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1 Introduction

1.1 Some background

Scalar fields in cosmology. The scalar fields considered throughout this work are
classical objects; the term “classical” is used in opposition to “second quantized”
and describes all situations in which the field is not an operator (including first
quantization). The consideration of scalar fields in cosmological models has a long
story, and arises from different motivations. Hereafter we will describe two important
motivations for cosmologies supported by standard general relativity.
On one hand, a scalar field (“inflaton”) can be used as a model for the mechanism
driving inflation. This approach originates from the work of some scholars at the
beginning of the 1980’s: let us mention, in particular, Linde [18], Madsen and Coles
[19].
On another hand, one can use a scalar field as a model for dark energy. This
idea seems to have appeared in a 1988 paper by Ratra and Peebles [27]; Cald-
well, Dave and Steinhardt [5] are credited for introducing, ten years later, the term
“quintessence” to indicate a scalar model of dark energy.
The experimental consolidation of the dark energy notion dates back to the same
years: as well known, in 1998-99 the High-Z Supernova Search Team [28] and the
Supernova Cosmology Project [24] published their observations on the redshift of
Type 1a supernovae. The insertion of some dark energy term in Einstein’s equations
is necessary to explain the observed dependence of the luminosity distance from
redshift; the cosmological constant term Λgµν is the most obvious candidate, and
has been used as a benchmark in the analysis of the astronomical data. Of course the
scalar model of dark energy is much more attractive, since it possesses its own degrees
of freedom (as expected for any physical entity). Shortly after the publication of
[28] [24] Saini, Raychaudhury, Sahni and Starobinsky [31] first proposed to fit the
data on luminosity distance and redshift via a scalar field model; an unspecified
self-interaction potential was assumed for the field and the most probable shape of
this potential was reconstructed from the astronomical data, for the epoch ranging
from present time to the time when the spatial scale factor had half of its present
value.
It is hardly the case to specificy that most investigations in the two areas mentioned
before (inflation or dark energy described via scalar fields) rely on the paradigm of a
homogeneous and isotropic universe at each time. So, the spacetime metric has the
Robertson-Walker form (possibly, with non zero spatial curvature) and the scalar
field depends only of time, like the density and pressure of matter and radiation (if
these characters are present in the model). The evolution of the model is governed
by a system of ODEs where the unknowns are, typically, the field an the spatial
scale factor as functions of time.
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In an inflationary model, the attention is focused on an infinitesimal lapse of time
after the Big-Bang, during which the energy of the inflaton was dominating; for this
reason, it is not necessary to include matter or radiation in the model.
The situation is different for dark energy models; these encompass the history of
universe up to present time, and cannot neglect the roles of matter and radiation.
Let us point out some additional features typically possessed by models for inflation
or dark energy. It is commonly assumed that the scalar field is minimally coupled
to gravity, and that no direct interaction occurs between the actors of the model:
the stress energy tensors of the field, of matter and/or radiation are conserved
separately. All papers cited in this Introduction are tacitly assumed to fit to this
paradigm (spatial homogeneity and isotropy, minimal coupling of the scalar field
with gravity, no direct interaction between the field, matter and radiation), unless
the contrary is explictly stated.
To conclude the present considerations, let us point out that scalar fields appear in
some theories alternative to Einstein’s general relativity and in their applications
of cosmology: let us just mention the Brans-Dicke theory [4]. These subjects are
completely outside the scope of the present thesis.

Integrable scalar cosmologies, and other issues. Since the late 1980’s, the
rising physical interest for cosmologies with scalar fields stimulated the search for
integrable models, in which the evolution equations can be solved explicitly; it
turned out that this is possible for models with certain features, like a special func-
tional form for the self-interaction potential of the scalar field. The availability of
exact solutions is an advantage with respect to numerical integration, since it al-
lows to identify details and conceptual aspects that could be missed by a numerical
approach.
From the very beginning of these investigations, it was understood that exact solu-
tions can be obtained assuming an exponential form for the self-interaction potential
of the scalar field; let us describe these results with the normalizations of this thesis,
using a suitable dimensionless version φ of the scalar field (up to a purely numer-
ical factor, φ is the scalar field multiplied by the square root of the gravitational
constant; for the precise definition see section 2, especially Eq. (2.25)).
In 1987 Barrow [1] assumed a potential of the form const. e−λφ (with λ another
arbitrary constant), and a vanishing spatial curvature; he presented a particular
exact solution of the evolution equations (but not the general solution), for the case
of a scalar field alone. In the already mentioned paper [27] of 1988, Ratra and Peebles
considered the same exponential potential as in [1] (with λ > 0) and a vanishing
spatial curvature; they presented some particular exact solutions of the evolution
equations, both for the case of a scalar field alone and for a model with a scalar field
and pressureless matter (dust; the authors pointed out that the solution derived in
presence of dust was too peculiar to be physically significant). In the same year,
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Burd and Barrow [3] considered again the exponential potential const. e−λφ (with
λ > 0), with possibly non-zero spatial curvature in arbitrary spacetime dimension
d+ 1; they proposed a detailed stability analysis of the models and presented some
new exact solutions which exhibit the transition to power-law inflation at late times.
In 1990 de Ritis, Marmo, Platania, Rubano, Scudellaro and Stornaiolo [7] considered
a cosmology with a scalar field and no matter/radiation (useful as an inflationary
model), for zero spatial curvature; to analyze the evolution equations, they proposed
a systematic use of the Lagrangian viewpoint. In this way they proved that the only
potentials giving rise to a Noether symmetry for the system have the form (with
the normalizations of this thesis) const. e3φ + const. e−3φ + const; moreover, they
constructed the general solution of the evolution equations for this class of potentials.
The same authors extended these results in [8] to the case of a field non minimally
coupled to gravity.
In 1998 Chimento [6] investigated cosmological models driven by two scalar fields,
one of them self-interacting with an exponential potential of the form const. e−λφ

(as in [1] [27] [2]) and the other one free and massive. Exact general solutions were
obtained and examined in detail; in particular these solutions show the transition
from expansion dominated by the free scalar field to that dominated by the self-
interacting field, yielding a power-law inflation.
The potential const. e3φ + const. e−3φ + const was reconsidered in 2002 by Rubano
and Scudellaro [29], and in 2012 by Piedipalumbo, Scudellaro, Esposito and Rubano
[26], again for zero spatial curvature but in presence of dust. These authors showed
that the addition of dust kept the solvability of the evolution equations; they pro-
posed this model for a description of dark energy and dust up to the present time,
and started an analysis of the physical significance of the solutions.
All papers [1] [27] [7] [8] [29] [26] [6] considered a spacetime with the “physical”
dimension 3 + 1.
In 2013 Fré, Sagnotti and Sorin [12] considered the cosmologies with a scalar field
alone and zero spatial curvature in arbitrary spacetime dimension d + 1; their aim
was, essentially, to determine all the potentials giving rise solvable equations. They
produced several classes of solvable potentials, much of them of exponential type;
for the purposes of this thesis it is important to mention the first two classes, which
can be described as follows with the normalizations of the thesis. The first class in
[12] contains potentials of the form const. ed φ + const. e−d φ + const, thus extending
to any dimension the solvability result found in [7] for d = 3; the second class is
formed by potentials of the form const. ed γ φ + const. ed(1+γ)φ, with γ an arbitrary
constant.
To conclude this survey of the literature, let us mention some references which have
just a partial intersection with the subject of this thesis.
In the previous review and in the sequel, the attention focused on a “direct problem”:
find the general solution of a cosmological model with a pre-assigned potential for
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the scalar field. The cited papers [7] [8] [29] [26] [12] are all about this direct problem,
like the present thesis. However, there is also an “inverse problem”: find the scalar
field potential producing a time evolution with a prescribed feature. Nice results
on this subject were obtained in 1993 by Easther [10], who found new scalar field
cosmologies with possibly non-zero spatial curvature by deriving the potential that
produces a specified form of the density or the Hubble parameter; the exponential
potentials derived in this way were motivated by supergravity or superstring models.
Other interesting results were obtained in 2016 by Dimakis, Karagiorgos, Zampeli,
Paliathanasis, Christodoulakis and Terzis [9], and by Barrow and Paliathanasis [2].
(In many examples from these papers, the feature prescribed is a specified time
dependence for the ratio between the pressure and the density produced jointly by
matter and by the scalar field, or by the scalar field alone.)
Finally let us mention that one can give up solving explicitly a cosmological model
with a scalar field and yet derive rigorous results on the qualitative behavior of the
solutions, under minimal conditions on the self-interaction potential. This has been
done in 2009 by Giambò, Giannoni and Magli [14].

1.2 The present thesis

This work is in the area of the integrable cosmologies with a scalar field and matter;
from now on the term matter is intended in a generalized sense, and includes the
case of radiation. The chief aim is to give a mathematical contribution to the issue
of solvability; however, we do not forget the connections with the real world and, in
the final part of the thesis, we set up some connections with physical cosmology.
Let us go into the details of the thesis.

The basic frame. This is introduced in section 2; it is connected to the paradigm
for cosmology already mentioned before.
So, the universe is homogeneous and isotropic cosmology at any time. The metric
is of the Robertson-Walker type, with an arbitrary value of the spatial sectional
curvature; as usually, its essential character is the time dependent scale factor a > 0.
The dimension of spacetime is d+ 1 for any d > 2; of course, d = 3 is the physically
relevant case.
The universe contains a self-interacting scalar field Φ minimally coupled to gravity;
in addition, there is matter represented as a perfect fluid with pressure p(m) and
mass/energy density ρ(m) fulfilling an equation of state of p(m) = wρ(m). Here w is
an arbitrary coefficient; especially interesting cases are w = 0 (dust) and w = 1/d
(radiation); the dust case provides an acceptable model for most of the history of
the real universe, while the radiation case can be used to describe the initial part of
this history. The scalar field is typically understood as representing dark energy.
As in all the previously mentioned works, we assume a separate conservation law
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for the stress-energy tensor of the scalar field and of any type of matter.
We formulate all our results statements using dimensionless versions for all the
involved physical quantities. We already mentioned the use of a dimensionless ver-
sion φ of the scalar field, defined by Eq. (2.25); the same equation introduces a
dimensionless self-interaction potential V(φ). The spatial sectional curvature has a
dimensionless variant, represented by a real number k (in the sequel, simply referred
to as “the curvature”).
We also employ a dimensionless “time” coordinate t, related to the physical or
“cosmic” time τ by a suitable “gauge” relation. The simplest relation has the form
τ = θt where θ is a constant with the dimension of a time; more general gauge
relations of the form dτ = θb(t)dt are considered, since they turn out to be useful
in the study of the evolution equations of the model.
Obviously enough, the above mentioned evolution equations are Einstein’s equations
and the Klein-Gordon equation for the scalar field; these give rise to a system of
ODEs for the scale factor a and the scalar field φ, with a constraint on the initial
data (note that the matter density is a power function of a with exponent depending
on w, due to the conservation of the corresponding stress-energy tensor).
A Lagrangian reformulation of the evolution equations is systematically employed;
in this approach, the scale factor a and the dimensionless version of Φ are the
Lagrangian coordinates, and the initial data fulfill a constraint of zero energy.
In section 2 the curvature k, the field potential V(φ) and the coefficient w in the
state equation for matter are arbitrary; the rest of the thesis considers integrable
special choices, allowing to compute the general solution of the evolution equations.

The case k = 0, w = 0, V(φ) = 1
d2

(
V1 e

dφ + V2 e
−dφ

)
. This is the subject

of section 3. This cosmology with zero curvature and dust is the d-dimensional
extension of the solvable model described for d = 3 in the already mentioned papers
by by Rubano and Scudellaro [29], Piedipalumbo et al. [26]. (We already noted
that the same potential with arbitrary d and no dust is in the list of solvable models
obtained by Fré et al. [12]).
The solvability of this case is readily shown performing a coordinate change (a, φ)→
(x, y) that reduces the Lagrangian to a quadratic form, yielding linear evolution
equations.
The reason why we discuss this case in the thesis is not just to extend the results of
[29][26] to an arbitrary dimension; we also take the opportunity for a more in-depth
analysis of the solution, both from a qualitative and a quantitative point of view.
The qualitative analysis is proposed in the subsection 5.1. The quantitative analysis
is set up in section 7, mainly for the physical case d = 3; we return to this point in
the final part of this introduction.

The case V(φ) = 1
d2

(
V1 e

2 dw φ + V2 e
d (1+w)φ

)
. This is treated in section 4,
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which is the longest part of the thesis; the results presented therein are novel to
the best of my knowledge. It was already mentioned in this Introduction that
Fré et al. [12] have discovered the solvability of the potential V(φ) = const. ed γ φ +
const. ed(1+γ)φ, for arbitrary values of the constant γ, for a cosmology with curvature
k = 0 and a scalar field only. The contribution of this thesis is to show that, adding
matter with an equation of state p(m) = wρ(m) and setting γ = w we have again a
solvable model, even for non zero curvature; w can be chosen arbitrarily if k = 0,
and must be fixed suitably if k 6= 0.
Drawing inspiration from [12], these results are obtained via a suitable coordinate
change (a, φ)→ (x, y) that reduces the Lagrangian system to a triangular form: this
means that the Lagrange equation for x involves this variable only, and substituting
the general solution for x into the second Lagrange equation, one gets an equation
for y only. The initial equation for x is certainly solvable; if the same occurs for
the final equation in y, we have an integrable model. The Lagrangian system is
triangular in the following cases:

(i) k = 0, w arbitrary;

(ii) k arbitrary, w = 1
d

(radiation gas);

(iii) k arbitrary, w = 2
d
− 1,

In cases (i)(iii) the initial equation for x describes a harmonic oscillator or repulsor,
or a free particle; the final equation for y has the same structure with the addition of
a time dependent forcing term, so both equations are explicitly solvable and we have
an integrable system. A similar situation occurs in case (ii) for d = 3, while case (ii)
for d 6= 3 gives a problematic equation for y, whose solvability is not evident.

Some comments on the previous choices of the potentials. Admittedly, the
potentials V considered in sections 3, 4 of the thesis have a peculiar form. However,
it should be kept in mind that we are searching for models in which the Lagrange
equations are explicitly solvable; since integrability is an exceptional feature, it is
not at all surprising that we can grant it just for very special choices of V. In any
case, the exponential potentials V considered here to grant integrabiliy are not so
different from those considered in some of the previously cited works, which were
argued to possess a minimum of physical realism.

Why a minimal coupling? Another feature of this thesis, deserving a brief
comment, is the fact that the scalar field is always minimally coupled to gravity;
the possibility of a coupling between the scalar curvature R of the spacetime metric
and the scalar field Φ is never considered. Indeed, the case of minimal coupling is
the one most frequently addressed in the literature on scalar cosmologies. However,
there is a more important motivation for this choice: we are interested in integrable
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cosmologies which are exceptional even with a minimal coupling, and extending this
investigation to models with curvature coupling is, to say the least, a non trivial
affair. It is true that some transformations have been proposed in the literature
[13] [20] to connect minimally coupled theories to systems with curvature coupling:
however, these transformations refer to systems with a scalar field and no type of
matter fluid, while matter is an essential character of the models in this thesis.

Qualitative analysis of the solutions of sections 3, 4. This is the subject of
section 5. For the solvable case of section 3 (with V1, V2 > 0) and for some solvable
cases of section 4, a qualitative analysis of the solutions is performed focusing on
the following aspects: possible presence of a Big Bang or a Big Crunch (initial or
final singularity of the solution, manifested by the vanishing of the scale factor a);
possible divergence of the scale factor on long times; comparison between the energy
densities of matter and of the scalar field near the Big Bang, or the Big Crunch, or
on long times.

A partially solvable case with simultaneous presence of dust and radia-
tion. Another, presumably original result of the thesis is presented in section 6;
this gives some explicit solutions (but not the general solution) of the evolution
equations of a cosmological model with spatial dimension d = 2 containing a scalar
field with a self-interaction exponential potential and two distinct types of matter:
dust (w = 0) and radiation (w = 1/2). Some qualitative features of the solutions
are indicated.

Quantitative analysis of one case. This is the subject of the final section 7, where

we return to the flat model with dust and potential V(φ) = 1
d2

(
V1 e

d φ + V2 e
−d φ
)

,

discussed in section 3. Here we make the choice V1 = V2 ≡ V > 0, fixing some
integration constants of the solution so that the energy density of dust dominates
the energy density of the scalar field (dark energy) at the Big Bang; this requirement
is put to get a model not too different from the “benchmark model” of cosmology
were dark energy is described in terms of a cosmological constant. d is initially
arbitrary, and ultimately set to 3 to make contact with physical reality.
In this section we discuss the following problem: is it possible to determine the
constant V in the potential, the instant corresponding to present time and the
residual integration constants of the solution so as to obtain any value φ∗ for the
scalar field at present time and prescribed values for Hubble’s expansion rate and
for the matter density at present time? This problem is solved explicitly.
We then set d = 3 and substitute for Hubble’s parameter and the density of matter
the commonly accepted values on the grounds of astronomical data and of the pre-
vious benchmark model. This gives a family of physically reasonable cosmological
models, labelled by the value φ∗ of the field at present time.
In this framework, the choice φ∗ = 0 (the minimum point of V) implies φ = 0 at all
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times and is a equivalent to a model with cosmological constant. A case with non
zero φ∗ is treated quantitatively and compared with the previous choice φ∗ = 0.
Perhaps, a similar quantitative analysis could be performed for the radiation solu-
tions (w = 1/d) obtained in subsection 4.2 setting d = 3, so as to get a picture of the
initial, radiation dominated part of the history of universe; in this case, reasonable
values should be prescribed for Hubble’s parameter and for the energy density of
radiation at the end of this era.

On the Appendices. At the end of the thesis there are some Appendices that
deal in more details some aspects. Appendix A treats the gravitational constant
in arbitrary dimension d + 1; Appendix B is on the particle horizon; Appendix C
gives some details about the calculation of certain integrals involved in the solu-
tions; Appendix D is about some validity conditions for the solutions; Appendix
E treats models with a cosmological constant and an arbitrary number of perfect
fluids; Appendix F describes the “benchmark model” of cosmology (modelling the
real universe in terms of dust, radiation and a cosmological constant term for dark
energy), and also reports the values of some important constants; Appendix G gives
some information which can be used to compare the potentials in this thesis with
phenomenological potential derived by Saini, Raychaudhury, Sahni and Starobinsky
[31].
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2 A general frame

2.1 Some conventions

Throughout this work we consider spacetimes of dimension d + 1, with d > 2; of
course, d = 3 is the physically realistic choice. To treat the dimensions of physical
quantities, we write L,T and M to indicate length, time and mass, respectively. For
any d, there are a speed of light c and a reduced Planck constants ~. We work in
units where

c = 1, ~ = 1 ; (2.1)

since [c] = L/T and [~] = M (L/T)2 T, from here we infer that L = T = M−1.
Whenever necessary, and especially for the physical case d = 3, we use the standard
values of c, ~ so that

1 = c = 2.99792458× 1010 cm

sec
, 1 = ~ = 1.05457168× 10−27 cm2 gr

sec
; (2.2)

this implies

cm = 3.33564095× 10−11 sec = 2.84278882× 10−37 gr−1 . (2.3)

We write Einstein’s equations as

Rµν −
1

2
gµνR = d(d− 1) γdGd Tµν , (2.4)

where Tµν is the stress-energy tensor, Gd is a constant of dimension Ld T−2 M−1 =
Ld−1 and γd is a numerical coefficient. For any d > 3, γd can be fixed so that, in the
Newtonian limit, these equations reproduce the classical law F = GdmM/rd−1 for
the gravitational force F between two particles of masses m and M at a distance r.
As reviewed in Appendix A, which is inspired by [21], this occurs if

γd :=
πd/2

(d− 2) Γ(d/2 + 1)
(d > 3) ; (2.5)

note that γd is the volume of a unit ball in d-dimensional Euclidean space, divided
by d− 2; in particular, γ3 = 4π/3. In the case of space dimension d = 2, it is known
that Einstein’s equations do not possess a Newtonian limit (see, e.g., [15]); in this
case, the value of γd is not fixed on physical grounds and can be chosen arbitrarily,
so we set

γ2 := any real number > 0 . (2.6)

For any d, the constant Gd appearing in Eq. (2.4) is referred to as the gravitational
constant. For d = 3, we have the physical value

G3 = 6.6742× 10−8 cm3

sec2 gr
=

= 2.6122× 10−66 cm2 = 2.9065× 10−87 sec2 = 2.1110× 109 gr−2 .

(2.7)
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2.2 A general cosmological model with matter and a scalar
field

Let us describe the universe via a spacetime of dimension d + 1, for the moment
arbitrary; this will have coordinate systems (xµ)µ=0,...,d and a line element

ds2 = gµν dx
µdxν . (2.8)

We assume the presence of matter/radiation that we represent as a perfect fluid,
whose pressure p(m) and mass-energy density ρ(m) fulfill the equation of state

p(m) = w ρ(m) (2.9)

for some suitable real constant w; in any spacetime coordinate system (xµ), the
associated stress-energy tensor reads

T (m)
µν =

(
p(m) + ρ(m)

)
Uµ Uν + p(m) gµν , (2.10)

where Uµ is the four-velocity of the fluid. In the sequel, we often refer to the
conditions

ρ(m) > 0 , w > −1 , (2.11)

ρ(m) > 0 , −1 6 w 6 1 , (2.12)

which are equivalent, respectively, to the weak and dominant energy conditions for
T (m)

µν (see, e.g., [16]). In the case w = 0, the fluid is a dust; if w = 1/d the trace
T (m)µ

µ vanishes, as typical of a radiation gas.
The universe also contains a scalar field Φ, minimally coupled to gravity and with
a self-interaction potential V(Φ). The corresponding stress-energy tensor is

T (Φ)
µν = ∂µΦ ∂νΦ−

1

2
gµν ∂αΦ ∂αΦ− gµν V(Φ) ; (2.13)

Φ and V(Φ) have dimensions L−d+1 and Ld+1, respectively.
Einstein’s equations are formulated according to the general scheme (2.4), and read

Rµν −
1

2
gµνR = d(d− 1) γdGd

(
T (m)

µν + T (Φ)
µν

)
. (2.14)

In addition to these equations, we postulate the conservation law for the matter
stress-energy tensor

∇µT
(m)µ

ν = 0 . (2.15)

Of course, Eq. (2.14) (along with the Bianchi identity) implies the conservation of
the total stress-energy tensor T (m)

µν +T (Φ)
µν that, combined with Eq. (2.15), yields

the relation
∇µT

(Φ)µ

ν = 0 . (2.16)
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The separate conservation laws (2.15) (2.16) mean that matter and the scalar field
do not interact directly.
For the field we postulate the Klein-Gordon-type equation

�Φ = V′(Φ) , (2.17)

where �Φ := ∇µ∇µ Φ = 1√
|g|
∂µ
(√
|g| gµν ∂νΦ

)
and |g| := − det(gµν). This equation

is closely related to Eq. (2.16), since the mere expression (2.30) of T (Φ)
µν ensures

∇µT
(Φ)µ

ν =
(
∇µ∇µ Φ−V′(Φ)

)
∂νΦ ; (2.18)

thus Eq. (2.16) implies (2.17), at least in the spacetime region where Φ has non-zero
differential.

2.3 The reference model of the present work

Throughout this work, the general model of the previous subsection is specialized
to the case of spatial homogeneity and isotropy. So we consider a Robertson-Walker
spacetime, the product of the time line and of a Riemannian manifoldMd

k of constant
sectional curvature k ([k] = L−2). Using the standard Robertson-Walker cosmic time
τ and any system of coordinates x = (xi)i=1,..,d for Md

k, we have

ds2 = − dτ 2 + a2(τ) d`2 = − dτ 2 + a2(τ)hij(x) dxidxj , (2.19)

where d`2 = hij(x) dxidxj is the line element of Md
k (1) and a(τ) > 0 is the dimen-

sionless scale factor; typically, the latter is fixed so that a(τ∗) = 1 at some reference
time τ∗ (e.g., the present time).
For our purposes, it is convenient to use in place of τ a dimensionless “time” coor-
dinate t such that

dτ = θ b(t) dt , (2.20)

where b(t) > 0 is a dimensionless “gauge function” to be determined and θ is a
dimensional constant with [θ] = T; thus

ds2 = − θ2 b(t)2dt2 + a2(t)hij(x) dxidxj , (2.21)

1As well known, Md
k (minus a point) can be represented as the product of two factors: the

interval 0 < r < rk, with rk := +∞ if k 6 0 and rk := 1/
√
k if k > 0, and a (d − 1)-dimensional

sphere of unit radius and line element dσ. The line element ofMd
k is d`2 = dr2/(1− k r2) + r2dσ2;

in spherical coordinates ϕ2, ϕ3, ..., ϕd, it is dσ2 =
∑d

i=2

(∏i−1
`=2 sin2 ϕ`

)
dϕ2

i . The family x ≡
(xi)i=1,...,d := (r, ϕ2, ..., ϕd) is a system of coordinates for Md

k of very frequent use.
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where a(t) stands for a(τ) when τ is viewed as a function of t. Accordingly, we shall
write the scalar curvature in terms of a dimensionless coefficient k, setting

k =
k

θ2
. (2.22)

From here to the end of this work we will use a spacetime coordinate system

(xµ) ≡ (x0, xi) := (t,x) , (µ = 0, ..., d; i = 1, ..., d) (2.23)

where, as above, x = (xi) are coordinates onMd
k; Greek indexes always range from 0

to d, Latin indexes from 1 to d. From now on we indicate with Uµ the (d+1)-velocity
of the Robertson-Walker frame; in the coordinate system (2.23) we have

Uµ =
δµ0
θ b(t)

, Uµ = − θ b(t) δµ0 . (2.24)

The perfect fluid describing the matter/radiation content of the universe is assumed
to be at rest in the Robertson-Walker frame; it has pressure, mass-energy density
and stress-energy tensor as in Eq.s (2.9) (2.10), with Uµ as in (2.24).
The second character other than this fluid is the scalar field Φ, with a stress-energy
tensor as in Eq. (2.13). It is convenient to introduce dimensionless versions φ,V of
the field and of its potential, defined by

Φ =
φ√
γdGd

, V(Φ) =
V(φ)

γdGd θ2
. (2.25)

In the above θ is the time parameter of Eq. (2.20), Gd is the gravitational constant
and γd the related numerical coefficient (see Eq.s (2.4-2.6); γd is inserted here for fu-
ture convenience). From now on, the terms “field” and “potential” will be generally
used to indicate the dimensionless objects φ,V. Eq.s (2.13) (2.25) imply

T (Φ)
µν =

1

γdGd

∂µφ ∂νφ−
1

γdGd

gµν

(
1

2
∂αφ ∂

αφ+
V(φ)

θ2

)
. (2.26)

Obviously enough, to fulfill the homogeneity requirement of this cosmology we as-
sume that the matter density and the field depend only on time:

ρ(m) = ρ(m)(t) , φ = φ(t) . (2.27)

The coefficients of the stress-energy tensors for the fluid and the field in a coordinate
system of the form (2.23) are (for i, j = 1, ...d)

T (m)
00 = θ2 b2ρ(m) , T (m)

0i = 0 , T (m)
ij = a2 p(m) hij = w a2ρ(m) hij ; (2.28)

16



T (Φ)
00 =

1

γdGd

(
1

2
φ̇2 + b2 V(φ)

)
, T (Φ)

0i = 0 ,

T (Φ)
ij =

1

γdGd θ2

(
1

2
φ̇2 − b2 V(φ)

)
a2

b2
hij ;

(2.29)

here and in the sequel, ˙ stands for d/dt. It should be noted that the field stress-
energy tensor can be represented in a fluid-like form

T (Φ)
µν =

(
p(Φ) + ρ(Φ)

)
Uµ Uν + p(Φ) gµν ,

ρ(Φ) :=
1

γdGd θ2

(
φ̇2

2 b2
+ V(φ)

)
, p(Φ) :=

1

γdGd θ2

(
φ̇2

2 b2
− V(φ)

)
;

(2.30)

for this reason, ρ(Φ) and p(Φ) will be referred to as the density and pressure of the
field. Let us remark that ρ(m), p(m), ρ(Φ) and p(Φ) all have dimension M/Ld = L−(d+1).
The field Φ will be regarded as a model for the dark energy content of the universe;
its role in the dynamics of the model will be similar to the one of the cosmological
term Λ gµν usually added by hand in the Einstein equations. In the sequel, we often
refer to the “equation of state coefficient”

w(Φ) :=
p(Φ)

ρ(Φ)
, (2.31)

depending on t (which makes sense at all times t such that ρ(Φ)(t) 6= 0).
The evolution equations of the model are Eq.s (2.14) (2.15) (2.17) (with the con-
nections and implications already pointed out in the previous subsection, especially
for what concerns Eq. (2.16) ).
The present framework is a generalization of the one considered in [12], where it was
assumed that k = 0 and no matter field was present. In the interpretation proposed
above, the setting of [12] corresponds to a spatially flat universe filled exclusively
with dark energy.

2.4 Explicit form of the evolution equations; considerations
on independence

Consider again a coordinate system as in Eq. (2.23); one easily checks that

R00 = d

(
ȧ ḃ

a b
− ä

a

)
, Rij =

(d− 1) k hij
θ2

+
a2 hij
θ2 b2

(
ä

a
− ȧ ḃ

a b
+ (d− 1)

ȧ2

a2

)
,

R0i = 0, R =
d(d− 1) k

θ2 a2
+

2 d

θ2 b2

(
ä

a
− ȧ ḃ

a b
+
d− 1

2

ȧ2

a2

)
(2.32)
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(i, j = 1, ..., d; note that (d− 1) k hij/θ
2 = (d− 1) khij is the Ricci tensor of Md

k).
Moreover, one finds that

∇µT
(m)µ

0 = −
(
ρ̇(m) + d (w + 1)

ȧ

a
ρ(m)

)
, ∇µT

(m)µ

i = 0 . (2.33)

Due to Eq. (2.33), Eq. (2.15) is equivalent to

Em = 0 , Em := ρ̇(m) + d (w + 1)
ȧ

a
ρ(m) ; (2.34)

this equation is fulfilled if and only if ρ(m) = ρ(m∗)/ad(w+1) where ρ(m∗) is an in-
tegration constant with the dimension of ρ(m), i.e., M/Ld = L−(d+1). For future
convenience we set ρ(m∗) = Ωm∗/(2 γdGd θ

2), where Ωm∗ is a dimensionless constant;
thus,

ρ(m) =
Ωm∗

2 γdGd θ2 ad(w+1)
. (2.35)

Note that sign ρ(m)(t) = sign Ωm∗ at all times; we will tipically assume Ωm∗ ≥ 0.
Let us now consider Einstein’s equations (2.14), that we write down using Eq.s (2.9)
(2.28) (2.29) (2.32) and the expression (2.35) for ρ(m) (and so p(m)); in this way, we
obtain (2)

A = 0 , (2.36)

A :=
ä

a
+

(d− 2) ȧ2

2 a2
− ȧ ḃ

a b
+ d

(
wΩm∗ b

2

2 ad(w+1)
+
φ̇2

2
− b2 V(φ)

)
+

(d− 2) k b2

2 a2
;

E = 0 , E :=
ȧ2

a2
− 2

(
Ωm∗ b

2

2 ad(w+1)
+
φ̇2

2
+ b2 V(φ)

)
+
k b2

a2
. (2.37)

Finally, the field equation (2.17) reads (with V′ := dV/dφ)

F = 0 , F := φ̈+

(
d
ȧ

a
− ḃ

b

)
φ̇+ b2 V′(φ) . (2.38)

Summing up, the general evolution equations (2.14) (2.15) (2.17) give rise in the
present case to the expression (2.35) for ρ(m) and to the system of equations

A = 0, E = 0, F = 0, (2.39)

given explicitly by Eq.s (2.36) (2.37) (2.38). These three equations are not indepen-
dent, as pointed out in the forthcoming items (i)(ii):

2To be precise: Eq. (2.14) with (µ, ν) = (i, j) ∈ {1, ..., d}2 is equivalent to A = 0, while Eq.
(2.14) with µ = ν = 0 is equivalent to E = 0.
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(i) We have already pointed out that the field equation (2.17) is a consequence
of the other evolution equations (2.14) (2.15) in the spacetime region where the
scalar field has a non-vanishing differential: this is due to Eq.s (2.16) (2.18). In the
present setting one can check directly that 2Fφ̇ = −Ė+2 (ȧ/a)A− (d ȧ/a−2 ḃ/b)E;
therefore,

A = 0, E = 0 ⇒ F = 0 when φ̇ 6= 0 . (2.40)

(ii) As a partial converse, let us consider the relations A = 0,F = 0 supplemented
with the initial condition E(t0) = 0, meaning that E is required to vanish at a given
time t0; we claim that

A = 0, F = 0, E(t0) = 0 ⇒ E = 0 at all times. (2.41)

To prove this, let us reconsider the identity already written in (i), and rephrase it
as Ė = −(d ȧ/a−2 ḃ/b)E+ 2 (ȧ/a)A−2 φ̇F. If A = 0, F = 0 (at all times), we infer
Ė = −(d ȧ/a−2 ḃ/b)E; the latter differential equation for E, supplemented with the
initial condition E(t0) = 0, gives E = 0 at all times.

2.5 Discussion on the domain of the solutions (a(t), φ(t));
Big Bang and Big Crunch

Each solution (a(t), b(t), φ(t)) of the system A = 0,E = 0,F = 0 is well defined and
fulfills a(t) > 0 for t in a suitable interval I ⊂ R; from now on, when we speak
of a solution we always assume I to be maximal (i.e., that the solution cannot be
extended to a larger interval). Let I = (tin, tfin), where −∞ 6 tin < tfin 6 +∞; we
recall that t and τ are related by Eq. (2.20), which is equivalent to

τ(t) = θ

∫ t

tr

dt′ b(t′) , (2.42)

where tr is arbitrarily chosen in I. If a(t)→ 0 for t→ t+in and b(t) is integrable in a
right neighborhood of tin, we say that the model has a Big Bang at t = tin. Needless
to say, in this definition the condition a(t) → 0 indicates an initial singularity and
the integrability assumption for b ensures the cosmic time τ(t) to approach a finite
limit τin for t→ t+in; of course we can set τin = 0 stipulating Eq. (2.42) with tr = tin.
If a(t)→ 0 for t→ t−fin and b(t) is integrable in a left neighborhood of tfin, we say
that the model has a Big Crunch at t = tfin (final singularity while the cosmic time
approaches a finite value τfin). The occurrence of one (or both) of these features
depends on the potential V for the scalar field and on the initial data assumed for
the system at a suitable time; in the sequel we will meet many examples.
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2.6 The particle horizon

Suppose the model has a Big Bang at τin = τ(tin). We define the particle horizon
at a cosmic time τ1 = τ(t1) as (see Appendix B for more details)

Θ(τ1) :=

∫ τ1

τin

dτ

a(τ)
= θ

∫ t1

tin

dt
b(t)

a(t)
; (2.43)

the above integral is finite or infinite, according to the behavior of a(τ) or a(t), b(t)
close to the Big Bang. The interpretation of Θ(τ1) is well known, and can be
summarized as follows writing p0,p1, etc. for the points of Md

k and dist for the
distance onMd

k corresponding to the metric d`2 (see Eq. (2.19)): for each point p1,
the ball B(p1, τ1) := {p0 ∈Md

k | dist(p0,p1) < Θ(τ1)} is the portion of Md
k formed

by the points p0 which had the time to interact causally with p1 from the Big Bang
to τ1 (3). This portion is the whole Md

k if and only if Θ(τ1) > δk, where δk is the
diameter of Md

k, i.e., δk := sup{dist(p0,p1) | p0 ∈Md
k}. The diameter δk is in fact

independent of p0, and given by δk = +∞ if k 6 0 and δk = π/
√
k = θπ/

√
k if

k > 0. (Thus, for k 6 0, Θ(τ1) > δk just means Θ(τ1) = +∞.)
Of course the situation where Θ(τ1) > δk is of special interest, for it explains the
homogeneity of the universe at time τ1. As well known, many Robertson-Walker
cosmologies violate this condition; this will happen, in particular, for many of the
integrable cosmologies presented in this work.

2.7 Cosmological constant solutions

Let us search for a solution of the model with

φ(t) = const. ≡ φ0 . (2.44)

From Eq. (2.38) we see that this occurs if and only if

V′(φ0) = 0 . (2.45)

In the case (2.44) (2.45), Eq.s (2.36) (2.37) involve only the functions a(t) and
b(t) and the constant V(φ0). Moreover, the field stress-energy tensor of Eq. (2.26)
becomes

T (Φ)
µν = − gµν

V(φ0)

γdGd θ2
(2.46)

and bringing this term to the right-hand side of Einstein’s equations (2.14) we obtain

Rµν−
1

2
gµνR+

d(d− 1) ΩΛ,∗

2 θ2
gµν = d (d−1) γdGd T

(m)
µν , ΩΛ,∗ := 2V(φ0) . (2.47)

3in fact, one shows that there exists a causal curve starting from p0 at a time τ0 ∈ (τin, τ1) and
ending at p1 at time τ1 if and only if dist(p0,p1) < Θ(τ1).
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So, in this case we have a model with a cosmological constant Λ = d(d−1) ΩΛ,∗/(2 θ
2)

(note that ΩΛ,∗ is dimensionless and [Λ] = L−2, as expected).
To conclude this subsection, let us characterize the cosmological constant solutions
from the viewpoint of the field equation of state. To this purpose, let us consider
any solution of the model. From Eq. (2.30) we see that φ(t) = const. (i.e., φ̇ = 0)
if and only if

p(Φ) = −ρ(Φ) . (2.48)

Assuming in addition that ρ(Φ) 6= 0 at all times, and comparing with Eq. (2.31), we
can readily infer that φ(t) = const. if and only if

w(Φ) = −1 . (2.49)

2.8 Hubble’s parameter and the deceleration parameter

The time dependent Hubble parameter is

H :=
1

a

da

dτ
=

ȧ

θ a b
; (2.50)

the first equality above is the standard definition in terms of the cosmic time τ , and
the second identity is a reformulation in terms of the derivative ˙ = d/dt (recall Eq.
(2.20) ).
The dimensionless time dependent deceleration parameter is

q := − 1

aH2

d2a

dτ 2
= − a ä

ȧ2
+
a ḃ

ȧ b
. (2.51)

2.9 The dimensionless density parameters

These are the time dependent quantities

Ωm :=
2 γdGd ρ

(m)

H2
, ΩΦ :=

2 γdGd ρ
(Φ)

H2
, Ωk := − k

θ2H2 a2
, (2.52)

From Eq.s (2.30) for ρ(Φ), (2.35) for ρ(m) and (2.50) for H we get

Ωm =
Ωm∗ b

2

ad(w+1)−2 ȧ2
, ΩΦ =

(
φ̇2 + 2 b2 V(φ)

) a2

ȧ2
, Ωk = − k b

2

ȧ2
. (2.53)

By comparison with Eq. (2.37), we see that

E = 0 ⇔ Ωm + ΩΦ + Ωk = 1 . (2.54)

The parameters Ωm and Ωk are standard objects in cosmology (see, e.g., [32]). ΩΦ

plays a role similar to the dimensionless parameter ΩΛ := 2 Λ/(d(d− 1)H2) usually
considered when a cosmological term Λ gµν is present in Einstein’s equations.
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According to the remark after Eq. (2.19), we typically have a(t∗) = 1 at some
reference time t∗; in addition, setting θ := 1/|H(t∗)| , from Eq. (2.50) we obtain
b(t∗) = |ȧ(t∗)| . By comparison with the first relation in (2.53), these facts give
Ωm(t∗) = Ωm∗ .

2.10 Lagrangian formulation

A general cosmological model as in subsection 2.2 is described by the action func-
tional (4)

S :=

∫
dd+1x

√
− det(gµν)

[
R

2d(d− 1)γdGd

− 1

2
gµν∂µΦ ∂νΦ−V(Φ)− ρ(m)

]
,

(2.55)
which is dimensionless in our units with ~ = 1; we now specify our considerations
to the Robertson-Walker cosmology of the present work (subsection 2.3).
Let us use the coordinates (xµ) = (t,x) introduced in Eq. (2.23), inserting in S the
metric corresponding to the line element (2.21); so, det(gµν) = − θ2 a2d b2 det(hij(x))
and the scalar curvature R is given by Eq. (2.32). Moreover, let us express Φ and
V(Φ) according to Eq. (2.25) with φ = φ(t) and write ρ(m) = ρ(m)(t) as in Eq.
(2.35). In this way, we obtain

S =
1

γdGd θ

∫
ddx

√
det(hij(x))

∫
dt

[
L(a, ȧ, φ, φ̇, b) +

1

(d−1)

d

dt

(
ad−1 ȧ

b

)]
, (2.56)

L(a, ȧ, φ, φ̇, b) :=
1

2 b

(
− ad−2 ȧ2 + ad φ̇2

)
− b
(
ad V(φ) +

Ωm∗

2 awd
− k ad−2

2

)
. (2.57)

In Eq. (2.56), the integral
∫
ddx

√
det(hij(x)) is an irrelevant multiplicative factor

(even though infinite if k 6 0); the total t-derivative in the integral is also irrelevant.
In conclusion, we can regard S as associated to the (dimensionless) Lagrangian
function L written in Eq. (2.57); this is a degenerate Lagrangian, since it does not
depend on ḃ.
Independently of the previous considerations, it can be checked by direct inspection
that the Lagrange equations induced by L are equivalent to the evolution equations
of this model. In fact, the Lagrangian derivatives

δL
δq

:= − d

dt

(
∂L
∂q̇

)
+
∂L
∂q

, (q = a, φ, b) (2.58)

4The term ρ(m) in Eq. (2.55) must be regarded as depending on the matter history of the
system; the notion of “matter history” can be defined following [16, page 69], where the matter
density here denoted with ρ(m) is instead indicated with µ.
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are such that

δL
δa

=
ad−1

b
A ,

δL
δφ

= − a
d

b
F ,

δL
δb

=
ad

2 b2
E , (2.59)

which ensures the equivalence between the Lagrange equations δL/δq = 0 (q =
a, φ, b) and the evolution equations A = 0,E = 0,F = 0 (see Eq.s (2.36) (2.37)
(2.38)). We already noted that such evolution equations are not independent; from
the present Lagrangian viewpoint, this is a consequence of the degeneracy of L.

2.11 Gauge fixing. Energy constraint

From here to the end of this work it is assumed

b = B(a, φ) , (2.60)

where B : (0,+∞)×R→ (0,+∞) is a suitable function, in the sequel referred to as
the gauge function. Of course, our evolution equations are still A = 0, E = 0, F = 0;
the results of the previous paragraphs continue to hold, with b as in Eq. (2.60) and

ḃ =
∂B
∂a

(a, φ) ȧ+
∂B
∂φ

(a, φ) φ̇ . (2.61)

Under the same gauge fixing, the Lagrangian L of Eq. (2.57) becomes

L(a, ȧ, φ, φ̇) :=

1

2B(a, φ)

(
− ad−2 ȧ2 + ad φ̇2

)
− B(a, φ)

(
ad V(φ) +

Ωm∗

2 awd
− k ad−2

2

)
.

(2.62)

We note that L is a non-degenerate Lagrangian of mechanical type, whose kinetic
part is induced by a metric of signature (−,+) on the (a, φ) configuration space.
Let us introduce the Lagrangian derivatives

δL

δq
:= − d

dt

(
∂L

∂q̇

)
+
∂L

∂q
(q = a, φ) (2.63)

and the energy function

E :=
∑
q= a,φ

q̇
∂L

∂q̇
− L (2.64)

=
1

2B(a, φ)

(
− ad−2 ȧ2 + ad φ̇2

)
+ B(a, φ)

(
ad V(φ) +

Ωm∗

2 awd
− k ad−2

2

)
,
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which is a constant of motion for the Lagrange equations δL/δq = 0 (q = a, φ). It
is easily checked that δL/δa

δL/δφ
E

 =
ad

2B2

 2B/a 0 Ba
0 −2B Bφ
0 0 −B

 A
F
E

 , (2.65)

 A
F
E

 =
1

ad

 aB 0 aBa
0 −B −Bφ
0 0 −2B

 δL/δa
δL/δφ
E

 , (2.66)

where A,F,E are evaluated with b, ḃ as in Eq.s (2.60) (2.61) and B,Ba,Bφ are short-
hand notations for B(a, φ), (∂B/∂a)(a, φ), (∂B/∂φ)(a, φ) .
Therefore: after gauge fixing, our evolution equations A = 0, E = 0, F = 0 are
equivalent to the Lagrange equations δL/δq = 0 (q = a, φ), supplemented by the
energy condition E = 0; the latter is satisfied at all times if and only if it is fulfilled
by the initial datum (a, ȧ, φ, φ̇)(t0).
From now on, we systematically refer to the Lagrangian L of Eq. (2.62) and to the
energy condition E = 0 to analyze the dynamics of our cosmological model. E = 0
will be referred to as the (zero)-energy constraint.
Whenever we speak of a solution of (one or all) these equations, we always tacitly
assume the maximality of the interval where it is defined; this convention is con-
sistent with the domain prescriptions of subsection 2.5, and will also be applied to
the solutions obtained using Lagrangian coordinates different from (a, φ) (say, the
coordinates (x, y) of the next sections).
The plan for the sequel is to consider specic choices for V allowing to solve explicitly
the Lagrange equations. We will start from a known case, reviewed in section 3.
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3 A solvable exponential potential for the flat,

dust case k = 0, w = 0

Generalities. In this section we consider the flat, dust model k = 0, w = 0 in the
case where the field potential has the form

V(φ) =
1

d2

(
V1 e

d φ + V2 e
−d φ
)
, (3.1)

where V1, V2 are dimensionless constants; this case was already considered in [26],
to which the present section is largely indebted. To treat the system in our setting,
we fix the gauge putting

B(a, φ) = 1 ; (3.2)

from here and from (2.20) (with b(t) = B(a(t), φ(t)) we get dτ = θ dt ; so, in this
case we can take

τ = θ t . (3.3)

To go on we introduce a new pair of dimensionless Lagrangian coordinates x, y > 0,
related to a, φ by

a = x
1
d y

1
d , φ =

1

d
log

(
x

y

)
. (3.4)

In coordinates x, y as in Eq. (3.4), with the choice (3.2) for B and (3.1) for V, the
Lagrangian (2.62) with k = 0, w = 0 becomes

L(x, ẋ, y, ẏ) =
1

d2

(
− 2 ẋ ẏ − V1 x

2 − V2 y
2 − d2 Ωm∗

2

)
, (3.5)

and the energy function (2.64) becomes

E(x, ẋ, y, ẏ) =
1

d2

(
− 2 ẋ ẏ + V1 x

2 + V2 y
2 +

d2 Ωm∗

2

)
. (3.6)

The Lagrange equations δL/δy = 0, δL/δx = 0 are, respectively, equivalent to

ẍ− V2 y = 0 , (3.7)

ÿ − V1 x = 0 ; (3.8)

recall that they must be supplemented with the constraint E = 0.

Solving the equations. As an example, let us assume that

V1, V2 > 0 . (3.9)

25



In this case it is convenient to consider the geometric mean

V :=
√
V1 V2 ; (3.10)

of course, for V1 = V2 we have V = V1 = V2. The general solution of Eq.s (3.7) (3.8),
depending on four arbitrary integration constants A,B,C,D, is (5)

x(t) =
1

2
√
V1

[
(A+ C) cosh

(√
V t
)

+ (A− C) cos
(√

V t
)

+

+ (B +D) sinh
(√

V t
)

+ (B −D) sin
(√

V t
)]
,

(3.11)

y(t) =
1

2
√
V2

[
(A+ C) cosh

(√
V t
)
− (A− C) cos

(√
V t
)

+

+ (B +D) sinh
(√

V t
)
− (B −D) sin

(√
V t
)]
,

(3.12)

(
t ∈ I := a maximal real interval s.t. x(t), y(t)>0 ∀ t ∈ I

)
.

From Eq.s (3.6) (3.11) (3.12), by elementary computations we obtain

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=

1

d2

(
A2 + C2 − 2BD +

d2 Ωm∗

2

)
. (3.13)

In view of this, to fulfill the zero-energy constraint we must require

Ωm∗ =
2

d2

(
2BD − A2 − C2

)
. (3.14)

Now, we can return to Eq. (3.4) for a, φ and insert therein the expressions (3.11),
(3.12) for x = x(t), y = y(t) .
In the sequel of this work, we will frequently return to the solution presented here:
in subsection 5.1, we will point out some of its features (Big Bang and long time
behaviour); in subsection 7.1 we will propose it for d = 3 as a semi-realistic cos-
mological model, and discuss the determination of the related constants on physical
grounds.

5Notice that Eq.s (3.7) (3.8) imply

....
x = V2 ÿ = V2 V1 x ,

....
y = V1 ẍ = V1 V2 y .

The general solution of the above fourth-order differential equations for x(t), y(t) is readily ob-
tained; one then asks x(t), y(t) to fulfill the original system (3.7) (3.8), thus obtaining Eq.s (3.11)
(3.12) .
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4 A solvable exponential potential for arbitrary

k,w

Generalities. Let us consider, for arbitrary k and w, the case of a field potential

V(φ) =
1

d2

(
V1 e

2 dw φ + V2 e
d (1+w)φ

)
, (4.1)

where V1, V2 are constants. A potential with this structure has been considered in
[12] for a cosmology with k = 0, a scalar field and no matter content; in that paper
w is replaced by an arbitrary constant, not related to any material equation of state.
Drawing inspiration from the cited work, we fix the gauge as

B(a, φ) ≡ B(φ) = e− dw φ (4.2)

and we introduce a new pair of dimensionless Lagrangian coordinates x, y > 0,
related to a, φ by

a = x
1

d (1+w) y
1

d (1−w) , φ =
1

d
log
(
x

1
1+w y−

1
1−w

)
. (4.3)

Of course, Eq.s (4.3) make sense if and only if

w 6= ±1 , (4.4)

a condition that we assume from here to the end of this work when dealing with this
model. In coordinates x, y, and with the above choices for V and B, the Lagrangian
(2.62) becomes

L(x, y, ẋ, ẏ) = (4.5)

1

d2

(
− 2 ẋ ẏ

1−w2
− V1 x y − V2 x

2
1+w − d2

2
Ωm∗ x

− 2w
1+w +

d2

2
k x

d(1−w)−2
d(1+w) y

d(1+w)−2
d(1−w)

)
,

and the energy function (2.64) becomes

E(x, y, ẋ, ẏ) = (4.6)

1

d2

(
− 2 ẋ ẏ

1−w2
+ V1 x y + V2 x

2
1+w +

d2

2
Ωm∗ x

− 2w
1+w − d2

2
k x

d(1−w)−2
d(1+w) y

d(1+w)−2
d(1−w)

)
.

The Lagrange equations δL/δy = 0, δL/δx = 0 can be written, respectively, in the
following way:

ẍ− (1− w2)V1

2
x = −

d (1 + w)
(
d (1 + w)− 2

)
4

k x
d (1−w)−2
d (1+w) y

2 (dw−1)
d (1−w) , (4.7)
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ÿ − (1− w2)V1

2
y = (1− w)V2 x

1−w
1+w − d2w (1− w)

2
Ωm∗ x

− 1+3w
1+w +

−
d (1− w)

(
d (1− w)− 2

)
4

k x−
2 (dw+1)
d (1+w) y

d (1+w)−2
d (1−w) .

(4.8)

Let us recall that we are interested in the solutions of these equations fulfilling the
positivity condition

x(t), y(t) > 0 , (4.9)

and the energy constraint

E(x(t), ẋ(t), y(t), ẏ(t)) = 0 ; (4.10)

the latter holds at all times t if and only if it is fulfilled by the initial data. Once a
solution has been obtained, one returns to the physical variables a = a(t),Φ = Φ(t)
and b = B(a,Φ) = b(t) using Eq.s (4.2) (4.3). Let us also recall that the cosmic time
τ is related to t by Eq. (2.42) .

Triangular cases for the system (4.7-4.8). In the cases

k = 0 , w arbitrary , (4.11)

k arbitrary , w = 1/d (radiation gas) , (4.12)

k arbitrary , w = 2/d− 1 , (4.13)

the right-hand side of Eq. (4.7) is respectively zero, a function of x only, zero.
Thus (4.7) is a differential equation involving only the unknown x = x(t); once this
equation has been solved, inserting the result for x(t) into Eq. (4.8) we obtain a
differential equation involving only y = y(t), to be solved.
For the above reasons, the cases (4.11-4.13) are called triangular. The procedure
outlined before to solve the system (4.7-4.8) is implemented in the forthcoming
subsections 4.1, 4.2 and 4.3 where we consider, respectively, the cases (4.11), (4.12)
and (4.13). Concerning the choices of w in Eq.s (4.7-4.8), let us recall that Eq.s
(2.11) (2.12) give natural prescriptions, related to the energy conditions.

4.1 The triangular case k = 0, w arbitrary

Let us assume (4.11). For future convenience, we put

ε := − sign
(
(1− w2)V1

)
, (4.14)

ω :=

√
|(1− w2)V1|

2
. (4.15)

Due to this position and to the assumption k = 0, Eq.s (4.7-4.8) take the form

ẍ+ ε ω2 x = 0 , (4.16)
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ÿ + ε ω2 y = (1− w)V2 x
1−w
1+w − d2w (1− w)

2
Ωm∗ x

− 1+3w
1+w . (4.17)

In the three subcases ε = −1, ε = 0 and ε = 1, Eq. (4.16) describes, respectively, a
harmonic repulsor, a free particle and a harmonic oscillator; Eq. (4.17) has a similar
interpretation, with the addition of a forcing term.

4.1.1 The subcase ε = −1

This corresponds to
(1− w2)V1 > 0 . (4.18)

In this case, Eq.s (4.16) (4.17) read

ẍ− ω2 x = 0 , (4.19)

ÿ − ω2 y = (1− w)V2 x
1−w
1+w − d2w (1− w)

2
Ωm∗ x

− 1+3w
1+w . (4.20)

After a time translation t → t + const. and possibly a time reflection t → −t, any
positive solution of Eq. (4.19) can be written in one of the following ways:

x(t) = A sinh(ω t) , A > 0 , t ∈ (0,+∞) , (4.21)

x(t) = A cosh(ω t) , A > 0 , t ∈ (−∞,+∞) , (4.22)

x(t) = Aeω t , A > 0 , t ∈ (−∞,+∞) , (4.23)

where A is a constant. In the sequel we suppose to have chosen the time coordinate
t so that the solution of Eq. (4.19) can be represented in one of the forms (4.21)
(4.22) (4.23). For the general solution of Eq. (4.20) (on the intervals mentioned
above), we have the familiar representation

y(t) = C cosh(ω t) +D sinh(ω t) (4.24)

+
1

ω

∫ t

0

ds sinh
(
ω(t− s)

)[
(1− w)V2 x(s)

1−w
1+w − d2w (1− w)

2
Ωm∗ x(s)−

1+3w
1+w

]
,

where C,D are arbitrary constants; this holds, at least, for the values of w ensuring
convergence of the above integral, but we shall see later that the result can be
extended to a larger set of values of w by analytic continuation. The calculation of
the integral in (4.24) with x (and t) as in Eq.s (4.21) (4.22) (4.23) is reduced to the
evaluation, for η = 1−w

1+w
or η = − 1+3w

1+w
, of some more basic integrals. More precisely,

we can use the following relations (where ω, t, η are real numbers and we always
assume ω > 0):

1

ω

∫ t

0

ds sinh
(
ω (t− s)

)
sinhη(ω s) (4.25)
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=
sinhη+2(ω t)

ω2

[
1

1 + η
− cosh(ω t)

2 + η
2F1

(
1

2
, 1 +

η

2
, 2 +

η

2
;− sinh2(ω t)

)]
(t > 0 , η > −1) ;

1

ω

∫ t

0

ds sinh
(
ω (t− s)

)
coshη(ω s) (4.26)

=
cosh(ω t)

(
1− coshη+1(ω t)

)
ω2 (1 + η)

+
sinh2(ω t)

ω2 2F1

(
1

2
,−η

2
,
3

2
;− sinh2(ωt)

)
;

1

ω

∫ t

0

ds sinh
(
ω (t− s)

)
eη ω s =

cosh(ω t) + η sinh(ω t)− eη ω t

ω2 (1− η2)
. (4.27)

Here and in the sequel, 2F1 denotes the hypergeometric function (see, e.g., [22]); for
the computation of the integrals (4.26) and (4.27), see Appendix C. The right-hand
sides of Eq.s (4.26) (4.27) must be intended in a limit sense for certain values of η;
more precisely, we understand that

1− coshη+1(ω t)

1 + η

∣∣∣∣
η=−1

:= lim
η→−1

1− coshη+1(ω t)

1 + η
= − log

(
cosh(ω t)

)
, (4.28)

cosh(ω t) + η sinh(ω t)− eη ω t

1− η2

∣∣∣∣
η=±1

:= (4.29)

lim
η→±1

cosh(ω t) + η sinh(ω t)− eη ω t

1− η2
= ± ω t e

±ω t − sinh(ω t)

2
.

Using the above results, Eq.s (4.21)-(4.27) yield the following solutions (for the
values of w discussed in the sequel):

x(t) = A sinh(ω t) , (4.30)

y(t) = C cosh(ω t) +D sinh(ω t)

+
V2

V1

A
1−w
1+w sinh

3+w
1+w (ω t)

[
1− 2 cosh(ω t)

3 + w
2F1

(
1

2
,

3 + w

2 + 2w
,
5 + 3w

2 + 2w
;− sinh2(ω t)

)]
+
d2 Ωm∗

2V1

A−
1+3w
1+w sinh

1−w
1+w (ω t)

[
1 +

2w cosh(ω t)

1− w 2F1

(
1

2
,

1− w
2 + 2w

,
3 + w

2 + 2w
;− sinh2(ω t)

)]
A > 0 , ω as in Eq. (4.15), w 6= −3 + 2h

1 + 2h
for all h ∈ {0, 1, 2, . . .}

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I

 ;

x(t) = A cosh(ω t) , (4.31)

y(t) = C cosh(ω t) +D sinh(ω t)
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+
V2

V1

A
1−w
1+w

[
cosh(ω t)

(
1− cosh

2
1+w (ω t)

)
+

2 sinh2(ω t)

1 + w
2F1

(
1

2
,− 1− w

2 + 2w
,
3

2
;− sinh2(ω t)

)]
+
d2 Ωm∗

2V1

A−
1+3w
1+w

[
cosh(ω t)

(
1− cosh−

2w
1+w (ω t)

)
− 2w sinh2(ω t)

1 + w
2F1

(
1

2
,
1 + 3w

2 + 2w
,
3

2
;− sinh2(ω t)

)]
(
A > 0, ω as in Eq. (4.15), t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I

)
;

x(t) = Aeω t , (4.32)

y(t) = C cosh(ω t) +D sinh(ωt)

+
1 + w

2w

V2

V1

A
1−w
1+w

[
cosh(ω t) +

1− w
1 + w

sinh(ω t)− e
(1−w)
1+w

ω t

]
+

1 + w

1 + 2w

d2 Ωm∗

4V1

A−
1+3w
1+w

[
cosh(ω t)− 1 + 3w

1 + w
sinh(ω t)− e−

(1+3w)
1+w

ω t

]
(
A > 0, ω as in Eq. (4.15), t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I

)
.

The derivation of Eq. (4.30) under the general condition w 6= −3+2h
1+2h

(h = 0, 1, 2, . . .)
contains some subtleties, since it requires some considerations on analytic continu-
ations (see Appendix D). Eq.s (4.30) (4.31) (4.32) implicity assume w 6= ±1, since
this was prescribed for the whole section (see Eq. (4.4) ). Eq. (4.32) must be in-
tended in the limit sense of Eq. (4.29) for w = 0 and w = −1/2 (corresponding,
respectively, to η := −1+3w

1+w
= −1, η := 1−w

1+w
= 1 and to η := −1+3w

1+w
= 1).

To go on, let us recall the expression (4.6) for the energy. From here and from Eq.s
(4.30) (4.31) (4.32) we obtain (6), respectively,

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= − V1AD

d2
, (4.33)

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
A

d2

(
d2 Ωm∗

2
A−

1+3w
1+w + V2A

1−w
1+w + V1C

)
, (4.34)

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
A

d2

(
d2 Ωm∗

2
A−

1+3w
1+w + V2A

1−w
1+w + V1 (C −D)

)
. (4.35)

Taking the above relations into account and recalling that in the present case V1 6= 0
(see Eq. (4.18)), we conclude the following: to fulfill the zero-energy constraint (4.10)
we must put

D = 0 , (4.36)

6For the energy computation, it can be useful to recall that E is a constant of motion, so it does
not depend on t; on account of this, it suffices to compute E ≡ E(x(t), ẋ(t), y(t), ẏ(t)) for a given t
or in a suitable limit, e.g. for t→ 0+ . This remark applies to all subsequent energy computations
in this work, but it will never be repeated.
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C = − V2

V1

A
1−w
1+w − d2 Ωm∗

2V1

A−
1+3w
1+w , (4.37)

C = D − V2

V1

A
1−w
1+w − d2 Ωm∗

2V1

A−
1+3w
1+w (4.38)

in Eq.s (4.30) (4.31) (4.32), respectively.

4.1.2 The subcase ε = 0

We consider the case (4.11) with ε = 0, i.e.,

V1 = 0 (4.39)

(we recall again that we are assuming w 6= ±1; see Eq. (4.4) ) . Eq.s (4.16) (4.17)
read

ẍ = 0 , (4.40)

ÿ = (1− w)V2 x
1−w
1+w − d2w (1− w)

2
Ωm∗ x

− 1+3w
1+w . (4.41)

After a time translation t → t + const. and possibly a time reflection t → −t, any
positive solution of Eq. (4.40) can be written in one of the following ways:

x(t) = A t , A > 0, t ∈ (0,+∞) , (4.42)

x(t) = A , A > 0, t ∈ (−∞,+∞) , (4.43)

where A is a constant. In the sequel we suppose to have chosen the time coordinate
t so that the solution of Eq. (4.40) can be represented in one of the forms (4.42)
(4.43). Substituting these expressions in Eq. (4.41), one obtains the subsequent pair
of solutions, where C,D are constants:

x(t) = A t , (4.44)

y(t) = C +D t+
V2 (1 + w)2 (1− w)

2 (3 + w)
A

1−w
1+w t

3+w
1+w +

d2 (1 + w)2

4
Ωm∗A

− 1+3w
1+w t

1−w
1+w(

A > 0, t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I
)

;

x(t) = A , (4.45)

y(t) = C +D t+
t2

2

(
V2 (1− w)A

1−w
1+w − d2w (1− w)

2
Ωm∗A

− 1+3w
1+w

)
(
A > 0, t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I

)
.
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Besides assuming w 6= ±1, let us observe that Eq. (4.44) requires w 6= −3; the
special case w = −3 should be treated separately, but this will be avoided for
brevity. From Eq.s (4.6) (4.44) (4.45) one obtains, respectively,

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= − 2AD

d2 (1− w2)
, (4.46)

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
A−

2w
1+w

d2

(
V2A

2 +
d2 Ωm∗

2

)
. (4.47)

In view of this, to fulfill the zero-energy constraint we must require

D = 0 , (4.48)

V2 < 0 and A =

√
d2 Ωm∗

2 |V2|
or V2 = 0 and Ωm∗ = 0 (4.49)

in the cases (4.44) (4.45), respectively.

4.1.3 The subcase ε = 1

We consider the case (4.11) with ε = 1, i.e.

V1 (1− w2) < 0 . (4.50)

Eq.s (4.16) (4.17) read
ẍ+ ω2x = 0 , (4.51)

ÿ + ω2y = (1− w)V2 x
1−w
1+w − d2w (1− w)

2
Ωm∗ x

− 1+3w
1+w . (4.52)

After a time translation t → t + const., any positive solution of Eq. (4.51) can be
written as

x(t) = A sin(ω t) , A > 0 , t ∈ (0, π/ω) , (4.53)

where A is a constant. For the general solution of Eq. (4.52) (on the interval
mentioned above), we have the familiar representation

y(t) = C cos(ω t) +D sin(ω t) (4.54)

+
1

ω

∫ t

0

ds sin
(
ω (t− s)

) [
V2 (1− w)x(s)

1−w
1+w − d2w (1− w)

2
Ωm∗ x(s)−

1+3w
1+w

]
,

where C,D are constants. The calculation of the integral in Eq. (4.54) with x (and
t) as in Eq. (4.53) is reduced to the evaluation, for η = 1−w

1+w
or η = − 1+3w

1+w
, of an

integral of the form
1

ω

∫ t

0

ds sin
(
ω (t− s)

)
sinη(ω s) (4.55)
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sinη+2(ω t)

ω2

[
1

η + 1
− cos(ω t)

η + 2
2F1

(
1

2
, 1 +

η

2
, 2 +

η

2
; sin2(ω t)

)]
(ω > 0 , 0 < t <

π

ω
, η > −1) ,

where, as previously, 2F1 denotes the hypergeometric function; for the calculation
of the above integral, see Appendix C.
Summing up, Eq.s (4.53)-(4.55) yield the solution

x(t) = A sin(ω t) , (4.56)

y(t) = C cos(ω t) +D sin(ω t)

+
V2

V1

A
1−w
1+w sin

3+w
1+w (ω t)

[
1− 2 cos(ω t)

3 + w
2F1

(
1

2
,

3 + w

2 + 2w
,
5 + 3w

2 + 2w
; sin2(ω t)

)]
− d

2 Ωm∗

2V1

A−
1+3w
1+w sin

1−w
1+w (ω t)

[
1 +

2w cos(ω t)

1− w 2F1

(
1

2
,

1− w
2 + 2w

,
3 + w

2 + 2w
; sin2(ω t)

)]
(
A > 0 , ω as in Eq. (4.15), t ∈ I := a maximal subinterval of (0, π/ω) s.t. y(t)>0 ∀ t ∈ I

)
.

A posteriori, it is found that the result (4.56) holds for w 6= −3+2h
1+2h

(h = 0, 1, 2, . . .)
(recall again that we are assuming w 6= ±1; see Eq. (4.4) ) . From Eq.s (4.6) (4.56)
we infer

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
V1AD

d2
. (4.57)

In view of this, to fulfill the zero-energy constraint we must require

D = 0 (4.58)

in Eq. (4.56) . Some features of the solution (4.56) (4.58), in particular its Big
Bang behavior, will be analyzed in subsection 5.2 (under the conditions V1 < 0,
−1 < w < 1 which are a specialization of (4.50)).

4.1.4 The dust choice w = 0

Let us now consider Eq. (4.11) with w = 0. In principle, there are three subcases
ε = −1, 0, 1. For the sake of brevity we only analyze the subcase ε = −1, i.e., V1 > 0;
moreover, we choose the solution (4.30). For w = 0, the first hypergeometric function
in Eq. (4.30) becomes (see, e.g., [22, Ch. 15])

2F1

(
1

2
,
3

2
,
5

2
; s

)
= − 3

2

[√
s (1− s)− arcsin

√
s

s
√
s

]
; (4.59)

the second hypergeometric function is regular at w = 0 and is multiplied by w,
so it gives no contribution for w = 0 . Due to these facts, after simple algebraic
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manipulations, for w = 0 Eq. (4.30) gives y(t) =
(
D + d2 Ωm∗

2V1 A
− V2 A

V1

)
sinh

(√
V1

2
t
)

+(
C + V2 A t√

2V1

)
cosh

(√
V1

2
t
)

(7) . We now put the constraint of zero energy that,

according to Eq. (4.36), is fulfilled if and only if D = 0 . In conclusion, Eq. (4.30)
and the zero-energy constraint give the following for w = 0:

x(t) = A sinh
(√V1

2
t
)
, (4.60)

y(t) =

(
d2 Ωm∗

2V1A
− V2A

V1

)
sinh

(√V1

2
t
)

+

(
C +

V2A t√
2V1

)
cosh

(√V1

2
t
)

(
A > 0, t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I

)
.

We note that Eq.s (2.20) (4.2) with w = 0 give

B = 1 ⇒ dτ = θ dt ;

so, as in the dust case of section 3, the cosmic time τ coincides with the dimensionless
coordinate t multiplied by the time parameter θ.

4.2 The triangular case k arbitrary, w = 1/d (mainly, for
d = 3)

In this subsection we consider the triangular case (4.12), representing a radiation
gas; this can be used to model the radiation dominated part in the history of the
universe. We put

ε := − signV1 , (4.61)

ω :=

√
(d2 − 1) |V1|

2 d2
. (4.62)

Due to these positions, Eq.s (4.7-4.8) take the form

ẍ+ ε ω2 x = − k (d2 − 1)

4
x
d−3
d+1 , (4.63)

ÿ +

(
ε ω2 +

k (d− 3)(d− 1)

4
x−

4
d+1

)
y =

V2 (d− 1)

d
x
d−1
d+1 − d− 1

2
Ωm∗ x

− d+3
d+1 .

(4.64)

7This expression for y(t) seems to depend on Ωm∗, while Eq. (4.20) does not contain Ωm∗ for
w = 0. However, the dependence on Ωm∗ in the expression of y(t) is fictitious if D is regarded as

an arbitrary constant, since D̃ := D + d2 Ωm∗
2V1 A −

V2 A
V1

is arbitrary as well. The situation changes

if we stipulate the zero-energy constraint, which fixes D (and so D̃); note that, according to Eq.
(4.6), the energy depends on Ωm∗ even for w = 0.
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Eq. (4.63) can be reduced to quadratures; this allows to determine x(t) (8). When
x(t) is known, Eq. (4.64) is an inhomogeneous, linear second order differential equa-
tion for y(t). If d 6= 3, the quadrature of Eq. (4.63) is not so simple; moreover the
coefficient of y in Eq. (4.64) is time dependent and the reducibility to quadratures
of this equation is, to say the least, a non trivial affair, since one should refer to the
Picard-Vessiot theory [25].
In the sequel, to simplify the treatment we put d = 3 (which, of course, is also the
most interesting choice from the physical viewpoint). In this case, we have

ω =
2

3

√
|V1| , (4.65)

ẍ+ ε ω2 x = − 2 k , (4.66)

ÿ + ε ω2 y =
2V2

3
x1/2 − Ωm∗ x

−3/2 . (4.67)

Let us recall that ε is given by Eq. (4.61). In the three subcases ε = −1, ε = 0
and ε = 1, both Eq.s (4.66) (4.67) describe, respectively, a harmonic repulsor, a
free particle and a harmonic oscillator with a forcing term. Due to the structural
similarity with Eq.s (4.16) (4.17), we omit the details of the related calculations and
just report the solutions in the three cases.

8Indeed, Eq. (4.63) has the form

ẍ = −U ′(x) , U(x) :=
1

2
ε ω2 x2 +

k (d+ 1)2

8
x

2(d−1)
d+1 .

Thus,

1

2
ẋ2+U(x) = const ≡ E ⇒

∫ x(t2)

x(t1)

dx√
2 (E− U(x))

= σ (t2−t1) if sign ẋ(t) = σ ∈ {∓1}∀ t ∈ (t1, t2) .

For completeness, we mention the existence of a special solution for k < 0, with E = 0; this is the
elementary function

x(t) =

(
d− 1

2

√
k (d+ 1)

ε ω2 (d− 2)
sinh

(√− ε ω2

d− 1
t
))d−1

.

(where
√
u := i

√
|u| for real u < 0). More explicitly:

x(t) =

(√
− k d

2(d− 1)

2 (d− 2)V1
sinh

(√ (d+ 1)V1

2 d2(d− 1)
t
))d−1

, if ε = −1 ;

x(t) =

(√
k d2(d− 1)

2 (d− 2)V1
sin
(√
− (d+ 1)V1

2 d2(d− 1)
t
))d−1

, if ε = 1 .
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4.2.1 The subcase d = 3, ε = −1

We consider the case (4.12) with d = 3 and ε = −1, i.e.

V1 > 0 . (4.68)

Eq.s (4.66) (4.67) read
ẍ− ω2 x = − 2 k , (4.69)

ÿ − ω2 y =
2V2

3
x1/2 − Ωm∗ x

−3/2 . (4.70)

After a time translation t → t + const. and possibily a time reflection t 7→ −t, any
positive solution of Eq.s (4.69) (4.70) can be written in one of the following ways,
with t ranging in an interval I whose features are indicated in the sequel:

x(t) = A sinh(ω t) +
2 k

ω2
, (4.71)

y(t) = C cosh(ω t) +D sinh(ω t)

+
1

ω

∫ t

t0

ds sinh
(
ω (t−s)

) [2V2

3

(
A sinh(ω s) +

2 k

ω2

)1/2

− Ωm∗

(
A sinh(ω s) +

2 k

ω2

)−3/2
]
,

x(t) = A cosh(ω t) +
2 k

ω2
, (4.72)

y(t) = C cosh(ω t) +D sinh(ω t)

+
1

ω

∫ t

t0

ds sinh
(
ω (t−s)

) [2V2

3

(
A cosh(ω s) +

2 k

ω2

)1/2

− Ωm∗

(
A cosh(ω s) +

2 k

ω2

)−3/2
]
,

x(t) = Aeω t +
2 k

ω2
, (4.73)

y(t) = C cosh(ω t) +D sinh(ω t)

+
1

ω

∫ t

t0

ds sinh
(
ω(t− s)

) [2V2

3

(
Aeω s +

2 k

ω2

)1/2

− Ωm∗

(
Aeω s +

2 k

ω2

)−3/2
]
.

In each one of Eq.s (4.71)-(4.73) A,C,D are constants and t0 is a distinguished point
of the interval I; it is required that x(t), y(t) > 0 for all t ∈ I, and that I is maximal
with respect to these conditions.
From Eq.s (4.6) (4.71) (4.72) (4.73) one obtains, respectively,

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= (4.74)

1

9

[
−V1AD + V2

(
A sinh(ω t0) +

9 k

2V1

)3/2

+
9 Ωm∗

2

(
A sinh(ω t0) +

9 k

2V1

)−1/2
]
,
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E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= (4.75)

1

9

[
V1AC + V2

(
A cosh(ω t0) +

9 k

2V1

)3/2

+
9 Ωm∗

2

(
A cosh(ω t0) +

9 k

2V1

)−1/2
]
,

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= (4.76)

1

9

[
V1A (C −D) + V2

(
Aeω t0 +

9 k

2V1

)3/2

+
9 Ωm∗

2

(
Aeω t0 +

9 k

2V1

)−1/2
]
,

(Note that Eq.s (4.74) (4.75) (4.76) contain terms of the form x(t0)3/2 and x(t0)−1/2,
well defined since x(t0) > 0). So, the zero-energy constraint is satisfied if and
only if the parameters in Eq.s (4.74) (4.75) (4.76) fulfill, respectively, the following
conditions:

AD =
V2

V1

(
A sinh(ω t0) +

9 k

2V1

)3/2

+
9 Ωm∗

2V1

(
A sinh(ω t0) +

9 k

2V1

)−1/2

, (4.77)

AC = − V2

V1

(
A cosh(ω t0) +

9 k

2V1

)3/2

− 9 Ωm∗

2V1

(
A cosh(ω t0) +

9 k

2V1

)−1/2

, (4.78)

A (C −D) = − V2

V1

(
Aeω t0 +

9k

2V1

)3/2

− 9 Ωm∗

2V1

(
Aeω t0 +

9 k

2V1

)−1/2

. (4.79)

4.2.2 The general subcase d = 3, ε = 0

We consider the case (4.12) with d = 3 and ε = 0, i.e.

V1 = 0 . (4.80)

Eq.s (4.66) (4.67) read
ẍ = − 2 k , (4.81)

ÿ =
2V2

3
x1/2 − Ωm∗ x

−3/2 . (4.82)

To continue, we must distinguish among the three possible choices for the sign of k.

4.2.3 The subcase d = 3, ε = 0, k < 0

Any positive solution of Eq.s (4.81) (4.82) can be written as
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x(t) = A+B t− k t2 , (4.83)

y(t) = C +D t +

√
x(t) (α− 4V2B∆ k t+ 4V2 ∆ k2 t2)

36 ∆ k2

− ∆ (B − 2 k t)

24 |k|5/2
V2 log

(
B − 2 k t

|k|1/2
+ 2

√
x(t)

)
(

∆ := B2+ 4 k A , α :=
(
3B4+ 20 k AB2+ 32 k2A2

)
V2 + 144 k2 Ωm∗ ,

t ∈ I := a maximal real interval s.t. x(t), y(t) > 0 ∀ t ∈ I

)
where A,B,C,D are constants. Note that, differently from the previous subcases
d = 3, ε = ±1, here we have elementary expressions for both x(t) and y(t). A
posteriori, it is clear that the result (4.83) requires ∆ 6= 0; the case ∆ = 0 could be
treated similarly, but we omit its discussion for brevity.
From Eq.s (4.6) (4.83) we infer

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= − 1

4

(
BD + 2 k C

)
. (4.84)

In view of this, to fulfill the zero-energy constraint we must require

C = − BD

2 k
(4.85)

in Eq. (4.83) .

4.2.4 The subcase d = 3, ε = 0, k > 0

In this case, any positive solution of Eq. (4.81) (4.82) can be written as

x(t) = A+B t− k t2 , (4.86)

y(t) = C +D t +

√
x(t) (β + V2 ∆ k t− V2B∆ t2)

9 ∆ k

+
V2 ∆

24 k3

[
2 k
√
x(t) +

√
k (B − 2 k t) arctan

(
B − 2 k t

2
√
k x(t)

)]
(

∆ := B2+ 4 k A , β := 36 kΩm∗ − V2A∆ ,

t ∈ I := a maximal real interval s.t. x(t), y(t) > 0 ∀ t ∈ I

)

where A,B,C,D are constants. As in the subcase d = 3, ε = 0, k < 0, we have
elementary expressions for both x(t) and y(t). Also in this case, the result (4.86)
appears to makes sense only for ∆ 6= 0. On the other hand, since we are assuming
that k > 0, from Eq. (4.86) it can be readily inferred that the requirement x(t) > 0
cannot be fulfilled if ∆ = 0 (namely, I reduces to the empty set in this case).
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From Eq.s (4.6) (4.86) we obtain

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= − 1

4

(
BD + 2 k C

)
. (4.87)

In view of this, to fulfill the zero-energy constraint we must require

C = − BD

2 k
(4.88)

in Eq. (4.86) .

4.2.5 The subcase d = 3, ε = 0, k = 0

After a time translation t → t + const. and possibly a time reflection t → −t, any
positive solution of Eq.s (4.81) (4.82) can be written in one of the following ways
(with A,C,D constants):

x(t) = A t , (4.89)

y(t) = C +D t+
8V2

√
A

45
t5/2 +

4 Ωm∗

A3/2
t1/2(

A > 0, t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I
)

;

x(t) = A , (4.90)

y(t) = C +D t+

(
V2

√
A

3
− Ωm∗

2A3/2

)
t2(

A > 0, t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I
)
.

From Eq.s (4.6) (4.89) (4.90) one obtains, respectively,

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= − AD

4
, (4.91)

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=

1

9
√
A

(
V2A

2 +
9 Ωm∗

2

)
. (4.92)

In view of this, to fulfill the zero-energy constraint we must require

D = 0 , (4.93)

V2 < 0 and A =

√
9 Ωm∗

2 |V2|
or V2 = 0 and Ωm∗ = 0 (4.94)

in Eq.s (4.89) (4.90), respectively. Notice that, in the second case, to fulfill the
zero-energy constraint there must hold V2 6 0; since V1 = 0, this means that we
have to consider a negative definite potential V(φ).
In subsection 5.3 we will return to the solution (4.89) (4.93) to analyze some of its
features, such as its Big Bang behavior.
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4.2.6 The subcase d = 3, ε = 1

We consider the case (4.12) with d = 3 and ε = 1, i.e.

V1 < 0 . (4.95)

Eq.s (4.66) (4.67) read

ẍ+ ω2 x = −2 k , (4.96)

ÿ + ω2 y =
2V2

3
x1/2 − Ωm∗ x

−3/2 . (4.97)

After a time translation t → t + const., any positive solution of Eq.s (4.96) (4.97)
can be written as follows in terms of three constants A,C,D:

x(t) = A sin(ω t)− 2 k

ω2
, (4.98)

y(t) = C cos(ω t) +D sin(ω t)

+
1

ω

∫ t

0

ds sin
(
ω (t− s)

) [2V2

3

(
A sin(ω t)− 2 k

ω2

)1/2

− Ωm∗

(
A sin(ω t)− 2 k

ω2

)−3/2
]

(ω as in Eq. (4.65), t ∈ I := a maximal real interval s.t. x(t), y(t) > 0 ∀ t ∈ I) .

From Eq.s (4.6) (4.98) one obtains

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=

1

9

[
V1AD + V2

(
9 k

2V1

)3/2

+
9 Ωm∗

2

(
9 k

2V1

)−1/2
]
. (4.99)

Notice that the requirement x(t) > 0 and the explicit expression for x(t) written in
Eq. (4.98) (along with Eq.s (4.65) (4.95)) imply k 6 0 (whence, k/V1 > 0); thus,
the above expression for E

(
x, ẋ, y, ẏ

)
makes sense.

Then, keeping in mind that V1 < 0 (due to Eq. (4.95)), to fulfill the zero-energy
constraint we must require the parameters A,D in Eq. (4.98) to satisfy

AD = −V2

V1

(
9 k

2V1

)3/2

− 9 Ωm∗

2V1

(
9 k

2V1

)−1/2

. (4.100)

4.3 The triangular case k arbitrary, w = 2/d− 1

The case (4.13) considered here is perhaps less interesting than the previous trian-
gular cases (4.11) (4.12), since it gives w < 0 for d > 3 (for d = 2 one has a dust
case w = 0). However, if w = 2/d − 1 and we assume Ωm∗ > 0 in Eq. (2.35) (non
negative matter density), the requirements (2.11) (2.12) corresponding to the weak
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and dominant energy conditions are both fulfilled for any d > 2 (indeed, for d > 1).
In the sequel we put

ε := − sign(V1) , (4.101)

ω :=

√
2 (d− 1) |V1|

d2
. (4.102)

Due to these positions and to the assumption w = 2/d − 1, Eq.s (4.7-4.8) take the
form

ẍ+ ε ω2 x = 0 , (4.103)

ÿ + ε ω2 y =
2 (d− 1)V2

d
xd−1 + (d− 2) (d− 1)

(
Ωm∗ − k

)
xd−3 . (4.104)

As in subsection 4.1, in the three subcases ε = −1, ε = 0 and ε = 1, Eq. (4.103)
describes, respectively, a harmonic repulsor, a free particle and a harmonic oscillator;
Eq. (4.104) has a similar interpretation, with the addition of a forcing term.
In the following paragraphs 4.3.1, 4.3.2 and 4.3.3, we always assume

d > 3 ; (4.105)

due to the similarities with other situations considered previously, we just report
the final expressions for the solutions. The case d = 2 can be treated similarly,
but we omit its discussion for the sake of brevity (note that, for d = 2, the term
proportional to xd−3 in the right-hand side of Eq.(4.104) vanishes identically).

4.3.1 The subcase ε = −1

This corresponds to
V1 > 0 . (4.106)

Eq.s (4.103) (4.104) read
ẍ− ω2 x = 0 , (4.107)

ÿ − ω2 y =
2 (d− 1)V2

d
xd−1 + (d− 2) (d− 1)

(
Ωm∗ − k

)
xd−3 . (4.108)

After a time translation t → t + const. and possibly a time reflection t → −t, any
positive solution of Eq.s (4.107) (4.108) can be written in one of the following ways
(with A,C,D constants)

x(t) = A sinh(ω t) , (4.109)

y(t) = C cosh(ω t) +D sinh(ω t)

+
V2

V1

Ad−1 sinhd+1(ω t)

[
1− d cosh(ω t)

d+ 1
2F1

(
1

2
,
d+ 1

2
,
d+ 3

2
;− sinh2(ω t)

)]
+
d2
(
Ωm∗ − k

)
2V1

Ad−3 sinhd−1(ω t)

[
1− (d− 2) cosh(ω t)

d− 1
2F1

(
1

2
,
d− 1

2
,
d+ 1

2
;− sinh2(ω t)

)]
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(
A > 0, ω as in Eq. (4.102), t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I

)
;

x(t) = A cosh(ω t) , (4.110)

y(t) = C cosh(ω t) +D sinh(ω t)

+
V2

V1

Ad−1

[
cosh(ω t)(1− coshd(ω t)) + d sinh2(ω t) 2F1

(
1

2
,−d− 1

2
,
3

2
;− sinh2(ω t)

)]
+

[
cosh(ω t)

(
1− coshd−2(ω t)

)
+ (d− 2) sinh2(ω t) 2F1

(
1

2
,−d− 3

2
,
3

2
;− sinh2(ω t)

)]
×

× d2 (Ωm∗ − k)

2V1

Ad−3(
A > 0, ω as in Eq. (4.102), t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I

)
;

x(t) = Aeω t , (4.111)

y(t) = C cosh(ω t) +D sinh(ω t)

− V2

V1

Ad−1

d− 2

[
cosh(ω t) + (d− 1) sinh(ω t)− e(d−1)ω t

]
− d

2(Ωm∗ − k)

2V1

Ad−3

d− 4

[
cosh(ω t) + (d− 3) sinh(ω t)− e(d−3)ω t

]
(
A > 0, ω as in Eq. (4.102), t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I

)
.

The last term in Eq. (4.111) should be intended as follows for d = 4:

1

d− 4

[
cosh(ω t) + (d− 3) sinh(ω t)− e(d−3)ω t

]∣∣∣∣
d=4

(4.112)

:= lim
d→4

1

d− 4

[
cosh(ω t) + (d− 3) sinh(ω t)− e(d−3)ω t

]
= sinh(ω t)− ω t eω t .

From Eq.s (4.6) (4.109) (4.110) (4.111) one obtains, respectively,

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= − V1AD

d2
, (4.113)

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
A

d2

(
V1C + V2A

d−1 +
d2(Ωm∗ − k)

2
Ad−3

)
, (4.114)

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
A

d2

(
V1 (C −D) + V2A

d−1 +
d2(Ωm∗ − k)

2
Ad−3

)
.

(4.115)
Taking the above relations into account and recalling that in the present case V1 6= 0
(see Eq. (4.106)), to fulfill the zero-energy constraint we must require

D = 0 , (4.116)
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C = − V2A
d−1

V1

− d2(Ωm∗ − k)

2V1

Ad−3 , (4.117)

C = D − V2A
d−1

V1

− d2(Ωm∗ − k)

2V1

Ad−3 (4.118)

in Eq.s (4.109) (4.110) (4.111), respectively.

4.3.2 The subcase ε = 0

We consider the case (4.13) with ε = 0, i.e.

V1 = 0 . (4.119)

Eq.s (4.103) (4.104) read
ẍ = 0 , (4.120)

ÿ =
2(d− 1)V2

d
xd−1 + (d− 2) (d− 1)

(
Ωm∗ − k

)
xd−3 . (4.121)

After a time translation t → t + const. and possibly a time reflection t → −t, any
positive solution of Eq. (4.120) (4.121) can be written in one of the following ways
(with A,C,D constants):

x(t) = A t , (4.122)

y(t) = C +D t+
2 (d− 1)V2

d2 (d+ 1)
Ad−1 td+1 +

(
Ωm∗ − k

)
Ad−3 td−1(

A > 0, t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I
)

;

x(t) = A , (4.123)

y(t) = C +D t+
d− 1

2

(
2V2

d
Ad−1 + (d− 2)

(
Ωm∗ − k

)
Ad−3

)
t2(

A > 0, t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I
)
.

From Eq.s (4.6) (4.122) (4.123) one obtains, respectively,

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
= − AD

2 (d− 1)
, (4.124)

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
Ad−2

d2

(
V2A

2 +
d2(Ωm∗ − k)

2

)
. (4.125)

In view of this, to fulfill the zero-energy constraint we must require

D = 0 , (4.126)

V2 6= 0, sign (Ωm∗ − k) = sign V2 and A =

√
d2 (Ωm∗ − k)

2 |V2|
(4.127)

or V2 = 0 and Ωm∗ = k

in Eq.s (4.122) (4.123), respectively.

44



4.3.3 The subcase ε = 1

We consider the case (4.13) with ε = 1, i.e.

V1 < 0 . (4.128)

Eq.s (4.103) (4.104) read
ẍ+ ω2 x = 0 , (4.129)

ÿ + ω2 y =
2(d− 1)V2

d
xd−1 + (d− 2) (d− 1)

(
Ωm∗ − k

)
xd−3 . (4.130)

After a time translation t → t + const. and possibly a time reflection t → −t, any
positive solution of Eq.s (4.129) (4.130) (for d > 3 as in Eq. (4.105)) can be written
as follows (with A,C,D constants):

x(t) = A sin(ω t) , (4.131)

y(t) = C cos(ω t) +D sin(ω t)

− V2

V1

Ad−1 sind+1(ω t)

[
1− d cos(ω t)

d+ 1
2F1

(
1

2
,
d+ 1

2
,
d+ 3

2
; sin2(ω t)

)]
+
d2
(
Ωm∗ − k

)
2V1

Ad−3 sind−1(ω t)

[
1− (d− 2) cos(ω t)

d− 1
2F1

(
1

2
,
d− 1

2
,
d+ 1

2
; sin2(ω t)

)]
(
A > 0, ω as in Eq. (4.102), t ∈ I := a maximal subinterval of (0, π/ω) s.t. y(t) > 0 ∀ t ∈ I

)
.

From Eq.s (4.6) (4.131) one obtains

E
(
x(t), ẋ(t), y(t), ẏ(t)

)
=
V1AD

d2
. (4.132)

In view of this, to fulfill the zero-energy constraint we must require

D = 0 (4.133)

in Eq. (4.131) .

4.4 Tables of the solutions of subsections 4.1 , 4.2 , 4.3

For the reader’s convenience, this section summarizes all the solutions found in
sections 4.1, 4.2 and 4.3. We report here the field potential and the description
of the model solutions given by Eq.s (4.1) (4.2) (4.3) (4.4) (4.14) (4.15) (4.30)
(4.31) (4.32) (4.44) (4.45) (4.56) (4.71) (4.72) (4.73) (4.83) (4.86) (4.89) (4.90)
(4.98) (4.109) (4.110) (4.111) (4.122) (4.123) (4.131) and by the energy constraints
(4.36) (4.37) (4.38) (4.48) (4.49) (4.58) (4.77) (4.78) (4.79) (4.85) (4.88) (4.93)
(4.94) (4.100) (4.116) (4.117) (4.133) (4.126) (4.127) (4.133) (involving the constants
V1, V2, A, C,D,Ωm∗):
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V(φ) = 1
d2

(
V1 e2 dw φ + V2 ed (1+w)φ

)
, a = x

1
d (1+w) y

1
d (1−w) , φ = 1

d
log
(
x

1
1+w y

− 1
1−w

)
k = 0 , w arbitrary 6= ±1 , ε := − sign

(
(1− w2)V1

)
, ω :=

√
|(1−w2)V1|

2

ε = −1

x(t) = A sinh(ω t)
y(t) = C cosh(ω t) +D sinh(ω t)

+ V2
V1
A

1−w
1+w sinh

3+w
1+w (ω t)

[
1− 2 cosh(ω t)

3+w 2F1

(
1
2
, 3+w

2+2w
, 5+3w

2+2w
;− sinh2(ω t)

)]
+ d2 Ωm∗

2V1
A
− 1+3w

1+w sinh
1−w
1+w (ω t)

[
1 +

2w cosh(ω t)
1−w 2F1

(
1
2
, 1−w

2+2w
, 3+w

2+2w
;− sinh2(ω t)

)]
 A > 0 , D = 0, w 6= −

3 + 2h

1 + 2h
for all h ∈ {0, 1, 2, . . .}

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I


x(t) = A cosh(ω t)

y(t) = C cosh(ω t) +D sinh(ω t)

+ V2
V1
A

1−w
1+w

[
cosh(ω t)

(
1− cosh

2
1+w (ω t)

)
+

2 sinh2(ω t)
1+w 2F1

(
1
2
,− 1−w

2+2w
, 3

2
;− sinh2(ω t)

)]
+ d2 Ωm∗

2V1
A
− 1+3w

1+w

[
cosh(ω t)

(
1− cosh

− 2w
1+w (ω t)

)
− 2w sinh2(ω t)

1+w 2F1

(
1
2
, 1+3w

2+2w
, 3

2
;− sinh2(ω t)

)] A > 0 , C = −
V2

V1
A

1−w
1+w −

d2 Ωm∗

2V1
A
− 1+3w

1+w

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I


x(t) = Aeω t

y(t) = C cosh(ω t) +D sinh(ωt)

+ 1+w
2w

V2
V1
A

1−w
1+w

[
cosh(ω t) + 1−w

1+w
sinh(ω t)− e

(1−w)
1+w

ω t
]

+ 1+w
1+2w

d2 Ωm∗
4V1

A
− 1+3w

1+w

[
cosh(ω t)− 1+3w

1+w
sinh(ω t)− e−

(1+3w)
1+w

ω t
]

 A > 0 , C = D −
V2

V1
A

1−w
1+w −

d2 Ωm∗

2V1
A
− 1+3w

1+w

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I


ε = 0

x(t) = A t

y(t) = C +D t+
V2 (1+w)2 (1−w)

2 (3+w)
A

1−w
1+w t

3+w
1+w +

d2 (1+w)2

4
Ωm∗ A

− 1+3w
1+w t

1−w
1+w(

A > 0, D = 0, t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I
)

x(t) = A

y(t) = C +D t+ t2

2

(
V2 (1− w)A

1−w
1+w − d2 w (1−w)

2
Ωm∗ A

− 1+3w
1+w

)
 A > 0 , V2 < 0 and A =

√
d2 Ωm∗

2 |V2|
or V2 = 0 and Ωm∗ = 0

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I



ε = 1

x(t) = A sin(ω t)
y(t) = C cos(ω t) +D sin(ω t)

+ V2
V1
A

1−w
1+w sin

3+w
1+w (ω t)

[
1− 2 cos(ω t)

3+w 2F1

(
1
2
, 3+w

2+2w
, 5+3w

2+2w
; sin2(ω t)

)]
− d2 Ωm∗

2V1
A
− 1+3w

1+w sin
1−w
1+w (ω t)

[
1 +

2w cos(ω t)
1−w 2F1

(
1
2
, 1−w

2+2w
, 3+w

2+2w
; sin2(ω t)

)](
A > 0 , D = 0, t ∈ I := a maximal subinterval of (0, π/ω) s.t. y(t)>0 ∀ t ∈ I

)
.
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V(φ) = 1
d2

(
V1 e

2 dw φ + V2 e
d (1+w)φ

)
, a = x

1
d (1+w) y

1
d (1−w) , φ = 1

d
log
(
x

1
1+w y

− 1
1−w

)
k arbitrary , w = 1/d , ε := − signV1 , ω :=

√
(d2−1) |V1|

2 d2

d = 3
ε = −1

x(t) = A sinh(ω t) + 2 k
ω2

y(t) = C cosh(ω t) +D sinh(ω t)

+ 1
ω

∫ t
t0
ds sinh

(
ω (t− s)

) [ 2V2
3

(
A sinh(ω s) + 2 k

ω2

)1/2
− Ωm∗

(
A sinh(ω s) + 2 k

ω2

)−3/2
]

 AD =
V2

V1

(
A sinh(ω t0) +

9 k

2V1

)3/2

+
9 Ωm∗

2V1

(
A sinh(ω t0) +

9 k

2V1

)−1/2

t ∈ I := a maximal real interval s.t. x(t), y(t)>0 ∀ t ∈ I


x(t) = A cosh(ω t) + 2 k

ω2

y(t) = C cosh(ω t) +D sinh(ω t)

+ 1
ω

∫ t
t0
ds sinh

(
ω (t− s)

) [ 2V2
3

(
A cosh(ω s) + 2 k

ω2

)1/2
− Ωm∗

(
A cosh(ω s) + 2 k

ω2

)−3/2
]
, AC = −

V2

V1

(
A cosh(ω t0) +

9 k

2V1

)3/2

−
9 Ωm∗

2V1

(
A cosh(ω t0) +

9 k

2V1

)−1/2

t ∈ I := a maximal real interval s.t. x(t), y(t)>0 ∀ t ∈ I


x(t) = Aeω t + 2 k

ω2

y(t) = C cosh(ω t) +D sinh(ω t)

+ 1
ω

∫ t
t0
ds sinh

(
ω(t− s)

) [ 2V2
3

(
Aeω s + 2 k

ω2

)1/2
− Ωm∗

(
Aeω s + 2 k

ω2

)−3/2
]

 A (C −D) = −
V2

V1

(
Ae

ω t0 +
9k

2V1

)3/2

−
9 Ωm∗

2V1

(
Ae

ω t0 +
9 k

2V1

)−1/2

t ∈ I := a maximal real interval s.t. x(t), y(t)>0 ∀ t ∈ I



d = 3
ε = 0

x(t) = A + B t− k t2

y(t) = C +D t +

√
x(t) (α− 4V2 B∆ k t + 4V2 ∆ k2 t2)

36 ∆ k2

−
∆ (B − 2 k t)

24 |k|5/2
V2 log

(
B − 2 k t

|k|1/2
+ 2

√
x(t)

)
 k < 0 , ∆ := B

2
+ 4 kA , α :=

(
3B

4
+ 20 kAB

2
+ 32 k

2
A

2)
V2 + 144 k

2
Ωm∗

C = −
BD

2 k
, t ∈ I := a maximal real interval s.t. x(t), y(t) > 0 ∀ t ∈ I


x(t) = A + B t− k t2

y(t) = C +D t +

√
x(t) (β + V2 ∆ k t− V2 B∆ t2)

9 ∆ k

+
V2 ∆

24 k3

[
2 k
√
x(t) +

√
k (B − 2 k t) arctan

(
B − 2 k t

2
√
k x(t)

)]
 k > 0 , ∆ := B

2
+ 4 kA , β := 36 kΩm∗ − V2 A∆ , C = −

BD

2 k

t ∈ I := a maximal real interval s.t. x(t), y(t) > 0 ∀ t ∈ I


x(t) = A t

y(t) = C +D t +
8V2

√
A

45
t5/2 + 4 Ωm∗

A3/2
t1/2(

k = 0, A > 0, D = 0, t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I
)

x(t) = A

y(t) = C +D t +

(
V2
√
A

3
− Ωm∗

2A3/2

)
t2 k = 0 , A > 0 , V2 < 0 and A =

√
9 Ωm∗

2 |V2|
or V2 = 0 and Ωm∗ = 0

t ∈ I := a maximal real interval s.t. y(t) > 0 ∀ t ∈ I



d = 3
ε = 1

x(t) = A sin(ω t)− 2 k
ω2

y(t) = C cos(ω t) +D sin(ω t)

+ 1
ω

∫ t
0 ds sin

(
ω (t− s)

) [ 2V2
3

(
A sin(ω t)− 2 k

ω2

)1/2
− Ωm∗

(
A sin(ω t)− 2 k

ω2

)−3/2
]

(
AD = −V2

V1

(
9 k

2V1

)3/2
− 9 Ωm∗

2V1

(
9 k

2V1

)−1/2
, t ∈ I := a maximal real interval s.t. x(t), y(t) > 0 ∀ t ∈ I

)
.
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V(φ) = 1
d2

(
V1 e2 dw φ + V2 ed (1+w)φ

)
, a = x

1
d (1+w) y

1
d (1−w) , φ = 1

d
log
(
x

1
1+w y

− 1
1−w

)
k arbitrary , w = 2/d− 1 , d > 3 , ε := − signV1 , ω :=

√
2 (d−1) |V1|

d2

ε = −1

x(t) = A sinh(ω t)
y(t) = C cosh(ω t) +D sinh(ω t)

+ V2
V1
Ad−1 sinhd+1(ω t)

[
1− d cosh(ω t)

d+1 2F1

(
1
2
, d+1

2
, d+3

2
;− sinh2(ω t)

)]
+
d2
(
Ωm∗−k

)
2V1

Ad−3 sinhd−1(ω t)
[
1− (d−2) cosh(ω t)

d−1 2F1

(
1
2
, d−1

2
, d+1

2
;− sinh2(ω t)

)](
A > 0, D = 0, t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I

)
x(t) = A cosh(ω t)

y(t) = C cosh(ω t) +D sinh(ω t)

+ V2
V1
Ad−1

[
cosh(ω t)(1− coshd(ω t)) + d sinh2(ω t) 2F1

(
1
2
,− d−1

2
, 3

2
;− sinh2(ω t)

)]
+
[
cosh(ω t)

(
1− coshd−2(ω t)

)
+ (d− 2) sinh2(ω t) 2F1

(
1
2
,− d−3

2
, 3

2
;− sinh2(ω t)

)]
×

× d2 (Ωm∗−k)
2V1

Ad−3 A > 0 , C = −
V2 Ad−1

V1
−
d2(Ωm∗ − k)

2V1
Ad−3

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I


x(t) = Aeω t

y(t) = C cosh(ω t) +D sinh(ωt)

− V2
V1

Ad−1

d−2

[
cosh(ω t) + (d− 1) sinh(ω t)− e(d−1)ω t

]
− d2(Ωm∗−k)

2V1

Ad−3

d−4

[
cosh(ω t) + (d− 3) sinh(ω t)− e(d−3)ω t

] A > 0 , C = D −
V2 Ad−1

V1
−
d2(Ωm∗ − k)

2V1
Ad−3

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I


ε = 0

x(t) = A t

y(t) = C +D t+
2 (d−1)V2

d2 (d+1)
Ad−1 td+1 +

(
Ωm∗ − k

)
Ad−3 td−1(

A > 0, D = 0, t ∈ I := a maximal subinterval of (0,+∞) s.t. y(t) > 0 ∀ t ∈ I
)

x(t) = A

y(t) = C +D t+ d−1
2

(
2V2
d

Ad−1 + (d− 2)
(
Ωm∗ − k

)
Ad−3

)
t2 A > 0 , V2 6= 0, sign (Ωm∗ − k) = sign V2 and A =

√
d2 (Ωm∗ − k)

2 |V2|
or V2 = 0 and Ωm∗ = k

t ∈ I := a maximal real interval s.t. y(t)>0 ∀ t ∈ I



ε = 1

x(t) = A sin(ω t)
y(t) = C cos(ω t) +D sin(ω t)

− V2
V1
Ad−1 sind+1(ω t)

[
1− d cos(ω t)

d+1 2F1

(
1
2
, d+1

2
, d+3

2
; sin2(ω t)

)]
+
d2
(
Ωm∗−k

)
2V1

Ad−3 sind−1(ω t)
[
1− (d−2) cos(ω t)

d−1 2F1

(
1
2
, d−1

2
, d+1

2
; sin2(ω t)

)](
A > 0 , D = 0, t ∈ I := a maximal subinterval of (0, π/ω) s.t. y(t) > 0 ∀ t ∈ I

)
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5 Qualitative analysis of some solutions

Many of the solutions constructed in Sections 3 and 4 exhibit a Big Bang; some
of them also exhibit a Big Crunch (intendig these expressions in the precise sense
defined in subsection 2.5).
If there is a Big Bang one should understand how a and φ approach it, evaluate
the particle horizon (subsection 2.6) and also analyze the limiting behavior of the
dimensionless densities of subsection 2.9. If there is a Big Crunch, one should
make a similar analysis of the behavior of a, φ and of the densities. In absence of
this, one should anyhow discuss the long time behavior of the previously mentioned
characters.
In the following we will discuss the above issues (or some of them) for few examples.
In each one of these examples, the solution depends on a set of integration constants,
and different choices of these constants can produce qualitatively different behaviors.
All these cases have vanishing scalar curvature, i.e.,

k = 0 , (5.1)

and possess a Big Bang at t = 0 (to which we devote most our attention). We
always define the cosmic time as

τ(t) := θ

∫ t

0

dt′ b(t′) (5.2)

(recalling that the integrability of b in a right neighborhood of zero is required by the
very definition of Big Bang, see subsection 2.5); of course τ(t)→ 0+ for t→ 0+, and
we can speak of the inverse function t = t(τ). In each case analyzed, it is important
to ascertain whether the particle horizon

Θ(τ1) :=

∫ τ1

0

dτ

a(τ)
= θ

∫ t1

0

dt
b(t)

a(t)
(5.3)

is finite or infinite ar any time τ1 = τ(t1).
Since k = 0, from Eq.s (2.53) (2.54) we infer

Ωm + ΩΦ = 1 . (5.4)

In the sequel, we will say that matter dominates at the Big Bang if Ωm(t) → 1 (or
equivalently, ΩΦ(t) → 0) when t → 0+; we will say that the scalar field (or dark
energy) dominates at the Big Bang if ΩΦ(t) → 0 (or equivalently, Ωm(t) → 1) in
the same limit. (One can define similarly the cases where matter or the scalar field
dominate at the Big Crunch, if this exists).
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5.1 The dust solution of section 3

Consider the flat dust model (k = 0, w = 0) of Section 3. For convenience of the
reader, we report here the field potential and the description of the model solution
given by Eq.s (3.1) (3.2) (3.3) (3.4) (3.9) (3.10) (3.11) (3.12) and by the energy
constraint (3.14) (involving the constants V1, V2, V, A,B,C,D,Ωm∗):

V(φ) =
1

d2

(
V1 e

d φ + V2 e
−d φ
) (

V1 > 0, V2 > 0, V :=
√
V1 V2

)
; (5.5)

b(t) = 1 , τ = θ t ;

a(t) = x(t)
1
d y(t)

1
d , φ(t) =

1

d
log

(
x(t)

y(t)

)
;

x(t) =
1

2
√
V1

[
(A+ C) cosh

(√
V t
)

+ (A− C) cos
(√

V t
)

+

+ (B +D) sinh
(√

V t
)

+ (B −D) sin
(√

V t
)]
,

y(t) =
1

2
√
V2

[
(A+ C) cosh

(√
V t
)
− (A− C) cos

(√
V t
)

+

+ (B +D) sinh
(√

V t
)
− (B −D) sin

(√
V t
)]

Ωm∗ =
2

d2

(
2BD − A2 − C2

)
(the above relation involving Ωm∗ is the already mentioned energy constraint).
One accepts as a domain for the solution a maximal interval where x(t), y(t) > 0.
For the sequel, let us also mention that Eq.s (2.30) (2.31) (2.53) and the previous
expressions for b, a give the following representations for the coefficient w(Φ) in the
field equation of state and for the dimensionless matter density Ωm:

w(Φ) =
φ̇2 − 2V(φ)

φ̇2 + 2V(φ)
=

(ẋ y − x ẏ)2 − 2 (V1 x
3y + V2 x y

3)

(ẋ y − x ẏ)2 + 2 (V1 x3y + V2 x y3)
, (5.6)

Ωm =
Ωm∗

ad−2 ȧ2
=

d2 Ωm∗ x y

(x ẏ + ẋ y)2
. (5.7)

5.1.1 Big Bang analysis

Let us wonder under which conditions the solution (5.5) gives a Big Bang at some
instant, that we conventionally choose as the time origin t = 0. The conditions for
a Big Bang at t = 0 are that a(t)→ 0 for t→ 0+ and, even prior to this, that a(t)
is well defined in a right neighborhood of t = 0; in terms of the above functions
x(t), y(t), this amounts to ask

x(t) y(t)→ 0, x(t), y(t) > 0 for t→ 0+ (5.8)
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(here and in the sequel, an expression of the form f(t) > 0 for t → 0+ means that
f(t) > 0 for all t in some interval (0, ε), ε > 0).
From the previous expressions, it is clear that x(t) → A/

√
V1, y(t) → C/

√
V2 for

t→ 0, so the first condition in (5.8) holds if and only if

AC = 0 ; (5.9)

in the sequel we will distinguish three subcases of (5.9).

The case A = 0, C 6= 0. Let us first remark that for B = 0 the zero-energy
constraint (3.14) yields in the present case Ωm∗ = − 2C2/d2 6 0; a non-positive
matter density is not interesting, so from now we assume B 6= 0.
Since x(t) = B (V2/V1)1/4 t + O(t2), y(t) = C/

√
V2 + O(t) for t → 0, the positivity

requirement for these functions as t → 0+ yields the conditions B > 0, C > 0. To
go on, we note that the previous expressions for a, φ, w(Φ),Ωm imply the following,
for t→ 0+:

a(t) =

(
B C√
V

)1/d

t1/d +O
(
t(d+1)/d

)
, (5.10)

φ(t) =
1

d
log t+

1

d
log

(
B V

3/4
2

C V
1/4

1

)
+O(t) , (5.11)

w(Φ)(t) = 1− 4C

B

√
V t+O(t2) , (5.12)

Ωm(t) = 2

(
2BD − C2

B C

)√
V t+O(t2) ; (5.13)

we have similar expansions in terms of the cosmic time τ , recalling that t = τ/θ.
From Eq.s (5.3) (5.10), noting that 1/d < 1 for any d > 2 we infer that the particle
horizon is finite at any time. Eq. (5.13) indicates that Ωm(t)→ 0, so the scalar field
dominates at the Big Bang.

The case A 6= 0, C = 0. This is qualitatively very similar to the previous case.
For D = 0, the zero-energy constraint yields a non-positive matter density, so we
assume D 6= 0. The positivity requirement for x(t), y(t) as t → 0+ yields the
conditions A > 0, D > 0. For t→ 0+ we have

a(t) =

(
AD√
V

)1/d

t1/d +O
(
t(d+1)/d

)
, (5.14)

φ(t) = − 1

d
log t+

1

d
log

(
AV

1/4
2

DV
3/4

1

)
+O(t) , (5.15)

w(Φ)(t) = 1− 4A

D

√
V t+O(t2) , (5.16)
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Ωm(t) = 2

(
2BD − A2

AD

)√
V t+O(t2) ; (5.17)

the particle horizon is finite and the scalar field dominates at the Big Bang.

The case A = C = 0. Let us first remark that, when either B = 0 or D = 0, we
get Ωm ≡ 0 (whence, ΩΦ ≡ 1) for all times; this means that the the scalar field is the
only content of the universe described by this model. From now on we assume B 6= 0
and D 6= 0. Since x(t) = B (V2/V1)1/4 t + O(t3) and y(t) = D (V1/V2)1/4 t + O(t3),
the positivity requirement for these functions as t → 0+ yields the conditions B >
0, D > 0. Again for t→ 0+, we obtain

a(t) = (BD)1/d t2/d +O
(
t2(d+1)/d

)
, (5.18)

φ(t) =
1

d
log

(
B

D

√
V2

V1

)
+O(t2) , (5.19)

w(Φ)(t) = −1 +
(B2 −D2)2

9BD (B2 +D2)
V t2 +O(t4) , (5.20)

Ωm(t) = 1− B2 +D2

2BD
V t2 +O(t4) . (5.21)

(Similar expansions could be given in terms of the cosmic time writing t = τ/θ.)
From Eq.s (5.3) (5.18) we infer that, at any time, the particle horizon is finite if d > 3,
and infinite if d = 2; in the latter case the integral in (5.3) diverges logaritmically.
Eq. (5.20) indicates a field equation of state close to a model with cosmological
constant (recall Eq. (2.49)). Eq. (5.21) tells us that Ωm(t) → 1; thus, differently
from the previous cases, matter dominates at the Big Bang.

5.1.2 Long time behavior

We refer again to the solution (5.5), introducing the abbreviation

F := A+B + C +D . (5.22)

We wonder under which conditions x(t), y(t) are positive in a neighborhood of +∞
(i.e, for t in some interval (tmin,+∞)). In response to this, we note that we have the

t → +∞ expansions x(t) = (F/4
√
V1) e

√
V t + O(1), y(t) = (F/4

√
V2) e

√
V t + O(1).

Thus, x(t), y(t) > 0 for t→ +∞ as soon as

F > 0 , (5.23)

which we assume from now on. With this assumption the solution (5.5) is defined, at
least, in neighborhood of infinity and we have the following expansions for t→ +∞:

a(t) =

(
F

4
√
V

)2/d

e(2/d)V t +O
(
e(2/d−1)V t

)
, (5.24)
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φ(t) =
1

2d
log

V2

V1

+O(e−V t) (5.25)

w(Φ)(t) = −1 +O(e−V t) , (5.26)

Ωm(t) =
4d2Ωm∗

F 2
e−2V t +O(e−3V t) (5.27)

(recall once more that t = τ/θ). Thus, for large time the scale factor diverges, the
field equation of state resembles the cosmological constant case (2.49) and the scalar
field dominates (ΩΦ(t) → 1 since Ωm(t) → 0); all these features are attained with
exponential speed.

Of course, the most interesting situation occurs if the solution (5.5) is defined on the
whole interval (0,+∞), with a Big Bang at t = 0; this happens for suitable choices
of all the involved constants.

5.2 The solution of subsection 4.1.3

First of all, let us recall that in the cited subsection we fixed k = 0 and we con-
structed a solution assuming V1 (1 − w2) < 0 (see (4.50)); hereafter we will make
the more specific assumption V1 < 0, −1 < w < 1. Let us summarize hereafter the
description of this solution arising from this stronger requirement, from Eq.s (4.1)
(4.2) (4.3) (4.15) (4.56) and from the energy constraint (4.58) (which involves the
constants V1, V2, w,A,C):

V(φ) =
1

d2

(
V1 e

2 dw φ + V2 e
d (1+w)φ

)
(V1 < 0, −1 < w < 1) ; (5.28)

a(t) = x(t)
1

d (1+w) y(t)
1

d (1−w) , φ(t) =
1

d
log
(
x(t)

1
1+w y(t)−

1
1−w

)
,

b(t) = e− dw φ(t) = x(t)−
w

1+w y(t)
w

1−w ;

x(t) = A sin(ω t) ,

y(t) = C cos(ω t)

+
V2

V1

A
1−w
1+w sin

3+w
1+w (ω t)

[
1− 2 cos(ω t)

3 + w
2F1

(
1

2
,

3 + w

2 + 2w
,
5 + 3w

2 + 2w
; sin2(ω t)

)]
− d

2 Ωm∗

2V1

A−
1+3w
1+w sin

1−w
1+w (ω t)

[
1 +

2w cos(ω t)

1− w 2F1

(
1

2
,

1− w
2 + 2w

,
3 + w

2 + 2w
; sin2(ω t)

)]
(
A > 0 , ω :=

√
(1− w2) |V1|

2

)
.
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As a domain for this solution, we accept a maximal subinterval of (0, π/ω) where
y(t) > 0. In the present case, Eq.s (2.30) (2.31) (2.53) for the coefficient w(Φ) in the
field equation of state and for the dimensionless matter density Ωm give:

w(Φ) =
φ̇2 − 2 b2V(φ)

φ̇2 + 2 b2V(φ)
=(

(1− w) ẋ y + (1 + w)x ẏ
)2 − 2 (1− w2)

(
V1 x

2y
2(1−w)

1+w + V2 x
3+w
1+w y

3+w
1−w
)(

(1− w) ẋ y + (1 + w)x ẏ
)2

+ 2 (1− w2)
(
V1 x2y

2(1−w)
1+w + V2 x

3+w
1+w y

3+w
1−w
) , (5.29)

Ωm =
Ωm∗ b

2

ad(w+1)−2 ȧ2
=

d2 Ωm∗ (1− w2)2 x
1−w
1+w y(

(1− w) ẋ y + (1 + w)x ẏ
)2 . (5.30)

5.2.1 Big Bang at t = 0

Let us consider the expression for a(t), x(t), y(t) in Eq. (5.28), and notice that
x(t) > 0, x(t) → 0 for t → 0+; taking this into account, it appears that in order
to have a Big Bang at t = 0 we must require y(t) > 0 and b(t) to be integrable in
a right neighborhood of zero. Keeping in mind that we are assuming −1 < w < 1,
from the explicit expression for y(t) written in Eq. (4.56) we infer that y(t) =(
C + d2 Ωm∗

2|V1|
1+w
1−w A

− 1+3w
1+w (ω t)

1−w
1+w

)(
1 +O(t2)

)
for t→ 0+; so, to fulfill the restriction

y(t) > 0 we must assume that either C > 0 or C = 0, Ωm∗ > 0. Hereafter we
proceed to the analysis of these two cases (and find b to be integrable in both of
them).

The case C > 0. For t→ 0+ we find:

a(t) = (Aω)
1

d(1+w) C
1

d(1−w) t
1

d(1+w) + o
(
t

1
d(1+w)

)
, (5.31)

b(t) = (Aω)−
w

1+w C
w

1−w t−
w

1+w + o
(
t−

w
1+w

)
, (5.32)

φ(t) =
1

d(1+w)
log t+

1

d
log
(

(Aω)
1

1+w C−
1

1−w

)
+ o(1) , (5.33)

w(Φ)(t) = 1−

(
2V1

(1− w)2C
4w

1+w

t2 +
4 d2 Ωm∗

A
1+3w
1+w C

1 + w

1− w
(ω t)

1−w
1+w

)(
1 + o(1)

)
, (5.34)

Ωm(t) =
d2 Ωm∗ (1 + w)2

C (Aω)
1+3w
1+w

t
1−w
1+w + o

(
t

1−w
1+w

)
(5.35)

(here and in the following, o(tα) indicates a generic reminder term such that o(tα)/tα →
0 for t→ 0). In view of our assumption −1 < w < 1, Eq. (5.32) shows that b(t) is
integrable for t→ 0+; besides, we get

τ(t) = (Aω)−
w

1+w C
w

1−w (1 + w) θ t
1

1+w + o
(
t

1
1+w

)
for t→ 0+ , (5.36)
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t(τ) =
(Aω)w C−

w(1+w)
1−w

(1 + w)1+w

(τ
θ

)1+w

+ o

((τ
θ

)1+w
)

for τ → 0+ ,

Eq.s (5.31) (5.32) imply

b(t)

a(t)
= (Aω)−

1+dw
d(1+w) C−

1−dw
d(1−w) t−

1+dw
d(1+w) + o

(
t−

1+dw
d(1+w)

)
for t→ 0+ . (5.37)

and this fact, with Eq. (2.43), ensures finiteness of the particle horizon at each time,
since 1+dw

d(1+w)
< 1 in our case with d ≥ 2, −1 < w < 1. Eq. (5.35) indicates that

Ωm(t) → 0 for t → 0+, thus showing that the scalar field is dominant at the Big
Bang. The expansions (5.31-5.35) are easily reformulated in terms of the cosmic
time, using Eq. (5.36) for t(τ); for example, Eq. (5.31) gives

a(t) =

(
C Aω

1 + w

)1/d(τ
θ

)1/d
+ o

((τ
θ

)1/d)
for τ → 0+ . (5.38)

The case C = 0,Ωm∗ > 0. For t→ 0+ we find:

a(t) =
(d2 Ωm∗ (1 + w)2)

1
d(1−w)

2
2

d(1−w) (Aω)
4w

d(1−w2)

t
2

d(1+w) + o
(
t

2
d(1+w)

)
, (5.39)

b(t) =

(
d2 Ωm∗ (1 + w)

4 (Aω)2

) w
1−w

+ o(1) , (5.40)

φ(t) = − 1

d(1− w)
log

(
d2 Ωm∗(1 + w)2

4 (Aω)2

)
+ o(1) , (5.41)

w(Φ)(t) = 1 + o(1), (5.42)

Ωm(t) = 1 + o(1) . (5.43)

Eq. (5.2) (5.40) imply

τ(t) =

(
d2 Ωm∗ (1 + w)2

4 (Aω)2

) w
1−w

θ t+ o(t) for t→ 0+, (5.44)

t(τ) =

(
d2 Ωm∗ (1 + w)2

4 (Aω)2

)− w
1−w τ

θ
+ o
(τ
θ

)
for τ → 0+,

On the other hand, Eq.s (5.39) (5.40) give

b(t)

a(t)
=

(d2 Ωm∗)
dw−1
d(1−w)

(Aω)
2w(d(1+w)−2)

d(1−w2)

(
2

1 + w

) 2
d(1+w)

t−
2

d(1+w) + o
(
t−

2
d(1+w)

)
; (5.45)
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this, together with Eq. (2.43), allow us to we infer that the particle horizon is finite
if and only if 2

d(1+w)
< 1, which in our case with d ≥ 2, −1 < w < 1 happens if and

only if

w >
2

d
− 1 . (5.46)

Notice that the above condition is fulfilled, in particular, in the radiation case where
w = 1/d. Besides, Eq. (5.43) indicates that Ωm(t)→ 1 for t→ 0+, so the radiation
dominates at the Big Bang. The expansions (5.39-5.43) can be reformulated in terms
of the cosmic time, using Eq. (5.44); for example,

a(τ) =

(
d2 Ωm∗ (1 + w)2

4

) 1
d(1+w) (τ

θ

) 2
d(1+w)

+ o

((τ
θ

) 2
d(1+w)

)
for τ → 0+. (5.47)

5.2.2 Big Crunch

Let us wonder under which conditions we have a Big Crunch at t = tcr > 0. Noting
that x(t)→ 0 if and only if t→ π n

ω
, n ∈ Z and x(t) > 0 for all t ∈ (0, π

ω
) (in our case

with A > 0), watching the previous expressions for a(t), we see that we have a Big
Crunch at t = tcr = π

ω
if and only if y(t) > 0 for t ∈ (0, π

ω
) and b(t) is integrable in a

left neighborhood of tcr (on this point, see the comment after Eq. (5.2)). Otherwise,
if y(t) = 0 for tcr ∈ (0, π

ω
) and b(t) is integrable in a left neighborhood of tcr, we

have a Big Crunch at t = tcr <
π
ω

.

5.3 The radiation solution of subsection 4.2.5

The cited section assumes k = 0, d = 3, w = 1/3. We refer to the field potential
and to the solutions described by Eq.s (4.1) (with V1 = 0) (4.2) (4.3) (4.89) (4.93)
which are as follows (with V1, A, C constants):

V(φ) =
V2

9
e4φ ; (5.48)

a(t) = x(t)1/4 y(t)1/2 , φ(t) =
1

4
log

(
x(t)

y(t)2

)
, b(t) = e−φ(t) =

y(t)1/2

x(t)1/4
;

x(t) = A t (A > 0) , y(t) = C +
8V2

√
A

45
t5/2 +

4 Ωm∗

A3/2
t1/2 ;

The zero-energy constraint is fulfilled, and the domain of this solution is a maximal
subinterval of (0,+∞) where y(t) > 0.
With these expressions for a, b, φ, Eq.s (2.30) (2.31) (2.53) for the coefficient w(Φ) in
the field equation of state and for the dimensionless matter density Ωm give:

w(Φ) =
φ̇2 − 2 b2 V(φ)

φ̇2 + 2 b2 V(φ)
=

9(ẋ y − 2x ẏ)2 − 32V2 x
5/2 y

9(ẋ y − 2x ẏ)2 + 32V2 x5/2 y
, (5.49)
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Ωm =
Ωm∗ b

2

a2 ȧ2
=

16 Ωm∗ x
1/2 y

(ẋ y + 2x ẏ)2
. (5.50)

5.3.1 Big Bang at t = 0

Let us wonder under which conditions we have a Big Bang at t = 0. Noting that
x(t)→ 0 for t→ 0, watching the previous expressions for a(t), we see that we have
a Big Bang if and only if y(t) > 0 and b(t) is integrable in a right neighborhood of
zero (on this point, see the comment after Eq. (5.2)). From the explicit expression
of y, we see that y(t) > 0 for t → 0+ if either C > 0, or C = 0,Ωm∗ > 0, or
C = 0,Ωm∗ = 0, V2 > 0. The third case with Ωm∗ = 0 (zero radiation density) is not
interesting for us; in the sequel we will consider the first two cases (recalling that
A > 0 anyway), and find that b(t) is integrable for t→ 0+ in both of them.

The case C > 0. For t→ 0+ we find:

a(t) = A1/4C1/2 t1/4 +O
(
t3/4
)
, (5.51)

b(t) =
C1/2

A1/4
t−1/4 +O

(
t1/4
)
, (5.52)

φ(t) =
1

4
log t+

1

4
log

(
A

C2

)
+O(t1/2) , (5.53)

w(Φ)(t) = 1− 64V2A
1/2

9C
t5/2 +O(t3) , (5.54)

Ωm(t) =
16 Ωm∗

A3/2C
t1/2 − 192 Ω2

m∗
A3C2

t+O
(
t3/2
)
. (5.55)

Eq. (5.52) ensures integrability of b(t) near zero; from this equation and from (5.2)
we get

τ(t) =
4C1/2

3A1/4
θ t3/4 +O(t5/4) for t→ 0+, (5.56)

t(τ) =
34/3A1/3

44/3C2/3

(τ
θ

)4/3
+O

((τ
θ

)2
)

for τ → 0+,

Eq.s (5.51) (5.52) imply b(t)/a(t) = 1/
√
A t+O(1) for t→ 0+ and this fact, with Eq.

(5.3), ensures finiteness of the particle horizon at each time. Eq. (5.55) indicates
that Ωm(t) → 0 for t → 0+, so the scalar field dominates at the Big Bang. The
expansions (5.51-5.55) are easily reformulated in terms of the cosmic time, using Eq.
(5.56) for t(τ); for example, Eq.s (5.51) (5.56) give

a(τ) =

(
3

4
AC

)1/3 (τ
θ

)1/3

+O
(τ
θ

)
for τ → 0+. (5.57)
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The case C = 0,Ωm∗ > 0. For t→ 0+ we find:

a(t) =
2
√

Ωm∗√
A

t1/2 +O
(
t5/2
)

(5.58)

b(t) =
2
√

Ωm∗

A
+O(t2) , (5.59)

φ(t) = log

(
A

2
√

Ωm∗

)
+O(t2) , (5.60)

w(Φ)(t) = 1− 16V2A
2

9 Ωm∗
t2 +O(t3) , (5.61)

Ωm(t) = 1− 2V2A
2

9 Ωm∗
t2 +O(t4) . (5.62)

Eq. (5.2) (5.59) imply

τ(t) =
2
√

Ωm∗

A
θ t+O(t3) for t→ 0+, (5.63)

t(τ) =
A

2
√

Ωm∗

τ

θ
+O

((τ
θ

)3
)

for τ → 0+,

Eq.s (5.58) (5.59) give b(t)/a(t) = 1/(
√
A t ) +O(t3/2) and this fact, with Eq. (5.3),

implies finiteness of the particle horizon. Eq. (5.62) indicates that Ωm(t) → 1 for
t → 0+, so the radiation dominates at the Big Bang. The expansions (5.58-5.62)
can be reformulated in terms of the cosmic time, using Eq. (5.63); for example,

a(τ) =
√

2 Ω1/4
m∗

(τ
θ

)1/2

+O

((τ
θ

)5/2
)

for τ → 0+. (5.64)

5.3.2 Big Crunch

Let us wonder under which conditions we have a Big Crunch at t = tcr > 0. Noting
that x(t) → 0 if and only if t → 0 and x(t) > 0 for all t > 0 (in our case with
A > 0), watching the previous expressions for a(t), we see that we have a Big
Crunch at t = tcr > 0 if and only if y(tcr) = 0 and b(t) is integrable in a left
neighborhood of tcr (on this point, see the comment after Eq. (5.2)). Note that, for

semplicity, we can write the solution y(t) = C + 8V2

√
A

45
t5/2 + 4 Ωm∗

A3/2 t1/2 as

y(z) = C1 z
5 + C2 z + C , z :=

√
t , C1 :=

8V2

√
A

45
, C2 :=

4 Ωm∗

A3/2
. (5.65)

This is a polynomial of grade five, and we can use Descartes’ rule of signs for
determining an upper bound on the number of positive or negative real roots for
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this polynomial, corresponding to the presence of a possible Big Crunch.
In our set we have

C2 > 0 , C1 > 0 if and only if V2 > 0 . (5.66)

Let analyse the two cases C > 0, or C = 0,Ωm∗ > 0 in which we have shown that
we have a Big bang at t = 0.

The case C > 0.

i) If V2 > 0, there are no sign changes in the coefficients of the polynomial y(z),
and so in this case there is not a Big Crunch.

ii) If V2 < 0, there is one sign change in the coefficients of the polynomial y(z), so
there is exactly a (positive) Big Crunch and the solution is define for t ∈ (0, tcr).

The case C = 0,Ωm∗ > 0. In this case one can write y(z) as

y(z) = z(C1 z
4 + C2) ; (5.67)

i) If V2 > 0, there is not a positive solution for y(z), and so in this case there is
not a Big Crunch.

ii) If V2 < 0, there is exactly one positive (explicit) solution for y(z), and so there
is a Big Crunch at

z = 4

√
−C2

C1

→ tcr =
3

A

√
−5 Ωm∗

2V2

. (5.68)
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6 Some cases with two matter fields

We now present an integrable model including two matter fields, besides the usual
scalar field. The matter fields have equations of state

p(m1) = w1 ρ
(m1) , (6.1)

p(m2) = w2 ρ
(m2) , (6.2)

and we indicate their stress-energy tensors, respectively, with T (m1)
µν , T

(m2)
µν . Ac-

cordingly, the total stress-energy tensor for this model is given by Tµν = T (m1)
µν +

T (m2)
µν + T (Φ)

µν . In addition, we postulate the separate conservation laws

∇µT
(m1)µ

ν = 0 , (6.3)

∇µT
(m2)µ

ν = 0 . (6.4)

On the one hand, the above assumptions and the Bianchi identity ∇µT
µ
ν = 0 imply

the conservation of the field stress-energy tensor, i.e., ∇µT
(Φ)µ

ν = 0. On the other
hand, due to Eq.s (6.3) (6.4) we have two copies of Eq.s (2.33) (2.34) (2.35) with
appropriate constants w1,Ωm1∗ and w2,Ωm2∗.
The Einstein equations describing the system under analysis are Eq.s (2.36) (2.37)
with the term (wΩm∗ b

2)/(2ad(w+1)) replaced by the sum (w1 Ωm1∗ b
2)/(2ad(w1+1)) +

(w2 Ωm2∗ b
2)/(2ad(w2+1)); the Lagrangian is

L(a, ȧ, φ, φ̇) := (6.5)

1

2B(a, φ)

(
− ad−2 ȧ2 + ad φ̇2

)
− B(a, φ)

(
ad V(φ) +

Ωm1∗

2 aw1d
+

Ωm2∗

2 aw2d
− k ad−2

2

)
,

to be compared with the Lagrangian (2.62) describing a system formed by gravity,
a scalar field and a single matter field.
From now on, we make the particular choice

w1 = w , w2 = 0 (dust) ; (6.6)

the Lagrangian (6.5) becomes

L(a, ȧ, φ, φ̇) := (6.7)

1

2B(a, φ)

(
− ad−2 ȧ2 + ad φ̇2

)
− B(a, φ)

(
ad V(φ) +

Ωm1∗

2 awd
+

Ωm2∗

2
− k ad−2

2

)
.
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Introducing a pair of coordinates x, y > 0 as in Eq. (4.3), and considering the
choices (4.1) (4.2) for the potential V and the gauge function B, the Lagrangian
(6.7) becomes

L(x, y, ẋ, ẏ) =
1

d2

(
− 2

1−w2
ẋ ẏ − V1 x y − V2 x

2
1+w

− d2

2
Ωm1∗ x

− 2w
1+w − d2

2
Ωm2∗ x

− w
1+w y

w
1−w +

d2

2
k x

d(1−w)−2
d(1+w) y

d(1+w)−2
d(1−w)

)
,

(6.8)

and the corresponding energy function (compare with Eq. (2.64)) is

E(x, y, ẋ, ẏ) =
1

d2

(
− 2

1−w2
ẋ ẏ + V1 x y + V2 x

2
1+w

+
d2

2
Ωm1∗ x

− 2w
1+w +

d2

2
Ωm2∗ x

− w
1+w y

w
1−w − d2

2
k x

d(1−w)−2
d(1+w) y

d(1+w)−2
d(1−w)

)
,

(6.9)

The Lagrange equations δL/δy = 0, δL/δx = 0 can be written, respectively, in the
following way:

ẍ− V1 (1− w2)

2
x =

d2w (1 + w)

4
Ωm2∗ x

− w
1+w y

2w−1
1−w

−
d (1 + w)

(
d (1 + w)− 2

)
4

k x
d(1−w)−2
d(1+w) y

2(dw−1)
d(1−w) ,

(6.10)

ÿ − V1 (1− w2)

2
y = V2 (1− w) x

1−w
1+w − d2w (1− w)

2
Ωm1∗ x

− 1+3w
1+w + (6.11)

− d
2w (1− w)

4
Ωm2∗ x

− 1+2w
1+w y

w
1−w−

d (1− w)
(
d (1− w)− 2

)
4

k x−
2(dw+1)
d(1+w) y

d(1+w)−2
d(1−w) .

In the particular cases

k arbitrary , w = 1/2 , d = 2 (radiation gas) , (6.12)

k = 0 , w = 1/2 , d arbitrary , (6.13)

the system (6.10)-(6.11) is triangular. In the following we proceed to give more
details on the specific cases described in Eq.s (6.12) (6.13).

6.1 The case k arbitrary, w = 1/2 , d = 2

Eq.s (6.10) (6.11) are

ẍ− 3V1

8
x =

3

4

(
Ωm2∗ − k

)
x−1/3 , (6.14)
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ÿ +
1

4

((
Ωm2∗ − k

)
x−

4
3 − 3V1

2

)
y =

V2

2
x1/3 − 1

2
Ωm1∗ x

−5/3 . (6.15)

Eq. (6.14) can be reduced to quadratures; indeed, it is equivalent to

ẍ = −U ′(x) , U(x) := − 3V1

16
x2 − 9

8

(
Ωm2∗ − k

)
x

2
3 . (6.16)

Thus,

1

2
ẋ2 + U(x) = const ≡ E ⇒

∫ x(t2)

x(t1)

dx√
2 (E− U(x))

= σ (t2 − t1) , (6.17)

if sign ẋ(t) = σ ∈ {∓1}, for all t ∈ (t2, t1). Eq. (6.17) describes implicitly the general
solution x(t) of (6.14); the integral therein could be expressed as a combination of
elliptic integrals.
Let us point out the existence of a special solution of Eq. (6.17) for E = 0 and
Ωm2∗ > k, which is an elementary function:

x(t) =

√6 (Ωm2∗ − k)

V1

sinh
(√V1

6
t
)3/2

.

Once x(t) has been determined, Eq. (6.15) becomes an inhomogeneous, linear second
order differential equation for y(t). If Ωm2∗ 6= k, the coefficient of y is time dependent
and the treatment of this equation is, to say the least, nontrivial.

6.1.1 The subcase k arbitrary, w = 1/2 , d = 2 , V1 = 0 , Ωm2∗ > k

If V1 = 0, Eq. (6.17) yields∫ x(t2)

x(t1)

2 dx√
8E + 9 (Ωm2∗ − k)x2/3

= σ(t2 − t1) , (6.18)

(recall that σ = signẋ(t) ∈ {∓1} for all t ∈ (t2, t1)). Assuming in addition that
Ωm2∗ > k, the integral on the l.h.s. of Eq. (6.18) can be evaluated by elementary
means; this gives

−
8E log

(
6
√

(Ωm2∗ − k)
(
8E + 9 (Ωm2∗ − k)x2/3

)
+ 18 (Ωm2∗ − k)x1/3

)
9 (Ωm2∗ − k)3/2

∣∣∣∣∣∣∣
x(t1)

x(t2)

+

√
8E + 9 (Ωm2∗ − k)x2/3

3 (Ωm2∗ − k)
x1/3

∣∣∣∣∣
x(t1)

x(t2)

= σ (t2 − t1) . (6.19)
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In general, Eq. (6.19) cannot be solved explicitly with respect to x. However, let us
mention that in the case E = 0 we have the simple solution

x(t) =
(
Ωm2∗ − k

)3/4
t3/2 . (6.20)

Substituting the above expression for x(t) in Eq. (6.15) for y(t) we get an explicitly
solvable equation with general solution

y(t) = A
√
t+

B

2

√
t log t− Ωm1∗

2 (Ωm2∗ − k)5/4

1√
t

+
V2

8

(
Ωm2∗ − k

)1/4
t5/2 . (6.21)

It can be checked that the zero-energy constraint E(x(t), ẋ(t), y(t), ẏ(t)) = 0 (with
E(x, y, ẋ, ẏ) as in Eq. (6.9)) is fulfilled if and only if

B = 0 . (6.22)

Introducing the constant

Υ1 :=
(
Ωm2∗ − k

)1/4
> 0 (6.23)

and implementing the zero-energy constraint (6.22), we can write x(t), y(t) as

x(t) = Υ3
1 t

3/2 , (6.24)

y(t) =
1

8 Υ5
1

√
t

(
V2 Υ6

1 t
3 + 8 Υ5

1A t− 4 Ωm1∗

)
. (6.25)

Eq.s (6.24) (6.25) make evident that x(t) > 0 as soon as t > 0 and that the positivity
of y(t) depends, in particular, on the sign of the parameters A, V2. As well known
from Cardano’s formula (see, e.g., [17, §10.2, Ex.s 10.14 and 10.17]), the cubic
polynomial

α t3 + β t2 + γ t+ δ , (6.26)

has three complex roots t = ti (i = 1, 2, 3), where

t1 = S + T − β

3α
, (6.27)

t2 = − S + T

2
− β

3α
+ i

√
3

2
(S − T ) , (6.28)

t3 = − S + T

2
− β

3α
− i
√

3

2
(S − T ) , (6.29)

S =
(
R +

√
Q3 +R2

)1/3
, T =

(
R−

√
Q3 +R2

)1/3
, (6.30)

Q =
3αγ − β2

9α2
, R =

9αβγ − 27α2δ − 2 β3

54α3
. (6.31)

Introducing the discriminant

∆ = 18αβγδ − 4 β3δ + β2γ2 − 4αγ3 − 27α2δ2 . (6.32)

We can distinguish three cases:
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i) If ∆ > 0, Eq. (6.26) has three distinct real roots;

ii) If ∆ = 0, Eq. (6.26) has one multiple, real root;

iii) If ∆ < 0, Eq. (6.26) has one real root and two complex conjugate roots.

In our case, the discriminant of the cubic polynomial V2 Υ6
1 t

3 + 8 Υ5
1A t− 4 Ωm1∗ is

∆ = −16 Υ12
1 V2 (128 Υ9

1A
3 + 27V2 Ω2

m1∗) . (6.33)

Recalling that Υ1 > 0 and Ωm1∗ ≥ 0, we have

i) ∆ > 0 if and only if one of two following conditions holds:

V2 > 0 and A < − 3

4Υ3
1

(
V2 Ω2

m1∗

2

)1/3

, (6.34)

V2 < 0 and A > − 3

4Υ3
1

(
V2 Ω2

m1∗

2

)1/3

; (6.35)

ii) ∆ = 0 if and only if

V2 = 0 and/or A = − 3

4Υ3
1

(
V2 Ω2

m1∗

2

)1/3

; (6.36)

iii) ∆ < 0 if and only if

V2 > 0 and A > − 3

4Υ3
1

(
V2 Ω2

m1∗

2

)1/3

; (6.37)

V2 < 0 and A < − 3

4Υ3
1

(
V2Ω2

m1∗

2

)1/3

; (6.38)

Let us consider, for example, the case (6.37). From Eq. (6.27), we infer

t1 :=
(
R +

√
Q3 +R2

)1/3
+
(
R−

√
Q3 +R2

)1/3
, Q =

8A

3V2Υ1

, R =
2 Ωm1∗

V2Υ6
1

;

(6.39)
From Eq. (6.39) it is easy to see that t1 > 0 if and only if

Q = 0 and R > 0 or Q < 0 and R ≥
√
−Q3 , (6.40)

that means, recalling Eq. (6.37)

A = 0 and Ωm1∗ 6= 0 or − 3

4Υ3
1

(
V2 Ω2

m1∗

2

)1/3

< A < 0 , (6.41)
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To go on, let us recall that in this case we have k arbitrary, d = 2, w = 1/2, V1 = 0
and Ωm2∗ > k. Then, according to Eq.s (2.52) (2.53), in the case with two matter
fields with Lagrangian function (6.7), we get

Ωm1 :=
2 γdGd ρ

(m1)

H2
= Ωm1∗

b2

a ȧ2
, Ωm2 :=

2 γdGd ρ
(m2)

H2
= Ωm2∗

b2

ȧ2
,

ΩΦ :=
2 γdGd ρ

(Φ)

H2
=
(
φ̇2 + 2 b2 V(φ)

) a2

ȧ2
, Ωk := − k

θ2H2 a2
= − k b

2

ȧ2
,

(6.42)

with a, b ≡ B(φ) as in Eq.s (4.3) (4.2), respectively. This gives

Ωm1 =
9 Ωm1∗ x

1/3 y

(ẋ y + 3x ẏ)2
, Ωm2 =

9 Ωm2∗ x
2/3 y2

(ẋ y + 3x ẏ)2
, (6.43)

ΩΦ =
9V2 x

7/3 y + 2 y2 ẋ2 − 12x y ẋ ẏ + 18x2 ẏ2

2(ẋ y + 3x ẏ)2
, Ωk = − 9 k x2/3 y2

(ẋ y + 3x ẏ)2
,

with x(t), y(t) as in Eq. (6.24) (6.25). In view of the related Eq. (4.3), with the
constraint given by (6.37) (6.41), we have x(t), y(t) > 0 for t ∈ I = (t1,+∞); it
appears that a Big Bang singularity occurs at t = t1, with t1 as in Eq. (6.39).
In the following we analyze the limit

t̃ := t− t1 → 0+ . (6.44)

From Eq.s (6.24) (6.25), for t̃→ 0+ we infer

x(t) = c1 +O
(
t̃
)
, c1 := Υ3

1 t
3/2
1 ,

y(t) = c2 t̃+O
(
t̃2
)
→ 0 , c2 :=

A√
t1

+
3

8
Υ1 V2 t

3
2
1 ,

(6.45)

and so

Ωm1(t̃) =
Ωm1∗

c
5/3
1 c2

t̃+O(t̃2)→ 0 , Ωm2(t̃) =
Ωm2∗

c
4/3
1

t̃2 +O(t̃3)→ 0 ,

ΩΦ(t̃) = 1 +O
(
t̃
)
→ 1 , Ωk(t̃) = − k

c
4/3
1

t̃2 +O(t̃3)→ 0 ,
(6.46)

showing that the scalar field dominates for small times. Furthermore, for t → 0+

we have
b(t) ≡ B(φ(t)) =

c2

c
1/3
1

t̃+O(t̃2)→ 0 , (6.47)

a(t) = c
1/3
1 c2 t̃+O(t̃2)→ 0 , (6.48)

whence
b(t)

a(t)
=

1

c
2/3
1

+O(t̃) . (6.49)

From here and from Eq. (2.43) we infer that the particle horizon at any given time
t1 is finite.
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6.1.2 The subcase k arbitrary, w = 1/2 , d = 2 , Ωm2∗ = k.

With the additional assumption Ωm2∗ = k, Eq.s (6.14) (6.15) read

ẍ− 3V1

8
x = 0 , (6.50)

ÿ − 3V1

8
y =

V2

2
x1/3 − 1

2
Ωm1∗ x

−5/3 . (6.51)

Recalling that we are assuming with w = 1/2 and d = 2, it can be easily checked
that Eq.s (6.50) (6.51) coincide with Eq.s (4.16) (4.17). Due to this fact, we refer
to subsection 4.1 for the analysis of the solutions.

6.2 The case k = 0 , w = 1/2 , d arbitrary.

In this case, Eq.s (6.10) (6.11) are equivalent to

ẍ− 3V1

8
x =

3 d2

16
Ωm2∗ x

−1/3 , (6.52)

ÿ +
d2

16

(
Ωm2∗ x

− 4
3 − 6V1

d2

)
y =

V2

2
x1/3 − d2

8
Ωm1∗ x

−5/3 . (6.53)

Of course, for d = 2 the above pair (6.52) (6.53) is equivalent to Eq.s (6.14) (6.15).
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7 A fully quantitative analysis of one of the pre-

vious cases

In this section, we reconsider the model of section 3 and fix all the constants it
contains so as to make contact with physical reality.

7.1 The dust model of Section 3

For the moment we consider any d > 2; later on we will focus on the case d = 3.
Moreover, recall that b = B(a, φ) = 1, so that the parametric time t and the proper
time τ are related by τ = θ t.
It appears that the general solution described in Section 3 depends on the (so far
unspecified) parameters θ, V1, V2, A,B,C,D,Ωm∗.
First of all, let us recall that the above mentioned solution of Section 3 possesses a
Big Bang singularity at t = 0 if and only if AC = 0 (see Eq. (5.9)); to say more, in
order to have a dominant matter contribution near the Big Bang (i.e., Ωm(t)→ 1 for
t→ 0+), we must assume that (see subsection 5.1.1 and, in particular, Eq. (5.21))

A = 0 and C = 0 .

To proceed let us remark that, on account of the gauge invariance φ 7→ φ + const.,
we can always reduce to the analysis of the case where (recall that V :=

√
V1 V2)

V1 = V2 = V ; (7.1)

then, the potential (3.1) reads

V(φ) =
V

d2

(
ed φ + e−d φ

)
=

2V

d2
cosh(d φ) . (7.2)

The corresponding solution is

x(t) =
1

2
√
V

[
(B +D) sinh

(√
V t
)

+ (B −D) sin
(√

V t
)]

, (7.3)

y(t) =
1

2
√
V

[
(B +D) sinh

(√
V t
)
− (B −D) sin

(√
V t
)]

, (7.4)

a(t) = x(t)
1
d y(t)

1
d =

[(B +D)2 sinh2
(√

V t
)
− (B −D)2 sin2

(√
V t
)

4V

] 1
d
, (7.5)

φ(t) =
1

d
log

(
x(t)

y(t)

)
=

1

d
log

(
(B +D) sinh

(√
V t
)

+ (B −D) sin
(√

V t
)

(B +D) sinh
(√

V t
)
− (B −D) sin

(√
V t
)) ,

(7.6)
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Ωm(t) =
d2 Ωm∗ x y

(x ẏ + ẋ y)2
= d2 Ωm∗

(B +D)2 sinh2
(√

V t
)
− (B −D)2 sin2

(√
V t
)[

(B +D)2 sinh
(
2
√
V t
)
− (B −D)2 sin

(
2
√
V t
)]2 ,

(7.7)

w(Φ)(t) =
(ẋ y − x ẏ)2 − 2 (V1 x

3y + V2 x y
3)

(ẋ y − x ẏ)2 + 2 (V1 x3y + V2 x y3)
=
N(t)

D(t)
, (7.8)

N(t) := sin2
(√

V t
)[

(B2 −D2)2 cosh2
(√

V t
)

+ (B −D)4 sin2
(√

V t
)]

+ sinh2
(√

V t
)[

(B2 −D2)2 cos2
(√

V t
)
− (B +D)4 sinh2

(√
V t
)]

−1

2
(B2 −D2)2 sin

(
2
√
V t
)

sinh
(
2
√
V t
)
,

D(t) := (B2 −D2)2
[

cosh
(√

V t
)

sin
(√

V t
)
− cos

(√
V t
)

sinh
(√

V t
)]2

+(B +D)4 sinh4
(√

V t
)
− (B −D)4 sin4

(√
V t
)
,

V(t) =
2V

d2
cosh

(
log

(
x(t)

y(t)

))
=

2V

d2

(B +D)2 sinh2
(√

V t
)

+ (B −D)2 sin2
(√

V t
)

(B +D)2 sinh2
(√

V t
)
− (B −D)2 sin2

(√
V t
)

(7.9)
and the zero-energy constraint (3.14) yields

BD =
d2 Ωm∗

4
. (7.10)

Next, we introduce a reference time t∗ and set
a(t∗) = 1 ,

φ(t∗) = φ∗ ,

θ = 1/H(t∗)

(7.11)

where φ∗ is an arbitrary parameter; in the following we will discuss various reasonable
choices of φ∗.
Recalling the expressions of a, φ and H in terms of the Lagrangian variables x, y,
the above conditions (7.11) imply

x(t∗)
1/dy(t)1/d = 1 ,

x(t∗)/y(t∗) = ed φ∗ ,

ẋ(t∗) y(t∗) + x(t∗) ẏ(t∗) = d x(t∗)
d−1
d y(t∗)

d−1
d .

(7.12)

These allow us to infer that
x(t∗) = e

d
2
φ∗ ,

y(t∗) = e−
d
2
φ∗ ,

e−
d
2
φ∗ ẋ(t∗) + e

d
2
φ∗ ẏ(t∗) = d .

(7.13)
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Considering the explicit expressions (7.3) (7.4) for x(t∗) and y(t∗), it appears that
the first two relations in Eq. (7.13) can be viewed as a linear system for the two
unknowns B,D; introducing the notation

s∗ :=
√
V t∗ (7.14)

and solving the said linear system yields

B =
√
V

[
cosh(d

2
φ∗)

sinh(s∗)
+

sinh(d
2
φ∗)

sin(s∗)

]
, D =

√
V

[
cosh(d

2
φ∗)

sinh(s∗)
−

sinh(d
2
φ∗)

sin(s∗)

]
. (7.15)

Substituting the above expressions of B, D in the zero-energy constraint (7.10) and
solving for V , we obtain

V =
d2 Ωm∗ sinh2(s∗) sin2(s∗)

4
[

cosh2(d
2
φ∗) sin2(s∗)− sinh2(d

2
φ∗) sinh2(s∗)

] . (7.16)

Finally, the above relations (7.15) (7.16) and the last identity in Eq. (7.13) give

cosh2

(
d

2
φ∗

)
cosh(s∗) sin(s∗)− sinh2

(
d

2
φ∗

)
sinh(s∗) cos(s∗) =

1√
Ωm∗

[
cosh2

(
d

2
φ∗

)
sin2(s∗)− sinh2

(
d

2
φ∗

)
sinh2(s∗)

]1/2 (7.17)

For assigned values of d, φ∗,Ωm∗, one can look for a solution (assuming it exists) of
the above equality by numerical methods.

7.1.1 The case φ∗ = 0

In this special case, corresponding to the minimum of the potential (7.2), Eq. (7.17)
reduces to

cosh(s∗) =
1√
Ωm∗

(7.18)

which, for Ωm∗ < 1, can be resolved analytically, yielding

s∗ = arccosh

(
1√
Ωm∗

)
(7.19)

(note that this solution does not depend on the dimension d).
Substituting the above solution in the explicit expressions (7.15) (7.16) we obtain

B = D =
d
√

Ωm∗

2
, V =

d2 (1− Ωm∗)

4
. (7.20)
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Besides, we have

t∗ =
2

d
√

(1− Ωm∗)
arccosh

(
1√
Ωm∗

)
. (7.21)

Note that this solution is in agreement with the solution described in Appendix E in
the case of one matter field and a cosmological term: in fact, in the case φ∗ = 0, the
scalar field behaves like a cosmological constant (in particular, Eq. (7.21) is exactly
the same of Eq. (E.43)).
To make contact with reality, we fix d = 3 and choose the matter density parameter
as (see, e.g., [23, p. 252])

Ωm∗ := 0.308 . (7.22)

Then, the previous relations give

s∗ = 1.19416 , B = D = 0.832466 , V = 1.557 , t∗ = 0.957016 . (7.23)

In particular, if we fix (see, e.g., [23])

H(t∗) := H∗ ' 67.74
Km

Mpc · s
' 2.1953× 10−18 s−1 (7.24)

one finds out that the age of the universe is

θ t∗ =
t∗
H∗
' 13.8× 109 years . (7.25)

7.1.2 The case φ∗ = 1/4

In this case, once we have fixed d = 3,Ωm∗ := 0.308 as in the previous case, Eq.
(7.17) depends only on s∗ and it can be solved numerically, giving

s∗ ' 1.00344 . (7.26)

Substituting the above solution in the explicit expressions (7.15) (7.16) we obtain

B ' 1.44972 , D ' 0.481126 , V ' 1.13212 . (7.27)

Besides, from Eq. (7.14) we have

t∗ ' 0.943076 , (7.28)

that correspond to an age of the universe of about (with H∗ as in Eq. (7.24))

θ t∗ =
t∗
H∗
' 13.5× 109 years . (7.29)
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7.1.3 Plotting the dust solutions in the two cases φ∗ = 0,φ∗ = 1/4

In what follows, we have represented the dimensionless scale factor a(t), the equation
of state coefficient of the scalar field w(Φ)(t), the time dependent matter density
parameter Ωm(t) and the scalar field φ(t) in the two previous cases corresponding
to the choices φ∗ = 0 and φ∗ = 1/4. In figures 1, 2 we have represented the scale
factor a(t) against two different time intervals; at the beginning one has a(0) = 0
(Big Bang), than we have an initial phase where the expansion of the universe
is decelerating, followed by a phase where the expansion of the universe become
accelerated and in the future it continues in this way.
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Figure 1: a(t) in the two cases φ∗ = 0, φ∗ = 1
2
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Figure 2: a(t) in the two cases φ∗ = 0, φ∗ = 1
2
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Figure 3: w(Φ)(t) in the two cases φ∗ = 0, φ∗ = 1
2

In Figure 3 we have plotted the equation of state coefficient of the scalar field

w(Φ) =
p(Φ)

ρ(Φ)
=
φ̇2 − 2V(φ)

φ̇2 + 2V(φ)
.

Note that, in the case with φ∗ = 0, one has w(Φ) ≡ −1, as expected (recall that in
this case the scalar field behaves like a cosmological constant); besides, in the case
φ∗ = 1/4, w(Φ) → −1 for t → 0, at the present time we have w(Φ)(t∗) ' −0.89 and
w(Φ) → −1 for t→∞; so, in the future the scalar field continues forever to behave
as a cosmological constant (see the discussion after Eq. (2.31)).
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Figure 4: Ωm(t) in the two cases φ∗ = 0, φ∗ = 1
2
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Figure 5: Ωm(t) in the two cases φ∗ = 0, φ∗ = 1
2
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Figure 6: φ(t) in the two cases φ∗ = 0, φ∗ = 1
2

In Figures 4, 5 we have plotted the time dependent matter density parameters

Ωm(t) =
Ωm∗

ad−2 ȧ2
,

against two different time intervals. As made apparent by the graphs, the universe is
initially filled almost exclusively with matter (Ωm → 1,ΩΦ → 0 for t → 0); matter
continues to dominate over dark energy until t = t̄ when Ωm(t̄) = ΩΦ(t̄) = 0.5,
where t̄ = 0.70736 → τ̄ := t̄

H∗
' 10.21 × 109 years for φ∗ = 0, t̄ = 0.67422 →

τ̄ := t̄
H∗
' 9.73 × 109 years for φ∗ = 1/4. This is in agreement with the results

obtained in Appendix F in the case of the benchmark model. At the present time
Ωm(t∗) = 0.31 (ΩΦ(t∗) = 0.69). In the future dark energy continues to dominate
and completely fills the universe (Ωm(t) → 0,ΩΦ(t) → 1 for t → ∞). In Figure 6
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we have plotted the dimensionless scalar field φ. Note that, in the case with φ∗ = 0,
one has φ(t) = const. ≡ 0 (recall that in this case the scalar field behaves like a
cosmological constant, see subsection 2.7); in the case φ∗ = 1/4, φ → 0.3676 for
t→ 0, at the present time we have φ(t∗) ' 0.25 and φ→ 0 for t→∞.

7.1.4 Some considerations on the potentials

Both in the cases φ∗ = 0, φ∗ = 1/4, the potentials are qualitatively not so far from
the phenomenological self-interaction potential reconstructed by Saini, Raychaud-
hury, Sahni and Starobinsky [31] (i.e FIG. 3.) starting from the empirical redshift-
luminosity distance curve [24]. To make a quantitave comparison, it is necessary to
clarify the relations between the dimensionless scalar field φ and its potential V(φ)
of this work and the ones of the paper of [31]. All the necessary informations are
provided in the Appendix G.
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A Appendix. The gravitational constant

Let us first recall that, in d-dimensional (d > 2) Newtonian gravity, the gravitational

constant Gd is fixed by the following requirement: the gravitational field ~G produced
at distance r by a point mass M ought to fulfil (see, e.g., [21])

|~G| = GdM

rd−1
.

In presence of an arbitrary mass distribution of density ρ, one has

~G = − grad ϕ ,

where the gravitational potential field ϕ fulfills the Poisson equation

∆ϕ =
2π

d
2 Gd

Γ(d/2)
ρ . (A.1)

Next, let us pass to general relativity and write Einstein’s equations as in Eq. (2.4),
i.e.,

Rµν −
1

2
gµν R = d(d− 1) γdGd Tµν ;

here, Gd is the gravitational constant and γd is some numerical coefficient that we
proceed to determine below, requiring Einstein’s equations to reproduce Eq. (A.1)
in a suitable Newtonian regime.
We already mentioned in Section 2 that Einstein’s equations do not possess any
sensible Newtonian limit in the case of space dimension d = 2 (see, e.g., [15]);
because of this, for d = 2 the value of γd can be chosen arbitrarily (see Eq. (2.6)).
On account of the above remarks, in the following we fix d > 3 and consider the
stationary, almost-flat case described by the line element

ds2 = −
(
1 + 2ϕ(x)

)
dt2 +

(
δij + ψij(x)

)
dxidxj ,

where ϕ(x), ψij(x) are small in a suitable sense. By analysis of geodetic motions, ϕ
is found to be an analogue of the Newtonian potential. More precisely, let us assume
the universe to be filled with a dust of (small) density ρ, at rest in the coordinate
system (t,x), so that

Tµν = diag(ρ, 0, . . . , 0︸ ︷︷ ︸
d−times

) .

Recalling our assumption d > 3 and linearizing the Einstein’s equations (2.4) (to
first order in ϕ, ψi,j, ρ), we obtain

∆ϕ = d (d− 2) γdGd ρ , (A.2)
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which agrees with the Newtonian analogue written in Eq. (A.1) if we fix γd as in
Eq. (2.5), i.e.,

γd =
πd/2

(d− 2) Γ(d/2 + 1)

(note that (d/2) Γ(d/2) = Γ(d/2 + 1)).
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B Appendix. On the particle horizon

B.1 Preliminaries

Let us recall the following definitions:

i) a curve in any manifold M is a smooth map λ : [σ0, σ1] → M, σ  λ(σ)
defined on a compact interval;

ii) ifM is a spacetime of any dimension d+1, a causal curve inM is a smooth map
λ : [σ0, σ1] → M, σ  λ(σ) such that the tangent vector λ′(σ) is causal for
each σ ∈ [σ0, σ1] (here and in the sequel, ′ is the derivative). In addition, ifM is
time oriented, a future directed causal curve is a casual curve λ : [σ0, σ1]→M,
σ  λ(σ) such that λ′(σ) is future directed for each σ ∈ [σ0, σ1].

Let us focus on the case of a (d + 1)−dimensional Robertson-Walker spacetime M
with Big Bang, say, at cosmic time τ = 0 and space curvature k. Thus

M = T ×Md
k (B.1)

where T = (0, τfin) is the time interval and Md
k has the usual meaning.

A point of M is a pair (τ,p) with τ ∈ T , p ∈ Md
k ; the tangent space T(τ,p)M is

the set of pairs X = (ζ, z) where ζ is a real number (9) and z ∈ TpMd
k. Let us

write g for the Lorentzian metric of M and h for the Riemannian metric of Md
k

corresponding, respectively, to the line elements indicated in sect. 2 with ds2, d`2.
The relation ds2 = − dτ 2 + a2(τ) d`2 means that

g(τ,p)((ζ, z), (ζ ′, z′)) = −ζζ ′ + a2(τ)hp(z, z′) , (B.2)

for all (ζ, z), (ζ ′, z′) ∈ T(τ,p)M. Of course, causal vectors (ζ, z) are characterized by
the condition

0 ≥ g(τ,p)((ζ, z), (ζ, z)) = −ζ2 + a2(τ)hp(z, z) . (B.3)

By definition, a causal vector (ζ, z) is future directed if ζ ≥ 0. Let us also remark
that a curve in M is a smooth map λ = (θ, π) : [σ0, σ1]→ T ×Md

k.

B.2 Particle horizon

At any time τ ∈ T , this is defined by Eq. (2.43)

Θ(τ1) :=

∫ τ1

0

dτ

a(τ)
. (B.4)

9more precisely: ζ is an element of the 1−dimensional, oriented vector space of time durations.
This space can be identified with R choosing a reference, positively oriented time duration δ and
confusing each duration δ with the real number ζ/δ.
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The considerations of subsection 2.6 rely on the equivalence of the following state-
ments (i)(ii), for all p0 6= p1 ∈Md

k and τ1 ∈ T :

(i) there are τ0 ∈ (0, τ1) and a future directed causal curve λ : [σ0, σ1]→ T ×Md
k

such that λ(σ0) = (σ0,p0) and λ(σ1) = (σ1,p1).

(ii) dist(p0,p1) < Θ(τ1), where dist is the distance onMd
k induced by the metric

h.

Let us derive this equivalence.

Proof of the implication (i)⇒ (ii). Let λ = (θ, π) : [σ0, σ1] → T ×Md
k be

a future directed causal curve with end points (σ0,p0) and (σ1,p1) (0 < τ0 < τ1),
so that θ(σi) = τi and p((σi) = pi for i = 0, 1. The causal nature of λ ensures
( ′ := d/dσ)

0 ≥ gλ(σ)(λ
′(σ), λ′(σ)) = −θ′ 2(σ) + a2(θ(σ))hπ(σ)(π

′(σ), π′(σ)) , (B.5)

whence

hπ(σ)(π
′(σ), π′(σ)) ≤ θ′ 2(σ)

a2(θ(σ))
; (B.6)

the assumption that λ is future directed tells us

θ′(σ) ≥ 0 (B.7)

for all σ.
Since π is a curve in Md

k with end points p1,p2 we have

dist(p0,p1) ≤ Lenght of π =

∫ σ1

σ0

dσ
√

hπ(σ)(π′(σ), π′(σ)) . (B.8)

But (B.6) (B.7) give
√
hπ(σ)(π′(σ), π′(σ)) ≤ θ′(σ)

a(θ(σ))
, thus

dist(p0,p1) ≤
∫ σ1

σ0

dσ
θ′(σ)

a(θ(σ))
=

∫ τ1

τ0

dτ

a(τ)
<

∫ τ1

0

dτ

a(τ)
= Θ(τ1) , (B.9)

(where the first equality above is obtain with a change of variable τ = θ(σ) in the
integral).

Proof of the implication (ii)⇒ (i). Let

δ := dist(p0,p1) . (B.10)

We are assuming

δ < Θ(τ1) =

∫ τ1

0

dτ

a(τ)
, (B.11)
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so there is τ0 ∈ (0, τ1) such that

δ =

∫ τ1

τ0

dτ

a(τ)
. (B.12)

hereafter we will construct a future directed causal curve λ = (θ, π) with end points
(τ0,p0) and (τ1,p1).
To this purpose, let γ denote a minimizing geodesic in Md

k parametrized by arc
length and with end points p0,p1, so that

γ : [0, δ]→Md
k , s γ(s) , h(γ′(s), γ′(s)) = 1 , (B.13)

γ(0) = p0 , γ(δ) = p1 . (B.14)

Let us also put

f : [τ0, τ1]→ R , τ  f(τ) :=

∫ τ

τ0

dτ ′

a(τ ′)
. (B.15)

We have f ′(τ) = 1
a(τ)

> 0, f(τ0) = 0, f(τ1) = δ by Eq. (B.12). Using f with the
previous geodesic γ, we define

π : [τ0, τ1]→Md
k , τ  π(τ) := γ(f(τ)) (B.16)

and
λ : [τ0, τ1]→ T ×Md

k , τ  λ(τ) := (τ, π(τ)) . (B.17)

Then
π(τ0) = γ(f(τ0)) = γ(0) = p0 (B.18)

π(τ1) = γ(f(τ1)) = γ(δ) = p1

so that
λ(τ0) = (τ0,p0) , λ(τ1) = (τ1,p1) . (B.19)

Moreover

π′(τ) = γ′(f(τ)) f ′(τ) =
γ′(f(τ))

a(τ)
, (B.20)

λ′(τ) = (1,
γ′(f(τ))

a(τ)
) , (B.21)

gλ(τ)(λ
′(τ), λ′(τ)) = −1 + a2(τ)hγ(f(τ))

(
γ′(f(τ))

a(τ)
,
γ′(f(τ))

a(τ)

)
(B.22)

= −1 + hγ(f(τ)) (γ′(f(τ)), γ′(f(τ))) = 0

(the last equality follows from Eq. (B.13)). Eq. (B.22) tells us that λ is a light-like
curve, and therefore a causal curve. We know from Eq. (B.19) that λ has endpoints
(τ0,p0) and (τ1,p1), so the thesis (i) is proved.
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C Appendix. Derivation of Eq.s (4.25)(4.26)(4.55)

First of all, let us recall a well-known integral identity for the hypergeometric func-
tion 2F1(α, β, γ; z), holding true for any α, β, γ, z ∈ R with γ > β > 0 (see, e.g., [22,
Eq. 15.6.1], keeping in mind [22, 15.1.2]):∫ 1

0

dv
vβ−1 (1− v)γ−β−1

(1− z v)α
=

Γ(β) Γ(γ − β)

Γ(γ)
2F1(α, β, γ; z) . (C.1)

In the following we shall employ systematically the above identity to provide a
derivation of Eq.s (4.25) (4.26) (4.55). In the sequel t, η, ω are real numbers with
ω > 0 .
Derivation of Eq. (4.25). Let t > 0 , η > −1 (the second condition is required
for the convergence of the subsequent integrals). By means of trivial trigonometric
identities and by evaluation of elementary integrals, we get

1

ω

∫ t

0

ds sinh
(
ω (t− s)

)
sinhη(ω s) =

=
sinh(ω t)

ω

∫ t

0

ds cosh(ω s) sinhη(ω s)− cosh(ω t)

ω

∫ t

0

ds sinhη+1(ω s) =

=
sinhη+2(ω t)

ω2 (η + 1)
− cosh(ω t) sinhη+2(ω t)

2ω2

∫ 1

0

dv
vη/2√

1 + sinh2(ω t) v

(C.2)

(the last identity follows making the change of variable s = 1
ω

arcsinh
(

sinh(ω t)
√
v
)

in the second integral ). Then, using the relation (C.1) with α = 1/2, β = 1 + η/2,
γ = 2 + η/2 and z = − sinh2(ω t) (along with the identities Γ(1) = 1, Γ(2 + η/2) =
(1 + η/2) Γ(1 + η/2) ), we obtain Eq. (4.25), i.e.,

1

ω

∫ t

0

ds sinh
(
ω (t− s)

)
sinhη(ω s) =

=
sinhη+2(ω t)

ω2

[
1

η + 1
− cosh(ω t)

η + 2
2F1

(
1

2
, 1 +

η

2
, 2 +

η

2
; − sinh2(ω t)

)]
.

Derivation of Eq. (4.26). Again, by obvious trigonometric identities and evalua-
tion of simple integrals, for η 6= −1 we get

1

ω

∫ t

0

ds sinh
(
ω (t− s)

)
coshη(ω s) =

= − cosh(ω t)

ω

∫ t

0

ds sinh(ω s) coshη(ω s) +
sinh(ω t)

ω

∫ t

0

ds coshη+1(ω s) =

=
cosh(ω t)

(
1− coshη+1(ωt)

)
ω2 (η + 1)

+
sinh2(ω t)

2ω2

∫ 1

0

dv v−1/2
(
1 + sinh2(ω t) v

)η/2
(C.3)
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(consider again the change of integration variable s = 1
ω

arcsinh
(

sinh(ω t)
√
v
)

).

Using the identity (C.1) with α = −η/2, β = 1/2, γ = 3/2 and z = − sinh2(ω t)
(along with the identities Γ(1/2)/Γ(3/2) = 2 and 2F1(β, α, γ; z) = 2F1(α, β, γ; z) ),
we obtain Eq. (4.26), i.e.,

1

ω

∫ t

0

ds sinh
(
ω (t− s)

)
coshη(ω s) =

=
1

ω2

[
cosh(ω t)

(
1− coshη+1(ωt)

)
η + 1

+ sinh2(ω t) 2F1

(
1

2
,−η

2
,
3

2
;− sinh2(ω t)

)]

One checks directly that the above relation holds as well for η = −1 , in the limit
sense explained by Eq. (4.28) .

Derivation of Eq. (4.55). Let 0 < t < π
ω
, η > −1; also in this case, by elementary

arguments similar to those employed previously, we get

1

ω

∫ t

0

ds sin
(
ω (t− s)

)
sinη(ω s) =

=
sin(ω t)

ω

∫ t

0

ds cos(ω s) sinη(ω s)− cos(ω t)

ω

∫ t

0

ds sinη+1(ω s) =

=
sinη+2(ω t)

ω2 (η + 1)
− cos(ω t) sinη+2(ω t)

2ω2

∫ 1

0

dv
vη/2√

1− sin2(ω t) v

(C.4)

(the last identity can be derived with the change of variable s = 1
ω

arcos
(√

1− sin2(ω t)v
)

).
On account of Eq. (C.1), here employed with α = 1/2, β = 1+η/2, γ = 2+η/2 and
z = sin2(ω t) (along with the identities Γ(1) = 1, Γ(2+η/2) = (1+η/2) Γ(1+η/2) ),
we obtain Eq. (4.55), i.e.,

1

ω

∫ t

0

ds sin
(
ω (t− s)

)
sinη(ω s) =

=
sinη+2(ω t)

ω2

[
1

η + 1
− cos(ω t)

η + 2
2F1

(
1

2
, 1 +

η

2
, 2 +

η

2
; sin2(ω t)

)]
.
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D Appendix. Validity conditions for Eq. (4.30)

Our starting point is Eq. (4.24), assuming implicitly the convergence of the integral
therein. To compute this integral in the case yielding Eq. (4.30), we must use the
identity (4.25) with η = 1−w

1+w
or η = − 1+3w

1+w
and the integral therein converges only

for η > −1. Due to this, the expression for y(t) in Eq. (4.30) seems to hold only for
1−w
1+w

> −1 and − 1+3w
1+w

> −1, which happens if and only if −1 < w < 0. However
for our purposes, it suffices that the expression in Eq. (4.30) for y(t) is a solution
of Eq. (4.20); we know that this occurs for −1 < w < 0 and so, by elementary
consideration based on analytic continuation, the same will hold on the full region
where this term is analytic in w. To find this region, let us recall that for any fixed
z ∈ (−∞, 1), 2F1(a, b, c ; z) is analytic in a, b, c for a, b ∈ R and c ∈ R\{0,−1,−2, ...}
(see, e.g., [22]). In Eq. (4.30) we have two hypergeometric terms with c = 3+w

2+2w
and

c = 5+3w
2+2w

= 3+w
2+2w

+ 1 which are both different from 0,−1,−2, . . . if and only if

w 6= −3 + 2h

1 + 2h
, for all h ∈ {0, 1, 2, . . .} . (D.1)
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E Appendix. Models with a cosmological con-

stant and an arbitrary number of perfect fluids

Let us consider Einstein’s equations

Rµν −
1

2
gµνR + Λ gµν = d (d− 1) γdGd

N∑
A=1

T (A)
µν , (E.1)

where Λ is the cosmological constant and, for A = 1, ..., N , T (A)
µν is the stress-

energy tensor of a perfect fluid of (d + 1) velocity U (A)µ, whose pressure p(A) and
mass-energy density ρ(A) fulfill the equation of state

p(A) = w(A) ρ(A) (E.2)

for some suitable real constant w(A); this reads

T (A)
µν =

(
p(A) + ρ(A)

)
U (A)
µ U (A)

ν + p(A) gµν , (E.3)

In addition, we postulate the conservation law for the fluid stress-energy tensor:

∇µT
(A)µ

ν = 0 . (E.4)

Note that Eq.s (E.1) can be written as

Rµν −
1

2
gµνR = d (d− 1) γdGd

(
N∑
A=0

T (A)
µν + T (Λ)

µν

)
, (E.5)

where

T (Λ)
µν = − Λ

d(d− 1) γdGd

gµν ; (E.6)

Note that T (Λ)
µν has the form (E.3) characterizing a perfect fluid, with an arbitrary

(d+ 1) velocity U (Λ)µ and with pressure and density

p(Λ) = − Λ

d(d− 1) γdGd

, ρ(Λ) =
Λ

d(d− 1) γdGd

. (E.7)

The equation of state of this fluid is

p(Λ) = w(Λ) ρ(Λ) , w(Λ) := −1 . (E.8)

Due to (E.6), Eq. (E.4) holds trivially even for (A) = (Λ).
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E.1 Generalities

Let us specialise the previous model to the case of a Robertson-Walker spacetime
with line element

ds2 = − dτ 2 + a2(τ) d`2 = − dτ 2 + a2(τ)hij(x) dxidxj , (E.9)

as in subsection 2.3. Moreover, assume all perfect fluids to be at rest in the Robertson
Walker frame; this means that, for each A,

U (A)µ = Uµ (E.10)

where Uµ is the (d + 1)-velocity of the Rovertson-Walker frame (in coordinates
x0 := τ and xi one has U0 = 1, U i = 0 for i = 1, ..., d). From Eq. (E.4) one has

ρ(A) =
ρ

(A)
∗

ad(w(A)+1)
, ρ(A)

∗ = const. (A = 1, . . . , N). (E.11)

(Moreover, recall that ρ(Λ) = const. = ρ
(Λ)
∗ = Λ

d(d−1) γdGd
). The only independent

Einstein Equation is

H2 − 2 γdGd

(
N∑
A=1

ρ(A) + ρ(Λ)

)
+

k

a2
= 0 ,

(
H :=

1

a

da

dτ

)
(E.12)

or, equivalently

2 γdGd

(
N∑
A=1

ρ(A)

H2
+
ρ(Λ)

H2

)
− k

a2H2
= 1 . (E.13)

This can be written as
N∑
A=1

ΩA + ΩΛ + Ωk = 1 (E.14)

where

ΩA := 2 γdGd
ρ(A)

H2
= 2 γdGd

ρ
(A)
∗

ad(w(A)+1)H2
, (A = 1, . . . , N) (E.15)

ΩΛ := 2 γdGd
ρ(Λ)

H2
=

2 Λ

d(d− 1)H2
, Ωk := − k

a2H2
= − k(

da
dτ

)2 ,

are the (usual) dimensionless density parameters.
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E.2 Dimensionless formulation

Let assume the following:

• θ a characteristic time;

• τ∗ is some reference time when a(τ∗) = 1 (e.g., the present time in a model for
the physical universe);

• if there is a Big Bang we take it as the origin of the cosmic time; so that the
Big Bang time istant is τ = 0.

Furthermore, let us introduce an adimensional time t related to τ by

τ = θ t ; (E.16)

then t∗ = τ∗
θ

is the reference time and t = 0 is the Big Bang (if any). From now on,
a = a(t), ˙ = d/dt; it follows

H =
1

a

da

dτ
=

1

a θ

da

dt
=

1

θ

ȧ

a
. (E.17)

We define the dimensionless parameters k,ΩA∗,ΩΛ∗, setting

k =
k

θ2
, ρ(A)

∗ =
ΩA∗

2 γdGd θ2
, Λ =

d(d− 1) ΩΛ∗

2 θ2
; (E.18)

from Eq. (E.11) (E.15) one has

ρ(A) =
ΩA∗

2 γdGd θ2 ad(w(A)+1)
, (A = 1, . . . , N) ; ρ(Λ) =

ΩΛ∗

2 γdGd θ2
, (E.19)

ΩA =
ΩA∗

θ2 ad(w(A)+1)H2
=

ΩA∗

ad(w(A)+1)−2 ȧ2
, (A = 1, . . . , N) (E.20)

ΩΛ =
ΩΛ∗

θ2H2
=

ΩΛ∗a
2

ȧ2
, Ωk = − k

θ2 a2H2
= − k

ȧ2
.

Note that for t = t∗ one has a(t∗) = 1, and Eq. (E.20) gives

ΩA(t∗) = ΩA∗, ΩΛ(t∗) = ΩΛ∗ if θ :=
1

|H(t∗)|
; (E.21)

the choice for θ considered in (E.21) is very natural, and will often be considered.
The dimensionless version of Eq. (E.12) is

ȧ2

a2
− 2 γdGd θ

2

(
N∑
A=1

ρ(A) + ρ(Λ)

)
+
k

a2
= 0 , (E.22)
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or, equivalently

ȧ2

a2
−

N∑
A=1

ΩA∗

ad(w(A)+1)
− ΩΛ∗ +

k

a2
. (E.23)

If we put θ := 1
H(t∗)

, Eq. (E.12) becomes

H2 = H2(t∗)

(
N∑
A=1

ΩA∗

ad(w(A)+1)
+ ΩΛ∗ −

k

a2

)
; (E.24)

if the scale factor a = a(t) is known, this last relation allows us to calculate the
Hubble parameter H = H(t).
On the other hand, Eq. (E.23) can be written as

ȧ2 − U(a) = 0 , U(a) =
N∑
A=1

ΩA∗

ad(w(A)+1)−2
+ ΩΛ∗ a

2 − k . (E.25)

This equation allows a qualitative study of the function a = a(t), based on usual
methods for one-dimensional, conservative mechanical systems. Let us just say the
following: since U(a(t)) = ȧ2(t) > 0, the range of the function t → a(t) must be
contained in the set {a > 0 | U(a) > 0} (more precisely, in a connected component
of this set). To make explicit the implications of this fact, it is necessary to analyse
the graph of U, whose shape depends on all the involved constants wA, ΩA∗, ΩΛ∗, k.
Or course, Eq. (E.25) can be reduced to quadratures. Indeed, let sign ȧ(t) = σ ∈
{±1} for t ∈ (t1, t2); then, the relation da/

√
U(a) = σdt in this interval gives one

has ∫ a(t2)

a(t1)

da√
U(a)

= σ(t2 − t1) . (E.26)

In particular, assume there is a Big Bang at time zero, so that a(0) = 0 (10). If
ȧ(t′) > 0 for t′ ∈ (0, t), Eq. (E.26) with t1 = 0 and t2 = t gives∫ a(t)

0

da√
U(a)

= t ⇒ θ

∫ a(τ)

0

da√
U(a)

= τ . (E.27)

For future use, let us also remark that Eq. (E.20) for the dimensionless densities,
with the relation ȧ2 = U(a) coming from (E.25), gives

ΩA =
ΩA∗

ad(w(A)+1)−2 U(a)
, (A = 1, . . . , N); ΩΛ =

ΩΛ∗a
2

U(a)
; Ωk = − k

U(a)
. (E.28)

10here and in the sequel, a(0) always means limt→0+ a(t).
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E.3 Qualitative features close to the Big Bang

Assume there is B ∈ {1, ..., N} such that

w(B) > w(A) for A = 1, ..., N , A 6= B ; ΩB∗ > 0 ; (E.29)

w(B) > −1 if k = 0 , w(B) > −1 + 2/d if k 6= 0 .

Then, we see from (E.25) that

U(a) ∼ ΩB∗

ad(w(A)+1)−2
for a→ 0+. (E.30)

The small a behavior of U, along with the qualitative considerations mentioned after
Eq. (E.25), ensures that there are the conditions for a Big Bang at t = 0.
From here to the end of this subsection we consider the t → 0+ limit, in which
a(t) → 0+. From Eq. (E.25) and from the asymptotics (E.30) for U we obtain

t =
∫ a(t)

0
da√
U(a)
∼ 2

d(w(B)+1)
√

ΩB∗
a(t)d(w(B)+1)/2, whence

a(t) ∼
(
d

2
(w(B) + 1)ΩB∗ t

) 2

d(w(B)+1)

(E.31)

(of course, we can rephrase this result in terms of the cosmic time τ writing t =
τ/θ). Let us mention that the integrability or non integrability of 1/a in a right
neigborhood of zero corresponds, respectively, to a finite or infinite particle horizon
(recall the discussion of Section 2.6, to be used here with b = 1). According to
(E.31), the particle horizon is finite if w(B) + 1 > 2/d, and infinite if w(B) + 1 6 2/d.
From Eq.s (E.28) and the asymptotics (E.30) we also obtain (we repeat it, for
t→ 0+):

ΩB(t)→ 1; ΩA(t) ∼ ΩA∗

ΩB∗
a(t)d(w(B)−w(A)) → 0 for A = 1, ..., N , A 6= B; (E.32)

ΩΛ(t) ∼ ΩΛ∗

ΩB∗
a(t)d(w(B)+1) → 0 ; Ωk(t) ∼ −

k

ΩB∗
a(t)d(w(B)+1)−2 → 0 if k 6= 0

(of course, Ωk(t) = 0 identically if k = 0). Thus, the energy density of the type B
matter dominates at the Big Bang.

E.4 The case of one matter field (and a cosmological term)

Let us consider the case with only one matter field (N = 1) with matter density
ρ(1) ≡ ρ(m), pressure p(1) ≡ p(m), density Ω(1) ≡ Ωm and ΩA∗ ≡ Ωm∗. Eq. (E.14)
reads

Ωm + ΩΛ + Ωk = 1 , (E.33)
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and Eq. (E.26) can be explicity written as∫ a(t2)

a(t1)

da√
Ωm∗ a2−d(1+w) + ΩΛ∗ a2 − k

= σ(t2 − t1) (E.34)

(if sign ȧ = σ ∈ {±1} on (t1, t2)). Let us furtherly specialize our considerations
assuming

Ωm∗ > 0 w > −1 , ΩΛ∗ > 0, k = 0 . (E.35)

Then, by a qualitative analysis of the kind mentioned after Eq. (E.25), one finds
that there are Big Bang solutions t → a(t) defined for t ∈ (0,+∞), with a(t) → 0
for t→ 0+ and ȧ(t) > 0 for all t ∈ (0,+∞).
For a solution with these features, we can apply Eq. (E.34) with t2 ≡ t ∈ (0,+∞),
t1 = 0, a(0) = 0 and σ = 1 to get

t =

∫ a(t)

0

da√
Ωm∗ a2−d(1+w) + ΩΛ∗ a2

=
2

d(w + 1)
√

ΩΛ∗
arcsinh

(√
ΩΛ∗

Ωm∗
a(t)

d(1+w)
2

)
(E.36)

which, in turn, implies

a(t) =

[√
Ωm∗

ΩΛ∗
sinh

(
d

2
(w + 1)

√
ΩΛ∗ t

)] 2
d(1+w)

(E.37)

(If ΩΛ∗ = 0, this equation must be understood in a limit sense: send ΩΛ∗ to 0+ in

the written formula, so that
√

Ωm∗
ΩΛ∗

sinh
(
d
2
(w + 1)

√
ΩΛ∗ t

)
→ d

2
(w + 1)

√
Ωm∗ t).

From Eq. (E.37) and from the general expressions (E.20) for the dimensionless
densities, we get

Ωm(t) = sech2

(
d

2
(w + 1)

√
ΩΛ∗ t

)
, ΩΛ(t) = tanh2

(
d

2
(w + 1)

√
ΩΛ∗ t

)
(E.38)

(and Ωm + ΩΛ = 1, as expected from (E.33) with k = 0, since sech2x+ tanh2x = 1).
From Eq.s (E.37) (E.38) we obtain, for t→ 0+:

a(t) ∼
(
d

2
(w + 1)Ωm∗ t

) 2
d(w+1)

, (E.39)

Ωm(t)→ 1 , ΩΛ(t)→ 0 ; (E.40)

so, matter is dominant at the Big Bang. (As expected, these results agree with the
general relations (E.31) (E.32)).
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All the statements of this section can be applied, in particular, to the cases of dust
(w = 0) and radiation (w = 1/d); note that (E.39) gives

a(t) ∼
(
d

2
Ωm∗ t

) 2
d

for w = 0; a(t) ∼
(
d+ 1

2
Ωm∗ t

) 2
d+1

for w =
1

d
. (E.41)

Final remark. From Eq. (E.36), it is easy to find the reference time t∗ when
a(t∗) = 1; this is

t∗ =
2

d(w + 1)
√

ΩΛ∗
arcsinh

√
ΩΛ∗

Ωm∗
. (E.42)

In particular, let us consider the choice θ = 1/H(t∗) implying Ωm∗ = Ω(t∗) and
ΩΛ∗ = ΩΛ(t∗) (recall Eq. (E.21)); then Ωm∗ + ΩΛ∗ = 1, so we can write t∗ =

2
d(w+1)

√
1−Ωm∗

arcsinh
√

1
Ωm∗
− 1, and the elementary identity arcsinh x = arccosh

√
1 + x2

gives

t∗ =
2

d(w + 1)
√

1− Ωm∗
arccosh

1√
Ωm∗

. (E.43)

E.5 Critical density

Let us consider now the case with only one matter field (N = 1) and no cosmological
constant (Λ = 0); the matter is a dust (w(1) ≡ w = 0) with matter density ρ(1) ≡ ρ,
pressure p(1) ≡ p = 0 and density Ω(1) ≡ Ω. Eq. (E.14) reads

Ω + Ωk = 1 , Ω := 2 γdGd
ρ

H2
, Ωk := − k

a2H2
(E.44)

and so

Ωk = 1− Ω ⇒ − k

a2H2
= 1− 2 γdGd

ρ

H2
. (E.45)

From the last realation one has

sign(k) = −sign(Ωk) = −sign
(

1− 2 γdGd
ρ

H2

)
= sign

(
2 γdGd

ρ

H2
− 1
)
, (E.46)

for all istants t; in particular, let consider

t∗ = present time .

From Eq. (E.46) with t = t∗ one has

sign(k) = sign

(
2 γdGd

ρ(t∗)

H2(t∗)
− 1

)
. (E.47)

We define a critical density ρcr as a solution of the equation

2 γdGd
ρcr

H2(t∗)
= 1 , (E.48)
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from which it follows that

ρcr =
H2(t∗)

2 γdGd

. (E.49)

Note that for d = 3 is γd = γ3 = 4
3
π, from which one has ρcr = 3H2(t∗)

8πG
.

Furthermore, from Eq. (E.47) we have

sign(k) = sign

(
ρ(t∗)

ρcr
− 1

)
= sign

(
ρ(t∗)− ρcr

ρcr

)
, (E.50)

from which, being ρcr > 0,

sign(k) = sign(ρ(t∗)− ρcr) . (E.51)

Note that, if we define the constant θ as

θ =
1

H(t∗)

then

ρcr =
1

2 γdGd θ2
. (E.52)
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F Appendix. Some useful constants. The bench-

mark model

F.1 The Hubble constant

First of all, let us give the best available value of the Hubble parameter at the
present time (see, e.g., [23]):

H∗ ' 67.74
Km

Mpc · s
' 2.1953× 10−18 s−1 ;

note that the last relation holds in our unit with c = 1. In the sequel we illustrate
the benchmark model and we specify some useful constants.

F.2 The benchmark model

Let us consider now the spatially flat case with a cosmological constant and two
matter fields: dust and radiation; this model is known as the benchmark model [30],
and is often used to fit the observational data. The benchmark model is just a
particular case of the general model of Appendix E with d = 3, k = 0 and N = 2
types of perfect fluids: dust (w = 0) and radiation (w = 1/3). In the sequel
we will often refer to the framework of Appendix E, to be used here with these
prescription and with t∗ the present time; the constant θ of the cited Appendix,
with the dimension of a time, is chosen here as the reciprocal of Hubble’s parameter
at present age:

θ =
1

H∗
' 14.4× 109 years. (F.1)

In the sequel, following a standard use we indicate dust with the term “matter” and
use for it the subscript m; radiation is indicated with the subscript r.
Due to the previous positions, Eq. (E.14) reads

Ωm + Ωr + ΩΛ = 1 . (F.2)

The radiation is assumed to consists of photons (indicated with γ) and neutrinos
(indicated with ν); its current contribution is

Ωγ? ' 5× 10−5 , Ων? ' 3.4× 10−5 ⇒ Ωr? ' 8.4× 10−5 . (F.3)

The matter content consists of baryonic matter (usual atomic matter composed by
protons and neutrons, with associated electrons) and of nonbaryonic dark matter.
This last form of matter is the most present in the universe: the present density
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parameter Ωdm? of the nonbaryonic dark matter is six times greater than the present
density parameter Ωbar? of the ordinary baryonic matter:

Ωdm? ' 0.268 , Ωbar? ' 0.04 ⇒ Ωm∗ ' 0.308 . (F.4)

Nowadays, the cosmological content is dominant; in fact, from Eq. (F.2) one has

ΩΛ∗ = 1− Ωm∗ − Ωr? ' 0.692 . (F.5)

Eq. (E.27) can be explicity written as

τ =
1

H∗

∫ a(τ)

0

da√
Ωr? a−2 + Ωm∗ a−1 + ΩΛ∗ a2

(F.6)

and this can be used to estimate the age of the universe at a given time τ .

F.2.1 The radiation-dominated era

In the past, there was initially a radiation-dominated era. In fact, we know that
the energy density of the type B matter with the greatest w(B) dominates at the
Big Bang (see Appendix E, subsect. E.3); in this case, w(B) = 1/3. This radiation-
dominated era ended when the density of radiation ρ(r) = Ωr?

2 γdGd θ2 a4 dropped to that

of matter ρ(m) = Ωm∗
2 γdGd θ2 a3 (see Eq. (E.19)); this happened at a scale factor

arm =
Ωr?

Ωm∗
' 2.8× 10−4 . (F.7)

Using the scale factor ratio (F.7) as the upper limit in the integral (F.6), we find
out that the radiation era ended approximately when

τr =
1

H∗

∫ arm

0

da√
Ωr? a−2 + Ωm∗ a−1 + ΩΛ∗ a2

' 50953 years . (F.8)

F.2.2 The matter-dominated era

After the radiation-dominated era, matter dominated until its density ρ(m) = Ωm∗
2 γdGd θ2 a3

dropped to the constant mass density ρ(Λ) = ΩΛ∗
2 γdGd θ2 ; this happened at a scale factor

amΛ =

(
Ωm∗

ΩΛ?

) 1
3

' 0.76458 . (F.9)

Using the scale factor ratio (F.9) as the upper limit in the integral (F.6), we find
out that the matter era ended approximately when

τm =
1

H∗

∫ amΛ

0

da√
Ωr? a−2 + Ωm∗ a−1 + ΩΛ∗ a2

' 10.1928× 109 years . (F.10)

This last estimate tells us that the dark-energy dominated era began until 3.6× 109

years ago.
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F.2.3 The age of the universe

Using the present value of scale factor a(t∗) = 1 as the upper limit in the integral
(F.6), we find out that the estimated age of the universe is

τ∗ =
1

H∗

∫ 1

0

da√
Ωr? a−2 + Ωm∗ a−1 + ΩΛ∗ a2

' 13.792× 109 years . (F.11)

F.2.4 The horizon

One can prove that the benchmark model has a finite horizon at the present time;
this is

Θ(τ∗) =

∫ τ∗

0

dτ

a(τ)
' 14 Gpc ' 4.32× 1026m ; (F.12)

Eq. (F.12) tells us that if the banchmark model is a good realistic model for our
universe, then we can’t see objects more than 14 gigaparsecs away.
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G Appendix. A comparison between the poten-

tials in the thesis and the one considered by

Saini, Raychaudhury, Sahni and Starobinsky

[31]

As in the rest of the thesis, recall that we are working in units where

c = 1, ~ = 1 ; (G.1)

furthermore, we now consider the case d = 3. In section 2 we have defined dimen-
sionless versions φ,V of the field Φ and of its potential V, given by

Φ =
φ√
γ3G3

, V(Φ) =
V(φ)

γ3G3 θ2
. (G.2)

Saini et al. [31] define instead a dimensionless scalar field φs and a dimensionless
potential Vs through the equations

Φ

mp

= φs ,
V(Φ)

ρcr
= Vs(φs) , (G.3)

where mp := 1√
G3

is the Planck mass (in our units), ρcr = 1
2 γ3G3 θ2 is the critical

density as in Eq. (E.52). From Eq.s (G.3) one has

Φ = mp φ
s =

φs√
G3

, V(Φ) = ρcr V
s(φs) =

Vs(φs)

2 γ3G3 θ2
; (G.4)

comparing Eq.s (G.2) (G.4), we find out that

φs =
φ
√
γ3

, Vs(φs) = 2V(φ) = 2V(
√
γ3 φ

s) . (G.5)

As an example, if we consider the potential

V(φ) =
1

9

(
V1 e

3φ + V2 e
−3φ
)
, (G.6)

of subsection 3, then

Vs(φs) = 2V(
√
γ3 φ

s) =
2

9

(
V1 e

3
√
γ3 φs + V2 e

−3
√
γ3 φs

)
. (G.7)
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