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Abstract

In this chapter, we review the problem of modelling correlated count data.

Among the several methods that can be used for this scope, we focus on the

copula approach, illustrating its advantages, but also possible limitations and

issues arising in the discrete context if compared to the continuous case. After

introducing the basic notions about copulas, the construction of a multivariate

joint distribution is discussed and pseudo-random simulation and point estima-

tion of copula-based models for count data are then outlined. Results related

to minimum and maximum correlation between two assigned discrete marginal

distributions are also described and put in connection with the choice of the

copula to be used for modelling correlated counts. A numerical example and an

application to a real dataset are provided.
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1. Introduction

Over the last decades, a large amount of literature on discrete bivariate and

multivariate distributions has been accumulated. An extensive account of these

distributions can be found in [1, 2]. Focusing on reliability engineering and

lifetime analysis, discrete distributions are naturally used for modelling count5

variables, such as the number of rounds fired by a weapon till the first failure;
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the number of deaths at a given place over a given time period; the number

of cycles prior to the first failure when devices work in cycles; the number

of periods successfully completed without failure; the numbers of accidents a

worker experiences in different time periods; but they can be usefully employed10

also when the lifetime (of an item, a system, . . . ) is measured in days, weeks,

months, etc., i.e., when lifetime is measured on a discrete scale. When the

researcher has to deal with several phenomena of this type, he needs to take

into account and model their statistical association by considering appropriate

multivariate distributions.15

For a long time, the multivariate normal distribution has been used even for

modelling non-continuous correlated data. However, it cannot turn out to be a

satisfactory choice, especially when one needs to model data with just a few dis-

tinct observed values or presenting an excess of zeros, something which is quite

common in several engineering fields. Thus the need for using a multivariate20

discrete model. [3] suggested that “A multivariate discrete distribution should

satisfy some theoretical properties in order to model practical situations. We

highlight two of these theoretical properties: a rich enough correlation structure

and marginal overdispersion.” There are several methods of constructing dis-

crete bivariate (and multivariate) distributions. An exhaustive account is given25

in [4]. Most of multivariate models for count data take origin from the multi-

variate Poisson model. This model allows for positive correlations only and for

equi-dispersed margins (remember that for a Poisson r.v. expected value and

variance have the same value, coinciding with the parameter λ). Extensions of

this model are based on mixtures, which are able to (partially) overcome both30

problems. Apart from these models, other proposals have been suggested, of-

ten limited to the bivariate case since a generalization ot higher dimension is

not immediate. These models usually have identical marginal distributions or

marginal distributions of the same type and the dependence structure is some-

what limited.35

Here we will focus on a method which is particularly popular and flexi-

ble when used for modelling multivariate continuous distributions, the copula
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approach, whose use has been recently adapted to the discrete case. We will

highlight the still great convenience of this approach as well as differences and

limitations with respect to the original context. Copulas offer a great flexibility40

both in the dependence structure they can induce and in the choice of marginal

distributions. [5] provides a list of desiderata properties of multivariate copula

families for modeling multivariate discrete data.

The chapter is structured as follows. In the next section we introduce the

concept of copula and explain how it can be exploited for constructing multi-45

variate distributions with arbitrary margins and flexible dependence structures.

Section 3 discusses some issues related to Pearson’s correlation coefficient, often

used as a measure of dependence, which is incorrect, especially when moving far

from the multivariate normal distribution, and then in particular when mod-

elling correlated counts. Alternative dependence measures are recalled. Section50

4 briefly outlines estimation for copula models, highlighting potential pitfalls one

has to take into consideration when handling dependent discrete distributions.

Section 5 briefly mentions how copula-based models can include covariates. Sec-

tion 6 presents two simple numerical examples of modelling of bivariate discrete

counts, pointing out from a practical perspective what has been theoretically55

illustrated in the previous sections. Section 7 illustrates an example of fitting

several bivariate discrete models to a real dataset. The last section concludes

the chapter with a summary and some brief remarks.

2. Copulas for modelling multivariate distributions

The theory of copulas, whose origins date back to the first half of the last60

century, has received great and renewed interest in the last two decades espe-

cially due to the number of applications in the fields of quantitative finance and

actuarial mathematics. The copula approach allows to separate the study of the

marginal models from the study of the dependence models and then combine

more marginal distributions with a variety of possible dependence structures.65

About the choice of univariate discrete distributions for modelling count data,

3



we address the reader to [6].

Let us start with the mathematical definition of copula and with a theorem

that formally establishes its relationship with multivariate distributions.

2.1. Definition of copula and Sklar’s theorem70

A d-dimensional copula is a joint cumulative distribution function (c.d.f.) in

[0, 1]d with standard uniform c.d.f.s Uj , j = 1 . . . , d:

C(u1, . . . , ud) := P (U1 ≤ u1, . . . , Ud ≤ ud). (1)

The importance of copulas in the study of multivariate distribution functions is

summarized by the theorem of Sklar [7, 8], which here we briefly reprise.

Let F be a joint distribution function with margins F1, . . . , Fd. Then there

exists a copula C : [0, 1]d → [0, 1] such that, for all x1, . . . , xd in R̄ = [−∞,+∞],

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2)

If the margins are continuous, then C is unique, otherwise C is uniquely de-

termined on Ran(F1)× · · · × Ran(Fd), with Ran(Fj) denoting the range of Fj .

Conversely, if C is a copula and F1, . . . , Fd are univariate c.d.f.s, then the func-

tion F defined in (2) is a joint distribution function with margins F1, . . . , Fd. If

the margins F1, . . . , Fd are continuous, the unique copula C is given by

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)). (3)

where F−1
j denotes the generalized inverse of the marginal c.d.f. Fj , i.e.,

F−1
j (t) = inf {x ∈ R : Fj(x) ≥ t}. Formulas (2) and (3) are fundamental in

dealing with copulas. The former shows how joint distributions F are formed75

by connecting together marginal distributions with copulas C; the latter shows

how copulas are extracted from a multivariate c.d.f. with continuous margins.

Sklar’s Theorem also suggests that, in the case of continuous margins, it is nat-

ural to define the notion of the copula of a c.d.f. F with continuous marginal

c.d.f.s F1, . . . , Fd as the c.d.f. C of (F1(X1), . . . , Fd(Xd)).80
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2.2. Copula bounds and fundamental copulas

We recall that for any copula C the following constraint holds for any

(u1, . . . , ud) ∈ [0, 1]d:

max(0,

d
∑

j=1

uj + 1− d) ≤ C(u1, u2, . . . , ud) ≤ min(u1, u2, . . . , ud); (4)

the left and right members of the inequality are called Fréchet lower bound

and Fréchet upper bound, respectively [9]. We note that M(u1, u2, . . . , ud) =

min(u1, u2, . . . , ud) is itself a copula, named “comonotonicity copula”; W (u1, . . . , ud) =

max(0,
∑d

j=1 uj + 1 − d) is a copula only if d = 2, the bidimensional “coun-

termonotonicity copula”. In the bivariate case, the comonotonicity copula is

the copula associated to two perfectly positively dependent r.v.s X1 and X2,

satisfying the relationship X2 = f(X1) almost surely, with f being a strictly

increasing function. The countermonotonicity copula is the copula associated

to two perfectly negatively dependent r.v.s X1 and X2, satisfying the relation-

ship X2 = g(X1) almost surely, with g being a strictly decreasing function.

Although Fréchet bounds have been given for a copula, they may be given for

any multivariate c.d.f. F with margins F1, . . . , Fd:

max







d
∑

j=1

Fj(xj) + 1− d, 0







≤ F (x1 . . . , xd) ≤ min {F1(x1), . . . , Fd(xd)} ;

so we have now bounds for F in terms of its own marginal distributions.

The comonotonicity and bivariate countermonotonicity copula are two ex-

amples of “fundamental” copulas. Another fundamental copula is the “indepen-

dence copula”, Π(u1, . . . , ud) =
∏d

j=1 uj : recalling (2), we can easily see that85

for a continuous joint c.d.f. F , the univariate margins are independent if and

only if the copula of F is Π (in fact, the joint c.d.f. factorizes into the product

of its marginal c.d.f.s).

2.3. Examples of implicit and explicit copulas

We provide now two example of parametric copula families, which we will90

use in the following sections.

5



2.3.1. Gaussian copula

If YYY ∼ Nd(µµµ,Σ) is a d-dimensional Gaussian r.v., with mean vector µµµ and

correlation matrix Σ, then its copula is a so-called Gaussian copula. Note that

the copula of YYY is exactly the same as the copula of XXX ∼ Nd(000, P ), where P is

the correlation matrix of YYY . By definition

CGa
P (u1, . . . , ud) = P (Φ(X1) ≤ u1, . . . ,Φ(Xd) ≤ ud) = ΦP (Φ

−1(u1), . . . ,Φ
−1(ud)),

where Φ is the standard univariate normal c.d.f., Φ(z) =
∫ z

−∞
1/
√
2πe−t2/2dt,

and ΦP denotes the joint c.d.f. of XXX. The Gaussian copula does not have a

simple closed form (it belongs to the so-called class of “implicit copulas”), but

can be expressed as an integral over the density of XXX; in two dimensions for

ρ 6= 1 we have that:

CGa
P (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
e
−

s21−2ρs1s2+s22
2(1−ρ2) ds1ds2. (5)

Both independence and comonotonicity copulas are special cases of the Gaus-

sian copula. If P = Id, we obtain the independence copula; if P = Jd , the d×d

matrix consisting entirely of ones, then we obtain the comonotonicity copula.95

Also, for d = 2 and ρ = −1 the Gaussian copula is equal to the countermono-

tonicity copula. Thus in two dimensions the Gaussian copula can be thought of

as a dependence structure that interpolates between perfect positive (ρ = 1) and

negative (ρ = −1) dependence, where the parameter ρ represents the strength

and direction of dependence.100

2.3.2. Frank copula

The one-parameter bivariate Frank copula is defined as

C(u1, u2) = − 1

κ
ln

[

1 +
(e−κu1 − 1)(e−κu2 − 1)

e−κ − 1

]

,

with κ 6= 0. The Frank copula, which belongs to the wider class of Archimedean

copulas, through the choice of its parameter κ, allows both negative (κ < 0)

and positive (κ > 0) dependence. For κ → 0, we have that the Frank copula

reduces to the independence copula; for κ → ∞, the Frank copula tends to105
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the upper Fréchet bound; for κ → −∞, the Frank copula tends to the lower

Fréchet bound. This means that the Frank copula, like the Gaussian copula,

interpolates between perfect positive and perfect negative dependence.

2.4. Derivation of the p.m.f. for a copula-based model with discrete margins

While in the continuous case the derivation of the joint p.d.f. of (X1, . . . , Xd)

is obtained easily through the use of partial derivatives of the joint c.d.f, for the

discrete case, the expression of the joint p.m.f. for the multivariate r.v. with

c.d.f. (2) can be derived by using finite differences [10]. Let ccc = (c1 . . . , cd) be

vertices where each cj is equal to either xj or xj − 1, j = 1, . . . , d. Then the

joint p.m.f. of the d-variate discrete r.v. (X1, . . . , Xd) is given by

p(x1, . . . , xd) =
∑

sgn(ccc)C(F1(c1), . . . , Fd(cd)), (6)

where the sum is taken over all vertices ccc and sgn(ccc) is given by:

sgn(ccc) =











1 if cj = xj for an even number of j′s

−1 if cj = xj for an odd number of j′s.

(7)

For the simplest case (d = 2), for a given pair (x1, x2) of non-negative integers,

we have 22 = 4 possible vertices ccc and (6) becomes

p(x1, x2) = C(F1(x1), F2(x2)) + C(F1(x1 − 1), F2(x2 − 1))

− C(F1(x1), F2(x2 − 1))− C(F1(x1 − 1), F2(x2)).

From (6) it is clear that one has to evaluate the copula repeatedly for calcu-110

lating the joint p.m.f. This means that an analytical closed form for the joint

c.d.f. would make the computation of the p.m.f. easier and the copula model for

count data more usable. Multivariate elliptical copulas (comprising the Gaus-

sian copula) though providing a flexible structure, allowing for both positive

and negative linear correlations, do not have a closed form and then for d > 2115

the computation of p.m.f. requires repeated multivariate numerical integration;

for this reason, their use is not straightforward.
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2.5. Simulating copulas

Based on Sklar’s theorem, if (X1, . . . , Xd) has copula C and marginal c.d.f.s

F1, . . . , Fd, then one may simulate from (X1, . . . , Xd) in the following way:120

1. Simulate a random vector (U1, . . . , Ud) with c.d.f. C;

2. Return the random vector (X1, . . . , Xd) := (F−1(U1), . . . , F
−1
d (Ud)).

Now, the problem arises on how to simulate from C. Let us first focus on

the case d = 2. If a bivariate copula C(u1, u2) has a sufficiently simple alge-

braic expression (this occurs for typical bivariate copulas, especially absolutely

continuous copulas), then there exists a very efficient, analytical simulation al-

gorithm which can often be applied. It goes under the name of “conditional

sampling method” [see, for example, 11, p.78-79]. This method is based on the

quantity

Cu2|u1
(U2|u1) := P (U2 ≤ u2|U1 = u1) =

∂C(u1, u2)

∂u1
, u2 ∈ [0, 1],

which exists for almost every u1 ∈ (0, 1). Cu2|u1
(U2|u1) is the c.d.f. of U2

conditioned on the event that U1 = u1.

If we want to simulate r.v.s with copula C, we can implement the following125

steps:

• Simulate independently U1 ∼ U(0, 1) and V ∼ U(0, 1)

• Compute U2 = C−1
u2|u1

(V |u1)

• (U1, U2) is a random sample from (U1, U2) with copula C

If we consider the Frank copula presented in Section 2.3.2, one can easily derive

the conditional c.d.f.

CU2|u1
(u2|u1) =

exp(−κ(u1 + u2))− exp(−κu1)

exp(−κ(u1 + u2))− exp(−κu1)− exp(−κu2) + exp(−κ)
,

which can be inverted analytically:

C−1
U2|u1

(v|u1) = − 1

κ
log

[

1− 1− exp(−κ)

1 + (v−1 − 1) exp(−κu1)

]

.
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The major shortcoming of the conditional sampling method is that it is very130

difficult to generalize to larger dimensions d ≥ 3.

In practice, the simulation of r.v. for large d is usually only possible along

a sufficiently easy stochastic model, which can be exploited in order to derive a

simulation algorithm, e.g., Gaussian copula or more generally elliptical copulas;

or Archimedean copulas [11, p.81].135

Simulating a Gaussian copula CGa
P with correlation matrix P can be carried

out following these steps:

1. Simulate ZZZ = (Z1, . . . , Zd) ∼ N(000, P ), a multivariate normal distribution

with mean vector 000 and correlation matrix P ;

2. Return UUU = (Φ(Z1), . . .Φ(Zd)). The r.v. UUU has copula CGa
P .140

The implementation is very straightforward, due to the large availability of

software carrying out the simulation of the multivariate normal (step 1 of the

above algorithm). Actually, one of the first attempts to simulate correlated

discrete data is due to [12], who employed the Gaussian copula (without ex-

plicitly referring to copula theory) to link discrete variables together with as-145

signed marginal distributions and correlation matrix. The simulation algorithm

is named NORTA (NORmal To Anything), which gives the idea that starting

from a multivariate normal distribution we can construct any other multivari-

ate distribution with arbitrary margins (sharing the Gaussian copula). Indeed,

there the focus was on how to set the correlation matrix P in order to en-150

sure the desired correlation matrix PXXX on the non-normal multivariate distribu-

tion. This attempt was reprised and developed later by other authors [see e.g.

13, 14, 15, 16, 17].

3. Copulas and measures of dependence

Often the researcher is interested in synthesizing the statistical dependence155

between two r.v.s through a scalar “measure of dependence”. Here we focus

on two kinds of dependence measures: the usual Pearson linear correlation and

rank correlations.
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3.1. Linear correlation

Pearson’s linear correlation coefficient is by far the most popular measure of

dependence between r.v.s. For a pair of r.v.s (X1, X2) it is defined as

ρX1X2
=

E [(X1 − E(X1))(X2 − E(X2))]
√

Var(X1)Var(X2)

as far as X1 and X2 have both finite variance; it takes values in [−1, 1] and ac-160

tually measures the strength and direction of the linear relationship between X1

andX2. It is the canonical dependence measure in the world of multivariate nor-

mal distributions, and more generally for spherical and elliptical distributions;

more precisely, the linear correlation (or the correlation matrix, for d ≥ 3) con-

tains all the information about the dependence structure of the multivariate165

model. However, empirical research in many applied sciences shows that the

distributions of the real world are seldom in this class, and thus Pearson’s ρ

is not suitable to capture dependence [18]. This is one of its main drawbacks,

along with others that [8] denotes as “fallacies”, which are often underrated.

A first fallacy is that given two marginal distributions F1 and F2 and a170

correlation value ρ ∈ [−1,+1], it is not always possible to construct a joint

distribution F with margins F1 and F2, whose correlation is equal to the assigned

ρ. To better explain it, let us introduce the concept of equality in type for

random variables. Two r.v.s V and W (or their distributions) are said to be of

the same type if there exist constants a > 0 and b ∈ R such that V
d
= aW + b,175

with “
d
=” denoting equality in distribution. In other words, distributions of the

same type are obtained from one another by location and scale transformations.

Then, we can state the following result, concerning “attainable correlations”.

Let (X1, X2) be a random vector with finite-variance marginal cdfs F1 and F2

and an unspecified joint cdf; assume also that var(X1) > 0 and var(X2) > 0.180

The following statements hold [8, pp.204-205].

1. The attainable correlations form a closed interval [ρmin, ρmax] with ρmin <

0 < ρmax.

2. The minimum correlation ρ = ρmin is attained if and only if X1 and X2
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are countermonotonic. The maximum correlation ρ = ρmax is attained if185

and only if X1 and X2 are comonotonic.

3. ρmin = −1 if and only if X1 and −X2 are of the same type, and ρmax = 1

if and only if X1 and X2 are of the same type.

Let focus for a while on continuous r.v.s. Clearly, the Gaussian family of dis-

tributions with mean µ ∈ R and variance σ2 ∈ R
+ is an example of class190

distributions of the same type, since we know that if X ∼ N(µx, σx), then any

linear transformation Y = a + bX, with a 6= 0, b ∈ R, is still normal. Then,

thanks to the above statements, it is possible to join together two any normal

distributions into a joint distribution with an assigned correlation −1 ≤ ρ ≤ +1.

This result was quite predictable, as we know the bivariate normal distribution195

satisfies these conditions. Another less trivial example: let X1 and X2 be ex-

ponential r.v.s with parameters λ1 and λ2, respectively. Are the minimum and

maximum attainable correlation values equal to −1 and +1? We have that

ρmax = +1 since X2 is equal in distribution to λ1X1/λ2. In fact, if the d.f.

of X1 is f1(x) = λ1 exp(−λ1x), the d.f. of the transformation λ1X1/λ2 is200

f2(x) = λ2 exp(−λ2x). In other terms, the exponential r.v.s “scale”. However,

−1 < ρmin < 0, since it cannot be X1
d
= −aX2+ b for any a > 0 and b (both X1

and X2 are defined on R
+). It can be shown that ρmin = 1− π2/6 ≈= −0.645,

for any choice of λ1, λ2.

For non-negative count r.v.s, it is then clear that the maximum correlation205

is +1 if and only if X1 and X2 are identically distributed; whereas the minimum

correlation can never be −1. Determining analytically ρmin (and ρmax, in case

of non-identical margins) for a pair of discrete r.v.s is a challenging task; for

the geometric distribution, one can refer to [19], where it is shown that for two

identical geometric margins with parameter θ, ρmin is equal to θ− 1 if θ ≥ 1/2,210

whereas, if θ < 1/2, a numerical procedure is sketched in order to recover ρmin.

If dealing with two discrete r.v.s with finite support, the values ρmin and ρmax

can be computed by building the cograduation and countergraduation tables [see

16, for an example of calculation]. An empirical and straightforward method
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(X1, X2) Geo(1/4) Pois(4) NegBin(10,2/3)

Geo(1/2) [−0.549, 0.978] [−0.772, 0.891] [−0.743, 0.919]

Pois(2) [−0.912, 0.965] [−0.907, 0.968]

NegBin(5,1/2) [−0.909, 0.989]

Table 1: Correlation range [ρmin, ρmax] for six possible combinations of discrete margins.

that can be employed in order to numerically derive the extremal correlations215

ρmin and ρmax between two (discrete, continuous or mixed-type) r.v.s is the

following [20]:

1. Generate two random samples from the two univariate distributions inde-

pendently, using a large number of observations (e.g., n = 100, 000).

2. Sort the two samples in the same direction, and compute the sample cor-220

relation, which corresponds to the upper bound ρmax.

3. Sort the two samples in opposite directions (i.e., in ascending order for one

of the variables, and in descending order for the other). Then, compute

the sample correlation, which corresponds to the lower bound ρmin.

The rationale of the above algorithm clearly relies on the result about attainable225

correlations, point 2). For illustrative purpose, we used the algorithm above,

by setting n = 107, in order to compute the range [ρmin, ρmax] for six possi-

ble combinations of discrete margins. We considered three common families of

count distributions, namely, geometric, Poisson and negative binomial (a gen-

eralization of the geometric). The results are reported in Table 3.1. Note that230

the extremal correlations can be quite far from the corresponding limits −1 and

+1 of the correlation coefficient. Actually, as can be easily observed considering

the combination of two negative binomials, as the discrete distributions tend to

resemble a continuous one (i.e., as most of the probability mass tends to spread

over a huge number of integers and not to concentrate on a few values), then235

the extremal correlations tend to their corresponding limits ±1.

Another fallacy of the linear correlation can be outlined as follows. Given two

margins F1 and F2 and a feasible linear correlation ρ (where by feasible we mean
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comprised between the ρmin and ρmax discussed above), the joint distribution

F having margins F1 and F2 and correlation ρ is not unique. In other terms,240

the marginal distributions and pairwise correlations of a r.v. do not univocally

determine its joint distribution. [8] presented an example, where two normal

distributions can be linked together forming two different joint distributions

with the same correlation, by simply selecting two different copulas (a Gaussian

copula and a linear combination of Fréchet-bound copulas). We will provide an245

analogous example related to the discrete case in Section 7.

3.2. Rank correlations

The first fallacy of Pearson’s correlation can be overcome, when handling

continuous distributions only, by employing two other dependence measures,

namely, Spearman’s rho [21] and Kendall’s tau [22], also known as “rank corre-250

lations”.

Spearman’s rho between two r.v.s X1 and X2 with marginal c.d.f.s F1 and

F2, respectively, is defined as

ρS(X1, X2) = ρ(F1(X1), F2(X2));

whereas the definition of Kendall’s tau is

ρτ (X1, X2) = E(sgn(X1 −X2)(X̃1 − X̃2)),

where sgn is the usual sign function, taking value +1 or −1 according whether

its argument is positive or negative, and (X̃1, X̃2) is an independent copy of

(X1, X2). In higher dimensions, the Spearman’s rho matrix for the general d-

variate random vectorXXX = (X1, . . . , Xd)
T is given by ρS(XXX) = ρ(F1(X1), . . . , Fd(Xd));255

the Kendall’s tau matrix of XXX may be written as ρτ (XXX) = cov(sgn(XXX − X̃̃X̃X)),

where X̃̃X̃X is an independent copy of XXX.

For a bivariate sample (xxx1,xxx2), with xxxj = (xij)
T , i = 1, . . . , n, j = 1, 2, the

sample version of Spearman’s rho is ρ̂S(xxx1,xxx2) = ρ(rank(xxx1), rank(xxx2)), where

the function rank assigns a number from 1 to n corresponding to the position
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of x1j (or x2j) in an ascending order. The sample version of Kendall’s tau can

be defined as

ρ̂τ (xxx1,xxx2) =
number of concordant pairs− number of discordant pairs

(

n
2

) ,

where two points in R
2, denoted by (x1t, x2t) and (x1u, x2u), are said to be

concordant if (x1t−x1u)(x2t−x2u) > 0 and to be discordant if (x1t−x1u)(x2t−
x2u) < 0.260

Differently from Pearson’s ρ, these two measures i) are both able to capture

monotone dependence between two random variables; ii) in the continuous case,

their value depend only on the copula C and not on the margins (i.e. they are

“margin-free”); iii) they take the value 1 when the margins are comonotonic

and the value −1 when they are countermonotonic. These three properties do265

not keep holding when we move to the discrete case [23]. Indeed, with discrete

variables, the definition itself of these two measures leads to ambiguity, due to

the stepwise nature of c.d.f. and then the presence in the sample data of the

so called “ties” (observations having the same value). Depending on the choice

of margins, the two rank correlations may or may not span the entire interval270

[−1, 1] [see e.g. 24, chapter 5]. Several rescaled versions of Kendall’s τ and

Spearman’s ρ were introduced in an attempt to correct it, but none of them is

margin-free, however, and some of them do not reach the bounds ±1 [23].

4. Inference for copula models

Let consider a multivariate copula-based discrete model whose joint c.d.f.

has the following representation:

F (x1, . . . , xd; θ1, . . . , θd, θ) = C(F1(x1; θ1), . . . , Fd(xd; θd); θ), (8)

where Fj is the marginal c.d.f. corresponding to the j-th margin, characterized

by marginal parameter θj , j = 1, . . . , d, and θ is the copula parameter (θ and

the θj can be scalar or vectors). Henceforth, we suppose that the functions Fj

and C are known, except for the values of their parameters: this means that we
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move within a parametric framework; for non-parametric and semi-parametric

cases, we address the reader to [25, pp.247-251]. The p.m.f. p of (X1, . . . , Xd)

can be derived recalling (6). Now, if a d-variate random sample of size n,

[xij ], i = 1, . . . , n, j = 1, . . . , d, is available, the log-likelihood functions for the

univariate margins are

ℓj(θj) =
n
∑

i=1

log pj(xij ; θj), j = 1, . . . , d (9)

where pj is the marginal p.m.f. of Xj ; and the total log-likelihood function can

be written as

ℓ(θ, θ1, . . . , θd) =
n
∑

i=1

log p(xi1, . . . , xid; θ1, . . . , θd, θ). (10)

Parameter estimates can be simultaneously recovered maximizing the log-likelihood275

function (10), thus implementing a full maximum likelihood estimation (MLE).

Such a maximization can be usually solved only numerically. Alternatively, effi-

cient estimation of the model parameters is succeeded by the inference function

of margins (IFM) method, which consists of a two-step approach. At the first

step, the univariate log-likelihoods (9) are maximized independently of the cop-280

ula parameter; at the second step, the joint log-likelihood (10) is maximized

over θ with the values of univariate parameters θj fixed as estimated at the

first step. The parameter estimation is thus decomposed into two smaller prob-

lems: fitting the marginal distributions (as if they were independent) and then

fitting the existing dependence structure. From a computational cost perspec-285

tive, estimation by IFM method becomes more advantageous than full MLE

as the dimension d increases. Asymptotic efficiency of the IFM estimator has

been studied by Joe (2005) for a number of multivariate models and is overall

shown to be highly efficient compared to standard maximum likelihood, except

for extreme cases near the Fréchet bounds.290

Another method uses empirical estimates of either Spearman’s or Kendall’s

rank correlation to infer an estimate for the copula parameter. One needs a

theoretical relationship between one of the rank correlations and the copula
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parameter and substitute empirical values of the rank correlation into this rela-

tionship to get estimates of the copula parameter. If, for example, for a certain295

(bivariate) parametric copula family we have that ρτ = T (θ), for some function

T , and T is invertible, so that θ = T−1(ρτ ), then an estimate for θ is T−1(ρ̂τ ),

with ρ̂τ being the sample version of ρτ . This method is usually referred to as

method of moments.

5. Issues with copulas for discrete data300

The copula concept is slightly less natural for multivariate discrete distribu-

tions. As seen when discussing Sklar’s theorem, this is because there is more

than one copula that can be used to join the margins to form the joint c.d.f., as

the following example shows [8].

Example (Copulas of bivariate Bernoulli). Let (X1, X2) have a bivariate Bernoulli

distribution satisfying

P (X1 = 0, X2 = 0) = 1/8, P (X1 = 1, X2 = 1) = 3/8

P (X1 = 0, X2 = 1) = 2/8, P (X1 = 1, X2 = 0) = 2/8

Clearly, P (X1 = 0) = P (X2 = 0) = 3/8 and the marginal distributions F1305

and F2 of X1 and X2 are the same. From Sklar’s theorem – see Eq. (2) – we

know that P (X1 ≤ x1, X2 ≤ x2) = C(P (X1 ≤ x1), P (X2 ≤ x2)) for all x1, x2

and some copula C. Since Ran(F1) = Ran(F2) = {0, 3/8, 1}, clearly the only

constraint on C is that C(3/8, 3/8) = 1/8. Any copula fulfilling this constraint

is a copula of (X1, X2), and there are infinitely many such copulas.310

This fact does not cause any issues in the modelling/simulation step, since

Formula (2) always returns a valid joint c.d.f. even if some of the Fj are discrete;

some problems arise at the estimation stage, when one has to make inference

about the parameter of the copula that is assumed to link the margins. The

fact that from two or more correlated discrete r.v.s the copula that can be ex-315

tracted is not unique (indeed, there are infinite copulas that can be extracted)
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naturally poses an unidentifiability problem when one needs to estimate the

dependence structure. This issue leads to some important consequences; from

a a practical point of view, the most important is that inference for the de-

pendence parameter θ under a parametric copula model should not resort to320

rank-based approach, but rather to maximum likelihood estimation. Resuming

and citing [23], “copula models provide a viable approach to the construction

of multivariate distributions with given margins, even in the discrete case”, and

“When dealing with count data, however, modeling and interpreting dependence

through copulas is subject to caution. Furthermore, inference (and particularly325

rank-based inference) for copula parameters from discrete data is fraught with

difficulties”. For a detailed discussion of this topic, which is still debated among

the statistical community, we address the reader to the thorough work of Gen-

est [23] and to the recent paper by Faugeras [26], where the author seems much

more reluctant than [23] to extend copulas from the continuous to the discrete330

case.

6. Regression models

Copula-based models are susceptible to the introduction of explanatory vari-

ables. Model parameters can be regressed towards different sets of covariates,

increasing the goodness-of-fit of the model to the data and at the same time its

complexity [27, 28]. Covariates are commonly used for the marginal parameters;

however, since the interest of the researcher often lies on studying the depen-

dence structure rather than the marginal properties and copula measures the

association between marginal distributions, the use of covariates in its param-

eters, allowing for direct modeling of association, has been recently increasing.

Following the approach of [10], if we consider a bivariate copula-based paramet-

ric model for count r.v.s Y1 and Y2, their joint c.d.f. F , by slightly adapting (8),

can be written as:

F (y1, y2; θ1, θ2, θ) = C(F1(y1; θ1), F2(y2; θ2), θ)
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Suppose the data are (yij , xij), i = 1, . . . , n, j = 1, 2, with xij a vector of co-

variates for the i-th observation associated to the j-th random component. One

can easily introduce covariates xij on the copula-based parametric model by

assuming that the j-th margin is yij ∼ Fj(; θij), with θij = (µij = g(βT
j xij), γj)

where µij denotes the mean parametrized by a suitable link function g to ac-

commodate the covariates, βj the vector of the regression coefficients, and γj

the vector of marginal parameters not depending on covariates. Furthermore,

one can introduce a regression part for the copula parameter θ, which can be

specified through an appropriate covariate function on θ, s(θi) = bTxi, with

parameter vector b. Possible covariate functions for the copula parameter of

several copula families are reported in [10, Table 1]. For parameter estimation,

one can use the standard MLE method, maximizing the log-likelihood function,

which can be written as

L(β1, γ1, β2, γ2, b) =
n
∑

i=1

log p(yi1, yi2;β1, γ1, β2, γ2, b),

where p is the joint p.m.f. (6).

7. Numerical example

In this example, focusing on the simple bivariate case, we show how to

construct different bivariate models with the same margins X1 and X2 but

different dependence structure, i.e. how can connect the same margins through

different (families of) copulas. Let consider two univariate r.v.s X1, which we

assume to be binomial, and X2, which we assume to follow the Poisson law.

The p.m.f. of X1 is

p1(x1;n, p) =

(

n

x1

)

θx1(1− θ)n−x1 , x1 = 0, 1, . . . , n;n ∈ N, 0 < θ < 1;

the p.m.f. of X2 is

p2(x2;λ) =
λx2e−λ

x2!
, x2 = 0, 1, 2, . . . , λ > 0.

We set the marginal parameters as follows: n = 4, θ = 0.5, λ = 2. As cop-335

ulas linking the two margins we consider the Gaussian and the Frank copula.
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(x1, x2) 0 1 2 3 ≥ 4 tot

0 0.05595 0.00649 0.00007 0.00000 0.00000 0.0625

1 0.07427 0.14545 0.02916 0.00111 0.00001 0.25

2 0.00512 0.11478 0.18662 0.06237 0.00611 0.375

3 0.00001 0.00394 0.05453 0.11146 0.08006 0.25

4 0.00000 0.00000 0.00029 0.00551 0.05670 0.0625

tot 0.13534 0.27067 0.2707 0.18045 0.14288 1

Table 2: Joint p.m.f. of the r.v. (X1, X2) with binomial and Poisson margins connected by

Gaussian copula with ρ = 0.9.

We describe how to recover the p.m.f. and compute Pearson’s correlation and

compare the results under both dependence structures, varying the dependence

parameter (ρ for the former copula, κ for the latter).

If X1 and X2 are connected through the Gaussian copula with parameter

ρ, Eq.(5), then the probability values of the joint p.m.f. can be computed

numerically, as double integrals over rectangles of the joint normal p.d.f. For

example, computing the probability p(0, 0) according to Eq. (6) is equivalent to

compute the following:

p(0, 0) = F (0, 0) = C(F1(0), F2(0); ρ) =

∫ Φ−1(F1(0))

−∞

∫ Φ−1(F2(0))

−∞

φ2(s, t; ρ)dsdt

(11)

For our example, F1(0) = 0.0625 and then Φ−1(0.0625) = −1.534121; F2(0) =340

0.1353353 and then Φ−1(0.1353) = −1.10152. If we set the dependence param-

eter ρ equal to 0.9, the integral on the right side of (11) is equal to 0.05594503.

The other probability values can be calculated the same way. Computation of

the double integral can be performed through the function pmvnorm comprised

in the R package mvtnorm. Table 2 displays (part of) the joint p.m.f. when345

ρ = 0.9 (we truncated the values of the Poisson margin at x2 = 4).

For the bivariate discrete r.v. (X1, X2) it is possible to compute Pearson’s

correlation ρX1X2 , which we expect to be different from the correlation of the

Gaussian copula ρ. In order to do that, we need to compute the mixed moment
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E(X1X2), preferably employing a joint p.m.f. computed over a larger support

grid than that of Table 2. In order to tackle the infinite support of the Poisson

variate and numerically compute the value of the mixed moment E(X1X2) with

a small error margin, we can follow the expedient suggested in [29, 30] and

(temporarily) truncate it to a very high quantile; in this case taking a threshold

equal to x2max = 13 is reasonable, since F2(x2max) ≈ 1. Then,

E(X1X2) =

4
∑

i=0

∞
∑

j=0

i · j · p(i, j) ≈
4

∑

i=0

∞
∑

j=0

i · j · p∗(i, j)

where

p∗(i, j) =











p(i, j) if j < x2max

∑∞
j=x2max

p(i, j) if j ≥ x2max

is the joint p.m.f. of the truncated version of the bivariate discrete r.v.

In Figure 1, we graphically display the relationship between the correlation

parameter ρGa of the bivariate Gaussian copula, which takes all the values in

[−1,+1], and the correlation coefficient ρX1X2
between the two discrete mar-350

gins X1 ∼ Binom(n = 4, θ = 0.5) and X2 ∼ Pois(λ = 2). The function

ρX1X2 = G(ρGa) is a strictly increasing function passing through the origin.

From Figure 1, it is also evident how the minimum and maximum correlation

between the two discrete margins connected by a Gaussian copula are not −1

and +1, but −0.92171 and +0.92171. This empirically confirms the result given355

in Section 3, since the binomial and Poisson are clearly not distributions of the

same type. It is also evident that for ρGa = 0, also ρx1x2 = 0 (for ρ = 0, the

Gaussian copula reduces to the independence copula) and that the relationship

between ρx1x2
and ρGa is almost linear over the entire interval [−1,+1]. More

importantly, we have that |ρX1X2 | ≤ |ρ|, which was empirically noticed by [12]360

and is a more general result due to [31], reprised by [32, p.155]. For example, if

we set ρGa = 0.9, we have that ρX1X2
= 0.8259.

We can develop an analogous exercise by using the Frank copula, parametrized

by κ ∈ R, which spans the entire dependence spectrum, like the Gaussian cop-

ula. As we did for the case of the Gaussian copula, we can reconstruct the joint
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Figure 1: Relationship (represented by the solid line) between the correlation parameter ρGa

of the Gaussian copula and the correlation of the Binomial (with n = 4, θ = 0.5) and the

Poisson (λ = 2) margins connected by the same copula. The red dashed line indicates the

I-III quadrant bisector.
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p.m.f. of the r.v. (X1, X2) recalling again (6). For example, letting κ = 14.21,

in order to compute p(0, 0) we calculate

p(0, 0) = F (0, 0) = C(F1(0), F2(0)) =

= − 1

14.21
log

[

1 +
(e−14.21·0.00625 − 1)(e−14.21·0.13534 − 1)

e−14.21 − 1

]

= 0.04914.

Table 3 displays the joint pmf for κ = 14.21. As done before, by building

the p.m.f. for several values of κ, we can reconstruct the relationship between

(x1, x2) 0 1 2 3 ≥ 4 tot

0 0.04914 0.01305 0.00031 0.00001 0.00000 0.0625

1 0.08151 0.15245 0.01566 0.00036 0.00003 0.125

2 0.00466 0.10394 0.21277 0.04837 0.00526 0.375

3 0.00002 0.00121 0.04094 0.12062 0.08720 0.125

4 0.00000 0.00002 0.00099 0.01110 0.05039 0.0625

tot 0.13534 0.27067 0.2707 0.18045 0.14288 1

Table 3: Joint p.m.f. of the r.v. (X1, X2) with binomial and Poisson margins connected by

Frank copula with κ = 14.21.
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the correlation coefficient ρX1X2 and the dependence parameter κ, which is365

displayed in Figure 2. Note that ρX1X2
is an increasing function of κ, passing

through the origin (when the Frank copula coincides with the independence

copula, the two margins are independent and then uncorrelated); when κ goes

to +∞ (−∞), which corresponds to the comonotonicity (countermonotonicity)

case, then ρ tends asymptotically but quite slowly to the limit ρmax (ρmin). The370

value κ = 14.21 we employed before in the example of computation of p(x1, x2)

yields a correlation equal to 0.8259, the same induced by the Gaussian copula

with ρGa = 0.9.

Figure 2: Relationship (represented by the solid line) between the correlation parameter κ of

the Frank copula and the correlation between the Binomial (with (n = 4, θ = 0.5)) and the

Poisson (λ = 2) margins connected by the same copula.
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The comparison between Tables 2 and 3 shows that though sharing the same

value of linear correlation, the two joint distributions are quite different (one can375

just consider the (0, 0) probabilities). Through this example we showed that it

is possible to construct two bivariate discrete distributions with the same choice

of margins and the same value of (linear) correlation, but with a different joint

distribution. This is a practical counterexample that indicates how Pearson’s

ρ is in general unable to characterize the dependence structure of a bivariate380

distribution (its second fallacy discussed in Section 3.1).
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Table 4: Bivariate distribution of the data taken from [33]: number of flight aborts by 109

aircrafts in the first and second consecutive six months of a one-year period.

x1 \ x2 0 1 2 3 4 tot

0 34 20 4 6 4 68

1 17 7 0 0 0 24

2 6 4 1 0 0 11

3 0 4 0 0 0 4

4 0 0 0 0 0 0

5 2 0 0 0 0 2

tot 59 35 5 6 4 109

8. An application to real data

In this section, we fit several bivariate copula-based discrete models to a

dataset taken from the literature. The data, considered in [33] (see Table 4),

consist of the number of aborts by 109 aircrafts in two (first = x1, second =385

x2) consecutive 6 months of 1-year period. Summary statistics for the dataset

are x̄1 = 0.624, x̄2 = 0.725, var(x1) = 1.024, var(x2) = 1.062. The sample

correlation coefficient between x1 and x2 is ρ̂x1x2 = −0.1609, which denotes

a negative dependence. In order to fit these data, we adopt the copula ap-

proach described in this chapter: we separate the modeling of the margins390

from the modeling of the dependence structure. As to the marginal distribu-

tions, it was shown that the geometric distribution could be a plausible model

for both x1 and x2; then this can be a first choice. Alternatively, we can

fall back on one-parameter discrete Lindley distribution [34], whose p.m.f. is

p(x; θ) =
∑1

i=0(−1)i(1+θ(x+1)/(1+θ)e−θ(x+i)), for x = 0, 1, 2, . . . , with θ > 0.395

We can add a further degree of complexity by considering the discrete Weibull

distribution [35], which can be regarded as a generalization of the geometric

distribution. The expression of the p.m.f. of the discrete Weibull distribution

with parameters q and β is p(x; q, β) = qx
β − q(x+1)β , for x = 0, 1, 2, . . . , with

0 < q < 1 and β > 0. If β = 1, the discrete Weibull distribution reduces to400
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a geometric distribution with parameter θ = 1 − q. As for the modelling of

the dependence structure, here we limit to consider the Gaussian and the Frank

copula, which are able to handle negative dependence. We considered the bivari-

ate models displayed in Table 5 (just a selection of all possible combinations),

for which we computed the MLEs for all the parameters, the maximum value405

of the log-likelihood function ℓ, and the value of the AIC (Akaike Information

Criterion) index, 2r− 2ℓ, where r is the number of model parameters. In terms

of AIC, the best model among the eight considered here is the one linking two

geometric margins through a Gaussian copula (first line of Table 5). The corre-

sponding theoretical joint frequencies are displayed in Table 6. The second best410

model is the one linking two discrete Lindley distributions through the Gaussian

copula (third row). The results indicate that complicating the model by fitting

the two-parameter discrete Weibull distribution to the margins is not relatively

convenient: as expected, the value of the log-likelihood function increases, but

also the AIC increases; note that all the estimated β values, for both x1 and x2,415

are very close to 1, the value for which the discrete Weibull degenerates into a

geometric distribution. We reaffirm that the models of Table 5 represent just a

small part of the infinite copula-based models that can be devised by exploiting

the construction principle expressed by Eq.(2).
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Table 6: Theoretical joint frequencies for Mitchell & Paulson data [33] under the copula-

based model with geometric margins and Gaussian copula. Cell borders highlight the cells’

groupings.

(x1, x2) 0 1 2 3 ≥ 4 tot

0 35.12 17.60 7.95 3.50 2.67 66.84

1 16.51 5.84 2.17 0.82 0.51 25.85

2 6.93 2.01 0.68 0.24 0.14 10.00

3 2.83 0.70 0.22 0.07 0.04 3.87

4 1.14 0.25 0.07 0.02 0.01 1.50

≥ 5 0.75 0.14 0.04 0.01 0.01 0.94

tot 63.28 26.54 11.13 4.67 3.37 109

The estimates of Table 5 were derived according to the full MLE; alterna-420

tively, one can implement the IFM method (see Section 4), which is compu-

tationally more convenient. For the “best” model, it works as follows: one

first computes the MLEs of the parameters θ1 and θ2, of the two geomet-

rically distributed margins, as if they were independent, which are equal to

θ̂1,IFM = 1/(1 + x̄1) = 0.6158 and θ̂2,IFM = 1/(1 + x̄2) = 0.5798, and then425

one can maximize the log-likelihood with respect to the dependence parameter

only, plugging in the two estimates above: ρ̂IFM = −0.2251. The three estimate

derived through the IFM method are very close to the corresponding full MLEs.

We can compute the customary chi-square statistic as an absolute measure

of goodness-of-fit on the “best” model. In order to do it, we have first to group430

cells and sum up the values of the theoretical contingency table of Table 6,

in order to ensure a minimum frequency of 5 for each grouping. A possible

grouping is there displayed. Then we calculate χ2 =
∑G

g=1(eg−og)
2/eg = 5.408,

where eg and og are the expected and observed frequency of the g-th grouping,

respectively, g = 1, . . . , G = 8. The corresponding p-value of the chi-square test435

statistic, under the null hypothesis that the observed bivariate sample actually

comes from the selected bivariate model, is 0.248, which attests the model fits

the data adequately.
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9. Conclusions

In this chapter we reviewed the statistical modelling of correlated count data440

via copulas. After presenting the basic notions of copulas, we discussed how

copula-based models can be constructed for modelling multivariate correlated

count data, how to recover the joint probability mass function, how to simulate

pseudo-random samples, and how to make inference, cautioning about possible

issues arising from the discrete nature of variables. A numerical example is445

presented that practically shows how to derive the joint probability function

and the linear correlation for two bivariate models sharing the same margins

but having different dependence structures. Finally, a dataset taken from the

literature has been analysed and fitted using several copula-based distributions,

whose goodness-of-fit has been compared through a customary index.450

Rather than discussing the whole literature on the modelling of correlated

count data, which would have been a very arduous task, since it is quite scat-

tered in many and recent works, we preferred to highlight and linger on several

connotative points, illustrating them through some numerical examples.

Although a very intuitive and flexible tool for building up multivariate dis-455

crete distributions, copulas are however problematic when the dimension in-

creases: the joint probability function may be cumbersome to compute and

pseudo-random simulation can be not straightforward. Moreover, the discrete

nature of the data adds some questions related to estimation. Statistical re-

search is facing these issues in order to spread and facilitate the use of copulas460

for building appropriate stochastic models for real data.
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