − 2x2

0x2) + e(x0x1x2 − x2
0x2) = 0.

The Weierstrass form of the (rational) elliptic fibration associated to the pencil
(6.5) is

y2 = x3−1(28b2 + 4eb+ e2)(2b+ e)2

48
x− (376b4 + 176eb3 + 60e2b2 + 8e3b+ e4)(2b+ e)2

864
,

whose discriminant is b6(31b2 + 4eb+ e2)(2b+ e)4/16. This elliptic fibration has a
fiber of type I6 on b = 0 and one of type IV on (b : e) = (1 : −2).

The fibration 10 of Table (6.1) is induced by the class of the fiber

M2 := Q0+Ω
(1)
0 +Ω

(1)
1,0+Ω

(1)
1 +Ω

(1)
2,1+Ω

(1)
2 +Ω

(1)
3,2+Ω

(1)
3 +Ω

(1)
4,3+Ω

(1)
4 +Q4+Ω

(2)
3 +Ω

(2)
4,3+Ω

(2)
4 +Ω

(2)
4,0+Ω

(2)
0 ,

which is the class of a fiber of type I16.
The push-down of the class M2 is

4h−E1−F1−G1−2H1−E2−F2−2G2−H2−E3−2F3−G3−H3−E4−2F4−G4−H4−2ET2
−2E5

which corresponds to a pencil of quartics with bitangent lines l2 (in Q2 and Q4)
and l3 (in Q1 and Q3) and having two nodes in ET2

and E5. The equation of this
pencil is

(6.6) bx4
0 − 2bx3

0x1 + bx2
0x

2
1 − 2bx3

0x2 + (3b+ 4e)x2
0x1x2 + (−b− 4e)x0x

2
1x2+

ex3
1x2 + bx2

0x
2
2 + (−b− 4e)x0x1x

2
2 + 2ex2

1x
2
2 + ex1x

3
2 = 0.

Using the algorithm, we find the following Weierstrass equations for elliptic fi-
brations on S5,5 induced by splitting genus 1 pencils.
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(6.7)
i elliptic fibrations

6

A = 23
48β

8 − 5
12β

6(−β2 + 2βε+ ε2)− 1
8β

4(−β2 + 2βε+ ε2)2+
+ 1

12β
2(−β2 + 2βε+ ε2)3 − (1/48)(−β2 + 2βε+ ε2)4

B = −(1/108)β12 − (5/9)β11ε− (7/18)β10ε2 + (28/27)β9ε3 + (7/12)β8ε4 − (11/12)β7ε5+
−(35/72)β6ε6 + (1/3)β5ε7 + (5/24)β4ε8 − (5/108)β3ε9 − (1/18)β2ε10 − (1/72)ε11β − (1/864)ε12

∆ = (1/16)β18(19β4 − 14β3ε− 3β2ε2 + 4βε3 + ε4)(ε+ β)2

11
A = −(24ε4 + β4)β4/48, B = −(216ε8 + 36β4ε4 + β8)β4/864
∆ = ε12(27ε4 + β4)β8/16

10
A = (−β8 + 16ε4β4 − 16ε8)/48, B = −(β4 − 8ε4)(−8ε8 − 16ε4β4 + β8)/864
∆ = ε16β4(2ε− β)(2ε+ β)(4ε2 + β2)/16

6.2.2. Elliptic fibrations induced by generalized conic bundles. Let us consider the
divisors:

N1 : = 2Ω
(1)
0 + 4Q0 + 6Ω

(2)
0 + 5Ω

(2)
1,0 + 4Ω

(2)
1 + 3Ω

(2)
2,1 + 2Ω

(2)
2 + Ω

(2)
3,2 + 3Ω

(2)
4,0,

N2 : = 2Ω
(2)
4 + 4Ω

(2)
4,0 + 6Ω

(2)
0 + 5Ω

(2)
1,0 + 4Ω

(2)
1 + 3Ω

(2)
2,1 + 2Ω

(2)
2 + Ω

(2)
3,2 + 3Q0,

N3 : = Q0 + Ω
(1)
4,0 +Q4 + Ω2

4,3 + 2
(

Ω
(1)
0 + Ω

(1)
1,0 + Ω

(1)
1 + Ω

(1)
2,1+

+ Ω
(1)
2 + Ω

(1)
3,2 + Ω

(1)
3 +Q3 + Ω

(2)
1 + Ω

(2)
2,1 + Ω

(2)
2 + Ω

(2)
3,2 + Ω

(2)
3

)
,

N4 : = Ω
(2)
1,0 + 2Ω

(2)
0 + 3Q0 + 4Ω

(1)
0 + 3Ω

(1)
1,0 + 2Ω

(1)
1 + Ω

(1)
2,1 + 2Ω

(1)
4,0,

N8 : = Ω
(1)
1,0 +Q0 + Ω

(2)
4,0 + Ω

(2)
4,3 + 2

(
Ω

(1)
0 + Ω

(1)
4,0 + Ω

(1)
4 + Ω

(1)
4,3 + Ω

(1)
3 + Ω

(1)
3,2 + Ω

(1)
2 +Q2 + Ω

(2)
4

)
.

The linear system |Ni| induces the elliptic fibration number i of the Table (6.1),
indeed the divisor Ni corresponds to an elliptic fibration with a fibre of type II∗,
II∗, I∗12, III∗, I∗8 if i = 1, 2, 3, 4, 8 respectively, so N3 (resp. N8) corresponds to the
unique fibration in Table (6.1) with a fiber of type I∗12 (resp. I∗8 ), i.e. the fibration 3
(resp. 8). A priori, N1 could correspond either to the fibration 1 or to the fibration
2 (which are the fibrations which admit at least a fiber of type II∗). To distinguish
among these cases we consider the other reducible fibers: the curves orthogonal to

N1 are Ω
(1)
h,j , for h, j ∈ {1, 2, 3, 4}, h < j, Ω

(1)
k for k = 1, 2, 3, 4, Q2 and Q4 and they

span the lattice Ẽ8, so N1 corresponds to the fibration 1 in Table (6.1); the curves

orthogonal to N2 are Ω
(1)
h,j , for h, j ∈ {0, 1, 2, 3, 4}, h < j, Ω

(1)
k for k = 1, 2, 3, 4 and

Q2 and they span the lattice D10, so N2 corresponds to the fibration 2 in Table
(6.1).

Let us now consider the fibration N4. The fiber associated to N4 is a fiber of

type III∗. The curves Ω
(1)
2 and Ω

(1)
1 are sections of the fibration. The curves Ω

(2)
2,1,

Ω2
2, Ω

(2)
3,2, Ω

(2)
3 , Ω

(2)
4,3, Ω

(2)
4 , Q2, Q4 are orthogonal to N4 and are the components

of another fiber of type III∗. This implies that |N4| is the fibration 4 in Table

(6.1), and that the unique other reducible fiber is of type I∗0 . The curves Q3, Ω
(1)
3 ,

Ω
(1)
4,3 and Ω

(1)
3,2 are orthogonal to N4 and span a lattice isometric to D4. So they are

components of the I∗0 -fiber in the fibration |N4|. A I∗0 -fiber has five components, four

of them are Q3, Ω
(1)
3 , Ω

(1)
4,3 and Ω

(1)
3,2, the fifth component is another curve, say V1. So

that we have a special fiber of the fibration |N4|, which is 2Ω
(1)
3 +Ω

(1)
4,3+Ω

(1)
3,2+Q3+V1.

Hence we can express the class of the curve V1 as N4 − (2Ω
(1)
3 + Ω

(1)
4,3 + Ω

(1)
3,2 +Q3).

From this expression one can compute all the intersection numbers of V1 with all
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the curves Ωki,j ,Ω
n
m and Qk. One can also observe that since V1 is a component of

a fiber of the fibration |N4|, it is orthogonal to all the components of the two other
reducible fibers of the same fibration, i.e. to the components of the III∗-fibers.

Let us now consider the class:

N7 := Ω
(1)
1,0 + Ω

(1)
4,0 + V1 + Ω

(1)
4,3 + 2(Ω

(1)
0 +Q0 + Ω

(2)
0 + Ω

(2)
1,0 + Ω

(2)
1 + Ω

(2)
2,1+

+ Ω
(2)
2 + Ω

(2)
3,2 + Ω

(2)
3 + Ω

(2)
4,3 + Ω

(2)
4 +Q2 + Ω

(1)
2 + Ω

(1)
3,2 + Ω

(1)
3 ).

It is the class of the elliptic fibration 7 in the Table (6.1) since it is the class of a
fiber of an elliptic fibration on S5,5 with a fiber of type I∗14.

All the classes Ni, for i = 1, 2, 3, 4, 7, 8 considered above correspond to general-
ized conic bundles which can be written in the following way in terms of the classes

on R̃:

i (π∗(Ni))/2
1 4h− (E2 + F2 +G2 +H2)− (2E3 + 3F3 + 3G3 + 2H3)− 2(E4 + 2F4 +G4 +H4)− ET2

2 4h− (2E2 + 2F2 + 2G2 + 3H2)− 2(E4 + 2F4 +G4 +H4)− (E3 + 2F3 +G3 +H3)− E5

3 4h− (2E1 + 2F1 + 2G1 + 3H1)− (E4 + F4 +G4 + 2H4)− 2(E3 + 2F3 +G3 +H3)− E5

4 2h− (E1 + F1 + 2G1 +H1)− (E3 + 2F3 +G3 +H3)

7
7h− 3(E1 + F1 + 2G1 +H1)− (E2 + 2F2 +G2 +H2)+
−2(E4 + 2F4 +G4 +H4)− (4E3 + 6F3 + 4G3 + 5H3)

8
4h− 2(E+ − F1 +G1 +H1)− (2E2 + 3F2 + 2G2 + 2H2)+
−(E4 + 2F4 +G4 +H4)− (2E3 + 2F3 + 2G3 + 3H3)

This allows to compute explicitly the equations of pencils of singular rational
curves in P2 corresponding to our elliptic fibrations on S5,5.

i pencils in P2

1 a(x4
0 − x3

0x1 + 3x2
0x1x2 − 4x3

0x2 + 6x2
0x

2
2 − 3x0x1x

2
2 − 4x0x

3
2 + x1x

3
2 + x4

2) + gx0x
2
1x2

2 n(x4
0 − 2x3

0x1 + x2
0x

2
1 + 7x2

0x1x2 − 3x2
1x0x2 − 4x2x

3
0 + 6x2

2x
2
0 − 8x0x1x

2
2)+

+n(2x2
1x

2
2 − 4x3

2x0 + 3x1x
3
2 + x4

2) +m(8x2
1x2x0 − 8x3

1x2)
3 f(−x4

0 + x2
0x1x2 + x3

0x2 − x2
1x

2
2) + n(x4

0 + x2
2x

2
1 − x3

0x2 − x0x1x
2
2)

4 τx2
0 + σ(x0x2 − x1x2)

7
τx0x1x2(x2 − x0)(x0 − x1)(x2

0 − x0x2 + x1x2) + σ(−x1x
6
0 + 2x0x

3
1x

3
2 − 12x4

0x1x
2
2+

+7x3
0x

2
1x

2
2 − 8x2

0x
2
1x

3
2 + 6x5

0x1x2 − 3x4
0x

2
1x2 + x7

0 − x4
2x

3
1 − x2

0x
3
1x

2
2 − 3x4

2x1x
2
0+

+10x3
0x1x

3
2 + 6x2

2x
5
0 − 4x2x

6
0 + 3x4

2x
2
1x0 + x4

2x
3
0 − 4x3

2x
4
0)

8
s(x4

0 − 2x3
0x1 + x2

0x
2
1 + 3x2

0x1x2 − x0x
2
1x2 − 2x3

0x2 + x2
0x

2
2 − x0x1x

2
2)+

+t(−x2
0x1x2 + x0x

2
1x2 + 2x0x1x

2
2 − x2

1x
2
2)

Now it remains to find the Weierstrass equations of the elliptic fibrations on

S5,5 corresponding to the linear systems (π∗(Nj)/2) on R̃. In case 4, the curves
which are fibers of the conic bundle have degree 2, so we can directly apply the
first algorithm in Section 5.2. In cases 1, 2, 3, and 8 the curves are quartics which
satisfy condition (†) and so we may apply the second algorithm in Section 5.2. The
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rational parameterizations and induced Weierstrass equations are given by
(6.8)
i rational parameterization elliptic fibration

1
x0 = −agp3 − 2agp2 − agp
x1 = −g2p4 − 2agp2 − a2
x2 = g2p4 − agp3 + g2p3 − agp2

A = −3a4g4, B = a7g5 + a5g7

∆ = −432g10a10(a− g)2(a+ g)2

2

x0 = −64m2p4 + 8nmp3 − 8nmp
x1 = −64m2p4 + 16nmp3

−n2p2 − 16nmp2 + 2n2p− n2

x2 = −64m2p4 + 8nmp3 + 64m2p3 − 8nmp2

A = 108m2n4(−n2 + 384m2)
B = −432m3n5(n4 − 576n2m2 + 55296m4)
∆ = 570630428688384n10m12(n2 − 432m2)

3
x0 = p(−np+ fp+ n)(−np2 + fp2 + fp− n+ f)
x1 = (p+ 1)(−n+ f)p2(−np+ fp+ n)
x2 = (−np2 + fp2 + fp− n+ f)2

A = (3f6 − 18f5n+ 36f4n2 − 24f3n3 − 3f2n4 + 6fn5 − n6)·
27(f − n)2

B = (9f6 − 54f5n+ 117f4n2 − 108f3n3 + 39f2n4 − 6fn5 + n6)·
27n(f − n)3(3f2 − 6fn+ 2n2)

∆ = −8503056(n− 2f)(3n− 2f)f2(2n− f)2(n− f)18

4
A = τ3(1 + τ)2, B = 0,

∆ = 4τ9(1 + τ)6

8
x0 = (p− 1)(sp+ t)(tp2 − sp− t)
x1 = sp2(tp2 − sp− t)
x2 = (p− 1)(−sp+ tp− t)(sp+ t)

A = −27t2s2(s4 + 4s2t2 + t4)
B = −27t3s3(s2 + 2t2)(2s4 + 8s2t2 − t4)

∆ = 8503056s8t14(s2 + 4t2)

The fibration induced by |N7| is the unique elliptic fibration on a K3 surface with
a fiber of type I∗14 (which is a maximal fiber, since if a K3 surface admits an elliptic
fibration with this reducible fiber, then this is the unique reducible fiber). So it
suffices to know the equation of this elliptic fibration, which is classically known
[13, Theorem 1.2]. Hence for |N7| we only re-write here the known equation, a part
from the fact that we chose the parameters over P1

(τ :σ) in such a way that 4 fibers

of type I1 are over the points (τ : σ) = ((±
√
−26± 14i

√
7)/4 : 1). These values

correspond to the septic in |N7| which are tangent to m2 in a smooth point. We
therefore have equation:

(6.9)
A = τ2(−12σ6 − (3/8)σ4τ2 − (15/2048)σ2τ4 − (9/262144)τ6),

B = τ3σ(−16σ8 − (3/4)τ2σ6 − (21/1024)σ4τ4 − (35/131072)τ6σ2 − (63/33554432)τ8),
∆ = −(729/4503599627370496)τ20(2048σ4 + 52τ2σ2 + τ4).

We note that it is possible to obtain such an equation using our techniques.
Indeed one may find a rational parameterization of the septic plane curves of the
generalized conic bundle by rational cubic curves, and from there the computation
follows in the same way as above. We omit this computation here as the equation
is already in the literature.

7. The K3 surface X5,5 and its elliptic fibrations

The K3 surfaceX5,5 is very well-known and studied, in particular since its Néron–
Severi group allows to describe the moduli spaces of K3 surfaces with an elliptic
fibration with a 5-torsion section in terms of L-polarized K3 surfaces, see [5]. Indeed,
if a K3 surface admits an elliptic fibration with a 5-torsion section, then the lattice
U ⊕M has to be primitively embedded in its Néron–Severi lattice, where M is an
overlattice of index 5 of a root lattice. The lattice M is known to be an overlattice
of index 5 of A4

4 and so the lattice U ⊕M is isometric to the Néron–Severi lattice
of X5,5. Hence the moduli space of the K3 surfaces which are NS(X5,5)-polarized
coincides with the moduli space of the K3 surfaces which admit an elliptic fibration
with a 5-torsion section.
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7.1. The list of all the elliptic fibrations. The transcendental lattice of X5,5

is known to be TX ' U ⊕ U(5), see e.g. [3]. This allows to apply the Nishiyama
method in order to classify (at least lattice theoretically) the elliptic fibrations on
X5,5. This method is studied and applied in several papers, and we do not intend
to describe it in details. Here we just observe that we can apply the method using
A4 ⊕ A4 as the lattice T , so that T is a negative-definite lattice with the same
discriminant form as the one of the transcendental lattice TX and whose rank is
rank(T ) = rank(TX)+4. Then one has to find the primitive embeddings of A4⊕A4

in the Niemeier lattice up to isometries, and this can be done by embedding T into
the root lattice of the Niemeier lattices. The list of the Niemeier lattices and the
possible embeddings of root lattices in Niemeier lattices up to the Weyl group can
be found in [9] (see also [7]). In particular one has that A4 embeds primitively in
a unique way (up to the action of the Weyl group) in An for n > 4, in Dm for
m > 4, in Eh for h = 6, 7, 8, see [9, Lemmas 4.2 and 4.3]. On the other hand
A4 ⊕ A4 has a primitive embedding in An for n ≥ 9, in Dm for m ≥ 10, and
has no primitive embeddings in Eh for h = 6, 7, 8, see [9, Lemma 4.5]. All these
primitive embeddings are unique with the exception of A4 ⊕ A4 ↪→ D10, for which
there are two possible primitive embeddings, see [9, Page 325, just before Step 3].
The orthogonal complement of the embedded copy of A4 ⊕ A4 in the root lattice
of each Niemeier lattices is a lattice L which can be computed by [9, Corollary
4.4] and which encodes information about both the reducible fibers and the rank
of the Mordell–Weil group of the elliptic fibrations. In particular the root lattice
of L is the lattice spanned by the irreducible components of the reducible fibers
orthogonal to the zero section. More precise information on the sections can be
obtained by a deeper analysis of these embeddings, but this is outside the scope of
this paper. So in the following list we give the root lattice of the Niemeier lattice
that we are considering, the embeddings of A4 ⊕ A4 in this root lattice, the root
lattices of the orthogonal complement, and in the last two columns the properties of
the associated elliptic fibration. This gives the complete list of the types of elliptic
fibrations on X5,5 :

(7.1)
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no Niemeier embedding(s) roots orthogonal singular fibers rk(MW )
1 E3

8 A4 ⊂ E8 A4 ⊂ E8 A4 ⊕A4 ⊕ E8 2I5 + II∗ + 2I1 0
2 E8 ⊕D16 A4 ⊂ E8 A4 ⊂ D16 A4 ⊕D11 I5 + I∗7 + 6I1 1
3 E8 ⊕D16 A4 ⊕A4 ⊂ D16 E8 ⊕D6 II∗ + I∗2 + 6I1 2
4 E2

7 ⊕D10 A4 ⊂ E7 A4 ⊂ E7 A2
2 ⊕D10 2I3 + I∗6 + 6I1 2

5 E2
7 ⊕D10 A4 ⊂ E7 A4 ⊂ D10 E7 ⊕A2 ⊕D5 III∗ + I3 + I∗1 + 5I1 2

6 E2
7 ⊕D10 A4 ⊕A4 ⊂ D10 E2

7 2III∗ + 6I1 2
7 E2

7 ⊕D10 A4 ⊕A4 ⊂ D10 E2
7 2III∗ + 6I1 2

8 E7 ⊕A17 A4 ⊂ E7 A4 ⊂ A17 A2 ⊕A12 I3 + I13 + 8I1 2
9 E7 ⊕A17 A4 ⊕A4 ⊂ A17 E7 ⊕A7 III∗ + I8 + 7I1 2
10 D24 A4 ⊕A4 ⊂ D24 D14 I∗10 + 8I1 2
11 D12 ⊕D12 A4 ⊂ D12 A4 ⊂ D12 D7 ⊕D7 2I∗3 + 6I1 2
12 D12 ⊕D12 A4 ⊕A4 ⊂ D12 D12 ⊕A2

1 I∗8 + 2I2 + 6I1 2
13 D3

8 A4 ⊂ D8 A4 ⊂ D8 D8 ⊕A3 ⊕A3 I∗4 + 2I4 + 6I1 2
14 D9 ⊕A15 A4 ⊂ D9 A4 ⊂ A15 D4 ⊕A10 I∗0 + I11 + 7I1 2
15 D9 ⊕A15 A4 ⊕A4 ⊂ A15 D9 ⊕A5 I∗5 + I6 + 7I1 2
16 E4

6 A4 ⊂ E6 A4 ⊂ E6 A2
1 ⊕ E2

6 2I2 + 2IV ∗ + 4I1 2
17 E6 ⊕D7 ⊕A11 A4 ⊂ E6 A4 ⊂ D7 A3

1 ⊕A11 3I2 + I12 + 6I1 2
18 E6 ⊕D7 ⊕A11 A4 ⊂ E6 A4 ⊂ A11 A1 ⊕D7 ⊕A6 I2 + I∗3 + I7 + 6I1 2
19 E6 ⊕D7 ⊕A11 A4 ⊂ D7 A4 ⊂ A11 E6 ⊕A2

1 ⊕A6 IV ∗ + 2I2 + I7 + 5I1 2
20 E6 ⊕D7 ⊕A11 A4 ⊕A4 ⊂ A11 E6 ⊕D7 ⊕A1 IV ∗ + I∗3 + I2 + 5I1 2
21 D4

6 A4 ⊂ D6 A4 ⊂ D6 D2
6 2I∗2 + 8I1 4

22 D6 ⊕A2
9 A4 ⊂ D6 A4 ⊂ A9 A4 ⊕A9 I5 + I10 + 9I1 3

23 D6 ⊕A2
9 A4 ⊂ A9 A4 ⊂ A9 D6 ⊕A4 ⊕A4 I∗2 + 2I5 + 6I1 2

24 D6 ⊕A2
9 A4 ⊕A4 ⊂ A9 D6 ⊕A9 I∗2 + I10 + 6I1 1

25 D2
5 ⊕A2

7 A4 ⊂ D5 A4 ⊂ D5 A2
7 2I8 + 8I1 2

26 D2
5 ⊕A2

7 A4 ⊂ D5 A4 ⊂ A7 A7 ⊕D5 ⊕A2 I8 + I∗1 + I3 + 6I1 2
27 D2

5 ⊕A2
7 A4 ⊂ A7 A4 ⊂ A7 D2

5 ⊕A2
2 2I∗1 + 2I3 + 4I1 2

28 A3
8 A4 ⊂ A8 A4 ⊂ A8 A2

3 ⊕A8 2I4 + I9 + 7I1 2
29 A24 A4 ⊕A4 ⊂ A24 A14 I15 + 9I1 2
30 A2

12 A4 ⊂ A12 A4 ⊂ A12 A2
7 2I8 + 8I1 2

31 A2
12 A4 ⊕A4 ⊂ A12 A2 ⊕A12 I3 + I13 + 8I1 2

32 D4 ⊕A4
5 A4 ⊂ A5 A4 ⊂ A5 D4 ⊕A2

5 I∗0 + 2I6 + 6I1 2
33 A4

6 A4 ⊂ A6 A4 ⊂ A6 A2
1 ⊕A2

6 2I2 + 2I7 + 6I1 2
34 A6

4 A4 ⊂ A4 A4 ⊂ A4 A4
4 4I5 + 4I1 0

Observe that lines 6 and 7 correspond to the two different embeddings of A4 ⊕A4

in D10. The K3 surface X5,5 is obtained as double cover of a rational surface
R5,5 branched on two smooth fibers, so there are no elliptic fibrations induced by
generalized conic bundles or by splitting genus 1 pencils, see [4]. So an elliptic
fibration on X5,5 is either induced by a conic bundle on R5,5 or it is of type 3.

Putting together these considerations with the results of Sections 4 and 5, we
proved the following proposition.

Proposition 7.1. The elliptic fibrations on X5,5 are of 34 types, listed in Table
7.1. The fibration in line 34 of Table 7.1 is induced by ER and its equation is given
in Section 4.2.2; the fibrations of lines 22, 30 and 32 are induced by conic bundles
on R5,5 and their equations are given in Section 5.3.2. The other fibrations on X5,5

are of type 3.
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7.2. Fibration of type 3: an example, the fibration 26. The aim of this
section is to construct explicitly an example of an elliptic fibration of type 3 and to
discuss the geometry of the non complete linear system on P2 which induces this
fibration.

The divisor

D1 := Ω
(2,2)
0 + Ω

(1,1)
0 + 2Q0 + 2Ω

(2,1)
0 + Ω

(2,1)
1 + Ω

(2,1)
4

corresponds to the class of the fiber of a fibration which has one reducible fiber
of type I∗1 , thus |D1| is one of the fibrations 5,26,27 in Table (7.1). The curves

Ω
(2,1)
2 , Ω

(2,1)
3 , Q2, Q3, Ω

(2,2)
1 , Ω

(2,2)
4 , Ω

(1,1)
1 , Ω

(1,1)
4 are sections of the fibration |D1|.

Assuming that Ω
(2,1)
2 is the zero section there is fiber whose non trivial components

are Ω
(2,2)
2 , Ω

(2,2)
3 , Q4, Ω

(1,2)
4 , Ω

(1,2)
2 , Ω

(1,2)
3 , Ω

(1,2)
1 . So there is a fiber of type I8 and

|D1| is the fibration 26 in (7.1) and there is a fiber of type I3 whose non trivial

components are Ω
(1,1)
2 , Ω

(1,1)
3 .

Denoted by π : X5,5 → R5,5, we have π(Qi) = Pi and π(Ω
(j,1)
i ) = π(Ω

(j,2)
i ) =

Θ
(j)
i , for j = 1, 2 . In particular ι(Ω

(j,1)
i ) = Ω

(j,2)
i , thus, ι(D1) 6= D1 and indeed

D2 := ι(D1) is

D2 := Ω
(2,1)
0 + Ω

(1,2)
0 + 2Q0 + 2Ω

(2,2)
0 + Ω

(2,2)
1 + Ω

(2,2)
4 .

We observe that Ω
(2,1)
0 D1 = 0, Ω

(1,2)
0 D1 = 2, Q0D1 = 0, Ω

(2,2)
0 D1 = 0, Ω

(2,2)
1 D1 =

1, Ω
(2,2)
4 D1 = 1, and thus D2D1 = 0 + 2 + 0 + 0 + 1 + 1 = 4.

So D1D2 = 4 and (D1 +D2)2 = 8. In particular a smooth member of the linear
system |D1 +D2| is a curve of genus 5.

We are interested in the class of the curve π(D1 + D2). By the projection
formula π∗(D1 + D2) = 2π(D1 + D2), so we are looking for 1

2π∗(D1 + D2). Since

π(D1) = π(D2), 1
2π∗(D1 +D2) = π∗(D1) = π∗(D2).

We recall that the map π restricted to Ω
(j,1)
i is a 1 : 1 map to Θ

(j)
i , and similarly

the map π restricted to Ω
(j,2)
i is a 1 : 1 map to Θ

(j)
i . On the other hand the map π

restricted to the sections Qi is a 2 : 1 map to the section Pi. So

π∗(D1) = Θ
(2)
0 +Θ

(1)
0 +4P0 +2Θ

(2)
0 +Θ

(2)
1 +Θ

(2)
4 = 3Θ

(2)
0 +Θ

(2)
1 +Θ

(2)
4 +Θ

(1)
0 +4P0.

Hence by (2.4)

π∗(D1) = 3E1 + `1 + `2 +m1 + 4F1 = 3h−E2 − F2 −EQ5
−E4 − 2F4 −E3 − F3,

which is the class of the strict transforms of cubics in P2 passing through Q2, Q3,
Q4 with tangent `2, and Q5.

The equation of the cubics satisfying these properties is

(7.2) ax3
0 + bx2

0x1 + (−a− b)x0x
2
1 + dx2

0x2+

ex0x1x2 + fx2
1x2 + (−3a− 2d)x0x

2
2 + (a− e− f)x1x

2
2 + (d+ 2a)x3

2 = 0.

This equation depends on 5 parameters (4 projective parameters) and specializes
to equations of cubics which split on the double cover and induces elliptic fibrations
on X5,5.

The generic cubic c3 as in equation (7.2) is a cubic in P2. We recall that X5,5

is the double cover of P2 branched along the reducible sextic c6 whose equation is
f3g3 = 0 for two cubics f3 and g3. So c3 and c6 meet in 18 points in P2 counted
with multiplicity. Recall that c6 is singular at Q2, Q3, Q4, and Q5 and in Q4, c6
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is the union of two cubics, both with tangent direction `2. Hence c3 intersects c6
in Q2, Q3, Q5 with multiplicity 2, and in Q4 with multiplicity 4. Outside these
points, c3 and c6 intersect in 18 − 2 − 2 − 2 − 4 = 8 points. The inverse image of
c3 on X5,5 is a double cover of c3 branched in 8 points. Since generically c3 is a
smooth cubic in P2, it has genus 1 and then its inverse image on X5,5 has genus g
such that 2g − 2 = 2(0) + 8. So g = 5.

We already observed that c6 is the union of two smooth cubics in P2, which
are the image of the branch curves of the double cover X5,5 → R5,5. Denoting by
b1 : f3 = 0 and b2 := g3 = 0 these two cubics, c3 intersects b1 in nine points, five of
which are Q2, Q3, Q4 with tangent `2, and Q5. So c3 and b1 generically intersect
in four other points. In the case c3 splits in the double cover (which is the case in
which c3 is the image both of D1 and D2), these four points are either one point
with multiplicity 4 or two points with multiplicity 2. The strict transform of b1
(resp. b2) on R5,5 is a smooth fiber of the fibration on R5,5 and its pullback to
X5,5 is a smooth fiber, denoted by B1 (resp. B2)1, of the fibration induced on X5,5

by the one on R5,5. Since a section of this fibration is Q0, B1Q0 = B2Q0 = 1,

B1Ω
(k,j)
i = 0 and thus D1B1 = D1B2 = D2B1 = D2B2 = 2. In particular D1 and

D2 intersect in four points, two on B1 and two on B2. Considering the image of
these curves in P2, one realizes that if c3 is the image of D1, then it intersects b1
(resp. b2) in two points each with multiplicity 2.

So, theoretically, in order to find the specializations of a curve c3 which is the
image of D1, one has to require that the intersection c3 ∩ b1 consists of the points
Q2, Q3, Q4 with tangent `2, and Q5, and of two other points each with multiplicity
2.

As in the previous context one can compute the resultant between the equation
of the cubics c3 and the branch locus of the double cover X5,5 → P2, given in
(4.7). Since not all the curves in the linear system |c3| split in the double cover,
the resultant of the equation of c3 and the equation of the branch locus of X → P2

is not the square of a polynomial. Nevertheless one recognizes some factors with
even multiplicity (which correspond to the conditions that c3 passes with a certain
multiplicity through a certain base point of the pencil of cubics from which R5,5

arises) and one can also observe that for certain choices of the values (a, d, e, f) the
resultant becomes a square. For examples one observes that for f = −a− d− e the
resultant with respect to x1 is

x2
2(x0 − x2)6(x0x2(em+ am− a+ dm) + x2

0(am+ bm)− x2
2(d− 2a))2

(x0x2(el + al − a+ dl) + x2
0(al + bl)− x2

2(d− 2a))2

so in this case we know that the intersection between the generic member of |c3|
and the branch curve is always with even degree, which is the necessary condition
to have a splitting in any point.
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Cidade Universitária, Ilha do Fundão, Rio de Janeiro.

- Partially supported by Cnpq grant 446873/2014 − 4 and by Faperj Jovem cien-

tista do Nosso estado grant E 10/2016/226621.
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