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Abstract: The recent and massive revival of green strategies to control plant diseases, mainly as
a consequence of the Integrated Pest Management (IPM) rules issued in 2009 by the European
Community and the increased consumer awareness of organic products, poses new challenges
for human health and food security that need to be addressed in the near future. One of the most
important green technologies is biocontrol. This approach is based on living organisms and how these
biocontrol agents (BCAs) directly or indirectly interact as a community to control plant pathogens
and pest. Although most BCAs have been isolated from plant microbiomes, they share some
genomic features, virulence factors, and trans-kingdom infection abilities with human pathogenic
microorganisms, thus, their potential impact on human health should be addressed. This evidence,
in combination with the outbreaks of human infections associated with consumption of raw fruits
and vegetables, opens new questions regarding the role of plants in the human pathogen infection
cycle. Moreover, whether BCAs could alter the endophytic bacterial community, thereby leading to
the development of new potential human pathogens, is still unclear. In this review, all these issues are
debated, highlighting that the research on BCAs and their formulation should include these possible
long-lasting consequences of their massive spread in the environment.
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1. Introduction

Biocontrol is defined as the use of living organisms to control pests, also resulting in plant growth
promotion [1,2] (Table 1). This approach to pest containment has experienced a revival in the last
decade because of the new guidelines for the Common Agricultural Policy (Dir 128/2009) issued in
2009 by the European Community. This directive contains the Integrated Pest Management (IPM)
principles (annex III), one cornerstone of which is the promotion of sustainable biological, physical, and
other non-chemical methods instead of chemical ones, whenever they provide satisfactory pest control.
A greater emphasis on IPM as part of agricultural policy has been giving new input in developing
commercial products based on living organisms, with a particular interest in those isolated from
rhizosphere, soil, or plant phyllosphere and endosphere.
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Table 1. Terminology and definitions related to biocontrol field.

Term Definition Reference

Biocontrol The use of living organisms to control plant pathogens and
pests resulting in plant growth promotion [2]

Biostimulants

Formulated products with novel, or emergent properties
due the complex of constituents, that improve plant
productivity not as a sole consequence of the presence of
known essential plant nutrients, plant growth regulators, or
plant protective compounds

[3]

Biopesticide Biological pesticides are derived from natural materials
including plants, animals and microbe, and some minerals [4]

Biofertilizer

A biofertilizer is any bacterial or fungal inoculant applied to
plants with the aim of increasing the availability of nutrients
and their utilization by plants, regardless of the nutrient
content of the inoculant itself. Biofertilizers may also be
defined as microbial biostimulants improving plant
nutrition efficiency.

[5]

Phytostimulator
Microorganism with the ability to produce or change the
concentration of growth regulators, such as indole acetic
acid, gibberellic acid, cytokinins, and ethylene

[6]

Pathogen A microbe that can cause physiological and structural
damages in a host [7]

Biocontrol agents Living organisms that show the ability to directly or
indirectly antagonize plant pathogens and pests here defined

Endophytic bacteria Bacteria that habit for all or part of their lifetime, in the
internal part of a plant [8]

Plant microbiome A community of microbes associated with a plant and their
crosstalk with the plant genome and proteome [9]

Pathobiome
The complex interactions of pathogenic microbes which may
influence or drive disease processes and their relationship to
the ‘normal’ microbiome of the organism in question

[10,11]

Phytonoses New group of diseases caused by human pathogens that are
transmitted via consumption of fresh produce

[12,13]

The first-generation of commercial biocontrol products, mainly based on Bacillus and Pseudomonas
species, were characterized by low efficacy to control plant diseases in open fields [14,15]. The failure
of these products was possibly due to the lack of knowledge about (i) biocontrol mechanisms,
(ii) plant–microbe interactions, and (iii) selection procedures for active biocontrol strains [14,16].
Biocontrol of plant diseases is a complex process involving not only the biocontrol agent (BCA),
the plant, and the pathogen but also the environment, the genetic determinants, and the indigenous
microflora (Table 1). Therefore, the effectiveness of BCAs is related to many factors such as their
ability to colonize, survive, and proliferate for a considerable time inside and/or on plant tissues
in the presence of indigenous microflora and, at the same time, directly or indirectly antagonize
phytopathogens [15]. Furthermore, commercial BCAs, registered as such (see ahead), should have some
additional properties, i.e., easiness of formulation, the ability to effectively colonize the host and survive
in the agricultural environment, and not being pathogenic for non-target organisms [17]. Bacteria can
directly antagonize pathogens by competition for root niches or by producing allelochemicals, such
as siderophores, antibiotics, biocidal, lytic enzymes, and detoxification enzymes, or by interbacterial
antagonism via the type VI secretion system (T6SS) [15,18–20]. The secretion system is a particular
kind of molecular weapon that delivers antimicrobial peptide in the periplasm or cytoplasm of a
recipient bacterium [21,22]. For example, NADase effector family and iron chelator pyoverdine are
identified as antimicrobial peptides mediating antagonism via T6SS, respectively, in Pseudomonas
protegens and Pseudomonas taiwanensis [20,23]. Different antibiotic compounds have been isolated from
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Pseudomonas, Bacillus, Paenibacillus, Streptomyces, and Stenotrophomonas spp. (among others [24–28]).
These compounds are produced by bacteria in a specific metabolic status that is influenced by nutrient
availability, pH, temperature, and genetic stability/instability of the bacteria [29]. Furthermore,
biotic conditions, plant growth, development, genotype, and presence of competing species can
influence antibiotic biosynthesis [18–30]. BCAs can also protect plants indirectly by inducing the
host defense pathways. This phenomenon is called induced systemic resistance (ISR) and confers
an enhanced defensive capacity to the plant (reviewed in [31]). The plant response leads to cell
wall reinforcement, production of antimicrobial phytoalexins, and synthesis of pathogenesis-related
proteins (PR). Interestingly, an enhanced plant capacity to express defense responses occurs only upon
challenge inoculation with a pathogen in a mechanism known as ‘priming’ [32]. Thus, in primed
plants, defense responses are not activated directly, but are accelerated upon pathogen or insect attack,
avoiding fitness costs in the absence of challenge.

BCAs have been studied for their ability to control or lessen plant pathogens, but little is known
about their impact on human health and the environment. As an example, Bacillus species antagonize
pathogens via the production of secondary metabolites, such as lipopeptides [33,34]. The toxicity of
these metabolites has just started to be tested by in vivo assays (i.e., zebrafish model), showing low
toxicity to aquatic species in the case of bacillomycin DC isolated from Bacillus amyloliquefaciens [35].
Since the regulations of the European Union do not define a specific and exclusive legislative/legal
framework for such beneficial microorganisms, they can be registered either as plant protection
products or as biofertilizers, phytostimulators, and biopesticides according to national law (Table 1).
The registration as biofertilizers, phytostimulators, and biopesticides, instead of BCAs, greatly reduces
the set of toxicity tests normally required for plant protection agrochemicals [3–6]. As emphasized by
Yakin and colleagues [3], the lack of a legislative/legal framework opens topical questions, such as:
Which is the best category for cultures of living microorganisms? Which standards of proof of efficacy
and safety are appropriate to both stimulate the development of these products and safeguard human
and environmental health?

2. Plant Microbiome: A Fascinating Source of BCAs

With the first results of The Human Genome Project [36], it was immediately clear that humans
are composed of a combination of human cells and microorganisms, and that this intimate relationship
plays a role in the human physiology and health state [37–39]. This idea was translated into the plant
kingdom: the Plant Microbiome has been defined not only as a group of microbes associated with
a plant but also their ‘crosstalk’ with plant genome and proteome [9,40] (Table 1). Plants teem with
microbes associated with the rhizosphere, phyllosphere, endosphere, and with those that adhere
to external surfaces. Interestingly, plant microbiomes are structured and form complexes that are
interconnected as a network. Inside this system, key taxa have a role in plant fitness, soil fertility,
nutrient uptake, plant function, productivity, trait expression (phenotype), environmental plasticity,
and health [9,40]. This innovative concept of a plant as a supraorganism is, in some way, responsible
for the development of environmentally friendly approaches, such as BCAs, to control plant disease
and to increase plant productivity [41]. Among BCAs, the endophytes are certainly the most promising
group, since they are microorganisms that colonize internal plant tissues for all, or part, of their lifetime,
thus being strictly part of the plant microbiome.

In early works, endophytes were isolated on growth culture media after surface disinfection of
different plant tissues. Methods for their isolation have been reviewed extensively [42,43]. Afterwards,
the development of cultivation-independent fingerprinting molecular methods based on the 16S
rRNA gene allowed a more specific and detailed description of the microbial diversity in complex
communities. Nevertheless, our understanding of microbiota complexity has been achieved mainly
through the use of ‘next-generation’ and now ‘third-generation’ technologies (among others [8,44–46]).
These technologies have been used not only to investigate the microbiota composition but also its
relationships with the host and the environment [47–51]. Nonetheless, the effect of BCA treatment on
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endophytic bacterial community composition and activity has been poorly investigated. Hardoim
and colleagues [8] have given a comprehensive overview of prokaryotic and eukaryotic endophytes
reported in the literature. Despite the extensive amount of sequences analyzed, the major part
of endophytes reported belongs to four phyla: Proteobacteria, Actinobacteria, Firmicutes, and
Bacteroidetes. Most of the prokaryotic endophytes could be assigned to the Gammaproteobacteria
(26%) that are largely represented by a few genera: Pseudomonas, Enterobacter, Pantoea, Stenotrophomonas,
Acinetobacter, and Serratia. A similar scenario has also been depicted for eukaryotic endophytes which
belong mainly to the Glomeromycota (40%), Ascomycota (31%), Basidiomycota (20%), Zygomycota
(0.1%), and unidentified phyla (8%).

Microbiota composition is influenced by different parameters, such as plant genotype and
seasonality. Plant genotype, growth stage and physiological status, type of plant tissue, environmental
conditions, and agricultural practices also determine endophytic colonization and endosphere
community structures (among others [52–56]). Furthermore, metagenomic approaches and
comparative genomic analyses allow the identification of intrinsic bacterial traits important for host
colonization and for the endophytic lifestyle [8,57,58]. In particular, Hardoim et al. [8] highlighted that
endophytic bacteria share genes related to motility and chemotaxis, detoxification, and stress-related
enzymes, transporters, and secretion systems. As an example, type IV secretion systems and conjugal
DNA–protein transfer secretion systems were detected more prominently among endophytes than
among rhizosphere bacteria and phytopathogens. These types of secretion systems are involved in
host colonization and conjugation of DNA [59,60].

In the last decade, bacteria host colonization process has been extensively reviewed and three
main steps were identified: adhesion, penetration, and establishment [8,61–63]. Root colonization
is strictly linked to root exudation [64]. These exudates are rich in carbohydrates, amino acids, and
organic acids that are attractive nutrient sources for bacteria [65]. Microorganisms are chemoattracted
by the exudates, allowing them to colonize roots. In turn, the microbiome influences root exudates [66].
By the use of microscopic tools, such as immunomarkers and fluorescence in situ hybridization [67],
bacteria have been visualized at an early stage of infection as single cells attached to the root surface,
and subsequently as doublets on the rhizodermis, forming a string of bacteria [63,68]. Once inside the
plant, endophytic bacteria remain localized in a specific tissue, such as the root cortex, or colonize
the plant systematically by transport or active migration through the conducting elements or the
apoplast [69,70] (Figure 1). The different mechanisms of distribution might be due to interactions
with other bacteria or to the different requirements of each microorganism, allowing them to inhabit
different niches, represented by tissues and, more specifically, by the intercellular spaces within
each tissue [71]. Furthermore, comparative genome analyses highlighted the presence of genes
involved in plant adhesion and penetration, such as hemagglutinin genes, curli fiber genes, and
genes related to plant polymer degradation enzymes [72]. Not all bacteria that reach the rhizosphere
are competent to become an endophyte. In fact, the key step to becoming a true endophyte is the
so-called ‘establishment’, that requires a stable relationship with the host which has to recognize and
communicate with the microbiota, and vice versa [73]. It seems that at the beginning, endophytes are
recognized as alien organisms, inducing microbe-associated molecular patterns (MAMPs)-triggered
immunity (MTI) [74,75]. Subsequently, they are able to secrete effector proteins that suppress plant
MTI responses in order to carry on the colonization process [75].
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Figure 1. Confocal microscopy images of experimentally inoculated plants showing the ability of
endophytic bacteria to inhabit a new host (a) Burkholderia sp. isolated from grapevine leaf tissues [76]
and transformed with green fluorescent protein is able to sustain bacterial cell division in periwinkle
parenchyma stem cells. (b) Pantoea agglomerans isolated from orchids and transformed with red
fluorescent protein [77] has been inoculated via root absorption in apple plantlets: bacterial cells
are visible in the upper leaves after two weeks from inoculation, demonstrating the ability to stably
colonize a different host.

3. Human and Animal Pathogens Associated with Plants: Simple Contamination or
Survival/Spreading Strategies

Microbiota associated with plants, including bacteria and fungi, have been extensively studied
in order to find new microorganisms suitable for plant protection, growth promotion, industrial and
medical applications, pollution control, and phytoremediation [78]. Among the numerous studies
on this research topic, only a few pointed out that plants can harbor some human and animal
pathogens (HAP) [46,62,79–81]. For a long time, the scientific community believed that human
and plant pathogenic bacteria reside in separate hosts, interacting with them in a specific way as a
result of coevolution [79]. However, recent studies have begun to show that many plant pathogens
have the ability to colonize other hosts outside of the plant kingdom, including insects, animals,
and humans [82,83]. A clear example of cross-kingdom host jumps is Agrobacterium tumefaciens.
A. tumefaciens was first characterized as the etiological agent of crown gall in rosaceous susceptible
genotype [84] and later as a human pathogen [85]. A. tumefaciens is able also to transfer DNA not
only into plants, but into fungal and human genomes, revealing the ability to infect different hosts
belonging to different kingdoms [86,87].

The genera Pantoea and Burkholderia have been recognized as plant-associated bacteria inducing
plant diseases, growth promotion, and/or plant protection depending on the agroecosystem [88].
Despite these microbe–plant interactions, some species of Pantoea and Burkholderia infect humans,
causing septicemia, chronic granulomatous disease, melioidosis, arthritis, and urinary infections in
immunocompromised humans [79]. The Burkholderia genus includes over 60 species which have
been found in a variety of ecological niches, ranging from hospitals to humid environments (among
others [89,90]). The genus Burkholderia has gained considerable importance owing to its potential in
biotechnology applications [88]. Due to its pathogenicity in humans and animals, great efforts have
been made to unambiguously discriminate plant pathogenic from non-pathogenic strains, including
multilocus sequence analyses and comparative genome analyses [90–92]. Based on phylogenetic
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analyses, the scientific community has recently discussed the possibility of dividing this genus into at
least two large clusters, including the cluster of plant or animal/human pathogens and the cluster of
plant-associated species [89,90]. Interestingly, Estrada-de los Santos and colleagues [93] described an
intermediate cluster between the abovementioned groups. This evidence, in association with the ability
of bacteria to exchange genes and to evolve rapidly, highlights the need to deepen our knowledge
about the plant-associated Burkholderia strains and their potential for pathogenicity in animals and
humans, and to understand whether gene exchange occurs between the symbiotic and pathogenic
Burkholderia species. To date, the genetic features characterizing these helpful microorganisms versus
the pathogenic ones are not clearly identified and the topic is controversial. It seems that the behavior
of the different bacteria is related to gene expression, rather than to the presence or absence of specific
genes [94,95].

The plant environment is also a niche for ‘true’ human and animal pathogens (HAPs), such as
Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7, as well as for pathogens that
cause diseases in debilitated or immune-compromised humans. Over the past two decades, these
so-called opportunistic or facultative human pathogens have had an increasing impact on human
health [96,97]. Opportunistic HAPs belonging to different genera, such as Enterobacter, Salmonella,
Pantoea, Serratia, Burkholderia, Klebsiella, Clostridium, and Staphylococcus were found in the rhizosphere
and associated with different plant organs [46,61,79,98–100]. The occurrence of HAPs in the rhizosphere
has been ascribed to several factors, including the nutrient-rich environment, protection from UV
radiation, and the availability of water films for dispersal and to prevent desiccation [61,96,101].

The presence of HAPs in plants and outbreaks of foodborne illnesses open new questions about
HAP ecology and about the role of plants in the infection cycle [102]. The Enterobacteriaceae family and,
especially, the genera Salmonella and Escherichia, have been extensively studied due to the evidence that
they cause major foodborne illnesses. A typical example is verocytotoxigenic E. coli (VTEC), which is a
foodborne pathogen that can cause serious diseases ranging from hemorrhagic colitis to life-threatening
hemolytic uremic syndrome (HUS) and central nervous system damage [103]. Although most cases
had been previously associated with contamination of meat, milk products, and eggs, in recent years,
fresh fruits and vegetables have been increasingly identified as sources of infection (CDC, Centers of
Disease and Control Prevention). Several multistate outbreaks of E. coli serotype infections have been
reported by both CDC and Food and Drug Administration (FDA) as having arisen from fresh vegetables.
Plant contamination by HAPs can occur at different steps from the agricultural environment to the table.
HAPs can contaminate vegetables both pre- and post-harvest through irrigation water, farm workers
with limited means of proper sanitation, fertilization with slurry, and manure and fecal contamination
in the farm by animals [13,104–106]. Furthermore, during the post-harvest step, HAPs can contaminate
plants during carriage, processing, or packaging [104], and it has also been demonstrated that HAPs
can escape post-harvest treatments to control plant pathogens [107,108].

Indeed, it has been shown that these so-called contaminations are only a first step in the plant
colonization, possibly facilitating the transmission of HAP strains from the field via the food production
chain to the consumer with severe impacts on the health of animals and human beings [109]. In this
view, plants are recognized as vectors of human pathogens causing phytonoses, a new term for defining
the new group of diseases caused by human pathogens, viz., E. coli and S. enterica, that are transmitted
via consumption of fresh produce [12,13] (Table 1).

The HAP colonization process of a plant is quite similar to plant bacterial colonization, including
adhesion, invasion, and establishment [62,110]. The internalization and survival of bacteria in plants
represent a food safety threat in crop production, as internalized bacteria cannot be removed by
standard sanitation practices, although treatments such as irradiation, ultrasound, and cold plasma
can be effective [111–113]. It has been demonstrated that E. coli O157:H7 can enter in the apoplast of
lettuce and spinach from roots and leaves, invade plants, and survive for over 20 days [114,115]. These
data, in association with the ability to form biofilm, led to the consideration of these parameters as
food risk markers.
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4. Bacteria Can Overcome Kingdom Barriers

As mentioned above, bacteria host colonization occurs in three main steps: adhesion, penetration,
and establishment. Van Baarlen and colleagues [87] highlighted the most important requirements
for establishing a pathogenic relationship. These are mainly based on: (i) proximity between
microorganism and host, (ii) host ability to act as substrate, (iii) molecular components secreted
by bacteria, and (iv) ability to suppress or avoid host immune responses. Despite fundamental
differences, the innate immune systems in different eukaryotic kingdoms share a number of common
features. These include the structure of molecules involved in microbial recognition; the signaling
pathways mediated by mitogen-associated protein kinase; the presence of reactive oxygen species and
antimicrobial peptides and proteins [87]. Microbial recognition can occur through so-called microbial or
pathogen-associated molecular patterns (MAMPs/PAMPs), which include different types of molecules,
such as the lipopolysaccharides of Gram-negative bacteria and the peptidoglycans of Gram-positive
bacteria, as well as bacterial flagellin, microbial DNA, and fungal cell wall constituents [31,116].
Moreover, plant–pathogen recognition is mediated by effector molecules injected or secreted into the
host cells by secretion systems. Some systems secrete a variety of substrates, while others are only
found in a small number of bacterial species and/or are specific to one or few types of proteins [117].
In plants and animals, MAMPs and effectors are recognized by both cell surface receptors [118] and
intracellular receptors of the NLR (nucleotide-binding domain (NBD) and leucine-rich repeat (LRR))
superfamily [119–121]. Microbial recognition mechanisms by plants and animals and their NLR
architecture overlap, and it is now possible to discern important key trans-kingdom principles of
NLR-dependent immune function [87]. For example, S. enterica induces MAMP-triggered immunity
in Arabidopsis thaliana via flagellin FLS2 recognition [122]. Plants and animals share other similarities
in host defense signaling after pathogen perception [123], and one class of antimicrobial peptides
comprising the defensins is found to be conserved across kingdoms [124].

Finally, cross-kingdom bacteria should be able to survive and live in the future hosts. Survival
upon entering a new host is associated with an innate ability to change the metabolic activity or
adapting to (and taking advantage of) host metabolism. S. enterica, Pseudomonas aeruginosa, Burkholderia
cepacia, and E. coli are the most deeply investigated cross-kingdom pathogens [105]. S. enterica is mainly
transmitted via water, from feces to environment and then to crop [105]. Once it reaches plant tissues,
it can persist for significant periods of time as it is able to colonize the mesophyll via stomata openings,
wounds, and hydathodes, as shown in arugula and tomato plants [98,100,125–127]. S. enterica and
other enterobacteria (e.g., E. coli) are able to reprogram the host architecture, suppressing the host
immune system via the injection of a cocktail of effector proteins (among others [128–130]). The effector
proteins and secretion systems of enterobacteria are known, and their function in human and mouse
has been described in depth (reviewed in [131]). Interestingly, it has been shown that these proteins are
able to suppress plant defense also in tobacco plants and Arabidopsis thaliana [132,133]. In particular,
Salmonella T3SS effectors (Type III secretion system) are essential for both animal pathogenicity and the
plant colonization process [132–135]. Recently, Neumann and colleagues [129] demonstrated that the
phosphothreonine lyase SpvC attenuates the induction of immunity-related genes, allowing bacteria
proliferation in Arabidopsis thaliana. This evidence strongly confirms the idea that plants could be
reservoirs or vectors of human pathogens.
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5. Possible Unfavorable Consequences of the Massive Use of Bacteria as Biocontrol or
Biofertilizer Agents

The concept of the ‘pathobiome’ has been introduced to define the role of the microbiome in
causing pathogenesis, replacing the dogma ‘one microbe—one disease’ [11,78]. This term was coined
based on metagenomic data showing the complexity of the microbial communities associated with the
ecological niches inhabited by pathogens. Disease development can be then influenced by variations
in host-associated microbial populations, signaling within bacterial communities, and the immune
state of the host [136–139]. In other words, pathogenicity is an outcome of host–microbe interactions,
thus inextricably linked to the host and microbe characteristics [140]. As a consequence, the separation
between beneficial and detrimental microorganisms is not that clear-cut, due to the fact that horizontal
gene transfers (HGTs) may confer virulence traits to harmless bacteria [141,142].

As discussed in the previous paragraphs, most BCAs are close relatives of HAPs. Moreover,
comparative genome analyses have shown that endophytic bacteria, often recommended as BCAs,
share genome structures and distributions of virulence genes with pathogenic bacteria [92,94].
This evidence suggests the ability of these bacteria to change their lifestyle according to the ecological
niche. For example, the genus Paenibacillus, a promising genus for biocontrol, exhibits extensive
environmental adaptability and can populate various ecological niches [28]. Comparative genome
analyses of Paenibacillus spp. revealed that this capacity is related to a highly diverse gene repertoire
and to the HGT trend [143].

From this perspective, the massive use of bacterial BCAs to control pathogens or as biofertilizer
could affect disease development and increase the possibility of new pathogen emergence by altering
the host-associated microbiome and/or the host immune system. Moreover, the potential direct
pathogenicity of putative BCAs to human health has been often underinvestigated, even if some
of them (e.g., Burkholderia spp., Paenibacillus spp., and Pseudomonas spp.) have been reported as
opportunistic human or animal pathogens, or are known to produce secondary metabolites potentially
toxic for humans and animals (Figure 2). For example, Paenibacillus polymyxa is reported in the
literature as a prominent biofertilizer or biocontrol agent [144], even if this species produces cyclic
lipodepsipeptide fusaricidins that are toxic to mitochondria and induce apoptosis in mammalian
cells [145].

This evidence, in combination with the outbreaks of human infections associated with the
consumption of raw fruits and vegetables, opens new questions regarding the role of plants in
the human pathogen infection cycle, or if a biological control could alter the endophytic bacterial
community, leading to the generation of new potential human pathogens.
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Figure 2. Schematic representation of a potential scenario following plant disease/growth biocontrol:
(1) Biocontrol agents (BCAs, in dotted white), differently formulated, are spread into the soil; (2) they
interact with soil and plant microbiomes (in gray and light gray, respectively) improving plant health
and fitness; (3) BCAs can also interact with human pathogens (in black) harbored by plants, possibly
leading to horizontal gene transfer (i.e., resistance to antibiotics); (4) these bacteria could migrate
through the plant up to the edible parts, whose consumption may lead to severe diseases, such as
septicemia and urinary infection; (5) finally, BCAs potentially pathogens for humans and animals
(in black) can contaminate the farm workers or the post-harvest process, entering into the food chain.

6. Conclusions

Bacteria are essential components of human, animal, and plant health, and important sources of
new molecules suitable for industrial, medicine, and agricultural applications. Nevertheless, some of
the endophytic bacteria and fungi used in biocontrol or biofertilization strategies are indeed true
or opportunistic human and animal pathogens, or carry human virulence factors in their genome.
Thus, their massive spreading in the soil and in the environment, with scarce or no knowledge of
their interactions with plants and with the phyllosphere and rhizosphere microbiomes, may lead to
unpredictable long-term consequences. Although biocontrol is a promising approach to controlling
plant pathogens, it is important to re-think the assumption ‘isolation from plant is safe’, taking into
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account the possible direct or indirect effects on human health and the environment, which have
so far been unappreciated. Nowadays, the omics technologies can hopefully contribute to deeply
understanding the new bacteria–plant–animal interactions and, thus, their impact on agroecosystems
and human health. Omics technologies can contribute to increase this knowledge constituting the
starting point for testing predictive hypotheses on microbial pathogenicity in model systems.
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