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ABSTRACT. In geophysics, inverse modelling can be applied to a wide range of
goals, including, for instance, mapping the distribution of rock physical param-
eters in applied geophysics and calibrating models to forecast the behaviour of
natural systems in hydrology, meteorology and climatology. A common, thor-
ough conceptual framework to define inverse problems and to discuss their
basic properties in a complete way is still lacking. The main goal of this pa-
per is to propose a step forward toward such a framework, focussing on the
discrete inverse problems, that are used in practical applications. The rele-
vance of information and measurements (real world data) for the definition of
the calibration target and of the objective function is discussed, in particular
with reference to the Bayesian approach. Identifiability of model parameters,
posedness (uniqueness and stability) and conditioning of the inverse problems
are formally defined. The proposed framework is so general as to permit rig-
orous definitions and treatment of sensitivity analysis, adjoint-state approach,
multi-objective optimization.

1. INTRODUCTION

Mathematical models of geophysical processes and phenomena represent useful
tools for different goals. They can be applied to interpret the results of field or
laboratory measurements, to set up monitoring networks and experimental devices
and procedures, to forecast the behaviour of geophysical systems under different
stresses and conditions of exploitation of natural resources, to assess the environ-
mental impact of buildings and infrastructures, to perform risk analysis related
to natural hazards, to design measures for remediation of contaminated sites, etc.
Most geophysical processes can be mathematically represented by means of partial
differential equations, but the inventory of equations used in different situations is
very wide and a great number of solution methods is applied.

When mathematical models are applied to practical problems, an accurate esti-
mate of model parameters is fundamental and measurements are essential to cali-
brate numerical models by solving inverse problems. Therefore, the properties of
inverse problems strongly depend on data collection and processing.
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While the goal of inverse problems is to determine some of the model parameters,
the objectives of inverse modelling are very widespread and the following examples
can be recalled:

(1) mapping the distribution of physical parameters in the subsurface is re-
quired for geological studies and to solve practical problems in the fields
of: civil, environmental, and geological engineering; hydrogeology; explo-
ration of mineral resources and hydrocarbon reservoirs; geoarcheology and
cultural heritage studies; etc.;

(2) finding the optimal parameters is necessary to reliably model the evolution
of natural systems in response to changes of the stresses, whose origin can
be artificial (e.g., exploitation of natural resources for human needs) or
natural (e.g., climate changes);

(3) fitting simple models to laboratory data taken on samples is useful to char-
acterize the behaviour of the materials of geophysical interest (rocks, water,
ice, air);

(4) and so on.

On the basis of the previous remarks, the objective of this paper is to propose a
common, formal and conceptual framework, which permits to define inverse prob-
lems (IPs) and discuss their properties in the different fields of geophysics. The pro-
posed framework allows to handle the great variety of relevant mathematical models
and, in particular, permits to discuss the role played by the following factors: ex-
pected use of the model; data collection and processing; methods of discretization of
partial differential equations; methods of solution of discrete equations; determin-
istic or stochastic approaches. In this paper, the attention is restricted to the case
of discrete IPs, because practical problems always require numerical computations.

Several papers and textbooks [2] 24] 277, [35] [42] introduce general definitions of
IPs. Nevertheless, there is room and need for a more comprehensive and flexible
conceptual framework, which should allow to cast the definition and properties of
inverse modelling in a more precise way.

It is expected that the proposed conceptual framework provides a better insight
in the role that data have on the model calibration, including their use to esti-
mate the target values of the physical quantities which are compared with model
predictions. In particular, the classical definition given in textbooks assumes that
the solution to the forward problem (FP) is directly compared with measurements.
However, the strict outcome of the FP, which is often the state of the system,
in many situation cannot be directly compared with the available measurements.
Instead, it is often used to compute other model predictions, which can then be
compared with measured data. On the other hand, the inversion target could be
obtained by processing the measurements. Therefore, one of the goals of the pro-
posed framework is to highlight the different role of FP output, model predictions,
measured quantities and target values. As a consequence, this conceptual frame-
work could help to focus the role of data on the development and the application
of a model.

Moreover, the proposed framework is designed to clearly distinguish definitions
and different properties that could be intrinsically related either to the FP or to the
IP from properties that might depend on the algorithm used to solve the IP. While
some definitions given in this paper simply replicate those found in textbooks, here
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the discussion of fundamental issues related to the posedness of the IP (uniqueness,
stability, conditioning) is much more developed.
Two paradigmatic examples will be adopted for these purposes.

2. A CONCEPTUAL FRAMEWORK FOR MATHEMATICAL MODELLING AND INVERSE
PROBLEMS IN GEOPHYSICS

2.1. Paradigmatic examples. Two paradigmatic examples are considered in this
paper, in order to facilitate the description of the proposed conceptual framework
and to provide instances of its application. The first example is a simple scheme
of cross-hole seismic tomography and is a prototype of a linear model, which is
defined as a model for which the state of the system linearly depends on the model
parameters to be calibrated. This example is useful to discuss some of the properties
of the IP for exploration geophysics. The second example is related to the study
of diffusive processes under stationary conditions, which is the paradigm of the
discrete counterpart of the IP of estimating the leading coefficient of an elliptic
partial differential equation. This problem finds application in th estudy of several
geophysical processes, for instance groundwater circulation, heat transfer and solute
transport.

2.1.1. Example 1: seismic tomography. Suppose that two boreholes are drilled at
a distance L and that one of them is equipped with two sources of seismic waves,
whereas the other one is equipped with two receivers of seismic waves (Fig. . For
the sake of simplicity, assume that the depths at which the two sources are located
in the first borehole are the same at which the two receivers are located in the
second borehole. In particular, assume that the distance of sources inside the first
borehole is equal to the distance between the receivers in the second borehole and
equal to L. Under this configuration, four measurements can be taken, i.e. the
traveltimes t,, ,, needed by seismic waves to start from one of the sources, m, and
reach one of the receivers, n.

[Figure 1 about here.]

Thanks to the simple geometry considered in this example (Fig. |1)) and by ne-
glecting the refraction related to Snell’s law, it is possible to set up a very simple
model, which considers straight paths of the seismic waves from a source to a re-
ceiver, travelling through four blocks of the subsurface characterized by different
values of propagation velocity of seismic waves (V7, Vir, Virr, Viv):

£meY = L2Vt + L2Vi) Y,

W t%‘“%j; — LVERVI)l 4+ LVEQRViv) Y,
tyy . = LV2(2Vir) =t + LV2(2Vir) Y,
1Y = L@Vig) T+ L2Viy) L

For this example, the FP aims at determining the travel times ¢, ,, given the
values of the propagation velocities, whereas the IP aims at finding the propagation
velocity of seismic waves in the four blocks.

2.1.2. Example 2: stationary diffusion. Diffusive processes are modelled with par-
tial differential equations which are based on physical conservation principles (e.g.,
mass, energy, linear momentum) and on phenomenological laws (Fick’s, Fourier’s,
Darcy’s, etc.) and which are complemented with boundary and initial conditions
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(BICs). Discrete models are designed by discretizing these equations and the BICs
with a large number of techniques (e.g., finite differences, finite elements, spectral
methods); the final result is a set of algebraic, possibly non-linear, equations.

In the simplest case of a 1D, purely diffusive (i.e., convective terms are ne-
glected), stationary process, a conservative finite-difference approximation can be
synthetically written as

Ui—1 — Uy Uil — Ui .
2 i_1/9———— + a; — =, t=1,...,N—1,
(2) a;i—1/2 At Qit1/2 Atiri/2 Vi, L
where: ¢ € {0,..., N} is the index used to identify a node, which is the centre of one

of the N + 1 non-overlapping cells that cover the whole domain (see the geometry
in Fig. ; a;_1/2 represent the phenomenological coefficients (e.g., internode or
interblock conductivities); u; is the potential at node i (e.g., water head, solute
concentration, or temperature); Ax; i /2 is the spacing between adjacent nodes;
and ¢; is the sum of the source terms (expressed as a flow rate of the considered
quantity per unit surface) in the cell s.

[Figure 2 about here.]

Notice that each of the terms in the left hand side of represents the specific
flux per unit surface of the considered quantity (e.g., mass, energy) entering the
cell ¢ through the surface separating two adjacent cells.

Dirichlet boundary conditions are easily introduced, by setting ug or uy equal to
the prescribed value. Neumann boundary conditions can be introduced by substi-
tuting ay 5 (uo — u1) /Axy /o with the prescribed value g, /2, or analogously for the
term an_1/2 (uny —un—1) /Axn_1/9 With gy_1/2. Notice that Neumann boundary
conditions permit to write alsofori=0ori=N.

For this example, the FP aims at solving with respect to u;, if a;_1/2 and ¢;
are known, whereas the IP aims at identifying the best values of the phenomeno-
logical parameters a;_1/2,7=1,...,N — 1.

2.2. Basic definitions. Any discrete mathematical model can be represented by
a set of equations that describe the state of the physical system under study as a
function of model parameters. The model parameters are included in an array p,
whereas an array s includes the quantities that describe the state of the system.

Notice that the term “array” is used to designate a collection of physical quanti-
ties and parameters that will be considered either as a column vector to which one
can apply the methods of linear algebra or as a finite set of elements.

In the most general form, a discrete model can be written as the following system
of equations
(3) f(p,s) =0,
where the functions f may assume different forms for different problems, as shown
in Secs. and [2.2.2] for the two paradigmatic examples.

Roughly speaking, the FP aims at solving with respect to s, given the model
parameters p, whereas the IP aims at identifying the values of some of the model
parameters. If the numbers of model parameters and of state parameters are,
respectively, N,y and N, then p € P C R¥® and s € S € RY® | where the
subspaces P and S could take into account some physical constraints on the model
parameters and the state variables. As a simple example, conductivities should be
non negative.
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From a more formal point of view, one can give the following

Definition 2.1 (Forward problem — FP). Let p € P C RV® be known; then the
FP is defined as finding s € S C RN® such that is satisfied.

If a unique solution of the FP can be found, it can be expressed in explicit,
possibly non-linear form as

(4) s =g(p).

For the sake of simplicity, in this paper it is assumed that the FP is well-posed,
i.e., a solution exists, is unique and depends with continuity on p. However, notice
that this is not always the case [36].

The array p includes any model parameter, comprising those which describe the
geometry of the discretization grid (e.g., the spacing of the grid or the time step
for time-evolving processes). Therefore, some of these parameters are fixed before
the application of the model; their values will depend on the available data, which
are the elements of the array d. Then the fixed parameters can be grouped in a
“sub-array” p(™) which depends on the data: p¥)(d).

The array p(©®) € RN is used to denote the model parameters, whose values
are obtained from the solution of an IP. The number of elements of p(¢a) is Niey-
Therefore

t t\?*
(5) p= (p(ﬁ") ,ple) ) .
A model is said to be linear if can be expressed as follows
(6) s = Gp,

where G (p(ﬁx)) is an N(.) X N(s) matrix, which is independent of p(eab),

The model outcome, i.e., the state of the system, can be used to forecast other
quantities that might depend on the model parameters and possibly on some of the
data. For instance, with reference to the paradigmatic example 2, flow rates could
be computed by using the state of the system and the internode conductances.
Therefore, the model forecast is expressed as an array y, which is function of s, p
and d: y (d,s, p).

Roughly speaking, the IP consists in the determination of the optimal values
of p(©a) | that are the values that reduce the misfit between model forecasts and
target values. In the simplest case, if measurements of the state of the system were
available, this would imply that some elements of s should be directly compared
with the corresponding elements of d. Unfortunately, this is an oversimplification
of what is done in practice. Therefore, it is necessary to introduce the calibration
target. The latter is the array t that collects the values which should be attained by
the model forecast, if the model were physically “correct” and the model parameters
were “optimal”. The array t may depend on d and pf®), but should be independent
of pleal: ¢ = ¢ (d7 p(ﬁx)). Let N(;) denote the number of elements of y and t.

2.2.1. Ezample 1. For example 1, the data include the measured traveltimes (¢,,.,,),

but also the positions of the sources and the receivers. Here, the unknown param-

eters are the seismic-wave propagation velocities of the four blocks in which the

subsurface is subdivided. Equation can be rewritten in the form of a linear
1),

model @, if s includes t,(ﬁfzd) from (|

ca. - - - _ t
(7) plel) = \%; 1’V1117VH}’VIV1) )
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and the matrix G is given by

1 1 0 0
() c_L|v2 0o 0o v2

21 0 v2 v2 0

0 0 1 1
In other words, the physical parameters to be identified are the inverse of the
propagation velocity of seismic-waves (called “slowness” in the jargon of seismic
prospecting). Notice also that the elements of G depend on the positions of the
sources and the receivers; these data, for the simple geometry that is considered in
this paper, are “concentrated” in the parameter L. Therefore, the positions of the
sources and the receivers are included in the pi®) array and are estimated from a

subset of the data array d. So, G is a function of p(f*),

For this example, the target array simply includes the measured traveltimes, so

that it is a subset of the array d:
9) t = (L1, b2, ta1,ta2)"

On the other hand, the model prediction array y simply coincides with s.

2.2.2. Ezxample 2. The state array s corresponds to the potential at the internal
nodes, that are the nodes for which the balance equation can be written.

If is written for every interior node, and if it is completed with boundary
conditions, then a system of linear equations is obtained, which can be written as
follows:

(10) A (p)s=b(p),

where A is a square matrix and b is used to model both the source terms and the
boundary conditions. In this case, becomes

(11) f(p,s)=A(p)s—b(p)=0.

Equation is a prototype also for the linear system of equations arising from
the discretization of the partial differential equations for 2D or 3D problems. It
is a prototype also for transient conditions, for which the array s is usually split
in the sub-arrays corresponding to different time steps. Also, is a prototype
of different methods of solution of the partial differential equations: for instance,
for finite elements or spectral methods, the array s could include the coefficients of
the basis functions. A is usually a sparse matrix and for approaches founded on
the discretization of integral balance equations, it is also symmetric and definite
positive.

Finally, (10) should be modified to provide a correct formal description of non-
linear processes, when A and b depend on s.

The data array includes both the positions of the points where potential is mea-
sured and the measured values. It could include also other measurements necessary
to estimate the values of the source terms.

This example, which refers to a non-linear model, leaves more choices open for
the definition of the calibration target and of the model predictions, as will be
discussed in the successive sections.



A CONCEPTUAL FRAMEWORK FOR DISCRETE IP IN GEOPHYSICS 7

2.3. Generalities on IP. With the notation and the definitions given in Sect. [2:2]
the IP should aim to solve the system

(12) y(d,s,p) =t (dyp(ﬁ")) :

with respect to p(°®). However, an exact solution to can be rarely found.

A case where an exact solution to can be found, known in the literature
on groundwater hydrology as “direct approach” [26], happens if the IP can be
cast in the direct formulation, which can be discussed by making reference to the
paradigmatic example 2. The model forecast is the equation (or balance) error,
namely A (p)s—b (p), i.e. the left hand side of , where s is substituted by values
interpolated from the data. In this case, the whole process from data collection to
parameter identification can be taken into account with the framework proposed in
this paper, if p(f®) includes the parameters used for the interpolation of field data.
Then, the interpolated state of the system can be expressed as s(i"*) (d, p(ﬁx)). On
the other hand, the calibration target is t = 0. Then, the direct formulation of the
IP reduces to finding the parameters p(¢®) that satisfy

(13) f (p,sﬁnt) (d,p(ﬁx))> =0.

In general, it is impossible to guarantee the existence of a solution to , unless
very restrictive conditions are given. However, one can rely on the hypothesis that
all the approximations introduced in the model and the quality of the data and of
the processing tools are correct enough, so that there exists a set of parameters for
which is satisfied.

In order to overcome this difficulty, the most common approach is to cast the IP
in the framework of optimal control and to look for the set of model parameters that
minimizes the difference between the two sides of . This is done by introducing
an objective function O, given by:

w 0 (p) =[x ¢ (0.0 |

The classical choice is the least-squares approach, when the norm appearing in
the right hand side of is the sum of squared differences between t and y
components (lo norm). Of course many other choices are possible, among which
the sum of absolute differences (I3 norm) and the maximum absolute difference (I
norm). Therefore, one can give the following general definition.

Definition 2.2 (Inverse problem — IP). Given p() and d, given
t
rp(cal) _ {p(cal) . (p(ﬁx)t’p(cal)t) c P} 7

given the functions y and t — in particular, the values of t (d, p(ﬁx)) — lets=g(p)
be the solution to the FP from (4) (indirect approach) or let s = s (d, p9) be
the interpolated state of the system over the discretization grid (direct approach),
and given the objective function O from , then the IP is defined as finding
p(cal)* e P such that

0 <p(cal)*> <0 (p(cal)) , vp(cal) c fP(cal)

or p(cal)* =arg min O (p(cal)) .
pleal) gp(eal)

(15)
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Notice that if y = s and t C d for a linear model, as discussed for example 1,
the application of the least-squares approach simply reduces to solving the linear
system of equations

(16) G'Gp = G't,

so that the properties of the solution to the IP depend on the properties of the
G!G matrix.

3. PROPERTIES RELATED TO THE IP

The definitions given in the previous section are now used to introduce several
properties of the IP. The first key question is whether the model parameters are
identifiable, or, in other words, if different values of the parameters always yield
different predictions of the state of the system with the FP. Then the well- or
ill-posedness of the IP will be discussed.

3.1. Identifiability. Identifiability is a property of the FP, but is strictly related
to the IP, as it will be shown in Sec. It is defined as follows [13] (14} 211 [34].

Definition 3.1 (Identifiability). The model parameters are said to be identifiable,
if different sets of model parameters yield different solutions to , i.e., if for every
couple of arrays p and p’, p # p’, the corresponding solutions to , s=g(p) and
s’ = g (p’) are such that s # ¢’

Since identifiability is a very general and strong condition, a weaker formulation
can be given as follows.

Definition 3.2 (Conditional identifiability). The model parameters are said to be
conditionally identifiable if the condition of identifiability holds for a given subspace
of state arrays, i.e., if it holds only when s and s’ belong to a given subspace
SO cs.

This permits to define the identifiability of a single parameter as follows.

Definition 3.3 (Identifiability of a single parameter). A model parameter p; is
said to be identifiable if the condition of identifiability holds for all the couples
of arrays p and p’, which differ from each other only for the i-th parameter, and
fo(r )a subspace of state arrays, in other words when s and s’ belong to a subspace
S CS.

For instance, for the paradigmatic example 2, a;;1/2 is identifiable if s; # s;11,
i.e., if the discrete gradient of the state of the system between the nodes i and 7+ 1
is not null: such a condition can be stated as s € SZ-(C) ={s:s; #sit1}.

The notion of identifiability is of great importance for the direct approach to
the IP, as it is equivalent to the uniqueness of the inverse mapping. However, it is
related also to the uniqueness of the indirect approach to the IP, as shown in the
next subsection.

3.2. Well-posedness. Any mathematical problem that is relevant to simulate
physical processes is expected to be well-posed. However, it is well known that
IP theory is the “natural habitat” of ill-posed problems. Comments on the exis-
tence of a solution have already been given in section 2.3 It is now time to discuss
uniqueness and stability.
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3.2.1. Uniqueness. In principle, it is very easy to define uniqueness of the IP as the
property that a unique array p(cal)* satisfies . In principle, it is also very easy
to state that a sufficient condition for IP to admit a unique solution is that O be a
convex function, i.e.

OMp+ (1-=XNp)<AO(p)+ (1-X1O0(p),

(17) WA € [0,1], Vp.p' € Plea,

Unfortunately, it is not easy to check if holds or to prove theorems that give
necessary and sufficient conditions for its validity that are practically useful.

Obviously, if one of the model parameters that belong to p(¢®), say p;, is not
identifiable, neither conditionally identifiable, if a solution p' to is such that
g (p') ¢ SZ.(C), then there exists p* such that g (p*) = g (p'). If y does not explicitly
depend on p;, as it is often the case, then y (d,g (p') ,p") = y (d, g (p?),p?).
Therefore, if the previous conditions are met, O (p) = O (p*), which proves that
the solution to the IP is not unique.

This remark shows the strict link between identifiability, which is a property of
the FP, and uniqueness of the IP, even in the indirect formulation.

Notice that for the simple case of a linear model, can be solved if

(18) det (G'G) # 0.

In that case, the solution is unique and depends on the input data in a stable way.
For the paradigmatic example 1, the computation of GG from yields:

2
(19) G'G = LZ'

N O = W
O N W
= w N O
w = O N

which is apparently not invertible, as the first raw is a linear combination of the
remaining three rows. When this happens, the IP is said to be underdetermined,
as the data are insufficient to determine the values of the model parameters. If a
solution p' of an underdetermined IP can be found for a linear model, then infinite
solutions can be found as pt + p(?, where p(®) is an arbitrary element of the null
space N = {p: G!'Gp = 0}. For example 2, the null space is given by elements
p¥ = (¢, —¢, —c,c)t, where ¢ € R is arbitrary.

The issue of uniqueness depends clearly on the data. For example, it has been
shown [12] that a high sampling density of piezometric data does not prevent non-
uniqueness of the hydraulic conductivity; on the other hand, non-uniqueness is
reduced when groundwater age data are considered together with piezometric data
in the IP. Also joint inversion of hydraulic head and solute concentration is helpful
to establish uniqueness [22].

3.2.2. Stability and conditioning. The inverse problem is usually claimed to be un-
stable. In fact, very simple examples show that this is true for the IP in the
continuous case, for instance when dealing with example 2 in a continuous domain
so that the physics is expressed through partial differential equations [I7].

In order to cast the problems in a precise way, it is necessary to give the following
definition.
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Definition 3.4 (Stability). If d' and d* are two sets of data and p' and p* are
the corresponding solutions to , the IP is stable if

(20) HpT—piH — 0 as HdT—dIH — 0.

The big difference with respect to the case of the IP for a continuous medium is
that the solution of the discrete IP is essentially based on a sequence of algebraic
operations, which could be stable. However, stability is a mathematical property,
which assumes that the error on the data can be reduced at will, so that also the
calibrated parameters converge to the “correct” values. Unfortunately, the differ-
ence between model predictions and calibration targets depends on several sources:
the accuracy of the measuring instruments; the correctness of the acquisition proce-
dures; the relevance of the measurement support volumes with respect to the spatial
and temporal scales of the model; the model approximations; the spatial and tem-
poral discretization grid; etc. Some of these factors cannot be reduced in practice,
because they are fixed when a model is applied. Therefore, even if stability has a
fundamental importance from the mathematical point of view, well-conditioning of
the IP is even more important from the physical point of view [I5] [2]. Conditioning
is defined as follows.

Definition 3.5 (Conditioning). Under the same hypotheses given for the definition
of stability and if the following Lipschitz’s condition is satisfied

(21) Ip" =P < Cla’ —dat,

where C' is a constant value, the IP is said to be well-conditioned if C' is small and
ill-conditioned if C' is big.

This definition is rather qualitative, but it is of great value in order to properly
assess the physical relevance of the calibrated model parameters. In fact, for an
ill-conditioned problem, the error on the calibrated parameters could be very high
because of the enhancing Lipschitz factor C, even if the error on the data is small;
on the other hand, for a well-conditioned IP, larger errors on the input data could
nevertheless yield acceptable values of the calibrated model parameters because of
the low value of C.

Notice that even for the simplest case of an IP for a linear model, the condition
(18) guarantees that the IP is stable, but the IP could be ill-conditioned. A classical
example from linear algebra is the matrix

(i)

where € is a small quantity, for which det A = 1, so that A~! can be computed in
a unique and stable way, but the condition number, computed as the ratio between
the maximum and minimum eigenvalues of the matrix, is given by e~ 2, which is
a great number. The practical consequence is that if the elements of the matrix
are estimated with a small error, of the same order of magnitude as ¢, then the
computation of the inverse matrix might be affected by unacceptably large errors.

The concept of conditioning for IP can be conveniently discussed with reference
to the paradigmatic example 2. Let us consider a very simple case, when N = 3
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and the grid spacing is uniform and equal to Az, so that reduces to

ug — uUp U — U
a1/2 A~ +as/2 Ar = ¥1,

(23) U1 — U2 us — Uz
asja—x~ + as/2 Ar = 2.

Let us assume that ¢1, 92 and q;/2 = a;/2"%,* can be estimated from the data

x

and the array p(®®) reduces only to two elements: p(°) = (ag/g,a5/2)t. In this
case the solution of the IP is unique and given by:

Az
as/2 = (901 - Q1/2) e
(24) uz —

z
asp2 = (p2+¢1—aq2)

uz — Uy’
Let us denote with a hat the quantities estimated or obtained from noise-free data
and let us explicitly consider an error on us, so that the estimated value is given
by g 4+ . Then from , after simple manipulations, it follows

~1
R €
ag/a(e) = asp- (1 + A) )

Uy — Uy
(25)
R 3 -

CL5/2(€) = Qs/2- (1 - 123—122) .
From the error on the estimated values of the model parameter is easily ex-
pressed as

R N £ -
as/a(e) —asp = azya- (1 + 112—111> - 11 ;

(26)

—1
. N €
as/a(€) — as/2 = Gs5/2-° [(1 - 713—7:02> - 1] .

Now, a few remarks about . The errors on a3 /3 and a5/, depend on the function
r(e; Au) = (14 ¢/Au) "' =1, where Au = diy—@iy and Au = iiy— i3, respectively for
az/p and a5 5. The function r(e) represents the relative error on the two calibrated
parameters as a function of the error on us and its graph is shown in Fig. [3|for three
different values of Aw (0.01, 0.1 and 1, expressed with the same arbitrary units as
g). Recall that if e = —Au/2, r(¢) = +1 and the calibrated parameter attains a
value twice the “true” one; moreover, if Au > 0 and € < —Au, then r(e) < —1
and the calibrated parameter is negative and therefore not physically acceptable,
if interpreted as a “conductivity” or “conductance”. The latter comment explains
why the curves in Fig. [3| are drawn only for € > —Aw. If 4y — 47 = 3 — Ug, then
the relative errors for the two elements of p(¢®) have opposite sign, so that if one
is underestimated, the other is overestimated. The stability and well-conditioning
of the IP is controlled by these functions. In particular, it is clear that the IP is
stable unless Au = 0, but in that case one of the parameters is not identifiable, as
discussed in section However, the IP is well-conditioned if Au is big (see, e.g.,
the cyan line of Fig, since in that case even relatively high values of € do not
yield great values of r(¢). On the other hand, when Aw is small (see e.g., the green
line of Fig. , even a small value of ¢ is sufficient to produce high values of r(¢)



12 M GIUDICI ET AL.

or physically inconsistent values of the calibrated parameters, for instance negative
conductances. See also the discussion of this topic in [I5].

[Figure 3 about here.]

Note, in particular, that ill-conditioning or discrete instability often appear as
an oscillating behaviour of the outcome values of algebraic computations. This is
somehow similar to the effect that might arise from non-uniqueness, as shown in
section[3.2.1] where the null space for example 1 has been proved to be composed of
arrays whose elements are alternately high and low. These comments motivated the
use of regularization for model calibration. Section shows how regularization is
embedded in the proposed conceptual framework.

3.3. Properties depending on solution methods. Section [3.2] was devoted to
some basic definitions and concepts about the IP. However, it is important to stress
that a key factor for a reliable inversion is also the method of solution. In fact,
several different algorithms could be applied to find the minimum of O. Many of
them are iterative procedures that start from a tentative guess which is progressively
improved, often by moving along the steepest-descent direction, i.e. along the
gradient of O, or conjugate directions [32]. These methods are usually very much
influenced by the initial guess, which might cause the algorithm to fall into a local
minimum, without reaching the global minimum of the function. In order to escape
from local minima, it is necessary to apply other algorithms that can span the
parameter space P in a more appropriate way, often with a stochastic approach;
among the others, simulated annealing [20] and genetic algorithms [25] can be
recalled.

A slightly different approach is applied by some methods of TP solution in the
direct formulation: the Comparison Model Method [7, [8, 16}, B0, BT, 37, B8, CMM]
and its variation named successive flux estimation [28] and the Dual Constraint
Method [6, 43 44, DCM]. These methods are based on the use of the solution
to the FP for a tentative set of parameters, namely for a tentative transmissivity
field for the applications in groundwater hydrology performed so far. The iterative
updating of parameters is based on the use of phenomenological laws (Darcy’s law in
the case of groundwater hydrology). Therefore, these methods have a quite strong
physical foundation, but are not based on the use of the gradient of O to search the
minimum of the objective function. They are computationally very fast, but they
might suffer from the typical drawbacks related to the use of a direct inversion,
mentioned in Sec. 2.3l

These short remarks suggest that the chosen method of solution could dramati-
cally modify the posedness and the conditioning of the IP. Therefore, as a general
comment, it is necessary to clearly distinguish in practical applications the effects
of the solution method and the intrinsic properties of the IP.

4. SOME REMARKS ON IP WITHIN THE PROPOSED CONCEPTUAL FRAMEWORK

The proposed conceptual framework provides a new perspective to define and
analyse some approaches commonly used in IP theory and applications. There-
fore, in the following sections, it is shown how regularization, Bayesian approaches,
Kalman filters, multi-objective inversion, sensitivity analysis and the adjoint method
can be tackled in more natural and straightforward terms when cast within the pro-
posed conceptual framework.
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4.1. Regularization. The remarks of section [3.2.2)show that the effect of instabil-
ity and of non-uniqueness could be the alternation between contrasting (high and
low) values for the model parameters. In order to reduce this effect, regularization
approaches “filter” such an oscillating behaviour by including a term proportional
to the norm of the model parameters in the objective function. This approach is
easily embedded in the developed conceptual framework, by including sub-arrays
y (&) and t(*¢) in the arrays y and t. The simplest strategy for this goal is setting
y(reg) = pleal) and t(r8) = 0. If the I, norm is used to define O, then the above

2
Nepy
im

definitions yield a contribution ), cal) , as required.

|

4.2. Bayesian approach. The discussion of section [3:2.2] emphasizes the role of
the measurement, approximation and modelling errors on the solution of IP. The
number and complexity of factors that affect those errors prompted researchers to
use statistics and the theory of stochastic processes in order to properly account for
errors in the IP solution. The common strategy invokes the Bayes’ theorem, which
can be cast, with the formalism of the proposed framework, as:

(27) ; (p(cal)ly B t) _ Sy —tp) - f (p(Cdl))7
fly—t)

where f functions are (possibly conditioned) probability density functions (pdfs)
of the respective arguments. In particular, f (p(cal)) is the prior pdf of the model
parameters to be calibrated and is independent from the measurements of state
variables or other independent quantities; instead, f (p(ca1)|y - t) represents the
posterior pdf, which is conditioned on the measured data. Notice that is
slightly different from the standard formulation proposed by other Authors, who
consider y —t = s — d. In fact, the framework introduced in this paper is more
general, because it allows to include different types of model outputs and calibration
targets.

The Bayesian approach is usually coupled with the maximum likelihood method
[9], which states the IP as follows.

Definition 4.1 (Maximum likelihood). Under the same hypotheses introduced to
define the IP solution and with the same notation used for Bayes’ theorem, the
maximum likelihood solution to the IP is given by the array p(cal)* for which the
likelihood function

(28) £(p) = 7 (pVy ),

or a monotonically increasing transform of £ (p(cal)), attains its maximum value.

The most useful transform of £ is a logarithmic function, which, together with
, makes it possible to rewrite the function to be maximized as

(200 e (pC) = |f (y =t )] +m [ ()] - m[f (v~ 0)].

Notice that in most cases the last term of the right hand side of is not con-
sidered, because it is often defined in such a way as to be independent of p(¢a).
Also, the Bayesian approach implicitly introduces a regularization through the prior
distribution f (p(cal)).

The application of this approach obviously requires some guesses about the
pdfs appearing in . The most common guess consists in assuming that both
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f(y —tlp®) and f (p®®) can be expressed as multi-Gaussian distributions.
Under these hypotheses, if the last term of the right hand side of is neglected,
the maximum-likelihood method reduces to the least-squares approach. More pre-
cisely, it reduces to the weighted least-squares, where the differences y — t and the
discrepancy of p(®®) from its prior expected-value are weighted by the inverse of
the corresponding covariance matrices. Such matrices take a diagonal form if the
differences y; —t; are independent of each other; moreover, if the variances of all the
differences are independent from 4, then the maximum-likelihood method reduces
to the standard least-squares method.

However, this is not the only possible choice. In fact, a multi-Gaussian distribu-
tion is not the best option if outliers are present, i.e., if some values of y are very
far from the expected target value t. In those cases, an exponential distribution
might provide a better approximation of the pdfs, in particular of f (y - t|p<ca1)),
and it practically leads to the minimization of [;-like norms.

The above remarks are fundamental, because they implicitly show which are the
conditions and the physical requirements at the basis of the classical least-squares
approach.

4.3. Kalman filter approach. Non-linear estimation can be obtained also with
the application of the Ensemble Kalman filter (EnKF). The standard Kalman filter
was developed for estimating the system state predicted by a linear model, by
profiting from direct measurements. The EnKF is an extension and modification
of the Kalman filter, in order to work with non-linear models and when the initial
states are uncertain [I0] [I1]. It can also be applied to perform the identification of
model parameters with the procedure that is briefly recalled in this section.

Let data corresponding to different time steps, denoted with the index k, be
available, together with an evolutionary model. Then calibration targets at dif-
ferent times can be collected in arrays t*) and a sequence of steps is performed
iteratively: starting from an initial guess which follows a given pdf, an ensemble
of Ny estimates (prior estimate) of p(@) is assumed to be available at a given

. . k, .
step k; each element of this ensemble is denoted as p(cal)( q), where the index

qg=1,..., N is used to identify the realizations of model parameters. The model
predictions can be computed for each realization and are collected in arrays y @),
whereas measurements are used to build the arrays of time-dependent calibration
targets £,

Posterior estimates p(¢a)
of a corrective term, as follows

k .
(k+1,9) of the model parameters are obtained by means

(30) plead FFha) _ ean®a) (k) (yw,q) _ t(k)) ’

where K*) is called the gain matrix in the standard Kalman filter. Its expression
for the EnKF is

(31) K® = Cov®[py] - Cov® [yy] 7,
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where Cov®[py] and Cov®)[yy] are covariance matrices, whose elements are com-
puted as

Cov® pyl;; =

Ny
(32) _ o q; (p(cal)l(k’q)— < p(ca1)l(k) >)> (y(k,q)ji < y(k)j >)) :
[=1,...,N@), j=1,...,Nay,
and
CovMlyyli; =
(33) IR (v ®, ) (y ), >))
_N(r)_qu:; y*9,— <y i>> yFD - <y® 5y,

i,j=1,...,Nu,

where < - > denotes the ensemble average of its argument.
This procedure is repeated iteratively, so that a succession of ensembles of pa-
rameter distributions p(Cal)( ) is obtained, which eventually provides a statistical

distribution of calibrated parameters.

4.4. Multi-objective inversion. The definition of IP given in section [2.3|includes
the possibility of using different kinds of physical quantities to be used as calibration
targets and, therefore, it implicitly accounts for multi-objective inversion [39]. The
goal of this section is not to discuss and propose new results in multi-objective inver-
sion, but to show how multi-objective inversion concepts can be easily formulated
in terms of the proposed conceptual framework. In fact the objective function can
be esplicitly defined as the sum of several positive objective functions, O*) (p(ca”l))7
k= 1,...,N(O)Z

Neoy

(34) 0 (p<cal>> -3 oW <p<cal>> .
k=1

Multi-objective inversion is often applied by considering individual objective
functions which yield complementary information and which depend in very differ-
ent ways on p(°®). Then one is obliged to admit that there is no optimal solution;
in fact, a global minimum could hardly be found and several sets of model param-
eters could permit to fit the calibration target in a reasonable way, despite not
being “optimal”. This prompted some researchers to import the concept of Pareto
optimality or efficiency from quantitative economics to geophysics, in particular to
hydrology [3), [, 18] 23, 40} [41]: a set of parameters is said to be Pareto optimal
(or Pareto efficient, or non-dominated), if none of the objective functions can be
improved in value without degrading some of the other objective values. This can
be stated formally as follows.

Definition 4.2 (Pareto optimal solution). An array p(Ca”l)T is said to be a Pareto
optimal (or non-dominated or Pareto efficient) solution of the IP for (34)), if

(35) 7 pleal ¢ plea) . k) (p(cal)> < oW (p(cal)f) L Vk=1,...,Neo.

The set of Pareto optimal solutions is called the Pareto set or Pareto frontier.
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When the Pareto set reduces to a single array, this corresponds to the minimum
of each individual objective function O, k =1,..., Nooy-

4.5. Sensitivity analysis. The proposed conceptual framework is very useful also
to discuss sensitivity analysis. Sensitivity analysis permits to quantify the uncer-
tainty on model outputs due to the uncertainty on the input model parameters, but
its description is outside the goals of this paper. However, it is possible to show how
the developed conceptual model is linked to sensitivity indicators, through several
definitions [5] [19].

Definition 4.3 (State sensitivity). State sensitivity, Sﬁ,?n, provides the variabil-
ity of a state variable s,, with respect to a single parameter p,,, under a linear
approximation for small local variations of the parameter:

Js g
(s) — ZPm _ Yom

For a linear model, S® corresponds to the G matrix.

Definition 4.4 (Prediction sensitivity). Prediction sensitivity, SE,YLL, provides the

variability of a model prediction y,, with respect to a single parameter p,,, under
a linear approximation for small local variations of the parameter:
Nes)

(37) g — Wm _ 3 OYm Osp N m _ N~ OYm o), O

dp, £ Isp Opn  Opn = Ds M Opa

Notice that in the “total” dependence of y on p is considered explicitly,
and includes both the direct functional dependence and the indirect dependence
through the solution of the FP.

If parameters and state systems are physical quantities, with given measurement
units, it is impossible to identify the most sensitive parameters from a straightfor-
ward comparison among the elements of S® or S®). In fact, it is necessary to scale
or normalize these quantities. This can be done by scaling both the independent
variables (the parameters) and the dependent variables (system state for S and
model predictions for S(Y)) with the reference values around which the sensitivity
indices are computed; the scaled sensitivities provide the relative variations of s
and y with respect to a unit relative variation of p. An alternative is normalizing
S®) and SO) with measures of variability, for instance, the standard deviation of
the relevant quantities.

Both S® and S®) are locally defined quantities and are based on a one-at-a-time
approach, so that they take into account only the linear approximation of the model
and neglect both non-linear effects and joint effects of the parameters. This can be
overcome by considering the input parameters, and therefore the model predictions,
as stochastic quantities and by giving the following definition [33].

Definition 4.5 (First-order sensitivity). If Y represents a state variable s,, or a
model prediction y,,, then the first-order sensitivity of ¥ with respect to p,, is
given by:

varp, [Ep\n|Y
(38) 5 = 2teeEorVlpal)

Oy

where Ep\,[Y|py] is the expected value of Y conditioned on the parameter p, and
varp, is the variance with respect to p,.
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4.6. Adjoint method for the computation of sensitivity. The computation
of S is often a crucial aspect for the application of IPs. It is necessary to compute
not only SO but also the gradient of O for methods of solution which are based
on steepest-descent or conjugate-gradient approaches.

For IPs related to models based on the numerical solution of partial differential
equations, like the paradigmatic example 2, S®) is often computed by means of the
so-called adjoint method [29]. This method is often introduced in the continuous
case, by making use of variational calculus and by introducing the Frechet’s deriv-
ative. In this work, instead, the adjoint method is reviewed for a quite wide class
of discrete problems, namely those which can be represented by .

If 1D is multiplied by an arbitrary array v(™, and the derivative of the resulting
equation with respect to p,, is taken, one obtains

0A Os ob
g vm A ym) - ZF ym) )
(39) o * opn opn 0
Then
Js Os 0A Js Ob
m — m Y m) A (m) PV (m)
Opn op.  Opn. opn * apn
(40)
O0A ob
= _ (m) ;. 77 (m)
o Tap,

provided v(™) is the solution of the so-called “adjoint-state equation”
(41) Altvim = ¢,

where 98, is the unit impulse concentrated on the m-th element. Recall that in
most cases Al = A.

In other words, computing S® with the adjoint-state approach requires the
solution of for each m and then the application of . This procedure could
appear cumbersome, but it must be recalled that for the application of the model, it
is necessary to have an efficient code, function or routine for the solution of the FP:
for a single value of m, only one run of the same tool can be used to compute v(")

as the solution to , and then S;S@)n, for n = 1,..., N(p) by means of . By

comparison, the computation of Sgi)n with a finite-difference approach would require
the solution of the FP for two different arrays p* and p—, which differ from each
other only for the value of p,, by an amount Ap and which yield solutions to the
FP, respectively, s™ and s™. Then (st —s™) /Ap could be used to approximate the
searched derivatives. Notice that this simple approach is nevertheless approximate
and requires the solution to FPs. The adjoint-state approach, based on and
, yields a result, which is theoretically perfect and affected only by rounding
errors.
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Moreover, if the values of the system state are measured, so that y = s and
tcd,andif O =3, (yx — tk)2, then, by using for an arbitrary function v,

90 oy s
= 2 — . = 2 — - —_— =
p. zk: (Yr —tr) p. (s—t) p.
Js 0A Js Jb
42 — 92(s—1t)- — v — A v — g
) (5—t) opn  Opn opn  Opn
= —aA SV—aibV
- Opn opn

if v is a solution of
(43) Alv=2(y —t).

Therefore, it is clear the great computational advantage of obtaining the gradient of
O, with a single run of the FP to solve : the adjoint-state approach reduces both
execution time and approximation errors with respect to a “naive” finite-differences
strategy. See [I] for an interesting application.

5. CONCLUSIONS

The conceptual framework developed in this paper is a generalization of those
found in the literature on IP. It is very useful to introduce and formalize a series of
topics that are of great relevance for geophysical applications.

Some relevant remarks are shortly summarised in this section.

The distinction between fixed and calibrated model parameters, together with
the definitions of model prediction and model target, clearly highlights the role
of experimental or monitoring data. Moreover, it also emphasizes the relevance
of fixed parameters (e.g., the spacing of the discretization grid) and of the data
processing for inverse problems. In other words, there is no way to perform a
satisfactory model calibration, without paying great attention to the available data,
their accuracy, their physical consistency, their relevance at the model space- and
time-scales.

Several difficulties are commonly encountered in inverse modelling and they are
often claimed to be related to the ill-posedness of the IP. Actually, the real source of
these problems should be carefully determined. The proposed framework is helpful
to clarify and to point to the crucial critical aspects, which may affect the IP solu-
tion, as for example, the presence of several local minima of the objective function
or the flatness of the objective function around the minimum. In these cases, chang-
ing the solution algorithms and testing different parameters (e.g., initialization of
iterative minimization algorithms) of the applied algorithms might reduce the dif-
ficulties. However, researchers and professionals who are not experienced or well
educated in inverse modelling, might incur in errors, misjudgement or oversight, if
they do not fully control the solution methods, some of which could, for instance,
span a small subspace of the whole parameter space.

A clear and rigorous definition of the IP is fundamental in order to properly
analyse the posedness of the IP. Discussion in section[3.2.1]shows that a preliminary
examination of identifiability might give very useful information about the IP, in
particular with respect to uniqueness of the solution. Unfortunately, this is ignored
in most applications of inverse modelling in geophysics. Moreover, uniqueness and
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stability of the IP are not easy to be assessed and, however, well-posedness would
not be enough to obtain physically reliable values in practical applications. In
fact, well-conditioning, which could be considered synonymous of robustness, is
fundamental to guarantee that the errors introduced by data measurements and by
the model approximations do not prevent from finding a reliable estimate of the
model parameters.

The latter remark implicates a careful examination of the effects that uncertain-
ties on the data and on the model outcome have on the IP solution. For the sake
of brevity, the issue of resolution has not been considered extensively in this paper,
but is briefly recalled here. Roughly speaking, if it is accepted that the discrepancy
between y and t cannot be reduced at will, due to the great number of sources
of errors, many of which were partly listed in section [3:2.2] then it should also be
accepted that the values of fitting parameters could belong to a — hopefully small
— region around the optimal array. This resolution issue is obviously linked, but is
not equivalent, to stability and well-conditioning, and therefore needs a proper and
dedicated analysis for practical applications.

The conceptual framework proposed in this paper is so complete as to permit
to cast very different approaches in a unique framework and thus to facilitate the
definition and the assessment of the intrinsic properties of the IPs, the effects of
the methods of solution and to develop tools useful to perform further analysis on
the results of inverse modelling.
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LisT OF FIGURES

Geometrical sketch for the paradigmatic example 1. Brown lines:
boreholes. Dots: sources (red) and receivers (yellow). The four coloured
boxes, labelled with Roman numbers, represent volumes characterized

by different values of seismic-waves propagation velocity. Dotted lines:
straight path of the seismic waves from sources to receivers (refraction is
neglected). 23

Discretization grid for the paradigmatic example 2. Nodes are denoted as
black dots; arrows show the incoming fluxes through the borders of the

cell 4, appearing in the left-hand-side of . 24
Relative error on the model parameters for a simple case of the
paradigmatic example 2, as a function of the error (in arbitrary units) on

the estimate of a state variable for three values of Au (green line for 0.01
a.u.; orange line for 0.1 a.u.; cyan line for 1 a.u.).
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F1cURE 1. Geometrical sketch for the paradigmatic example 1.
Brown lines: boreholes. Dots: sources (red) and receivers (yellow).
The four coloured boxes, labelled with Roman numbers, represent
volumes characterized by different values of seismic-waves propa-
gation velocity. Dotted lines: straight path of the seismic waves
from sources to receivers (refraction is neglected).
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FIGURE 2. Discretization grid for the paradigmatic example 2.
Nodes are denoted as black dots; arrows show the incoming fluxes
through the borders of the cell 7, appearing in the left-hand-side of

(2)-
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FIGURE 3. Relative error on the model parameters for a simple
case of the paradigmatic example 2, as a function of the error (in
arbitrary units) on the estimate of a state variable for three values
of Au (green line for 0.01 a.u.; orange line for 0.1 a.u.; cyan line
for 1 a.u.).
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