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ABSTRACT
Allopolyploidy combines two progenitor genomes in the same nucleus. It is a
common speciation process, especially in plants. Deciphering the origins of poly-
ploid species is a complex problem due to, among other things, extinct progenitors,
multiple origins, gene flow between different polyploid populations, and loss of
parental contributions through gene or chromosome loss. Among the perennial
species of Glycine, the plant genus that includes the cultivated soybean (G. max), are
eight allopolyploid species, three of which are studied here. Previous crossing studies
and molecular systematic results from two nuclear gene sequences led to hypotheses
of origin for these species from among extant diploid species. We use several phylo-
genetic and population genomics approaches to clarify the origins of the genomes of
three of these allopolyploid species using single nucleotide polymorphism data and
a guided transcriptome assembly. The results support the hypothesis that all three
polyploid species are fixed hybrids combining the genomes of the two putative par-
ents hypothesized on the basis of previous work. Based on mapping to the soybean
reference genome, there appear to be no large regions for which one homoeologous
contribution is missing. Phylogenetic analyses of 27 selected transcripts using a
coalescent approach also are consistent with multiple origins for these allopolyploid
species, and suggest that origins occurred within the last several hundred thousand
years.

Subjects Evolutionary Studies, Plant Science, Taxonomy
Keywords Polyploidy, Phylogenetics, Population genomics, NGS

INTRODUCTION
Polyploidy (whole genome duplication, WGD) is a key process in plant evolution.

All seed plants are fundamentally polyploid, with a second WGD event shared by all

flowering plants (Jiao et al., 2011), and additional events found in many lineages (see

http://genomevolution.org/wiki/index.php/Plant paleopolyploidy) (Soltis et al., 2009). It

has been estimated that 15% of all flowering plant speciation events involve polyploidy

(Wood et al., 2009). Systematists generally recognize autopolyploidy and allopolyploidy as

distinct types of polyloidy events, based on the level of divergence of the diploid genomes

that formed the polyploid. The terms are best thought of as describing elements of a

continuum that ranges from the doubling of a single genome (autopolyploidy), to the
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incorporation of differentiated genomes in a single nucleus by hybridization of different

species (allopolyploidy). From a genetic perspective, allopolyploids are characterized by

diploid-like meiotic behavior and limited interaction between the two homoeologous

genomes. The duplicated chromosomes of an autopolyploid (and, to a lesser extent, a

newly formed allopolyploid; Ramsey & Schemske, 2002) initially can associate randomly,

leading to polysomic segregation, but it is generally assumed that this is a transient state;

diploidization leads to the eventual presence of homoeologous genomes. It is difficult,

if not impossible to determine from the genomes of older polyploids (paleopolyploids,

mesopolyploids) how differentiated their progenitor genomes were in large part due to the

frequent absence of extant diploid progenitors for comparative purposes.

The initial “fixed hybrid” condition of an allopolyploid erodes over time as homoeolo-

gous loci are lost (Lynch & Conery, 2000; Maere et al., 2005); this process of “fractionation”

is thought to occur preferentially from one subgenome, but the precise mechanisms

remain unknown (Schnable & Freeling, 2011; Freeling et al., 2012). In addition to the

loss of genes, the process of concerted evolution can result in the replacement of a gene

from one genome by its homoeologue, notably through gene conversion (e.g., Wang et

al., 2007). The earliest stages of polyploid evolution may contribute disproportionately

to gene loss and genomic rearrangement through genomic shock (McClintock, 1984). For

example, some individuals of the ca. 100 year-old allopolyploid, Tragopogon miscellus,

have lost entire chromosomes of one parent (Chester et al., 2012). Diversity in polyploids

can be due to mutational divergence from parental diploids, but also due to multiple

origins produced by different polyploidization events between different genotypes of

the same diploid species (Symonds, Soltis & Soltis, 2010). Questions concerning how

polyploids originate (e.g., single vs. multiple origins), how they partition their variation

(e.g., as a single lineage united by gene flow vs. as separate lineages formed from different

genotypes of the same progenitor species), and how much of the initial parental contri-

butions they retain are among the major questions in polyploid evolutionary research

(Soltis et al., 2010).

High-throughput sequencing produces massive amounts of genome-wide data, and

thus has great potential for systematic and evolutionary studies in general (Gilad,

Pritchard & Thornton, 2009). The ready availability of genomic and transcriptomic data

has opened new opportunities for studying the evolution of polyploids (Bombarely et

al., 2012; Grover, Salmon & Wendel, 2012; Ilut et al., 2012; Dufresne et al., 2014) at the

scale of whole genomes. However, it is not trivial to extract relevant information from

short read sequencing data, particularly for allopolyploids, where the interest is often

in deconvoluting the complex genome into its two homoeologous subgenomes (Grover,

Salmon & Wendel, 2012; Ilut et al., 2012). Moreover, the field of systematics has what has

been called a new paradigm for studying species relationships, involving genealogical

approaches (Edwards, 2009). Genealogical methods have lately begun to be applied to both

autopolyploids (Arnold, Bomblies & Wakeley, 2012; Hollister et al., 2012) and allopolyploids

(e.g., Slotte et al., 2011; Jones, Sagitov & Oxelman, 2013; Slotte et al., 2013). The confluence

of these two developments promises to accelerate the study of polyploid evolution.
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The genus Glycine includes the cultivated soybean (G. max) and its wild progenitor

(G. soja), both annual species native to northeastern Asia, as well as approximately 30

perennial species native to Australia classified as subgenus Glycine (Ratnaparkhe, Singh

& Doyle, 2011). Like many plant species, Glycine has a complex history of polyploidy:

in addition to events shared with all angiosperms (Jiao et al., 2011) and eudicots (Jiao et

al., 2012), the soybean genome retains evidence from a WGD around 50 million years

ago (MYA) shared with a large subset of legumes (Blanc & Wolfe, 2004; Schlueter et al.,

2004; Cannon et al., 2010), and particularly from a more recent polyploidy event that

increased the chromosome number of the ancestor of all extant Glycine species from

2n = 20 to 2n = 40 (Shoemaker, Schlueter & Doyle, 2006; Doyle & Egan, 2010; Schmutz et

al., 2010; Doyle, 2012). This Glycine-specific WGD occurred between the estimated time of

homoeologous gene divergence in the soybean genome (10–13 MYA; e.g., Egan & Doyle,

2010; Schmutz et al., 2010), and around 5 MYA, when the annual and perennial species

diverged from an already-polyploid common ancestor (Doyle & Egan, 2010).

In addition to these older events, eight perennial Glycine species are allopolyploids with

2n = 78 or 80, hypothesized to have arisen by hybridization involving various combina-

tions of eight extant diploid species, several of them multiple times and involving both

progenitors as chloroplast genome donors (Doyle et al., 2004). Various lines of evidence

culminated in these hypotheses of reticulate relationships, which are shown in Fig. 1 for the

six species that are part of the G. tomentella sub-complex (Doyle et al., 2004). Chromosome

number polymorphism (2n = 38, 40, 78, 80) was observed in what was initially considered

a single taxon, Glycine tomentella (Newell & Hymowitz, 1978). Patterns of sterility and

partial chromosome pairing in artificial crosses among G. tomentella plants were consistent

with the presence of shared homoeologous diploid genomes among polyploids (Grant,

Brown & Grace, 1984; Doyle et al., 1986; Singh, Kollipara & Hymowitz, 1998). Isozyme

studies of diploid and allopolyploid G. tomentella led to the characterization of numerous

“races” designated either “D” for diploid, or “T” for tetraploid (Doyle & Brown, 1985;

Singh, Kollipara & Hymowitz, 1998). Morphological complexity, presumably due to the

reticulate nature of the complex, has slowed nomenclatural recognition of what are clearly

species in the biological sense. More recently, molecular phylogenetic studies assumed a

dominant role in refining hypotheses of relationships (Hsing et al., 2001; Singh, Kollipara

& Hymowitz, 1998; Brown et al., 2002; Doyle et al., 2002; Rauscher, Doyle & Brown, 2004),

and corroborated earlier hypotheses concerning the origins of polyploids from among

the diploid (2n = 38,40) “genome groups” that were also initially defined by artificial

hybridization studies and later by molecular studies (see Ratnaparkhe, Singh & Doyle,

2011). However, these DNA-level studies were based on only two molecular markers: the

internal transcribed spacers of the 18S-5.8S-26S nuclear ribosomal gene cistron (nrDNA

ITS) and the low copy nuclear gene, histone H3D. Relationships of chloroplast genomes

are broadly consistent with these results (Hsing et al., 2001), but are complicated by

incongruence with nuclear markers, likely due to a combination of incomplete lineage

sorting and introgression (Doyle et al., 2004). Thus, a genome-wide perspective on the
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Figure 1 Schema of the Glycine perennial polyploid complex. Diploid progenitors are represented by
circles and allotetraploid species by squares. Chromosome numbers are shown for each species, and
genome groups (Ratnaparkhe, Singh & Doyle, 2011) are given for diploids. Species used in this study
(G. tomentella D1, G. tomentella D3, G. syndetika D4, G. canescens, G. clandestina, G. dolichocarpa T2,
G. tomentella T1 and G. tomentella T5) are shown in green.

origin and evolution of the G. tomentella complex, including estimates of dates of origin,

has been lacking.

A better understanding of the origin and evolution of the Glycine allopolyploid complex

will complement its exploitation in studying the impact of allopolyploidy on a range

of morphological and physiological characters (Coate & Doyle, 2010; Coate et al., 2012;

Ilut et al., 2012; Coate & Doyle, 2013; Hegarty et al., 2013). Here we apply phylogenetic

and coalescent methods to a transcriptomic dataset from three of these allopolyploid

species and their diploid progenitors that was originally generated to study the effects of

polyploidy on their ability to cope with stress from excess light (Coate & Doyle, 2013).

MATERIAL AND METHODS
Taxon sampling and transcriptome sequencing
Three Glycine (Fig. 1) allopolyploid “triads” (from the Glycine perennial polyploid

complex) defined as an allopolyploid species and its two putative diploid progenitors,

were sampled: (1) the allopolyploid, G. tomentella T1 (2n = 78) and the diploid species,

G. tomentella D1 (E-genome of Hymowitz, Singh & Kollipara, 2010; 2n = 38) and

G. tomentella D3 (D-genome; 2n = 40); (2) G. dolichocarpa (= G. tomentella T2; 2n = 80)
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Table 1 Sequencing, reads processing and mapping summary. Represented genes reflected the number of Glycine max reference genome genes
where after the perennials reads mapping and expression measure have an expression >0 (RPKM). Gray shading, allopolyploid species.

Species Accession Samples Raw reads Processed reads Mapped reads Represented genes

Glycine canescens 1232 2 21,332,880 20,696,801 14,381,555 23,833

Glycine clandestina 1126 2 19,086,864 18,613,018 11,815,996 23,340

1253 3 33,546,015 32,326,942 19,117,095 23,723

Glycine dolichocarpa 1134 13 202,427,873 187,120,918 60,712,525 23,643

1188 2 19,034,633 18,279,858 11,960,713 22,952

1286 2 11,814,995 11,216,980 7,422,888 25,278

1393 2 21,820,163 21,029,983 13,643,602 23,345

1854 3 54,748,079 42,826,840 16,032,643 22,718

Glycine syndetika 1300 3 25,527,322 23,634,740 14,092,961 24,238

2073 2 12,132,989 11,072,073 7,087,710 24,438

2321 2 32,796,391 30,024,544 13,637,368 22,571

Glycine tomentella D1 1156 3 38,218,179 36,988,846 21,905,536 23,041

1157 2 16,522,541 15,906,072 9,715,890 23,920

1316 2 25,207,045 24,375,482 15,417,078 22,749

Glycine tomentella D3 1364 1 10,401,944 9,604,350 6,896,983 22,802

1366 2 20,631,583 18,098,232 10,766,169 23,364

1403 3 31,631,369 28,953,234 17,218,424 23,352

1820 3 71,185,274 63,055,644 18,625,439 22,871

Glycine tomentella T1 1288 2 14,608,219 14,148,847 9,298,349 23,348

1361 2 17,964,870 17,627,119 11,217,736 23,758

1763 2 21,870,236 20,933,661 14,101,838 23,349

Glycine tomentella T5 A58 1 2 22,447,334 21,996,303 13,389,955 23,042

1487 2 21,267,274 20,469,069 13,907,305 23,437

1969 3 21,324,229 20,847,883 11,136,293 23,522

and its putative progenitors G. tomentella D3 and G. syndetika (= G. tomentella D4;

A-genome; 2n = 40); and (3) G. tomentella T5 (2n = 78) and its hypothesized progenitors,

G. tomentella D1 and G. clandestina (A-genome; 2n = 40). Each species was represented by

2–5 accessions sampled from the CSIRO Division of Plant Industry Perennial Glycine

Germplasm Collection (Table 1). Additionally, a synthetic allotetraploid (A58) was

used, which mimics the natural T5 allopolyploid, having been produced by doubling an

artificial hybrid of G. tomentella D1 (accession G1316) and G. canescens (accession G1233;

A-genome; 2n = 40); G. canescens is an A-genome species closely related to G. clandestina.

A summary of the datasets used can be found in Table S4.

Plants were grown in a common growth chamber with a 12 h/12 h light/dark cycle,

22 ◦C/18 ◦C day/night temperature regime, and a light intensity of either 125 mmol

m−2 s−1 (LL) or 800 mmol m−2 s−1 (EL). Different light intensities were used for the

purposes of a separate study examining light stress responses (Coate & Doyle, 2013).

Single leaflets were pooled from six individuals per accession, and RNA-Seq libraries

were constructed from the pooled tissue. All samples were taken from approximately

1-week-old, fully expanded leaves, and were collected 0.5–2.0 h into the light period.
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For each light treatment, all tissue was collected in a single morning and immediately

frozen in liquid nitrogen. Total RNA was isolated from pooled leaf tissue using the Plant

RNeasy Kit with on-column DNase treatment (Qiagen, Valencia, CA, USA). Single-end

RNA-Seq libraries were constructed following the Illumina mRNA-seq Sample Preparation

Kit protocol (Illumina, San Diego, CA, USA), with the following modifications: (1) two

rounds of polyA selection were performed using the Dynabeads mRNA DIRECT Kit (Life

Technologies, Carlsbad, CA, USA); (2) RNA was fragmented for 2 min at 70 ◦C using

the RNA fragmentation reagents kit (Life Technologies); and (3) Illumina PE adapters

were replaced with custom-made adapters containing 3nt barcodes in order to facilitate

multiplexing of samples (see Coate & Doyle, 2013 for adapters and Table S1 for the barcode

sequences). Sequencing was performed on either the GAIIx or HiSeq 2000 platform (Illu-

mina), generating 88 nt or 100 nt reads, respectively. Equimolar amounts of three (GAIIx)

or four (HiSeq 2000) barcoded libraries were combined and sequenced per channel.

Read processing and single nucleotide polymorphism (SNP)
calling
Reads were processed with Fastq-mcf (Aronesty, 2013) to trim low quality extremes (min.

quality 30) and remove short reads (min. read length 50 bp). They were aligned to the

soybean genome (version 1.0, downloaded from www.phytozome.net/soybean) using

Bowtie2 (Langmead & Salzberg, 2012) with the default parameters. Mapping files from the

same accession were merged. Reads without preferential mapping (same score for two or

more mapping hits) and with a mapping score below 20 were removed. SNP calling was

performed using Samtools (Li et al., 2009). SNPs supported with read coverage below 5

were removed. VCF files were combined and formatted to Structure and Hapmap formats

using the Perl script MultiVcfTool (https://github.com/aubombarely/GenoToolBox/blob/

master/SeqTools/MultiVcfTool).

Homoeologue read identification and transcript-guided assembly
For homoeologous SNP identification, a consensus diploid transcriptome was rebuilt

for each of the species groups (A, with G. clandestina and G. canescens accessions; D1,

with G. tomentella D1 accessions; D3, with G. tomentella D3 accessions; and D4, with

G. syndetika accessions) using Samtools (Li et al., 2009) and Gffread from the Cufflinks

software package (Trapnell et al., 2010). A progenitor reference set was created for

each of the polyploid species joining the diploid transcriptome sets (T1 = D1 + D3,

T2 = D3 + D4 and T5 = A + D1). Reads from the polyploid species were mapped

with these references using Bowtie2. Sam mapping files were processed to identify reads

according the preferential mapping with each of the progenitors using the Perl script,

SeparateHomeolog2Sam (https://github.com/aubombarely/GenoToolBox/blob/master/

SeqTools/SeparateHomeolog2Sam). Reads with mapping score AS and XS = 0 (No SNPs)

were kept and used to rebuild the polyploid transcriptomes using Samtools (Li et al.,

2009) and Gffread (from the Cufflinks package Trapnell et al., 2012). Once the reads were

separated according its preferential mapping, they were mapped back to the soybean

genome. SNPs were called as described above.
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Population structure analysis
The programs Structure (Pritchard, Stephens & Donnelly, 2000) and fineStructure (Lawson

et al., 2012) were used to analyze population structure of the two SNP datasets, with and

without polyploid SNPs separated by homoeologue, described above. For Structure, each

of the datasets was divided into three subsets of 20,000 SNPs selected with a random

function incorporated in the MultiVcfTool. 5 replicates were run for each of the subsets

with a burn-in of 10,000 and a number of MCMC repetitions of 10,000, from K = 1

to K = 15 using the default parameters (λ = 1, assuming uniform distribution of allele

frequencies, Pritchard, Stephens & Donnelly, 2000). Admixture was selected. The optimal

number of clusters was identified based on the rate of change in the log probability of data

between successive K values (Evanno, Regnaut & Goudet, 2005). Results at K = 6 were

verified with a re-analysis using a burn-in of 100,000 generations. Results were visualized

using R (barplot function).

The two SNP datasets were divided into 20 different subsets each mapping to one

soybean reference chromosome for FineStructure analysis. Analyses were performed

following the instructions from the fineStructure web for the unlinked model (http://

www.maths.bris.ac.uk/∼madjl/finestructure/data example.html). Results were presented

as a heatmap of distances between each of the accessions. A principal component analysis

(PCA) was performed over the same distance matrix using fineStructure software. The

PCA figure was created using R.

Reconstruction of phylogenies using concatenated SNPs
SNPs from the dataset in which SNPs from allopolyploids were partitioned into their two

homoeologues (“homoeologue data set”) and were concatenated to create a supermatrix

with 36 operational taxonomic units (OTUs). The two homoeologous gene copies

from each allopolyploid were treated as individual OTUs; for example the D1 and D3

homoeologues of T1 individuals were treated as D1T1 and D3T1, respectively. G. max,

accession William82 was used as outgroup. The alignment files were produced changing

the SNPs Hapmap format to fasta using a Perl script. The resulting matrix was used in two

analyses. First, maximum likelihood (ML) was used, implemented in PhyML (Guindon

& Gascuel, 2003) with GTR as the substitution model; 100 bootstrap replicates were

conducted. Second, in order to visualize reticulations in the dataset, a network method,

NeighborNet, was implemented in the SplitsTree package (Huson & Bryant, 2006) with the

default parameters. Trees were visualized and drawn using FigTree (Rambaut, 2012).

Gene-based analyses
A subset of transcripts was selected for phylogenetic and network analyses based on the

following criteria: No more than 10% of Ns for the guided assembly consensus sequence

in any of the accessions after the homoeologue read identification; alignments with at

least 1000 bp; and genes with their corresponding G. max homologue identified as an

existing pair retained from the most recent (ca. 5–10 million years; Doyle & Egan, 2010)

Glycine WGD event, as compiled by Du et al. (2012). Sequence alignments were based on
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the transcriptome-guided assembly. Sequence for each of the genes was collected with a

Perl script (FastaSeqExtract, GenoToolBox script package), concatenated and changed to

the required sequence alignment format using a BioPerl script (bp sreformat.pl). The 95

alignments selected were used in an exploratory phylogenetic analysis using the Bayesian

MCMC method, BEAST (Drummond et al., 2012) (HKY substitution model, 10,000,000

MCMC). Alignments that produced trees in which G. max was not sister to perennial

Glycine species in the consensus tree were removed. Generally the removed alignments

showed tree topologies with two large clades with long branches, indicating the possibility

of inclusion of paralogous genes from the older whole genome duplication (ca. 50 MY,

common to the Leguminosae; reviewed in Doyle, 2012) instead the orthologue.

27 genes selected after this filtering were analyzed using three different methods: (1)

Phylogenies were reconstructed using ML using PhyML (Guindon & Gascuel, 2003) with

1,000 bootstraps. jModelTest2 was used to choose the best substitution model (Darriba et

al., 2012). According to the Bayesian Information Criterion (BIC) HKY was the preferred

model (40% of the genes), followed by K80 (26% of the genes; Table S2). (2) Networks

were constructed using NeighborNet in SplitsTree4 with the default parameters (Huson

& Bryant, 2006). (3) Bayesian analysis was performed using BEAST v2.0 (Drummond

et al., 2012). The two homoeologous gene copies from each allopolyploid were treated

as individual OTUs as in the concatenated analysis, and G. max, accession William82

was again used as outgroup. Based on the jModelTest2 results, HKY was used as the

substitution model. The MCMC chain was set to 100,000,000 MCMC generations, taking

samples every 1000 generations. Divergence ages were estimated by scaling the tree root

(divergence between G. max and perennials) to 5 Myr (Egan & Doyle, 2010). All trees were

drawn using FigTree (Rambaut, 2012).

Species tree reconstruction
Species tree reconstruction under the coalescent was performed using the 27 selected genes

in *BEAST (Drummond et al., 2012). The 24 accessions, including two homoeologues for

each allopolyploid accession, were grouped in 11 operational taxonomic units (OTUs) for

this analysis: G. canescens, G. clandestina, G. tomentella D1, G. tomentella D3, G. syndetika

(D4), G. tomentella T1–D1, G. tomentella T1–D3, G. dolichocarpa T2–D3, G. dolichocarpa

T2–D4, G. tomentella T5–A and G. tomentella T5–D1. G. max was used as outgroup. Based

on jModelTest2 results, HKY was used as substitution model. The MCMC chain was set to

100,000,000 MCMC generations, taking samples every 1000 generations. Divergence dates

were estimated as described above. All the trees were drawn using FigTree (Rambaut, 2012).

RESULTS
Phylogenomics dataset generation
Between 7 and 60 million reads from leaf transcriptomes of 24 accessions representing 8

Glycine perennial species were mapped to the Glycine max genome (v1.0) (Schmutz et al.,

2010). Reads mapped to 22,500–25,000 genes (∼40% of soybean gene models; Table 1);

this represents between 4.5 and 11.6% of the genome. 200,000–965,000 single nucleotide
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Table 2 Summary of SNPs using G. max as reference genome. Gray shading, allopolyploid species.

Species Accession % Gmax coverage* Raw SNPs Processed SNPs** Synonymous Non-synonymous

Glycine canescens 1232 7.2 [65.0] 589,686 453,398 [7.7] 148,321 123,413

Glycine clandestina 1126 6.7 [61.4] 496,746 375,943 [7.5] 115,340 96,562

1253 7.5 [65.1] 617,543 487,923 [8.3] 143,952 124,920

Glycine dolichocarpa 1134 11.6 [77.4] 1,135,676 965,643 [26.4] 242,556 221,326

1188 7.4 [65.1] 550,698 423,353 [28.9] 132,471 113,785

1286 4.5 [45.5] 302,661 224,653 [27.9] 67,187 53,595

1393 6.7 [62.9] 470,402 367,646 [28.8] 125,339 104,549

1854 7.8 [65.3] 580,531 471,020 [25.8] 140,911 120,274

Glycine syndetika 1300 7.5 [65.5] 605,556 477,245 [7.8] 147,362 125,041

2073 6.0 [57.6] 402,798 282,215 [12.6] 91,451 75,333

2321 8.0 [67.7] 670,121 544,101 [6.3] 166,409 143,612

Glycine tomentella D1 1156 8.6 [69.7] 767,614 621,043 [7.6] 190,778 160,781

1157 6.2 [56.8] 455,265 328,574 [7.1] 94,377 77,945

1316 7.2 [62.3] 537,439 412,518 [9.3] 120,056 99,666

Glycine tomentella D3 1364 5.0 [51.8] 335,301 226,697 [7.8] 84,917 65,888

1366 6.6 [59.7] 481,258 360,327 [7.5] 111,011 90,015

1403 6.4 [60.8] 476,495 369,661 [6.6] 121,526 99,074

1820 9.3 [69.6] 803,774 641,145 [6.6] 188,965 161,826

Glycine tomentella T1 1288 6.9 [63.0] 498,900 371,845 [19.6] 121,418 102,548

1361 5.1 [54.2] 293,339 200,738 [18.4] 75,653 59,378

1763 7.1 [65.5] 533,041 417,420 [19.4] 140,203 116,465

Glycine tomentella T5 A58 1 7.3 [64.6] 544,331 430,552 [27.3] 135,163 113,781

1487 7.0 [63.6] 516,755 395,503 [26.8] 128,199 105,647

1969 7.4 [65.9] 558,920 444,468 [27.5] 146,711 124,933

Notes.
* Between square brackets the coverage of the G. max transcriptome, including alternative splicings.

** Square brackets, percentage of heterozygous positions.

polymorphisms (SNPs) were identified relative to G. max; 6.3–12.6% of SNP positions

were polymorphic in diploid species (G. clandestina, G. canescens, G. tomentella D1

(referred as D1 hereafter), G. tomentella D3 (referred as D3) and G. syndetika (referred as

D4)), and 18.4–28.8% in polyploid species (G. tomentella T1 (referred as T1), G. tomentella

T5 (referred as T5) and G. dolichocarpa T2 (referred as T2); Table 2). The interpretation of

these positions as standard heterozygosity is complicated by the recent (5–10 MYA: Doyle

& Egan, 2010) WGD in the ancestral Glycine genome. In a gene for which soybean has lost

one of the homoeologous copies from this event, but the perennial species for which it

is serving as reference has retained both copies, polymorphic SNPs may be due to reads

from two different homoeologous loci in the perennial, rather than two alleles at a single

locus. Low levels of conventional heterozygosity are expected in Glycine species, because

of their strongly selfing reproductive biology, with much reproduction occurring through

cleistogamous (closed, selfing) flowers.
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Table 3 Summary of the mapped reads and SNPs produced after the homoeologus reads separation. It is based in the selective mapping with its
progenitors.

Species Accession Progenitor I Mapped to
progenitor I (%)

SNPs for I* Progenitor II Mapped to
progenitor II (%)

SNPs for II*

Glycine dolichocarpa 1134 D3 11.4 399,884 [2.2] D4 11.6 380,389 [2.1]

1188 D3 20.8 227,610 [2.0] D4 20.4 220,610 [2.1]

1286 D3 20.3 124,984 [1.7] D4 20.3 123,873 [1.8]

1393 D3 19.6 197,132 [1.9] D4 19.8 192,148 [1.9]

1854 D3 17.9 245354 [1.5] D4 19.3 242,561 [1.7]

Glycine tomentella T1 1288 D1 14.9 143,232[1.7] D3 17.5 160,873 [1.9]

1361 D1 15.0 155,360 [1.6] D3 17.6 175,871 [2.0]

1763 D1 14.8 158,777 [1.8] D3 17.3 179,032 [2.0]

Glycine tomentella T5 A58 1 A 16.9 190,138[2.1] D1 20.5 222,134 [1.8]

1487 A 17.1 174,051 [1.9] D1 20.0 202,555 [1.7]

1969 A 16.0 182,615 [2.4] D1 18.6 214,799 [1.8]

Notes.
* Square brackets, percentage of heterozygous positions.

The much higher percentage of polymorphic positions in polyploid individuals (T1, T2,

T5) likely is also due to the mapping of reads from two homoeologous copies to a single

target, in this case due to recent polyploidy: for example, mapping reads from tetraploid

(2n = 80) T2 to a single locus in the diploid (2n = 40) G. max reference genome will result

in reads from both its D3 and D4 homoeologous subgenomes mapping to the same target,

increasing the chance of observing a polymorphism at a given site. Separating reads from

T1, T2, and T5 polyploid individuals was possible where the read has at least one SNP that

could be related to one homoeologous genome contributor (e.g., D3 and D4 differed by

a SNP) and this difference was retained in the D3 and D4 homoeologous genomes of T2;

diploid-distinguishing polymorphism (DDP; see Ilut et al., 2012). Between 11.4 and 20.8%

of reads were assigned to one of the progenitors (Table 3).

Between 124,984 and 399,884 SNPs were produced for each accession. The filtering

of the missing data produced 237,243 and 75,958 polymorphic positions for all the

accessions before and after the homoeologous read assignment, respectively. SNPs per

chromosome ranged from 7,455 (chromosome 14) to 16,494 (chromosome 8) and from

2,288 (chromosome 14) to 5,300 (chromosome 8) before and after the homoeologous

read assignment, respectively. SNPs per species group ranged from 21,830 (D1 species) to

26,438 (A species, G. canescens and G. clandestina) (Table 4).

Transcriptome-guided assemblies produced between ∼1,800 and ∼6,600 full-length

sequences (as mapped to the G. max gene models) for each diploid accession. For

polyploid subtranscriptomes this number was much lower because only reads that mapped

preferentially to one of the diploid consensus species and reads that mapped equally but

with no polymorphism (perfect match) were used during the transcriptome-guided

assembly. Any read that mapped equally to two or more positions with one or more

polymorphisms was discarded because it was impossible to assign it to any of the diploid
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Table 4 Summary of SNP count between species groups. Polyploids are divided in two species accord-
ing the progenitor origin. A Species includes G. canescens, G. clandestina and G. tomentella T5–A; D1
species includes G. tomentella D1, G. tomentella T1–D1 and G. tomentella T5–D1; D3 species includes
G. tomentella D3, G. tomentella T1–D3 and G. tomentella T2–D3; D4 species includes G. syndetika and
G. tomentella T2–D4.

Species group Gmax SNPs A group SNPs D1 group SNPs D3 group SNPs D4 group SNPs

A species 9,406 26,438* 7,096 6,591 1,465

D1 species 11,187 – 21,830* 5,933 7,556

D3 species 9,299 – – 25,157* 7,295

D4 species 9,314 – – – 23,324*

Notes.
* The same species group contains the specific SNPs between accession of the same species.

progenitors, reducing the mapping coverage of the reference gene models. Between ∼350

and ∼1,350 full length sequences were assembled for the T1, T2, and T5 polyploid

homoeologous subtranscriptomes of which between 4 and 19% were duplicated genes

from the 5 to 10 MYA WGD event in the common ancestor of Glycine species (Schmutz et

al., 2010). For phylogenetic analysis, full length sequences are not needed so a phylogenetic

analysis dataset was created with 27 genes (see Material and Methods for the criteria used

to generate this dataset; Table 5).

Genome-wide distribution of homoeologous SNPs
For each allopolyploid accession, the ca. 120,000–400,000 SNPs (Table 3) that could

be identified to the homoeologous subgenome were mapped to the soybean reference

genome (Schmutz et al., 2010). This produced a map that is analogous to chromosome

painting (genomic in situ hybridization, GISH) experiments using the reads from which

the SNPs were derived, which we term “electronic chromosome painting” (e-chromosome

painting). Similar patterns were seen for all accessions, with high densities of SNPs at the

ends of each soybean chromosome and far lower densities in pericentromeric regions

(Fig. 2). This pattern is expected using reads from transcriptome data, because of the

sparse distribution of genes in pericentromeric regions of the soybean genome (Schmutz

et al., 2010). Notably, in all allopolyploid accessions, SNPs from both homoeologues were

distributed across the entire genome, and no regions were identified in which SNPs from

only one homoeologue were mapped (Fig. 2; Figs. S1–S10).

Population structure analyses
Structure (Pritchard, Stephens & Donnelly, 2000) was first run using all available SNPs,

without separating SNPs from polyploids into homoeologous groups. Structure was

run from K = 1–15; K = 6 was identified as one of the optimal preferred values of K

using the delta K method of Evanno, Regnaut & Goudet (2005; Fig. S11). Five of these

six groups corresponded to diploid taxa: D1, D3, D4, G. canescens, and G. clandestina

(Fig. 3A). The sixth group was represented only as a minor component in D4 accession

2073. Diploid accessions showed little or no evidence of admixture, with the exception of

D4 accession 2073 (Fig. 3). In contrast, all polyploid accessions were admixed, each with

Bombarely et al. (2014), PeerJ, DOI 10.7717/peerj.391 11/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.391/supp-1
http://dx.doi.org/10.7717/peerj.391/supp-1
http://dx.doi.org/10.7717/peerj.391/supp-1
http://dx.doi.org/10.7717/peerj.391/supp-4
http://dx.doi.org/10.7717/peerj.391/supp-4
http://dx.doi.org/10.7717/peerj.391


Table 5 Summary of the genes used in the BEAST and *BEAST analysis. Tree likelihood values and the functional annotation are shown.

GeneID TreeLikelihood mean TreeLikelihood ESS Gene functional annotation

Glyma01g35620 −4,676.067 1,361.926 Phytoene dehydrogenase

Glyma02g11580 −3,986.812 1,034.414 RNA binding protein

Glyma03g29330 −7,611.686 894.813 Magnesium chelatase

Glyma03g36630 −2,666.725 696.197 Rho GTPase activating protein

Glyma04g39670 −4,142.157 2,556.251 ATP-binding transport protein-related

Glyma05g05750 −3,028.809 541.483 Beta-amylase

Glyma05g09310 −2,578.198 305.191 Pyruvate kinase

Glyma05g26230 −3,741.498 5,156.337 Metalloprotease M41 FtsH

Glyma05g37840 −2,138.404 3,766.767 Haloacid dehalogenase-like hydrolase

Glyma06g18640 −3,418.91 6,613.752 Elongation factor Tu

Glyma07g03370 −2,091.845 742.796 Palmytoil-monogalactosyldiacylglycerol delta-7 desaturase

Glyma07g17180 −2,218.934 2,833.162 Fructose-1,6-bisphosphatase

Glyma10g42100 −2,903.849 1,774.192 3-ketoacyl-CoA synthase

Glyma11g13880 −4,644.419 7,487.252 Lipoxygenase

Glyma11g33720 −3,592.689 2,273.389 DELLA protein

Glyma12g04150 −2,061.527 4,777.335 Fructose-bisphosphate aldolase

Glyma12g12230 −2,177.72 1,790.185 O-methyltransferase

Glyma13g17820 −2,439.715 342.999 Polyubiquitin

Glyma14g03500 −2,063.541 819.216 Phytoene synthase

Glyma16g00410 −4,041.294 4,475.536 heat shock protein 70

Glyma16g01980 −4,985.489 387.993 Myb-like protein

Glyma16g04940 −2,152.355 4,586.42 Glyceraldehyde 3-phosphate dehydrogenase

Glyma18g04080 −2,285.776 9,535.754 26S proteasome regulatory complex, ATPase RPT4

Glyma19g03390 −2,344.831 3,190.5 Unknown

Glyma19g32940 −2,176.029 2,579.558 Fatty acid desaturase

Glyma20g24930 −2,803.585 6,535.602 3-ketoacyl-CoA synthase

Glyma20g32930 −2,867.321 2,078.549 Cytochrome P450 77A3

approximately 50% contributions from two different diploid groups. The genomic makeup

of each accession was as expected from previous hypotheses (e.g., Doyle et al., 2002; Fig. 1):

T1 accessions showed admixture from D1 and D3, T2 accessions from D3 and D4, and

natural T5 accessions from D1 and G. clandestina. The synthetic T5 accession (A58) was

also admixed, with contributions from D1 and G. canescens, as expected (Joly et al., 2004).

A second Structure analysis was conducted with each polyploid accession treated as two

separate OTUs, using the homoeologue dataset (Table 2). As with the previous analysis,

the analysis was run for K = 1–15. The Evanno method (Evanno, Regnaut & Goudet, 2005)

identified K = 6 and 9 as the preferred values (Fig. S11). In the case of K = 9 the group

representation shows the same structure than the K = 6 (Fig. S12). Results for diploids

were similar to those obtained in the previous analysis (Fig. 3B). Subgenomes from natural

allopolyploids and the synthetic T5 allopolyploid (A58) were shown to belong exclusively

to diploid groups, with little or no evidence of admixture, indicating that the SNP filtering

into homoeologous contributions was successful.
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Figure 2 Electronic chromosome painting for G. dolichocarpa T2 accession 1134. SNP positions on the 20 soybean chromosomes are represented
by blue lines (D3 progenitor) or red lines (D4 progenitor).

Complementary to the second Structure analysis, the data were analyzed using

ChromoPainter and FineStructure (Lawson et al., 2012). ChromoPainter produces a

co-ancestry matrix (as a measure of the ancestry sharing between individuals) based

on the haplotype information provided by shared chunks (regions) of biallelic markers

between individuals (Lawson et al., 2012). The two SNP datasets were filtered by selecting

only the biallelic markers, producing a subset with 220,952 and 71,610 SNPs (before

and after homoeologous read assignment, respectively) distributed along all 20 soybean

chromosomes. Regions identified by ChromoPainter for each accession ranged from 516

(D4 2321) to 567 (G. clandestina 1253) and from 202 (D4 1300 and 2321) to 221 (D4 2073)

(before and after homoeologous read assignment respectively). Principal component

analysis (PCA) and population relationship analysis using a Bayesian approach were

performed over the co-ancestry matrix using FineStructure (Lawson et al., 2012). PCA

before homoeologous read assignment (Fig. 4A) shows seven well-differentiated groups,

one per species with the exception that G. canescens and G. clandestina clustered together.

Diploid species formed the vertices of a trapezoid. A-genome species (G. canescens,

G. clandestina and D4) formed a more dispersed group than either D1 or D3. Each
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Figure 3 Structure analysis for Glycine perennial polyploid accessions. SNP analysis using Structure
for a set of 20,000 random SNPs for Glycine polyploid complex accessions (A) without homoeologue
separation and (B) with homoeologue separation for K = 6. The five progenitor diploid species are placed
in different populations: red (G. clandestina), dark red (G. canescens), yellow (G. tomentella D1), blue
(G. syndetika D4) and green (G. tomentella D3).

polyploid species fell between its putative diploid progenitors, consistent with each being

an admixture (fixed hybrid). After the homoeologous read assignment (Fig. 4B), each

of the polyploid subgenomes clustered with its diploid progenitors, producing three

clear clusters: D1, D3, and A-genome (comprising G. canescens, G. clandestina and D4,

as expected). Heatmaps were used to visualize the population relationships produced by

FineStructure, complementing the information shown by the PCA figures. The heatmap

before homoeologous read assignment (Fig. 4C), showed four intense regions (red,

magenta and blue colors) corresponding to the four species groups of the PCA (Fig. 4A).

Each polyploid showed the expected similarity to its progenitors; similarly, as expected

the two G. clandestina accessions were more similar to one another than either was to

G. canescens. Also, T5 A58, the artificial polyploid produced from a cross between

G. canescens 1232 and D1 1316, showed the expected relationships with these accessions.

Other T5 polyploids also showed a stronger signal from D1 1316 than from other D1

accessions. T2 accessions did not show any stronger signal with any particular D3 accession

than with others, but they did with the D4 accessions 1300 and 2321, relative to 2073.

T1 accessions 1288 and 1763 also showed a stronger signal with particular D1 and D3

accessions, whereas T1 accession 1361 showed a weaker signal with the D1 and D3

accessions included here. After the homoeologous read assignment (Fig. 4D), some of

these signals were intensified, such as the relationship between T5 and D1 subgenomes

and particular D1 accessions, but other relationships that were suggested when all SNPs

were considered were not observed (for example there is not a stronger signal of D1 1316

with the T5 accessions). These differences may be due to the methodology used for the

homoeologous read assignment.

Bombarely et al. (2014), PeerJ, DOI 10.7717/peerj.391 14/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.391


Figure 4 FineStructure analysis for Glycine perennial polyploid species. Analysis using FineStructure for (A, C) 220,952 SNPs for the Glycine
perennial polyploid complex (species groups A, D1, D3, D4, T1, T2 and T5) without homoeologue separation. 7 clusters can be distinguished (one
per species group) in the PCA analysis where polyploids are admixtures of the diploid progenitor groups (A). The heatmap (C) shows diploid
hybrid signal for polyploids, for example T5 A58 shows a stronger signal with its progenitors: CAN 1232 (blue) and D1 1316 (intense orange). (B,
D) 70,910 SNPs for the Glycine perennial polyploid complex after homoeologue separation. 3 clusters can be distinguished in the PCA analysis (B):
right cluster, species from the A-genome (A and D4); bottom-left cluster, species D1; and top-left cluster, species D3. (D) The heatmap signal is
divided into the same three major clusters.

Phylogeny and network analysis of concatenated SNPs
Phylogenetic and network analyses were conducted using the homoeologue dataset,

with SNPs concatenated to create a single supermatrix. The maximum likelihood (ML)

tree, rooted with G. max, identified four subclades comprising two major clades: (1) the

A-genome, with subclades of D4 vs. G. clandestina and G. canescens; and (2) the D-genome

(D3) and E-genome (D1) (Fig. 5A). Each of the subclades showed a different pattern with

respect to diploid and tetraploid subgenome relationships. In the canescens/clandestina

clade, the A-subgenome of the synthetic allopolyploid (A58) was sister to the accession

from which it was created (G. canescens 1232), as expected, though with deeper coalescence

than expected from an artificial hybrid; the two natural T5 allopolyploids were sister to
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Figure 5 Phylogenetic relationship in the Glycine perennial polyploid complex. Relationships in the Glycine perennial polyploid complex after
homoeologue separation, using a concatenated dataset. Branches are colored as in Fig. 4, based on the 5 different diploid species. In both
the maximum likelihood (ML) phylogeny (A) and the NeighborNet network (B), the same major species groups are visible (D1, D3, D4 and
G. canescens/G. clandestina).
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G. clandestina 1126, as expected from other data (e.g., Doyle et al., 2002). In the D4 clade,

diploid accession 2073 was sister to all remaining accessions, a unique placement consistent

with its apparently admixed nature (Fig. 3A). The polyploid subgenomes formed a

paraphyletic group, with the two diploid accessions sister to the D4 subgenome of one

T2 accession (1134). A similar pattern was seen in the D3 subclade, where T2 accessions

formed a paraphyletic group, and all four diploid accessions formed a clade sister to T2

accession 1134. Also embedded within the T2 accessions was a clade consisting solely of T1

accessions. T1 accessions also formed a monophyletic group within the D1 clade, where

natural T5 accessions and D1 accessions also formed monophyletic groups. Surprisingly,

there was not a sister relationship between the D1-subgenome of synthetic allopolyploid

A58 and the D1 accession from which it was formed (1316). Similar topologies were

produced by neighbor-joining analysis (data not shown).

NeighborNet was used to analyze the full homoeologue dataset to identify minority

patterns of relationships in the data. When rooted with G. max, the topology (Fig. 5B) was

very similar to the ML tree (Fig. 5A), even having such features as the sister relationship of

D4 2073 to other D4 accessions, and the monophyly of T1 homoeologues in both the D1

and D3 clades. There was clear evidence of character support for alternative relationships,

but those relationships were minor in comparison with the major phylogenetic signal.

Gene-based phylogenetic and network analyses
Gene trees were constructed for the 27 genes (described in the Material and Methods)

using several different phylogenetic and network methods. Similar topologies for trees

from individual genes were obtained with BEAST and PhyML. All 27 trees showed the split

between the A-genome clade and the D1/D3 clade seen in the ML tree reconstructed from

concatenated SNPs (Fig. 5A). However, many individual gene trees showed unexpected

groupings of one or more accessions, particularly within the A-genome clade, where

several trees grouped accessions from G. canescens with G. syndetika-D4 instead of with

G. clandestina (for example ML and BEAST trees for the gene Glyma04g39670, Figs.

S17 and S45). Relationships within the major subclades varied among the 27 gene trees.

For example, nine of the 27 trees showed separate clades for G. canescens (plus the A58

sequence) and G. clandestina (e.g., Figs. 6A and 6C), but in only three of them did diploid

species form monophyletic groups (Figs. S13–S67). Overall, there were far more departures

from expectations in the A-genome clade than in the D1/D3 clade.

There were numerous cases where alleles from diploid accessions formed monophyletic

groups (e.g., 12 of 27 BEAST topologies had alleles from all four D3 accessions in a clade,

often with high posterior probability). At some loci, alleles from one or more polyploids

formed monophyletic clades; for example, at Glyma06g18640 (Fig. S50), all taxa, including

both homoeologous subgenomes of each polyploid, formed separate clades, with the

exception of G. clandestina. However, this was unusual, and paraphyletic groupings of

alleles were common, particularly in polyploids. For example, at 26 of 27 loci, T2–D3

alleles were not monophyletic, at least some having closer relationships to D3 or T1–D3

alleles, and in gene Glyma01g35620, T5–D1 1969 was most closely related to D1 1156
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Figure 6 Phylogenetic analysis for the Glyma02g11580 locus. Glyma02g11580 locus using ML with
bootstrap values (A), NeighborNet (B), and BEAST with posterior probabilities and showing node ages
(in black) (C). For figures (A) and (C), branch length colors represent bootstrap or posterior probabilities
values, with red shades being the lowest values and green shades being the highest values.
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whereas T5–D1 1487 was most closely related to D1 1157 and D1 1316 (Fig. S41). On the

assumption that alleles in tetraploids all originated from diploid progenitor species, such

paraphyletic relationships suggest the input of alleles from different genotypes of diploid

progenitors, due either to multiple origins or, alternatively, to continued gene flow from

diploids after polyploid formation, perhaps involving unreduced gametes.

The BEAST trees, calibrated with the 5 MYA divergence of G. max and the perennial

subgenus (Innes et al., 2008), allowed dates of allele divergence to be estimated. Among

comparisons of interest are the minimum divergences between alleles from a tetraploid

and alleles from its diploid progenitor (e.g., T2–D3 vs. D3) or alleles from the same

progenitor in a second tetraploid (e.g., T2–D3 vs. T1–D3); the latter represent “diploid”

alleles as well, under the assumption that there has been no gene flow between the two

tetraploids, something that is reasonable for G. tomentella tetraploids (e.g., Doyle et al.,

1986). Minimum distances between polyploid and diploid alleles (over)estimate the time

of entry of that allele into the polyploid, which is typically assumed to be an origin of

the polyploid (Doyle & Egan, 2010). Minimum dates (Table S3) were 0.31 MY for T1

(measured at the D1 locus), 0.29 MY for T5 (measured at the D1 locus), and 0.38 MY for

T2 (measured at the D3 locus). Error bars on these estimates, however, were substantial.

NeighborNet (implemented in SplitsTree 4; Huson & Bryant, 2006) was used to

construct networks for each of the 27 genes. Several networks showed patterns consistent

with intragenic recombination; the Pairwise Homoplasy Index (PHI) of Bruen, Philippe

& Bryant (2006), also implemented in SplitsTree, was significant for 11 of the 27 genes

(data not shown). The dominant patterns in NeighborNet topologies were similar to

the overall pattern shown in phylogenetic analyses of the 27 genes, and thus to results

for the full homoeologous SNP dataset. As with other methods, NeighborNet networks

suggested multiple inputs of alleles from diploid progenitors into polyploids (e.g., gene

Glyma02g11580, Fig. 6C).

Species tree reconstruction under the coalescent
Species trees were reconstructed using the coalescent approach implemented in *BEAST

(Heled & Drummond, 2010), which used information contained in the individual gene

trees from the 27 genes described above. The overall *BEAST tree (Fig. 7A) topology was

similar to that of trees from concatenated SNPs. By definition, each of the allopolyploid

homoeologous genomes was a single OTU despite the possibility of independent origins;

each of these was grouped with its putative progenitor species. Within the D1 genome

clade, the T1 and T5 polyploids were sisters to one another; similarly, T1 and T2 were

sisters in the D3 clade. The DensiTree output (Fig. S40) indicated considerable uncertainty

only within the D3 clade, where both other possible topologies (T2 sister to D3, T1 sister to

D3) appeared in a substantial number of trees. As expected, divergence dates of polyploids

from their diploid progenitors estimated by *BEAST were higher than minimum estimates

from the 27 individual loci, all being greater than 300,000 years (Fig. 7A).
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Figure 7 Phylogenetic tree with estimated divergence dates. *BEAST tree with the estimated node ages
and error bars representing the highest posterior density (HPD) interval at the 95% level.

DISCUSSION
The Glycine subgenus Glycine polyploid complex appears ideally suited as a model for

studying allopolyploid evolution, because it comprises eight independently formed

but closely related allopolyploid species triads (an allotetraploid and its two diploid

progenitors; Fig. 1) that overlap in their genomic compositions. We are exploiting this

model system to study the effect of allopolyploidy on a wide range of phenotypes,

including transcriptome size, morphology, anatomy, climate niche, photosynthesis, and

photoprotection (Coate & Doyle, 2010; Coate et al., 2012; Ilut et al., 2012; Coate & Doyle,

2013; Coate et al., 2013; Hegarty et al., 2013; Coate, Bar & Doyle, 2014; Harbert, Brown &

Doyle, 2014).

To enhance the utility of this model group, it is important to move to a genome-wide

understanding of their biology. As noted above, origins of the Glycine allopolyploids were

hypothesized initially from crossing data and more recently from gene phylogenies, but

inferences have been made from only two nuclear genes. Both of these markers supported

the hypotheses of fixed hybridity of Glycine allopolyploid species. However, it is not known

to what extent the entire genomes of these plants retain contributions from both parental

diploid species in the face of potential loss due to initial genomic shock (McClintock, 1984),

or other processes such as “genome downsizing” (Leitch & Bennett, 2004), fractionation

(Schnable & Freeling, 2011; Freeling et al., 2012), or concerted evolution (e.g., Wang et al.,

2007).

Glycine allopolyploids are fixed hybrids throughout their genomes
Analyses using all SNPs identified from the full dataset showed that all three of these

allopolyploids are indeed fixed hybrids, combining diploid genomes as depicted in Fig. 1.
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Structure results indicated an essentially equal contribution from both parental diploids in

all three cases (Fig. 3A); PCA analysis also was consistent with this hypothesis, placing each

polyploid approximately midway between its putative progenitors, as expected for an F1

hybrid (Fig. 4A).

In order to determine whether or not the polyploids have contributions from their

parents across their entire genomes, reads were partitioned by homoeologous genome

and mapped to the soybean reference genome (Schmutz et al., 2010). As portrayed by

e-chromosome painting (Fig. 2), it is clear that no individual sampled from any of the

three allopolyploid species has any major regions represented by only one homoeologue.

Coverage is sparse in pericentromeric and centromeric regions, as expected due to the

low density of genes in these regions of the soybean genome (Schmutz et al., 2010). The

degree of shared synteny between soybean and these perennial Glycine species is as yet

unknown, but regardless of the order of chromosomal segments, it is clear that there has

not been significant loss of homoeologous genes. We mapped reads to over 22,000 of the

approximately 46,000 genes of the soybean genome (Schmutz et al., 2010). These numbers

include both homoeologous copies from the 5–10 MYA polyploidy event that shaped the

modern “diploid” (2n = 38,40) Glycine genome. We were able to deconvolute between

4 and 19% of these 22,000 genes into their homoeologous contributions in each of the

three recent allopolyploids (e.g., T1D1 and T1D3). Using genomic in situ hybridization

(GISH), Chester et al. (2012) showed examples of allopolyploid T. miscellus plants that

had all four chromosomes or chromosome segments of one diploid parent (4:0), but

also examples of plants with 3:1 ratios of homoeologous chromosomes or chromosomal

segments. Our e-chromosome painting method cannot distinguish the 3:1 condition from

an equal contribution from both parents segments, so it is possible that such plants exist in

our sample.

Structure analysis using the partitioned homoeologous SNPs corroborated results with

the full, unpartitioned dataset, in placing each polyploid homoeologous genome with its

putative progenitor (Fig. 3B). The FineStructure PCA supported three major groupings,

each of which included diploids and the expected polyploid homoeologous subgenomes

derived from them (Fig. 4B). The grouping of D4 accessions and two A-genome species

(G. canescens and G. clandestina), along with polyploid genomes derived from them,

into a single cluster is not surprising, because G. syndetika (D4) is also a member of

the A-genome (Ratnaparkhe, Singh & Doyle, 2011). As noted above, genome groups

were originally defined on the basis of reproductive compatibility in artificial crosses

(Ratnaparkhe, Singh & Doyle, 2011), and indeed G. syndetika (D4) 2073 shows evidence

of admixture with G. canescens and G. clandestina (Fig. 3). In contrast, D1 and D3,

though both classified as “G. tomentella”, belong to two different genome groups (E and D,

respectively; Ratnaparkhe, Singh & Doyle, 2011). This greater genetic similarity of the three

A-genome species is not reflected in relative divergence dates; for example, the *BEAST

analysis dates the divergence between G. syndetika and the two other A-genome species

at slightly earlier than the divergence between D1 and D3 (Fig. 7A). Thus, reproductive

barriers likely arose earlier in the D1/D3 lineage than within the A-genome.
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Allopolyploid evolution in Glycine fits “Darlington’s Rule” (Darlington, 1937)—that

allopolyploids should form between species that are reproductively isolated, often due

to chromosomal differences, whereas reproductively compatible diploids instead tend to

form homoploid hybrids. No allopolyploids are known to have formed among A-genome

species, and only one of the eight known Glycine allopolyploids involves hybridization

within a genome group (tetraploid G. tabacina is the product of the most divergent

species cross possible within the B-genome; Doyle et al., 2004). D1 and D3, which as

noted belong to different genome groups, have different chromosome numbers (2n = 38

vs. 40, respectively), which may contribute to their inability to form fertile diploid hybrids.

D1 has also formed allopolyploids with D5A, another 2n = 40 “G. tomentella”; however,

reproductive incompatibility also occurs between 2n = 40 G. tomentella taxa (Doyle et al.,

1986), and other allopolyploids in the complex combine genomes of two 2n = 40 taxa

(Fig. 1).

Gene histories, allele divergence times, and sources of genetic
diversity in polyploids
Gene trees from the 27 loci were selected that met criteria designed to provide orthologues.

These genes are highly transcribed with sufficient characters for phylogeny reconstruction,

and inferences of polyploid origins mostly conformed to expectations based on previous

work using the low copy nuclear locus, histone H3D (Brown et al., 2002; Doyle et al., 2002;

González-Orozco et al., 2012), the nrDNA ITS (Singh, Kim & Hymowitz, 2001; Rauscher,

Doyle & Brown, 2004), and chloroplast noncoding sequences (Hsing et al., 2001). The use

of BEAST and *BEAST (Heled & Drummond, 2010) allowed us to estimate divergence

times of alleles and species for the first time for some of these taxa. Dating polyploid

origins is complicated by numerous factors (Doyle & Egan, 2010). For one thing, if the

polyploid has arisen recurrently, then there is no single date that marks “the” origin.

Given that polyploids are often invasive (e.g., Pandit, Pocock & Kunin, 2011), and the

Glycine tomentella allopolyploids appear to be recently formed based on sharing identical

histone H3D and nrDNA ITS alleles with their putative progenitors (Doyle et al., 2002;

Rauscher, Doyle & Brown, 2004), we have speculated that they could have originated as

a response to ecological disturbance due to human colonization of Australia, around

40,000 years ago (Hudjashov et al., 2007; Pugach et al., 2013). The relevant date for

testing this anthropogenic disturbance hypothesis would be the oldest origin of each

polyploid. However, because it is unlikely that a polyploid allele and any of a set of

diploid progenitor alleles will coalesce at exactly the time of polyploid origin, distances

for any given polyploid event will be overestimates of the actual time of origin. Further

complicating matters, the error bars on our BEAST divergence estimates were large relative

to the estimates themselves. Nevertheless, because even the minimum estimates of allele

divergences between diploids and tetraploids are around 0.3 MY, it appears likely that these

G. tomentella allopolyploids are hundreds of thousands rather than tens of thousands of

years old. *BEAST estimates should be averages of all origins of a polyploid taxon, and

these, too are several hundred thousand years for each allopolyploid. Thus, it appears likely
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that these polyploid species were present in Australia before humans arrived there. The fact

that these three species, and possibly other allopolyploid members of the complex, may

have evolved at roughly the same time is intriguing. In the ca. 5 MY since the perennial

members of Glycine diverged from the annual lineage (Egan & Doyle, 2010), there is

no evidence of polyploidy until these species were formed, apparently well within the

last 1 MY. Perhaps the onset of severe aridity in Australia around 3 MYA, heralding the

change to the present extreme wet-dry glacial cycles (Crisp, Cook & Steane, 2004) could

have provided ecological opportunities for polyploids. It will be interesting to refine our

estimates through increased sampling of these three triads, and to obtain estimates for the

other five allopolyploid species.
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