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Abstract 
 

The heterogeneity of breeding environment leads the evolution of different behavioural strategies 

that individuals undertake to guarantee their fitness and survival. Moreover, the cyclic nature of 

animal life determines that each set of decision made by individuals during reproduction could 

severely affect behaviour and fitness traits during their successive stages of life cycle. Among 

different species that have been studied to investigate these relationships, migratory birds are 

optimal model species, since the rigid scheduling of their life cycle exacerbates the associations 

established among breeding environmental variations, fitness and behaviour. In the present thesis, I 

investigated the possible effects of variation in the breeding environment on fitness and behavioural 

traits of a colonial, migratory, avian species the lesser kestrel (Falco naumanni), assessing possible 

effects during two different temporal scales: in the current breeding season (short-term effects) 

and/or during successive life stages (long-term effects).  

In the first part, I analysed short-term effects of breeding environmental variations, 

observing whether nest-site quality and food resource abundancy and distribution could affect 

fitness and behaviour of lesser kestrel. Firstly, I have investigated the strategy implemented by 

lesser kestrel during nest-site selection, and whether individual differences in the nest-site 

preference could affect fitness. Secondly, I have assessed whether food resource abundancy could 

limit lesser kestrel’s breeding performance and whether the patchy prey distribution in the breeding 

environment could negatively affect their foraging behaviour and fitness. 

In the second part, I have investigated whether variation in breeding environment could 

affect lesser kestrel during successive stages of the life cycle. I therefore analysed whether breeding 

area continental distribution affects migratory behaviour and strategy of five European populations 

of lesser kestrel.  

The overall results reported in this thesis suggested that lesser kestrel suffers variations in 

the breeding environment that occur during the current breeding season, indeed I have assessed that 

individuals rely on public information gathered from the environment to choose the most suitable 
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nest-site and to identify optimal foraging areas. Foraging strategies adopted by lesser kestrel during 

the breeding season have evolved to cope with the heterogeneous prey distribution and to limit 

intraspecific competition among individuals of the same and different colonies. Moreover, food 

resource abundancy mediates individual fitness according to parent body condition. Finally, despite 

the absence of any direct effects of lesser kestrel migratory connectivity on individual fitness, I 

observed that the continental distribution of the breeding site reflects the location of the non-

breeding areas in Africa. This evidence highlighted that European populations remain separated 

during the African stay and thus are subjected to different abiotic and biotic traits with possible 

profound effects on population dynamics. 
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Riassunto 
 

L’ambiente riproduttivo di molti organismi è caratterizzato da un’elevata eterogeneità, che ha spinto 

all’evoluzione di diverse strategie comportamentali adottate dagli individui al fine di garantire la 

propria fitness e sopravvivenza. Inoltre, le fasi vitali degli organismi possiedono una decorrenza 

ciclica, dalla cui interdipendenza ne consegue che qualunque decisione e azione intrapresa dagli 

individui durante il periodo riproduttivo possa comportare importanti conseguenze sul 

comportamento, sul successo riproduttivo o sulla loro stessa sopravvivenza durante le successive 

fasi del ciclo vitale. Tra le diverse specie protagoniste degli studi che hanno indagato queste 

relazioni, gli uccelli migratori rappresentano un’ottima specie modello grazie alla rigida tempistica 

del loro ciclo vitale, che esacerba le associazioni presenti tra ambiente riproduttivo, comportamento 

e fitness degli individui. Pertanto, nella presente tesi ho indagato i potenziali effetti delle variazioni 

dell’ambiente riproduttivo sul comportamento e le performance riproduttive di un uccello migratore 

coloniale, il grillaio (Falco naumanni). Questi sono stati indagati con due differenti scale temporali, 

indagando le conseguenze dell’eterogeneità ambientale nel breve e nel lungo termine. 

 Nella prima parte ho analizzato gli effetti a breve termine, osservando se e come la qualità 

del sito di nidificazione e l’abbondanza e la disponibilità di risorse nutritive possano avere 

ripercussioni sulla fitness e il comportamento del grillaio. Inizialmente ho indagato la strategia 

comportamentale seguita dal grillaio durante il processo di selezione del sito di nidificazione, 

analizzando come diverse preferenze manifestate dagli individui possano avere conseguenze sul 

loro successo riproduttivo. Successivamente ho indagato come l’abbondanza di risorse nutritive 

disponibili nel territorio circostante alle colonie sia un fattore limitante per la fitness degli individui. 

Ho inoltre osservato se tale particolare distribuzione abbia comportato l’implementazione di diverse 

strategie comportamentali volte al foraggiamento. 

Nella seconda parte della tesi ho indagato se le variazioni nell’ambiente riproduttivo abbiano 

ripercussioni a lungo termine durante le successive fasi del ciclo vitale del grillaio. Pertanto, ho 

osservato se la posizione geografica delle aree riproduttive abbia o meno possibili conseguenze 
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sulla strategia migratoria seguita dai grillai alla fine del periodo riproduttivo, influenzando quindi la 

rotta migratoria, la scelta dell’area di svernamento e, più in generale, la qualità del periodo di 

svernamento, con possibili conseguenze sui futuri tentativi di riproduzione. 

I risultati riportati dei diversi studi suggeriscono come il grillaio, come osservato in altre 

specie di uccelli migratori, sia soggetto alle variazioni ambientali durante il periodo riproduttivo. 

Gli individui basano infatti la scelta del sito di nidificazione e delle aree di foraggiamento sulle 

informazioni sociali raccolte nell’ambiente e dal comportamento dei propri conspecifici. Inoltre, le 

strategie di foraggiamento osservate nel grillaio sono il risultato di un processo evolutivo volto a 

limitare la competizione intraspecifica tra individui appartenenti alla stessa e a diverse colonie, a 

fronte dell’eterogeneità della distribuzione delle prede nell’ambiente riproduttivo. In aggiunta, ho 

osservato come l’abbondanza di risorse nutritive limiti le performance riproduttive del grillaio che, 

pertanto, modula il proprio investimento nella riproduzione basandosi sull’abbondanza di risorse 

nutritive disponibili durante tutto il periodo riproduttivo. 

Per ciò che concerne i potenziali effetti a lungo termine, i risultati dei miei studi 

suggeriscono che la distribuzione geografica dei siti riproduttivi del grillaio influenza la posizione 

geografica delle aree di svernamento, occupate successivamente nel continente africano. Le diverse 

popolazioni europee, distinte durante la riproduzione, rimangono spazialmente segregate durante il 

periodo non riproduttivo e sono quindi soggette a differenti fattori biotici e abiotici, i quali 

potrebbero potenzialmente costituire la base delle differenze nella dinamica delle popolazioni 

europee. 
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General introduction 

The cyclic nature of life stages in organisms reflects the predictable and seasonal variation in the 

environment. To cope with such variation, organisms evolved several morphological and 

physiological changes that individuals carry out to arrange successfully each life-history phase 

during proper environmental conditions (Willmer et al. 2009). However, since virtually no 

environment on Earth is static, even within the same season, animals have evolved effective 

strategies to cope with unpredictable variations that characterized the environmental heterogeneity 

(Wingfield 2006).  

 Among the different stages that individuals experience during their life cycle, reproduction 

represents one of the most important phases due to the high-energy demands imposed to parents, 

spanning from breeding-site selection (Anderson and Harwood 1985; Martin and Roper 1988; 

Gavashelishvili and McGrady 2006) and territory defence (Nilsson 1984; Breitburg 1987) to gamete 

production (Sturmey et al. 2009) and offspring rearing (Bercovitch et al. 1988). Thus, fluctuations 

of different environmental conditions occurring during the breeding season have important 

implications on individual behaviour and current and future fitness (Willmer et al. 2009). During 

the breeding season, an individual could have to cope with sudden events, such as an attack by a 

predator or a dominant conspecific; otherwise, individuals must be ready to respond to slower 

environmental variations such as inclement weather conditions or changes in food resources 

availability. For terrestrial vertebrates, for example, storms are potentially disruptive. Prolonged 

heavy rains and low temperatures could reduce food resources availability, decreasing adult body 

condition and offspring food provisioning rate with possible reproductive failure (Kostrzewa and 

Kostrzewa 1990).  

The close interdependency that exists among the life cycle stages implies that the set of 

choices undertaken by animals during breeding season can have profound consequences on the 

current (short-term effect) or future (long-term effect) breeding behaviour and performance 

(Harrison 2011).  
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Among different taxa, birds have been the subjects of a large number of studies focusing on 

short- and long-term effects of breeding environment variation on individual behaviour and fitness. 

This is especially the case for migratory birds whose time to exploit life stages is limited by 

restricted time windows (Newton 2008). Below, I reported a few instances of how major variations 

in environmental traits could affect fitness and behaviour of migratory bird species. 

 

Breeding environment variations: short-term effects 

A number of breeding environment variables could affect individual behaviour and fitness, and their 

effects can be observed during the current breeding event. Reproductive success in birds is 

influenced by a variety of environmental factors (Newton 1989); one of the major traits influencing 

breeding performance and behaviour in migratory birds is the quality of the nest-site. Indeed, nest-

site quality affects individual fitness, implying that parents should be highly selective when making 

decisions about where to lay their eggs and rear their offspring (Refsnider and Janzen 2010). Birds 

therefore sample the environment to gather information for choosing the optimal breeding site, 

basing their preference on different types of direct or indirect information including presence of 

parasites (Rosenheim 1988) and/or conspecific behaviour and reproductive success (“public 

information”; Valone and Templeton 2002). Hence, there are a set of indirect cues of conspecific 

reproduction, such as tracks or signs of reproductive activity occurring in the past, used by breeders 

to choose the optimal nest-site. In cavity-nesting species, the presence of old nest material within 

suitable nest cavities (review in Mazgajski 2007) contains information about previous breeding 

activity. Thus, cavities containing such material may be preferred as they may be perceived as being 

more suitable than similar cavities where no sign of previous reproduction is evident (Brown and 

Shine 2005; Sumasgutner et al. 2014). At the same time, in species that do not add any material to 

line their nest (i.e. cavity-nester), the presence of organic material from previous breeding events 

may be a further cue to nest-site quality because it may contribute to increase thermal insulation and 

reduce egg heat loss (Hilton et al. 2004; Mazgajski 2007; Mainwaring et al. 2014), potentially 
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improving incubation efficiency. For instance, experimental removal of old nest material decreased 

nestbox occupancy in the subsequent breeding season in burrowing owls Athene cunicularia, with 

birds returning from migration avoiding cleaned nestboxes (Riding and Belthoff 2015). Although 

public information is generally acquired from the activity of conspecific individuals, cues could also 

be provided from individuals of other species. The cues and signals produced by other species are 

thus part of the public information available to many bird species, through which individuals are 

able to assess habitat quality, the presence of resources or potential risks (Danching et al. 2004; 

Valone 2007). However, despite the potential benefits of choosing cavities with old nest material, 

some species/populations avoid breeding in previously used cavities since the organic substrate 

could be a favourable ground for the development of several nest-dwelling and pathogens species 

(e.g. Merino and Potti 1995; Mazgajski 2003; review in Mazgajski 2007). 

Food resources availability represents another fundamental trait affecting fitness and 

behaviour. Since birds are exposed to fluctuations of ecological conditions, food is often limited 

during the breeding season (Lack 1954). Variation in food abundance and availability are 

commonly exploited by individuals as cues to modify their behaviour to contingent ecological 

conditions, providing information on when and where best to breed and how much resources to 

invest in producing and raising offspring to maximise fitness (Martin 1987). Whenever breeding 

individuals are exposed to poor environmental conditions, resulting in food limitation, parents are 

expected to trade self-maintenance against reproduction and offspring provisioning, with broad 

implications for their survival and breeding success (Lack 1966, Martin 1987). A number of 

different studies have experimentally investigated the importance of food limitation during 

reproduction manipulating food resources availability to breeders, assessing variation in 

reproductive investment and output of individuals receiving the extra food compared to unfed 

controls (reviews in Martin 1987, Boutin 1990). A considerable part of these studies has 

demonstrated that individuals receiving extra food generally achieve fitness benefits relative to 

controls (Ruffino et al. 2014). These benefits include advancing egg laying (Meijer and Drent 1999, 
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Aparicio and Bonal 2002), laying heavier eggs and/or larger clutches (Wiebe and Bortolotti 1995, 

Korpimäki and Wiehn 1998, Karell et al. 2008, Saino et al. 2010), and enjoying improved nestling 

growth and survival (Dewey and Kennedy 2001, Hipkiss et al. 2002). The positive fitness effects of 

extra food may not be limited to breeding output. Extra food could positively affect parental 

condition, with food-supplemented individuals sparing energy resources that are otherwise required 

for self-maintenance and offspring provisioning, or using directly the extra food to enhance their 

survival prospects. Extra food may improve parental body condition (Garcia et al. 1993, Schoech 

1996, Cucco and Malacarne 1997, Dewey and Kennedy 2001) and physiological state, in terms of 

e.g. body fat content, immune condition or oxidative status (Schoech 1996, Karell et al. 2008, Alan 

and McWilliams 2013, Fletcher et al. 2013, Giordano et al. 2015). 

 In addition, the natural distribution of food resources in the breeding area could affect 

behaviour and fitness of birds. It has been observed that, in habitats where food resource 

distribution is patchy, ephemeral and unpredictable, individuals gather information about the 

location of profitable foraging areas from the recent experience of conspecifics (Kuhn et al.2014; 

Lascelles et al. 2016; Cecere et al. 2018). Transfer of such social information may occur at the 

colony site, where individuals can actively (as proposed by the “Information Centre Hypothesis”; 

Ward and Zahavi 1973) or inadvertently (Lachmann et al. 2000; Richner and Danchin 2001) share 

information on foraging locations. Moreover, social information may be shared outside the colony 

site, which may occur by means of so-called “local enhancement” processes occurring at the 

foraging grounds, whereby individuals searching for food are attracted to feeding aggregations of 

other individuals (Machovsky-Capuska et al. 2014). Individuals from different colonies often show 

colony-specific and well-defined foraging areas, which do not overlap with those belonging to 

neighbouring conspecific colonies (Wanless and Harris 1993; Grémillet et al. 2004; Masello et al. 

2010; Wakefield et al. 2011). As argued by the “diplomacy” hypothesis (Grémillet et al. 2004), 

spatial segregation of foraging individuals from different colonies may mitigate intraspecific 

competition for resources between conspecifics breeding in different colonies. By foraging in 
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spatially segregated areas, conspecifics from different colonies may thus “diplomatically” avoid 

interference competition for food resources (Grémillet et al. 2004). For instance, it has been shown 

that inter-colony competition could be one of the main factors driving the at-sea distribution of 

pelagic foraging birds (Cecere et al. 2015). Both local enhancement and the transfer of information 

at the colony site have been hypothesized to be the most important mechanisms generating and 

maintaining specific foraging areas exploited by individuals belonging to the same colony 

(Wakefield et al. 2013). During the breeding period, colonial species are central-place foragers 

(Orians and Pearson 1979), with individuals foraging outside the colony, sometimes very far from 

the breeding site, and consistently returning to the colony (the “central place”) to egg incubation or 

nestling rearing. The progressive depletion of foraging areas around the breeding sites leads 

individuals to both increase foraging ranges (the “Ashmole’s halo” effect; Ashmole 1963) and, in 

the case of neighbouring colonies, to avoid moving towards adjacent colonies when searching for 

food. This, in turn, may generate and/or reinforce spatial segregation of foraging areas among 

individuals from neighbouring colonies (Wakefield et al. 2013). Moreover, differences in foraging 

areas and dietary preferences, aimed to reduce interspecific competition, could occurred also at the 

individual level (e.g. Woo et al. 2008; Ceia and Ramos 2015; Camprasse et al. 2017). In particular, 

dietary preferences may originate from spatio-temporal individual variation in foraging behaviour. 

For example, imperial shags Phalacrocorax atriceps are highly consistent within individuals in the 

maximum distances they reached from the shore and the colony, as well as in the time invested in 

flight and diving, both within a single breeding season and across years (Harris et al. 2014). In 

addition, individual differences in foraging behaviour can be conceptually considered as personality 

differences whenever these are consistent across environmental contexts (Patrick eta al. 2014).  

 

Breeding environment variations: long-term effects 

Variations in breeding environment could determine long-term consequences on individual fitness 

and behaviour during subsequent phases of the life cycle. Indeed, since every stage of the life cycle 
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virtually depends on previous ones, any event occurred during one phase could provoke 

consequences during successive stages of the life cycle (for example the so-called “carry-over 

effect”; Harrison et al. 2011). Thus, any event occurred whenever in a given season influence the 

performance of an individual in the following season(s) or life cycle stages. For instance, two of the 

major drivers of long-term effects occurrence in migratory birds are the extent to which individuals 

have access to or are able to utilize food resources and the energy investment for offspring rearing 

(Norris 2005; Regular et al. 2014; Fayet et al. 2016). Several correlative and experimental studies 

underlined how an unusual increase in energy investment during reproduction could severely affect 

parent conditions with negative effects on post-breeding phases, such as autumn and spring 

migration timing, migrated distance and the ability to reach optimal non-breeding areas (see for 

example Marra et al. 1998; Newton 2008; Catry et al. 2013; Fayet et al. 2016). An experimental 

study conducted on the seabird Cory’s Shearwater (Calonectris diomedea) shows overall evidence 

that energetic and time-dependent costs of reproduction imply consequences on non-breeding and 

future breeding stages in a migratory bird. By removing nestlings at an early rearing stage, Catry et 

al. (2013) reduced parental investment of breeders during breeding season. Hence, manipulated 

individuals started autumn migration ca. 30 days sooner and, at the start of the following breeding 

season, returned to the colony ca. 20 days earlier, compared to controls (breeders that raised 

offspring until fledging). Moreover, late arrival individuals in the following year were more likely 

to fail the reproductive attempt (Catry et al. 2013).  

Moreover, with regard to the migratory behaviour of individuals, the geographical 

distribution of the breeding areas could affect the migratory strategy adopted by individuals to entail 

the migratory journey, with consequences on migratory route and on the geographical distribution 

occupied in the non-breeding area (Marra et al. 2006). The migratory connectivity describes how 

individuals are spatially connected between seasons of the annual cycle (Webster et al. 2002; Marra 

et al. 2006). A weak connectivity between breeding and non-breeding areas occurs when 

individuals from every breeding population spread through several non-breeding grounds, therefore 
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mixing together. Strong connectivity instead occurs when individuals from one breeding population 

move to a specific non-breeding location, so that the inter-population separation of non-breeding 

areas matches the inter-population separation of breeding areas (Webster et al. 2002). Long-term 

effects on individuals may depend on the strength of connectivity, particularly if changes in habitat 

quality occur (Webster and Marra 2005). For instance, declines in some independent breeding 

populations of Asian and North American migratory birds have been linked to quality decrease in 

Australian habitats exploited during the non-breeding period (Iwamura et al. 2013). Hence, it is 

crucial to understand if the geographical distribution in the breeding areas could affect where 

individuals travel and winter and what degree of individuals from a certain population used the 

same migratory route or migrate to the same non-breeding areas (i.e. how and to what extent 

breeding and non-breeding populations are connected; Marra et al. 1998; Webster et al. 2002; 

Webster and Marra 2005; Newton 2008; Trierweiler et al. 2014). When migratory connectivity is 

strong, individuals of different populations are exposed to different biotic and abiotic conditions 

during both breeding and non-breeding period. Otherwise, when migratory connectivity is weak, 

breeders share the same environmental conditions in non-breeding areas (Newton 2008). These two 

different circumstances entail variations in population density, with important consequences on 

successive population dynamics (Trierweiler et al. 2014). Thus, understanding the year-round 

geographical ranges of migratory species could be crucial to develop long-term conservation plans 

as well as for understanding other facets of the basic ecology and evolution of migratory species. 
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Outline of the study 

The present thesis deals with short and long-term effects on behaviour and fitness traits mediated by 

breeding environment variations in the lesser kestrel (Falco naumanni). By means of both 

experimental and correlative approaches, I investigated how lesser kestrel deals with environmental 

variations in the breeding season and how these variations affect individual behaviour and fitness, 

both on a short and long-term temporal scale.  

 The present thesis is divided in two parts. In the first part (Chapters 2 to 5) I investigated 

the possible short-term effects of breeding environment variations on breeding performance and 

foraging behaviour, from a variety of perspectives, during the current breeding season. Firstly, I 

investigated the effects of nest-site selection on breeding performance (Chapter 2). Lesser kestrels, 

as other species, sample the environment to gather information about the breeding site for choosing 

the most suitable nest-site. Among the large number of information that individuals could evaluate 

to decide where to settle, lesser kestrels seem to exploit tracks and sings of reproductive activities 

occurred in the past, by observing the presence, inside the nest, of old organic material (Negro and 

Hiraldo 1993; Mazgajski 2007). Being a cavity-nesting species, the lesser kestrel lays eggs in holes 

and cavities available in the breeding site and individuals, during different breeding seasons, tend to 

reuse nests, which results in a compact organic layer that accumulates inside the nest. To assess 

whether the presence of an organic layer inside the nest is an important cue in lesser kestrel nest-site 

selection, I manipulated the nest substrate within nestboxes before the beginning of the breeding 

season. I performed a nest-site choice experiment whereby breeding pairs had the opportunity to 

select between two nestboxes settled as a dyad: one nestbox was lined with a clean gravel layer 

while the close paired nestbox was within an organic layer of the same thick from previous breeding 

attempts. According to a previous study conducted on a Spanish population (Negro and Hiraldo 

1993; see also Sumasgutner et al. 2014 for a study conducted on a closely species), I expected that 

lesser kestrel parents preferred nests with old organic material from previous breeding attempts. 
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Moreover, by means of a correlative approach, I also evaluated possible effects of old vs. clean 

material on breeding performance.  

 In Chapter 3, I evaluated the consequences of variation of another critical trait that could 

affect breeding behaviour and performance: the abundance of food resources. Food is a key factor 

modulating life-history traits, and poor environmental conditions, resulting in limited food supplies, 

affect fitness and force parents to balance energy investment for self-maintaining and offspring 

rearing. To investigate possible effects of food availability on body conditions and breeding 

performance, I conducted a food supplementation experiment by means of which I provided extra 

food to a subset of individuals throughout the breeding season, from egg laying to early nestling 

rearing, while another group of unfed individuals was used as a control. I therefore assessed the 

effect of extra food on several short-term fitness components including adult body condition and 

oxidative status, egg mass and nestling growth. I expected an overall positive effect of extra food 

provisioning on adult conditions and breeding performance.  

In Chapters 4 and 5 I examined the effects of environmental variability on lesser kestrel 

foraging behaviour. Lesser kestrels forage in farmland habitats surrounding colony sites (Catry et 

al. 2013), where the environment varies continuously during the breeding season because of 

seasonal processes and agricultural practices. Prey distribution is thus patchily distributed, highly 

ephemeral and unpredictable. Specifically, in Chapter 4 we investigated, by means of GPS tracking 

devices, the spatial distribution of home ranges of lesser kestrel belonging to different but close 

colonies in two geographically distinct populations (Apulia and Sicily). Since the lesser kestrel is a 

colonial bird that often forages in groups (Cramp 1998), we expected that lesser kestrels should rely 

on social information acquired by other conspecific individuals at the colony (transfer of 

information at the colony site) or during the search of food (local enhancement) to target ephemeral 

productive foraging areas. Moreover, since the share of social information is the most important 

mechanism involved in maintaining specific foraging areas among individuals of the same colony 

(Wanless and Harris 1993; Grémillet et al. 2004; Masello et al. 2010; Wakefield et al. 2011), we 
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expected a spatial segregation between home ranges of individuals belonging to different but close 

colonies.  

 In Chapter 5, we investigated the consequences of breeding environment heterogeneity on 

lesser kestrel prey searching behaviour. Consistent inter-individual differences in foraging tactics 

have been documented in several avian species (Woo et al. 2008; Ceia and Ramos 2015; Camprasse 

et al. 2017). These differences in behaviour may reduce the ecological niche overlap, resulting in a 

mitigation of intraspecific competition. We therefore analysed variations in individual foraging 

tactics according to weather conditions (i.e. gradients in solar radiation, rain and wind), sex and 

exploited habitat type. Information on prey searching behaviour was collected by means of GPS-

accelerometer data logger. We expected foraging trips to be characterized by two main behavioural 

modes: specifically, individuals should mainly search for prey in flight (widely foraging tactic) 

whenever weather conditions are particularly favourable to soaring-gliding (Hernandez-Pliego et al. 

2017) and with wind assistance (tailwind or crosswind) at departure from the nest site (Mellone et 

al. 2012; Klaassen et al. 2010). Under opposite weather conditions, we expected that birds mainly 

adopt a more static foraging tactic (sit-and-wait tactic), characterized by prolonged perching periods 

waiting for prey detection. According to previous studies analysing individual differences in 

movement patterns of colonial animals (e.g. Call et al. 2008, Votier et al. 2010, Patrick et al. 2013), 

we expected that individuals consistently differ in their tendency to adopt a given foraging tactic, 

but we also predicted such differences to be consistent across weather condition gradients. Finally, 

we predicted widely foraging tactic to be associated with higher energy expenditure compared to sit 

and wait one (Nadjafzadeh et al. 2016). 

 In the second part of my thesis, I investigated long-term effects of breeding environment on 

migratory phenology and non-breeding behaviour. In particular, in the Chapter 6, we conducted a 

large-scale study on the effects of geographic distribution of breeding areas on migratory strategies 

and wintering grounds in four European population of lesser kestrels. By means of a multi-

population approach, we combined all the available data of lesser kestrel migration, obtained with 
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different tracking devices (GLS and GPS), belonging to Spanish, Italian, Greek and Bulgarian 

populations. We investigated whether the continental configuration in the breeding grounds could 

have a role in determining the evolution of different populations’ migration strategies. As observed 

in other long-distance Afro-Palearctic migratory bird species (Symes and Woodborne 2010; 

Trierweiler et al. 2014), we expected lesser kestrel populations that are spatially separated during 

the breeding season to share common non-breeding grounds and thus to show a weak migratory 

connectivity. Whether lesser kestrel form different population share the same overwintering areas, 

they could be affected to similar biotic and abiotic conditions, a circumstance that could have 

profound effects on population dynamics of this species.  

 To conclude, in the Chapter 7 I present an overview of the main findings emerging from the 

studies reported in my thesis. 
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Abstract

The quality of a breeding site may have major fitness consequences. A fundamental step to under-

standing the process of nest-site selection is the identification of the information individuals use to

choose high-quality nest sites. For secondary cavity-nesting bird species that do not add nest lining ma-

terial, organic remains (faeces, pellets) accumulated inside nest cavities during previous breeding

events may be a cue for high-quality nest-sites, as they contain information about past successful

breeding and may improve thermal insulation of eggs during incubation. However, cavities in which

breeding was successful might also contain more nest-dwelling ectoparasites than unoccupied cavities,

offering an incentive for prospective parents to avoid them. We exposed breeding cavity-nesting lesser

kestrels (Falco naumanni) to nestbox dyads consisting of a dirty (with a thick layer of organic substrate)

and a clean nestbox (without organic material). Dirty nestboxes were strongly preferred, being occu-

pied earlier and more frequently than clean ones. Hatching success in dirty nestboxes was significantly

higher than in clean ones, suggesting a positive effect of organic nest material on incubation efficiency,

while nestbox dirtiness did not significantly affect clutch and brood size. Nestlings from dirty nestboxes

had significantly higher ectoparasite load than those from clean nestboxes soon after egg hatching, but

this difference was not evident a few days later. Nest substrate did not significantly affect nestling

growth. We concluded that nest substrate is a key driver of nest-site choice in lesser kestrels, although

the adaptive value of such a strong preference appears elusive and may be context-dependent.

Key words: Carnus hemapterus, ectoparasites, nestbox, nest substrate, nest-site selection

Breeding and oviposition site quality affects individual fitness,

implying that parents should be highly selective when making deci-

sions about where to lay their eggs and rear their offspring

(Refsnider and Janzen 2010). As a consequence, animals continu-

ously sample the environment to gather useful information for

choosing the optimal breeding site. The type of information that

animals can evaluate to decide where to settle and breed may be di-

verse, including nest substrate quality (e.g. in species where it pro-

vides direct fitness benefits, such as Lepidoptera; review in Renwick

and Chew 1994), conspecific behavior, reproductive success (the so-

called “public information”; Valone and Templeton 2002), per-

ceived predation risk (Eggers et al. 2006), presence of parasites
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(Rosenheim 1988), or a combination of those factors. Nest-site

choice may also be context-dependent, with individuals choosing

low-quality nest-sites if no better options are available in the sur-

roundings (Stanback and Rockwell 2003).

Cues used by prospecting individuals for choosing their breeding

site may be based on direct observations of conspecific presence,

which may generate territorial aggregations (“conspecific attraction”;

Stamps 1988), or conspecific behavior, such as offspring feeding effort

by parents, which is expected to provide reliable information about

breeding patch quality (Doligez et al. 2002; Pärt and Doligez 2003;

Ward 2005). Moreover, prospecting individuals may directly assess

conspecifics’ breeding success (quantity/condition of offspring) in a

given season and use this information to decide where to settle and

breed subsequently (Boulinier and Danchin 1997).

Prospecting individuals may also exploit indirect cues of conspe-

cific reproduction, such as tracks or signs of reproductive activity

occurring in the past. In birds, these may include the density of old

nests (e.g., Erckmann et al. 1990; Gergely et al. 2009; Ringhofer

and Hasegawa 2014), or, in cavity-nesting species, the presence of

old nest material within suitable nest cavities (review in Mazgajski

2007; see also Brown and Shine 2005 for a study of reptiles). The

presence of old nest material in nest cavities (nest lining material,

faeces, pellets, prey remains, feathers, etc.) does in fact contain in-

formation about previous breeding activity: cavities containing such

material may be preferred as they may be perceived as being more

suitable than similar cavities where no sign of previous reproduction

is evident (Brown and Shine 2005; Sumasgutner et al. 2014). At the

same time, in species that do not add any material to line their nest,

the presence of organic material from previous breeding events may

be a further cue to nest-site quality because it may contribute to in-

crease thermal insulation and reduce egg heat loss (Hilton et al.

2004; Mazgajski 2007; Mainwaring et al. 2014), potentially im-

proving incubation efficiency.

In line with the above, experimental removal of old nest material

decreased nestbox occupancy in the subsequent breeding season in

burrowing owls Athene cunicularia, with birds returning from migra-

tion avoiding cleaned nestboxes (Riding and Belthoff 2015). Similarly,

female Eurasian kestrels Falco tinnunculus laid eggs later in experi-

mentally cleaned nestboxes compared to uncleaned ones, indicating a

preference for old nest material (Sumasgutner et al. 2014). A prefer-

ence for nestboxes with old nest material was observed also in some

passerine species, such as the pied flycatcher Ficedula hypoleuca

(Orell et al. 1993; Mappes et al. 1994; Olsson and Allander 1995),

the house wren Troglodytes aedon (Thompson and Neill 1991), and

the eastern bluebird Sialia sialis (Davies et al. 1994).

In spite of the potential benefits of choosing cavities with old

nest material, some species/populations avoid breeding in previously

used cavities (e.g. Merino and Potti 1995; Mazgajski 2003; review

in Mazgajski 2007). Breeding in previously used cavities may indeed

entail non-trivial costs. Nests containing old nest material may be

subjected to increased predation risk due to predators memorizing

nest positions (e.g. Sonerud 1985; Nilsson et al. 1991). Importantly,

organic nest material is a highly favourable ground for the develop-

ment of nest-dwelling ectoparasites and pathogens (Rendell and

Verbeek 1996). Nest-dwelling parasites infest adults and especially

nestlings, eventually impairing individual growth, condition and fit-

ness (Møller et al. 1990; Martı́nez et al. 2011). Nest parasites can

impair fitness either directly (e.g. in the case of blood sucking by

haematophagous species; e.g. Heylen and Matthysen 2008; Tomás

et al. 2008) or indirectly, transmitting bacterial or viral pathogens

and spreading disease (Møller et al. 1990).

On the whole, although some studies suggest the preference or

avoidance of previously used nest cavities (see above), nest-site

choice in secondary cavity-nesters appears rather insensitive to the

presence of old nest material, with several studies not reporting any

clear preference pattern (e.g., Olsson and Allander 1995; Tomás

et al. 2007; review in Mazgajski 2007). Furthermore, the adaptive

value of breeding in previously used versus non-used nest cavities

has yet to be elucidated. In the majority of studies conducted so far,

no significant impact of the presence of old nest material was found

on clutch size, fledging success or nestling condition (review in

Mazgajski 2007). Statistically significant fitness effects (mostly

negative) of breeding in cavities with old nest material have been re-

ported only occasionally (e.g., Tomás et al. 2007; González-Braojos

et al. 2012; review in Mazgajski 2007).

Lesser kestrels Falco naumanni appear to make wide use of pub-

lic, social, and environmental information for dispersal, colony-site

settlement decisions, and nest-site selection, with breeding success of

conspecifics being an important cue (Negro and Hiraldo 1993;

Serrano et al. 2001, 2003; Aparicio et al. 2007). In lesser kestrel col-

onies, most successful breeding attempts take place in previously

occupied cavities, which are also occupied earlier compared to sel-

dom used cavities (Negro and Hiraldo 1993). However, to our

knowledge, no study has experimentally addressed whether the

presence of old nest material is used as a cue for choosing specific

nest-sites within a breeding colony. We performed a nestbox choice

experiment whereby breeding pairs had the opportunity to select ei-

ther a nestbox without organic nest material (clean nestbox) or a

paired nestbox with a thick organic layer from previous nesting at-

tempts (dirty nestbox). Based on previous studies carried out in this

species (Negro and Hiraldo 1993) and in the closely related

Eurasian kestrel (Sumasgutner et al. 2014), we expected a preference

for settling in dirty nestboxes. In addition, by exploiting a larger

sample of unpaired dirty and clean nestboxes and adopting a cor-

relative approach, we assessed whether breeding in dirty versus

clean nestboxes was associated with variation in breeding perform-

ance and nestlings’ mortality, ectoparasite load, and early growth

patterns.

Materials and Methods

Study species, study area and general methods
The lesser kestrel is a small (�120 g), colonial breeding, Afro-

Palearctic migrant raptor. European individuals reach breeding

areas in February/March, and start laying eggs between late April

and early May. Females lay 3–5 eggs (single brooded), which are

incubated for �30 days. Nestlings fledge when �40 days old. Being

a secondary cavity-nester, the lesser kestrel does not build its own

cavity: it breeds in holes and cavities in rocks, ruins, roof tiles of

buildings in urban areas or isolated abandoned farmhouses in the

countryside, and it does not add any nest lining material (Cramp

1998). However, it readily settles in nest cavities containing an or-

ganic substrate resulting from previous breeding attempts, similarly

to other secondary cavity-nesters (Cramp 1998; Negro and Hiraldo

1993).

The study was carried out during April–July 2016 in the city of

Matera (Southern Italy; 40�67’ N, 16�60’ E), hosting a large colony

of �1,000 lesser kestrel pairs (La Gioia et al. 2017). Several hun-

dreds of nestboxes were deployed in 2008–2010 within the frame-

work of the LIFE Project “Rapaci Lucani” (LIFE05NAT/IT/00009),

so that presently an unknown (but likely large) fraction of pairs

breeds in nestboxes. We relied on 175 nestboxes that were placed on
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the roof terraces of two large buildings located �500 m apart in the

city center. Nestboxes were made by a hollow refractory brick

(300�300�370 mm external size) closed by two wooden panels

(300�300�20 mm), the frontal one with an entrance hole of

65 mm diameter. Ventilation of the nest chamber was provided by 9

small holes (�10 mm) on the wood panels. The front panel could be

easily opened for nest inspection.

Upon deployment, the floor of all nestboxes was coated with a

layer of sand and fine gravel to increase insulation towards the ce-

ment brick and reduce the probability of egg breakage during nest

inspection or egg turning by the female.

In February 2016, before arrival of lesser kestrels at the colony

site, nestboxes were organized in “dyads” of clean and dirty nest-

boxes (N¼40 dyads, see below) and “unpaired” nestboxes [24 old

(dirty) nestboxes (all of which had been used for breeding and roost-

ing in previous years) and 71 new (clean) nestboxes (deployed in

February 2016 and never previously used by lesser kestrels)]. Both

dyads and unpaired (dirty and clean) nestboxes were randomly pos-

itioned along the entire perimeter of each terrace, at a minimum dis-

tance of �2 m from each other. Old nestboxes had never been

cleaned after their original deployment (2008–2010). Hence, most

old nestboxes had a thick (�5 cm), hard coating of organic material

deriving from previous breeding events spread over the floor of the

nestbox (see also section “Assessment of nest-site preference”). The

position of all old nestboxes was randomly shuffled in February

2016 to accomodate deployment of new clean nestboxes and to

form dyads, as well as to avoid nest recognition bias (see section

“Assessment of nest-site preference”).

All nestboxes were regularly checked throughout the breeding

season to record breeding bird performance. Nestboxes were

checked until the oldest nestling in the brood was �16 days old (we

refrained from checking nestboxes after that age because nestlings

started wandering outside the nest and freely moved on the terraces,

making monitoring difficult and increasing the risk of inducing pre-

mature fledging); over this period, each nestbox was checked five

times (i.e., five monitoring sessions), with monitoring sessions

occurring at an average of 0.8 (range 0–3), 3.0 (2–5), 5.3 (4–9), 7.9

(7–11), and 16.0 (14–18) days from hatching of the first egg in a

nestbox, respectively.

Upon hatching, nestlings were individually marked with differ-

ent combinations of small black dots on the down of the nape using

a non-toxic black permanent marker, then ringed with metal rings

when �10 days old. Nestling body mass (accuracy of 0.1 g using an

electronic scale) and ectoparasite load (see below) were recorded

from the first to the fourth monitoring session, while tarsus (accur-

acy 0.1 mm with dial calliper) and forearm length we report in this

study (accuracy 1 mm with a ruler) were recorded at the fourth

monitoring session only. At the fourth monitoring session, a small

(�200ml) blood sample was collected in capillary tubes by punctur-

ing the brachial vein with sterile needles in order to determine nest-

ling sex. This was achieved by means of polymerase chain reaction

amplification of the sex-specific avian CHD-1 gene, following stand-

ard protocols (Griffiths et al. 1998).

Each nestling in a given nestbox was ranked according to hatch

order. When two or more nestlings were first found hatched on the

same monitoring session, rank was assigned based on body mass

(larger nestlings had higher rank). The first hatched nestling was as-

signed the highest rank (i.e. rank 1), while subsequent nestlings were

assigned lower ranks (i.e. 2–5; no more than 5 nestlings were found

in each nestbox). As there were no statistically significant sex differ-

ences in body mass at hatching (body mass recorded within 1 day of

hatching, mixed model with nestbox identity as a random intercept

effect, effect of sex: F1, 167¼0.01, P¼0.98), sex did not confound

nestling rank assignment.

As proxies of breeding performance, we used clutch size (number

of eggs laid), hatching success (proportion of eggs hatched in a

clutch), and brood size (number of nestlings in the nest), the latter

being recorded at each monitoring session.

As a part of a parallel study, unrelated to the present one, in a

sample of 44 nestboxes (20 belonging to dyads and 24 unpaired) out

of the 98 where the clutch size was completed and incubation

started, we performed a food supplementation by which we pro-

vided laying pairs with laboratory mice after the laying of the first

egg and during the early nestling period. Pairs breeding in non-

supplemented nestboxes served as controls. This concomitant ex-

periment, whose results will be reported elsewhere (S. Podofillini

et al., manuscript in preparation), could not alter nestbox occupa-

tion patterns because supplementation started after a given nestbox

had been chosen by the kestrels (i.e., after the first egg had been

laid).

Assessment of nest-site preference
Nest-site preference was experimentally investigated based on 40

nestbox dyads. A dyad consisted of two paired nestboxes placed

side-by-side (the sides were touching each other), one of which was

“dirty” while the other was “clean”, with the two front panels with

the entrance holes pointing towards the same direction (Figure 1). In

this way, we aimed at forcing the choice between the dirty and the

clean nestbox while eliminating any confounding effect due to nest

orientation, position (e.g., shaded versus unshaded, disturbance

level), nestbox wear (see below), predation risk, and surrounding

habitat quality.

When assembling dyads, one old nestbox, in which clear signs of

previous breeding attempts were obvious, was paired with an identi-

cal, brand-new nestbox. Old nestboxes, besides containing com-

pressed organic material (mostly consisting of prey remains,

regurgitated pellets, faeces, feathers, etc.), had a rather worn exter-

nal appearance (i.e., faded colouration), including front panels. To

remove any confounding effect of external nestbox wear on nest-site

preference, we shuffled front panels and nest material between old

and new nestboxes according to all eight possible combinations

(Figure 1), each of which was applied five times (there were five

dyads for each combination). The old nest material was carefully

removed from any old nestbox included in a dyad, vigorously

minced, shaken, and placed back either into the old or the new nest-

box according to the predetermined combinations. To avoid any

side bias, the old nestbox was placed alternately on the left or the

right side. Hence, dirty nestboxes within a dyad were characterized

by the presence of old, organic nest material (a cue of previous

breeding attempts) while clean nestboxes did not have any organic

nest material but only a thin layer of gravel and sand on the bottom

of the nestbox (no cue of previous breeding attempts). Dyads were

randomly interspersed among unpaired nestboxes along the perim-

eter of terraces, and were positioned at a minimum distance of 2 m

from nearby dyads or unpaired nestboxes (see also section “Study

species, study area and general methods”).

Since lesser kestrels show a high natal and breeding philopatry

(57% of first-time breeders recruit to the natal colony, and �72%

of adults return to the colony where they bred in the previous year;

Negro et al. 1997; Serrano et al. 2001), nest-site preference could be

affected by previous experience and recognition of previous year’s

nest-sites. To avoid this bias, in February 2016, all old nestboxes
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(either included in dyads or not) were randomly shuffled along the

perimeter of terraces.

Nest-site preference was determined by assessing the settlement

of a breeding pair in each nestbox of the dyad (laying of eggs).

Laying date of the first egg was used to establish which of the two

nestboxes of a dyad was occupied first (in case both nestboxes of a

dyad were occupied). Lesser kestrel females may occasionally start

laying one egg in a nest and then lay the other eggs in nearby nests,

especially when several identical nestboxes are placed nearby (au-

thors’ personal observation). This was not the case in our dyads,

where occupancy mostly occurred in only one of the two nestboxes,

and when both nestboxes of a dyad were occupied, we found differ-

ent females in the nests. In one dyad, however, a single egg was laid

in a clean nestbox and then abandoned. This dyad was considered in

the analyses of nest site preferences, but excluding it did not alter

our conclusions (see “Results” section).

Nestling ectoparasite load
We assessed ectoparasite load of nestlings by estimating infestation by

a common, small (�2 mm) haematophagous ectoparasitic fly (Carnus

hemapterus, Diptera: Carnidae), whose adults infest nestlings of sev-

eral cavity-nesting bird species (Capelle and Whitworth 1973).

Females lay eggs in the organic nest material and the saprophagous

larvae thrive in the nest substrate, where they feed on detritus. The

life-cycle of this ectoparasitic fly is synchronized with that of its hosts:

the peak of emergence of adult parasites from the nest material coin-

cides with the hatching of hosts’ eggs (Roulin 1998). Pupae are able

to overwinter inside nest organic material, waiting for potential hosts

to settle (Roulin 1998; Valera et al. 2006).

Nestlings were inspected to estimate the number of adult flies on

the furcula (interclavicular depression) and on the right and left axillae

(underwings) from the first to the fourth monitoring session. We could

not accurately count all flies as they were fast-moving and hid rapidly

within the nestling down upon handling. Hence, nestling ectoparasite

load was rapidly scored upon handling each nestling by estimating vis-

ible flies for each body district on a 0–3 scale (0: no ectoparasites, 1:

1–3 flies, 2: 4–6 flies and 3:>6 flies) and then computing the mean

value between all body districts before statistical analyses.

Statistical analyses
Nest-site preferences were assessed based on the sample of 40 dyads.

The number of dyads with occupied dirty versus clean nestboxes

was compared by means of a binomial test for deviation from

equality.

The effects of nestbox dirtiness on laying date, breeding perform-

ance, nestling mortality, ectoparasite load, and growth patterns

were assessed based on pooling data collected both from dyads and

unpaired nestboxes. This was necessary because of the very low

sample size of occupied clean nestboxes belonging to dyads (see

“Results” section). The effect of nestbox dirtiness on proxies of

breeding performance [clutch size, hatching success, brood size at 8

and 16 days from hatching of the first egg] was evaluated by general-

ized linear models (GLMs) with nestbox dirtiness (clean versus

dirty) and laying date (day of laying of the first egg) as predictors (to

control for seasonal variation in breeding performance). Hatching

success was expressed as the proportion of eggs hatched on clutch

size, and tested in a binomial GLM using the events/trials syntax. In

models of clutch and brood size (count variables), we assumed a

Poisson error distribution. To reduce noise in estimates of egg hatch-

ing success and nestling survival, we excluded from the analysis all

16 nests where clutch size was completed but no eggs hatched (likely

deserted by parents; 16% of the 98 nestboxes where clutch size was

completed; see “Results” section). This did not affect our conclu-

sions concerning the effect of nestbox dirtiness on other breeding

parameters because the proportion of nests abandoned before hatch-

ing did not significantly differ between clean (0.22) and dirty (0.12)

nestboxes [binomial GLM: effect of dirtiness, estimate (SE): �0.39

(0.59), Z¼�0.66, P¼0.51; effect of laying date, estimate (SE):

0.07 (0.04), Z¼1.68, P¼0.09], though there was a trend for clean

nestboxes to be abandoned more frequently than dirty ones.

The effect of nestbox dirtiness on nestling mortality was investi-

gated using a binomial mixed model whereby mortality of each nest-

ling (0¼ alive, 1¼ found dead or disappeared) at the fifth monitoring

session was the dependent variable, while nestbox dirtiness, nestling

rank, brood size (maximum brood size across all monitoring sessions),

laying date, and ectoparasite load (maximum ectoparasite load across

all monitoring sessions) were included as covariates. Nestbox identity

was included as a random intercept effect.

To assess the effect of nestbox dirtiness on ectoparasite load, we

ran a linear mixed model with nestbox dirtiness, nestling rank,

brood size, and laying date as predictors. We also included monitor-

ing session as a four-level fixed factor to control for variation in

ectoparasite infestation throughout the course of the nestling period.

Two-way interactions between dirtiness and all other predictors

were also included in the initial model. Nestling and nestbox iden-

tity were included as random intercept effects.

We evaluated the effects of nestbox dirtiness on body mass using a

linear mixed model including nestbox dirtiness, nestling age, nestling

Figure 1. Schematic illustration of the different combinations adopted to ran-

domize nest material, front panel, and cement block in dyads of adjacent clean

and dirty nestboxes. The combinations were illustrated using white panels and

white cubes for front panels and cement blocks installed for first time in 2016;

brown panels and gray cubes for old front panels and cement blocks white

holes: clean nestboxes; white and gray holes: dirty nestboxes. The dirty nest-

box was alternately placed on the left or right side, to avoid any side bias. A

dyad was interspersed in random order between unpaired nestboxes or other

dyads along the perimeters of the terraces of two buildings, and was at a min-

imum distance of 2 m from any nearby dyad/unpaired nestbox.
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rank, brood size (number of nestling in the nestbox at each check),

laying date, ectoparasite load, and two-way interactions between

dirtiness and nestling rank, brood size or ectoparasite load, as well as

the two-way interaction between nestling rank and nestling age (to ac-

count for differential growth of nestlings differing in rank) as fixed

effects; nestling and nestbox identity were included as random inter-

cept effects. The models of tarsus and forearm length had a fixed ef-

fect structure identical to the model of body mass, but as we had a

single measurement per nestling, we included only nest identity as a

random intercept effect. Brood size and ectoparasite load referred to

the maximum values recorded for that nestbox/nestling during the

four monitoring sessions. Age effects on growth were controlled for

by including the linear term of age only. Despite generally growth

curves are sigmoidal-shaped (Starck and Ricklefs 1998), nestling

growth of lesser kestrels up to 11days (out of a nestling period of

�30days) did not significantly deviate from linearity (details not

shown for brevity).

In all models, two-way interaction terms were removed in a sin-

gle step if non-significant (P>0.05). Full models (including all non-

significant interactions) are reported in Supplementary material.

Since the lesser kestrel is sexually size dimorphic, females being

heavier and larger than males (Cramp 1998), we performed explora-

tory analyses on the subsample of 209 nestlings (out of 244 hatched)

that were alive at the fourth monitoring session (when blood sam-

pling was performed) to investigate possible effects of nestling sex

(0¼ female, 1¼male) on the response variables. Mixed models

(with the same random intercept effects as detailed above) did not

reveal any statistically significant difference in response variables ac-

cording to sex [parasite load: estimate (SE): �0.07 (0.04), F1,

169¼3.71, P¼0.06; body mass: �1.55 (1.65), F1, 200 ¼0.87,

P¼0.52; tarsus length: �0.20 (0.48), F1, 185¼0.18, P¼0.67; fore-

arm length: estimate (SE): �0.38 (0.84), F1, 187¼0.20, P¼0.65].

Hence, for simplicity and to avoid sacrificing sample size for some

of the analyses, we did not consider sex effects any further in the

analyses. These results indicate that nestling parasite load is not sig-

nificantly different between sexes and that sexual size dimorphism is

not yet evident during the early nestling stage.

To check for the possible confounding effects of the food supple-

mentation experiment on breeding performance traits, nestling ecto-

parasite load, body mass and skeletal growth, all relevant models

were re-run while including food supplementation (supplemented

versus control) as a fixed effect. The effect of food supplementation

was never statistically significant (P-values always>0.14; additional

details not shown for brevity). Hence, for simplicity we did not con-

sider this variable further.

Mixed models were fitted using the lmer or glmer function of the

“lme4” library (Bates et al. 2014) for R 3.3.1 (R Core Team 2014).

Degrees of freedom for linear mixed models were estimated using

the Kenward–Rogers approximation (“pbkrtest” library; Halekoh

and Højsgaard 2014). Non-Gaussian GLMs and mixed models were

not overdispersed (see “Results” section; overdispersion for non-

Gaussian mixed models was checked using the “blmeco” library;

Korner-Nievergelt et al. 2015).

Results

Nestbox occupancy, nest-site preference, and laying

date
Among unpaired nestboxes, old nestboxes were occupied signifi-

cantly more often than new ones [old nestboxes: 20/24 (83.3%),

new nestboxes: 34/71 (47.9%); v2 ¼9.19, df¼1, P¼0.002). In

the nest-site selection experiment, 38 out of 40 dyads had at least

one nestbox occupied (i.e., 95% of dyads had at least one nestbox

occupied). Among the 38 dyads with at least one nestbox occupied,

in 31 cases only the dirty nestbox was occupied, in 1 case only

the clean nestbox was occupied (binomial test, P<0.001), and in

6 cases both nestboxes were occupied. Among the latter 6 dyads,

the dirty nestbox was occupied earlier in 5 out of 6 cases, the mean

laying date in the dirty nestbox of the dyad being 12.0 (4.1 SE)

days earlier than in the clean one (Wilcoxon matched-pairs

test: Z¼2.02, P¼0.043). Considering both unpaired nestboxes

and dyads, mean laying date in dirty nestboxes was May 13

(1.0 SE, N¼57), while it was May 18 (1.3 SE, N¼41) in clean

ones (t96 ¼2.89, P¼0.005).

Nestbox dirtiness, breeding performance, and nestling

mortality
The effects of nestbox dirtiness (clean versus dirty) on clutch size,

hatching success and brood size was analysed in the sample of 82

nestboxes where at least one egg hatched.

Clutch size did not significantly differ between clean and dirty

nestboxes (Table 1), while hatching success of eggs laid in dirty nest-

boxes (percentage hatched¼86%) was slightly but significantly

higher than that of eggs laid in clean nestboxes (76%) (Table 1). In

spite of a significantly higher hatching success in dirty nestboxes,

brood size did not significantly differ between clean and dirty nest-

boxes (Table 1). Breeding performance of lesser kestrels did not sig-

nificantly vary across the breeding season, as shown by the lack of

significant effects of laying date (Table 1).

The probability that a nestling had died by the last monitoring

session was not significantly affected by nestbox dirtiness (Table 2),

while it was significantly higher among low-ranking nestlings

(Table 2).

Nestling ectoparasite load, body mass, and size in

relation to nestbox dirtiness
Nestling ectoparasite load was recorded in 70 nestboxes (28 clean,

42 dirty). The model of ectoparasite load revealed a statistically sig-

nificant nestbox dirtiness�monitoring session interaction (Table 3,

Figure 2): post-hoc tests indicated that mean ectoparasite load was

significantly higher in dirty nestboxes soon after the first eggs had

hatched (i.e., in the first monitoring session) (P¼0.003), whereas

Table 1. Effect of nestbox dirtiness on breeding performance

Clean Dirty Estimate (SE) Z P

Clutch size (N ¼ 82)

Dirtiness 4.10 (0.14) 4.34 (0.10) 0.05 (0.11) 0.47 0.64

Laying date – – �0.01 (0.01) �0.25 0.80

Hatching success (N ¼ 82)

Dirtiness 0.76 (0.04) 0.86 (0.03) 0.65 (0.29) 2.29 0.022

Laying date – – 0.01 (0.02) 0.04 0.97

Brood size, day 7 (N ¼ 82)

Dirtiness 2.59 (0.24) 3.16 (0.18) 0.21 (0.14) 1.54 0.12

Laying date – – 0.01 (0.01) 0.55 0.58

Brood size, day 15 (N ¼ 82)

Dirtiness 2.25 (0.21) 2.70 (0.17) 0.19 (0.15) 1.30 0.19

Laying date – – 0.01 (0.01) 0.38 0.70

Mean values (SE) of breeding parameters are reported (binomial SE for hatch-

ing success). Estimates are from Poisson or binomial GLMs (for hatching suc-

cess). Models were not overdispersed (dispersion parameter always< 1.26).
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the effect of dirtiness on ectoparasite load became non-significant in

all subsequent monitoring sessions (all P>0.40). Moreover, ecto-

parasite load strongly decreased with nestling rank, high-ranking

nestlings being more infested than low-ranking (smaller and late

hatched) ones (Table 3). Finally, ectoparasite load markedly

decreased in the course of the breeding season, late clutches being

significantly less infested than early ones (Table 3). Two-way inter-

actions between nestbox dirtiness and other predictors were not sig-

nificant and were thus removed from the model (all P>0.33; see

Table S1 in Supplementary material for details).

Nestling body mass was not significantly affected by nestbox

dirtiness (Table 3), while it significantly decreased in more parasi-

tized nestlings, in low-ranking ones, and among nestlings reared in

larger broods (Table 3). Moreover, early nestling growth was signifi-

cantly lower in low-ranking nestlings, as shown by the negative sign

of the significant age�nestling rank interaction (Table 3). Other

two-way interactions with nestbox dirtiness were not significant and

were removed from the model (all P>0.60; see Table S1 in

Supplementary material for details).

Tarsus and forearm length recorded at the last monitoring ses-

sion were not significantly affected by nestbox dirtiness, while they

were both lower in low-ranking nestlings (Table 3). Tarsus (but not

forearm) length was significantly larger in nestlings reared in larger

broods (Table 3). Two-way interactions between dirtiness and

other predictors were not significant and were removed from the

models (tarsus length, all P>0.30; forearm length, all P>0.20; see

Table S1 in Supplementary material).

Discussion

Studies addressing the preference for dirty vs. clean nestboxes in sec-

ondary cavity-nesters have provided conflicting evidence, highlighting

broad interpopulation and interspecific differences in preference pat-

terns (see Introduction and review by Mazgajski 2007). Part of this

variability may be due to different experimental designs that were not

specifically aimed at testing the effect of cues of previous breeding at-

tempts on nest-site choice (Mazgajski 2007). In our carefully designed

nestbox choice experiment, lesser kestrels showed a strong preference

for nestboxes previously used by conspecifics, breeding pairs settling

earlier and more frequently in nestboxes with a dirty substrate. The

preference for dirty nestboxes is consistent with two possible explan-

ations. First, it is consistent with the idea that the breeders exploit

cues about previous breeding attempts by conspecifics to choose their

nest cavity or colony site (Negro and Hiraldo 1993; Serrano et al.

2001, 2003; Aparicio et al. 2007). Second, it may reflect preference

for a more comfortable nest substrate by females. The organic mater-

ial contained in old nests, being�5 cm thick, may improve thermal in-

sulation of the nest substrate, reducing heat loss, increasing

incubation efficiency, and ultimately lowering the energetic costs of

incubation (Mainwaring et al. 2014). Energy demands during incuba-

tion largely depend on the rate at which eggs lose heat (Deeming

2002). Incubating birds, especially those (as the lesser kestrel) that lay

eggs directly on the substrate without lining their nest cavity, are

therefore expected to preferentially lay eggs on those substrates that

minimize the energetic costs of incubation (Deeming 2002;

Mainwaring et al. 2014). Females may have been roosting in both

nestboxes of a dyad before egg laying, and this might have promoted

the choice for the likely more suitable organic nest substrate. Finally,

earlier egg laying in dirty vs. clean nestboxes is in accordance with the

hypothesis that the sequence of cavity occupation in lesser kestrels fol-

lows a despotic distribution (Negro and Hiraldo 1993; see also

Sumasgutner et al. 2014), with early-settling individuals (likely older

and experienced breeders; Catry et al. 2017) preferentially settling in

dirty nestboxes compared to clean ones.

With regards to the fitness consequences of settling in a dirty

nestbox, we envisage three possible explanations for the �10%

greater hatching success in dirty versus clean nestboxes. First, the or-

ganic material could allow establishing a favourable nest microcli-

mate through improved thermal insulation and humidity

stabilization (Hooge et al. 1999; Ardia et al. 2006), possibly increas-

ing egg viability (Cook et al. 2003). Indeed, previous studies have

shown that nest position and content are important factors in affect-

ing thermal insulation and in buffering the potential negative effects

of harsh environmental conditions on embryo development (Hilton

et al. 2004; Mainwaring et al. 2014). Second, eggs laid on soft, or-

ganic rather than mineral substrate may suffer a lower risk of break-

age and/or be more efficiently incubated, resulting in lower egg

failure rates. Alternatively, a higher hatching success in dirty nest-

boxes may be due to a better incubation performance/higher pheno-

typic quality of early settling (older/more experienced; Catry et al.

2017) pairs occupying these nestboxes.

The higher C. hemapterus load of nestlings hatched in dirty ver-

sus clean nestboxes is likely due to the higher parasite load of dirty

versus clean nestboxes. Carnus hemapterus flies undergo a

Table 2. Binomial mixed model of the effect of nestbox dirtiness on

the probability that a nestling had died by 15 days from start of egg

hatching

Predictors Estimate (SE) Z P

Dirtiness �0.77 (0.78) 0.99 0.32

Nestling rank 1.30 (0.26) 4.95 <0.001

Brood size �0.22 (0.36) 0.62 0.53

Laying date �0.08 (0.05) 1.63 0.10

Ectoparasite load �0.57 (0.48) 1.18 0.24

Nestbox identity was included as a random effect. The model was not over-

dispersed (dispersion parameter¼ 0.81).

Figure 2. Nestling ectoparasite load in each of the four monitoring sessions.

Filled dots represent the mean ectoparasite load of nestlings reared in dirty

nestboxes while empty dots refer to nestlings reared in clean nestboxes

(N¼70 nests, 244 nestlings). Error bars represent SE.
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prolonged diapause when hosts are absent from the nest cavity, and

adult emergence is synchronized with nestling hatching (Roulin

1998). However, ectoparasite load of nestlings raised in clean versus

dirty nestboxes became very similar within a few days after hatching

of the first egg, likely because of ectoparasite dispersal between

nearby nestboxes to reduce competition for access to hosts (e.g.,

Dawson and Bortolotti 1997). Moreover, ectoparasite load strongly

decreased over the course of the breeding season, late broods being

significantly less parasitized than early ones. The seasonal decline of

C. hemapterus load is in line with previous studies (e.g., Dawson

and Bortolotti 1997; Sumasgutner et al. 2014), and may be due to

natural variation in abundance through the parasite life-cycle

(Roulin 1998).

The lack of significant effects of nestbox dirtiness on nestlings’

early growth patterns suggests that the higher ectoparasite load of

dirty nestboxes is of seemingly minor importance for nestling fitness

(Sumasgutner et al. 2014), in spite of the higher C. hemapterus para-

sitism of nestlings hatched in dirty nestboxes that we observed soon

after hatching. Together with the observation that breeding success

in dirty nestboxes was not lower than in clean ones, this finding sug-

gests that breeding in dirty nestboxes does not entail fitness costs

(e.g., Sumasgutner et al. 2014).

On the whole, our results did not provide strong evidence that

breeding in dirty nestboxes provides fitness payoffs in terms of im-

proved reproductive output. Studies of nest-site or breeding habitat

choice commonly assume that observed preference patterns are

adaptive, implying that settlement decisions reflect fitness benefits

(in terms of higher breeding success and/or survival; see Orians and

Wittenberger 1991; Martin 1998; Chalfoun and Schmidt 2012), but

this assumption has only seldom been tested (Brambilla and Ficetola

2012). In secondary-cavity nesters, the effects of nest dirtiness on re-

productive parameters are unclear; the majority of studies have

shown no obvious effects of nest material from previous breeding

events on fitness traits, though some studies have documented weak

statistically significant (mostly negative) effects (Mazgajski 2007).

Our findings are thus in line with such previous evidence. We note

however that the detection of significant fitness effects of nest-site

preference for previously used nests may be context-dependent. It is

known that lesser kestrels use conspecific presence as a major cue

when deciding where to nest and when to breed (Serrano et al.

2003), and our study site may in fact act as a single huge colony of

�1,000 breeding pairs (La Gioia et al. 2017). In this context, selec-

tion of different nest-sites may not be so relevant in terms of fitness

because the high number of individuals occurring at this colony may

indicate favourable breeding conditions (for instance, larger colonies

are mostly settled in sites that are less accessible to predators;

Serrano et al. 2004). However, in a different context, with small col-

onies that are sparsely distributed through the landscape (thus more

difficult to be detected by prospecting individual kestrels), the pres-

ence of organic material derived from previous breeding attempts in

a cavity would be an important cue for settlement at a suitable

breeding site and could have significant fitness consequences.

Table 3. Mixed models of the effects of nestbox dirtiness on nestling ectoparasite load, body mass, tarsus, and forearm length, while

accounting for the concomitant effects of other predictors

Predictors F df P Estimate (SE)

Ectoparasite load (N ¼ 70 nests and 244 nestlings)

Dirtiness 1.95 1, 67 0.17 –

Session 0.44 3, 593 0.73 –

Nestling rank 11.29 1, 189 <0.001 �0.05 (0.01)

Brood size 0.11 1, 314 0.75 �0.01 (0.02)

Laying date 32.90 1, 77 <0.001 �0.02 (0.01)

Dirtiness � session 3.41 3, 581 0.017 –

Body mass (N ¼ 70 nests and 244 nestlings; covariates centred on their mean value)

Dirtiness 0.01 1, 51 0.82 –

Age 4960.8 1, 580 <0.001 6.96 (0.10)

Nestling rank 120.2 1, 144 <0.001 �4.01 (0.37)

Brood size 5.2 1, 294 0.023 �1.01 (0.44)

Laying date 3.4 1, 68 0.07 �0.15 (0.08)

Ectoparasite load 4.3 1, 697 0.038 �1.55 (0.75)

Age � nestling rank 123.5 1, 601 <0.001 �0.97 (0.08)

Tarsus length (N ¼ 63 nests and 202 nestlings)

Dirtiness 0.36 1, 53 0.55 �
Age 212.1 1, 168 <0.001 1.61 (0.11)

Nestling rank 63.4 1, 173 <0.001 �0.97 (0.12)

Brood size 4.73 1, 71 0.033 0.43 (0.20)

Laying date 0.03 1, 61 0.86 0.01 (0.03)

Ectoparasite load 0.65 1, 194 0.42 �0.21 (0.23)

Forearm length (N ¼ 63 nests and 203 nestlings)

Dirtiness 3.29 1, 145 0.08 –

Age 222.0 1, 123 <0.001 2.78 (0.19)

Nestling rank 63.6 1, 181 <0.001 �1.82 (0.23)

Brood size 3.89 1, 67 0.053 0.58 (0.30)

Laying date 1.49 1, 57 0.23 0.05 (0.04)

Ectoparasite load 0.01 1, 175 0.98 �0.01 (0.46)

Models for ectoparasite load and body mass included nestbox and nestling identity as random effects, while models for tarsus and forearm length included only

nestbox identity as a random effect.
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Other findings emerging from this study, unrelated to nestbox

dirtiness, are briefly discussed below.

First, parasite load negatively affected body mass growth, sug-

gesting that intense C. hemapterus parasitism may entail fitness

costs for nestlings (e.g. Hoi et al. 2010). Alternatively, the negative

effect of C. hemapterus parasitism on nestling body mass may be in-

direct, resulting from higher parasitism in clutches with low-quality

nestlings (i.e. nestlings with a smaller cutaneous immune response;

Bize et al. 2008), or from greater exposure to pathogens that may be

transmitted through C. hemapterus blood meals.

Second, the higher C. hemapterus load in high- versus low-

ranking nestlings is consistent with the idea that ectoparasites’ host

selection is non-random. Carnus hemapterus seem to aggregate in

larger numbers on older/heavier nestlings, suggesting avoidance of

smaller and/or poorer condition nestlings within broods (e.g.

Dawson and Bortolotti 1997; Valera et al. 2004; Bize et al. 2008;

Hoi et al. 2010; but see Roulin et al. 2003). This may occur because:

1) parasites can less easily obtain abundant/high-quality food

resources from such hosts, decreasing their own fitness; 2) lesser

kestrels show a relatively large hatching asynchrony [days between

hatching of the first and the last egg in a clutch: 2 days (range 1–10);

our unpubl. data], whereby early hatched hosts are the only target

of parasites before hatching of their younger siblings; 3) smaller

hosts simply provide less resources for parasites (in terms of total

blood amount flow/feeding space available on the nestling skin).

The fact that the per gram ectoparasite load (ectoparasite load/body

mass) was not significantly predicted by nestling rank is in line with

the third explanation (see Table S2 and Figure S1 in Supplementary

material), though hatching asynchrony may also contribute to

explain nestling rank effects on ectoparasite load.

Third, nestlings from larger broods had a lower body mass, but

longer tarsi and forearm. This suggests that brood size may modulate

early growth trajectories, perhaps via an effect on sibling competition

(see also Gil et al. 2008). A larger skeletal size may provide competi-

tive advantages in obtaining food items, as it may lead to dominance

in sib–sib interactions once parents arrive at the nest with prey, and

the payoff of a larger skeletal size may be greater in larger broods

where sibling competition is higher (Schew and Ricklefs 1998).

In conclusion, we provide strong evidence that the presence of

organic material from previous nesting attempts in the nest cavity is

a key driver of nest-site choice, in line with lesser kestrels exploiting

cues of conspecific presence for deciding where to settle and breed,

and with the idea that organic nest material provides females with a

comfortable substrate for egg laying and incubation. We emphasize

that these findings may have bearings for projects aimed at

improving the conservation status of the lesser kestrel, a species of

European conservation priority that has suffered severe population

declines and range contractions in the course of the 20th century

(BirdLife International 2015). As the availability of suitable nest-

sites has been identified as an important factor limiting population

growth (Negro and Hiraldo 1993), many conservation projects rely

on provisioning large numbers of nestboxes (I~nigo and Barov 2010;

La Gioia et al. 2017). We propose that adding old nest material to

newly deployed nestboxes may represent a cheap and effective way

to enhance their occupation rate, hence increasing the effectiveness

of conservation measures aimed at improving the conservation

status of lesser kestrel breeding populations.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at https://academic.oup.com/cz.
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Electronic supplementary material 

 

Table S1 Mixed models of the effects of nestbox dirtiness on nestling ectoparasite load, body mass, 

tarsus and forearm length, while accounting for the concomitant effects of nestling rank, age, laying 

date and brood size. Models for ectoparasite load and body mass included nestbox and nestling 

identity as random effects, while models for tarsus and forearm length included only nestbox 

identity as a random effect. In this table, we report the full statistics for non-significant two-way 

interactions. The table is divided in sections for better layout 

 
 
 

 F df P Estimate (SE) 

Ectoparasite load (n = 70 nests and 244 nestlings) 
Dirtiness 0.37 1, 84 0.54 - 

Session 0.46 3, 592 0.71 - 

Nestling rank 12.03 1, 189 < 0.001 -0.07 (0.02) 

Brood size 0.15 1, 299 0.70 -0.03 (0.03) 

Laying date 23.36 1, 83 < 0.001 -0.02 (0.01) 

Dirtiness × nestling rank 0.88 1, 189 0.35 0.03 (0.03) 

Dirtiness × laying date 0.47 1, 83 0.49 -0.01 (0.01) 

Dirtiness × brood size 0.56 1, 299 0.45 0.03 (0.05) 

Dirtiness × session 3.83 3, 592 0.0097 - 
 

 F df P Estimate (SE) 

Body mass (n = 68 nests and 223 nestlings; covariates centered on their mean 
value) 
Dirtiness 0.1 1, 50 0.81 - 

Age 4936.4 1, 580 < 0.001 6.96 (0.1) 

Nestling rank 103.2 1, 143 < 0.001 -4.14 (0.66) 

Brood size 4.7 1, 296 0.031 -0.89 (0.70) 

Laying date 3.4 1, 67 0.07 -0.14 (0.08) 

Ectoparasite load 3.7 1, 716 0.054 -1.66 (1.38) 

Dirtiness × nestling rank 0.1 1, 142 0.81 0.18 (0.79) 

Dirtiness × brood size 0.0 1, 313 0.82 -0.19 (0.88) 

Dirtiness × Ectoparasite load 0.0 1, 712 0.92 0.15 (1.63) 

Age × nestling rank 123.0 1, 599 < 0.001 -0.97 (0.08) 
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 F df P Estimate (SE) 

Tarsus length (n = 63 nests and 202 nestlings) 
Dirtiness 0.24 1, 93 0.63 - 

Age 35.02 1, 179 < 0.001 1.51 (0.25) 

Nestling rank 5.44 1, 186 0.02 -1.39 (0.60) 

Brood size 4.9 1, 74 0.03 0.40 (0.30) 

Laying date 0.01 1, 59 0.95 0.01 (0.01) 

Age × nestling rank 0.24 1, 179 0.62 0.03 (0.07) 

Dirtiness × nestling rank 1.06 1, 144 0.30 0.24 (0.24) 

Dirtiness × brood size 0.11 1, 75 0.74 0.13 (0.40) 

Dirtiness × ectoparasite load 0.02 1, 189 0.89 0.01 (0.6) 

Ectoparasite load 0.32 1, 187 0.57 0.13 (0.49) 
 

 F df P Estimate (SE) 

Forearm length (n = 63 nests and 203 nestlings) 
Dirtiness 0.34 1, 91 0.56 - 

Age 56.68 1, 170 < 0.001 0.33 (0.43) 

Nestling rank 0.42 1, 190 0.52 -0.32 (0.96) 

Brood size 4.10 1, 75 0.046 0.95 (0.47) 

Laying date 1.98 1, 56 0.16 0.06 (0.04) 

Age × nestling rank 1.67 1, 184 0.20 -0.17 (0.13) 

Dirtiness × brood size 1.23 1, 69 0.27 -0.67 (0.60) 

Dirtiness × ectoparasite load 0.10 1, 191 0.74 -0.32 (0.10) 

Ectoparasite load 0.11 1, 190 0.74 0.95 (0.47) 
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Table S2 Mixed model of the effects of nestbox dirtiness on a nestling per gram ectoparasite load 

(ectoparasite load/body mass), while accounting for the concomitant effects of different predictors. 

The model included nestbox and nestling identity as random effects. Sample size is 70 nests and 

244 nestlings. The statistically significant interaction between dirtiness and session is illustrated in 

Fig. S3 

 

 
 F df P Estimate (SE) 

 
Dirtiness 1.77 1, 66    0.18 - 
Session 11.42 3, 585 < 0.001 - 
Nestling rank 0.35 1, 198    0.55 -0.05 (0.10) × 10-2 
Brood size 0.15 1, 338    0.69 -0.04 (0.02) × 10-2 
Laying date 23.97 1, 76 < 0.001 -0.02 (0.01) × 10-2 
Dirtiness × session 8.71 3, 571 < 0.001 - 
     

 

  

31



Figure S3 Nestling per gram ectoparasite load (ectoparasite load/body mass) in each of the four 

monitoring sessions. Filled dots represent the mean ectoparasite load of nestlings reared in dirty 

nestboxes while empty dots refer to nestlings reared in clean nestboxes (N = 70 nests, 244 

nestlings). Error bars represent 1 SE 
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Abstract 

The amount of food resources available to upper-level consumers can show marked variations in time 

and space, potentially resulting in food limitation. The availability of food resources during 

reproduction is a key factor modulating variation in reproductive success and life-history trade-offs, 

including patterns of resource allocation to reproduction vs. self-maintenance, ultimately impacting 

on population dynamics. Food provisioning experiments constitute a popular approach to assess the 

importance of food limitation for vertebrate reproduction. In this study of a mesopredatory avian 

species, the lesser kestrel (Falco naumanni), we provided extra food to breeding individuals from egg 

laying to early nestling rearing. Extra food did not significantly affect adult body condition or 

oxidative status. However, it increased the allocation of resources to flight feathers moult and induced 

females to lay heavier eggs. Concomitantly, it alleviated the costs of laying heavier eggs for females 

in poor body condition, and reduced their chances of nest desertion (implying complete reproductive 

failure). Extra food provisioning improved early nestling growth (body mass and feather 

development). Moreover, extra food significantly reduced the negative effects of ectoparasites on 

nestling body mass, while fostering forearm (a flight apparatus trait) growth among highly parasitized 

nestlings. Our results indicate that lesser kestrels invested the extra food mainly to improve current 

reproduction, suggesting that population growth in this species can be limited by food availability 

during the breeding season. In addition, extra food provisioning reduced the costs of the moult-

breeding overlap and affected early growth trade-offs by mitigating detrimental ectoparasite effects 

on growth and enhancing development of the flight apparatus with high levels of parasitism. 

Importantly, our findings suggest that maternal condition is a major trait modulating the benefits of 

extra food to reproduction, whereby such benefits mostly accrue to low-quality females with poor 

body condition. 

 

Keywords: body condition, egg size, food limitation, food provisioning, income breeding, moult-

breeding overlap, offspring development, oxidative status, sex allocation  
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Introduction 

 

Seasonal or stochastic fluctuations of ecological conditions often result in limited availability of food 

resources for upper-level consumers. Variation in food availability is one of the key factors 

modulating variation in life-history traits related to reproduction among individuals, ultimately 

affecting population dynamics (Lack 1954). Food availability is commonly exploited by individuals 

as a cue to adjust reproductive decisions to contingent ecological conditions, providing ‘biological 

information’ (sensu Wagner and Danchin 2010) on when and where best to breed and how much 

resources to invest in producing and raising offspring to maximise fitness (Martin 1987). Whenever 

breeding individuals are exposed to poor environmental conditions, resulting in food limitation, 

parents are expected to trade self-maintenance against reproduction and offspring provisioning, with 

major implications for their survival and breeding success (Lack 1966, Martin 1987). 

The relevance of food limitation during reproduction for population dynamics can be assessed 

by analysing the effects of resource availability on breeding success, or via experimental 

manipulation (removal or addition) of food resources. The most widespread experimental approach 

to investigate the extent to which reproduction is limited by food resources, and to highlight the 

resulting life-history trade-offs, is to provide extra food to breeders, while concomitantly assessing 

variation in reproductive investment and output of individuals receiving the extra food compared to 

unsupplemented controls (reviews in Martin 1987, Boutin 1990). Among vertebrates, birds have been 

the favourite subject of food supplementation experiments during breeding (Martin 1987, Boutin 

1990, Ruffino et al. 2014). In spite of broad differences in food provisioning protocols and of the 

heterogeneity of effects among studies, which may be partly due to variable background ecological 

conditions (in terms of e.g. food availability) during the experiments (Ruffino et al. 2014), individuals 

receiving extra food generally achieved reproductive benefits relative to controls, indicating that most 

bird populations are limited by food availability during the energy-demanding reproductive period 

(Martin 1987, Boutin 1990, Ruffino et al. 2014). These benefits include advancing egg laying (Meijer 
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and Drent 1999, Aparicio and Bonal 2002), laying heavier eggs and/or larger clutches (Wiebe and 

Bortolotti 1995, Korpimäki and Wiehn 1998, Karell et al. 2008, Saino et al. 2010), and enjoying 

improved nestling growth and survival (Dewey and Kennedy 2001, Hipkiss et al. 2002).  

Besides breeding output, extra food could affect parental condition. Food-supplemented 

parents may indeed spare energy resources that are otherwise required for self-maintenance and 

offspring provisioning, or directly use extra food to enhance their own survival prospects. Extra food 

may improve parental body condition (Garcia et al. 1993, Schoech 1996, Cucco and Malacarne 1997, 

Dewey and Kennedy 2001) and physiological state, in terms of e.g. immune system functioning or 

oxidative status (Karell et al. 2008, Alan and McWilliams 2013, Fletcher et al. 2013, Giordano et al. 

2015). For instance, extra food may lower oxidative damage by reducing physical activity for self-

provisioning (Giordano et al. 2015). Moreover, food provisioning may affect the timing and extent 

of feather moult, a highly energy-demanding process in the avian life cycle (Murphy 1996), and a 

reduction of the costs of the overlap between moult and competing activities, such as reproduction 

and migration (Siikamäki 1998, Danner et al. 2014). 

In general, it may be expected that the advantages provided by extra food vary according to 

the resource allocation and consumption decisions that parents adopt during the breeding season (Roff 

1992, Stearns 1992). For instance, breeding success of ‘capital breeders’ (whose reproduction relies 

on energy stored in advance of breeding; Jönsson 1997) may show limited sensitivity to extra food 

provisioning during the reproductive period, whereas that of ‘income breeders’ (which do not 

accumulate reserves prior to breeding and fuel reproduction with concurrent energy intake) should be 

more positively affected (Meijer and Drent 1999). Similarly, the behavioural response to food 

supplementation by parents may vary between species, populations or individuals, depending on 

which strategy maximises lifetime reproductive success under specific environmental contexts (e.g. 

high or low background prey availability) or physiological constraints (Kacelnik and Cuthill 1990, 

Ydenberg 1994, Markman et al. 2002). On the one hand, providing parents with extra food may 

reduce the amount of resources delivered to the progeny, reducing reproductive costs and enhancing 
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parental residual reproductive value, while offspring quality and breeding success are unaltered 

(Dawson and Bortolotti 2002). On the other hand, extra food may not reduce offspring provisioning 

rates with natural food items, markedly increasing fledging success (Gonzalez et al. 2006). 

Finally, whenever sexes differ in their susceptibility to harsh rearing environments, parents 

may adaptively tune the sex ratio of their offspring in relation to extrinsic conditions (West et al. 

2000, West and Sheldon 2002). Indeed, nutritional constraints may affect avian sex allocation (Wiebe 

and Bortolotti 1992, Korpimäki et al. 2000, Saino et al. 2010), with mothers biasing the sex ratio of 

their clutches towards the larger sex, which is more susceptible to harsh rearing environments, when 

food resources are abundant (Wiebe and Bortolotti 1992, Nager et al. 1999, Korpimäki et al 2000). 

In this study of the lesser kestrel (Falco naumanni), a small (ca. 120 g), sexually dimorphic, 

cavity-nesting diurnal raptor with biparental care of the progeny (Cramp 1998), we provided extra 

food to breeders from the onset of egg laying to the early nestling-rearing period, and assessed the 

effects of food supplementation on different short-term fitness components, such as: 1) parental body 

condition and oxidative status (in terms of plasma non-enzymatic total antioxidant capacity, TAC, 

and total oxidant status, TOS; Erel 2004, 2005); 2) moult timing and extent (lesser kestrels may 

initiate the annual moult of primary feathers during reproduction; Cramp 1998, Zuberogoitia et al. 

2018); 3) breeding performance, including egg and clutch characteristics (egg mass, clutch size, 

hatching success, duration of the incubation period), biparental nest desertion (i.e. the abandonment 

of eggs and/or nestlings by both parents, leading to reproductive failure for the current breeding 

season; Székely et al. 1996), offspring growth and mortality; 4) patterns of primary sex allocation and 

sex-biased offspring mortality. We expected: 1) an overall positive effect of food supplementation on 

parental condition and oxidative status (increased TAC and/or decreased TOS); 2) earlier onset of 

annual moult and/or faster primary feathers growth among food-supplemented individuals compared 

to controls; 3) extra food to have an overall positive effect on breeding performance (Ruffino et al. 

2014) and to shorten incubation (Sanz 1996), as reduced self-provisioning needs of food-

supplemented parents may induce them to spend more time incubating eggs compared to controls. In 
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the sexually-size dimorphic lesser kestrel (males are ca. 15 % lighter than females; Cramp 1998, 

Donázar et al. 1992), we might also expect 4) food-supplemented females to lay female-biased 

clutches and/or raise female-biased broods (Korpimäki et al. 2000; but see Aparicio and Cordero 

2001).  

Importantly, we investigated whether female body condition modulated the effects of extra 

food on breeding performance. To our knowledge, no previous study has investigated whether 

individual quality modulates the fitness benefits of extra food provisioning. We expected low-quality, 

poor condition females to obtain greater fitness benefits from extra food provisioning compared to 

high-quality, better condition females. 
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Material and methods 

 

Study species, study area and general field procedures 

The lesser kestrel is a long-distance Afro-palearctic migrant (Cramp 1998). European populations 

spend the winter mainly in the Sahel and reach the breeding areas in March-April (Cramp 1998). Egg 

laying takes place in late April-early May, and a previous food provisioning experiment beginning 

before egg laying revealed that food-supplemented females advanced first egg laying date by ca. one 

week compared to control ones (Aparicio and Bonal 2002), suggesting that egg laying may be food-

limited. Females lay clutches of 3-5 eggs with a 2-3 days laying interval between consecutive eggs. 

Eggs are incubated for ca. 30 days by both parents. Altricial nestlings hatch asynchronously, 

generating strong size hierarchies among nestmates, with last-hatched, low-ranking nestlings often 

dying when resources are insufficient (Aparicio 1997). Fledging occurs at ca. 40 days post-hatching. 

Lesser kestrels feed mainly on invertebrates (Orthoptera, Coleoptera), lizards (chiefly Podarcis 

siculus) and small rodents (voles Microtus spp.) (Cramp 1998, Rodríguez et al. 2010, Catry et al. 

2016, Di Maggio et al. 2018) that are captured in open farmland or grassland areas surrounding 

breeding colonies (Cecere et al. 2018). Both parents contribute to rearing nestlings (Cramp 1998). 

During breeding, some adults initiate their complete annual moult by shedding a few primary feathers 

(usually between 1 and 3 feathers, mostly P4-P6; primaries numbered descendantly) (Cramp 1998; 

see also Zuberogoitia et al. 2018). 

The study was carried out during April-July 2016 in the Matera (Southern Italy; 40°67’ N, 

16°60’ E) colony (ca. 1000 pairs, La Gioia et al. 2017). In this colony, many pairs breed in specially 

designed concrete nestboxes (external size: 30 cm height × 30 cm width × 37 cm length; entrance 

hole diameter 65 mm) with wooden front and rear panels (see Podofillini et al. 2018 for further details 

of nestboxes). For the present study, we relied on 209 nestboxes that were checked three times a week 

during the entire breeding season (late April - end July) to determine the onset of egg laying, egg 

hatching, duration of the incubation period, nestling body mass, morphology, and mortality. Eggs 
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were weighted using a digital scale (accuracy 0.1 g) and individually marked using a non-toxic black 

marker to record the laying sequence. In those cases when two (or more) eggs were found in a same 

nestbox during the same monitoring session, we coded each egg using their mean laying order value 

(e.g. in the case of uncertainty between the fourth and the fifth egg, we coded both eggs as 4.5). 

Duration of the incubation period was expressed as the difference (in days) between the day of 

hatching of the first egg and the day of laying of the first egg in a clutch (laying date hereafter). 

After hatching of the first egg, each nestbox was checked five times to assess nestling growth. 

Over this period, nestbox monitoring sessions occurred at an average of 0.8 (range 0-3), 3.0 (2-5), 5.3 

(4-9), 7.9 (7-11) and 16.0 (14-18) days after hatching of the first egg. We did not check nestboxes 

after the fifth session because nestlings may start wandering outside nestboxes when ca. 15 days old, 

making monitoring difficult and increasing the risk of inducing premature fledging (Podofillini et al. 

2018). Nestling body mass was recorded during all monitoring sessions, tarsus and forearm length 

(the latter measured from the front of the folded wrist to the proximal end of the ulna) were recorded 

at the fourth monitoring session, and the length of primary feather P8 (a measure of nestling feather 

growth) was recorded at the fifth monitoring session (it could not be accurately recorded at earlier 

sessions). Nestlings were ranked according to hatch order, or to body mass (assigning the higher rank 

to the heavier nestling) when two or more newly hatched nestlings were found on the same monitoring 

session (see Podofillini et al. 2018). The first hatched nestling was assigned the highest rank (i.e. rank 

1). During the first four monitoring sessions, we recorded the intensity of infestation by Carnus 

hemapterus, a common blood-sucking dipteran ectoparasite of cavity-nesting birds (Capelle and 

Whitworth 1973). Ectoparasite infestation was assessed on each nestling for three body districts 

(interclavicular depression and right and left underwings) on a 0-3 scale (0: no ectoparasites, 1: 1–3 

flies, 2: 4–6 flies and 3: > 6 flies). Nestling ectoparasite load was expressed as the mean value of 

ectoparasite infestation across the three districts (see Podofillini et al. 2018). At the fourth monitoring 

session, a small (ca. 200 µl) blood sample was collected in capillary tubes by puncturing the brachial 
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vein with sterile needles. Blood was kept at -20°C and later used to molecularly determine sex 

(according to Griffiths et al. 1998). 

A nest was considered as deserted if no eggs from a complete clutch hatched (clutch desertion) 

or if all nestlings were found dead from one session to the next (brood desertion) (Székely et al. 1996), 

leading to complete reproductive failure for the current breeding season (lesser kestrels are single-

brooded; Cramp 1998). Although in our case nest desertion occurs because both parents abandon the 

clutch/brood (biparental desertion, Székely et al. 1996), the process likely begins with desertion by 

one parent (the female in other raptor species with a similar breeding ecology; Newton and Marquiss 

1984, Kelly and Kennedy 1993), rapidly followed by desertion of the other parent because the costs 

of reproduction for the remaining parent would be unsustainable (Székely et al. 1996). 

Starting from ca. 10-15 days before the expected time of hatching, adults were captured 

opportunistically by hand in the nestbox or by nestbox traps while brooding their eggs or feeding 

newly hatched nestlings. We captured ca. 80 % of the adults breeding in experimental nestboxes (see 

Statistical analyses). Upon capture, birds were individually marked, and body mass (0.1 g) and keel 

length (using a dial calliper, accuracy 0.1 mm) were recorded. As an index of body condition, we 

used the scaled mass index (SMI hereafter), which standardizes body mass at a fixed value of a linear 

body measurement (keel length in our case) based on the scaling relationship between mass and length 

(Peig and Green 2009, 2010). Body mass and keel length were moderately positively correlated in 

both sexes; females: r = 0.27, p = 0.016, n = 82; males: r = 0.33, p = 0.004, n = 74). As the scaling 

exponent significantly differed between the sexes (Supplementary material Appendix 1, Table A1), 

SMI was computed for each sex separately. We recorded moult status by inspecting flight feathers of 

the right wing (moult was mostly symmetrical; our unpubl. data). When growing/newly grown 

primary feathers were found, we measured their length using a ruler (accuracy 1 mm); in case of a 

shed primary feather with no signs of quill growth, we recorded a value of 0. Moult status was 

expressed as moult initiation (i.e. whether an individual had begun moulting, including the presence 

of shed feathers, or not) and total moult investment. Total moult investment was assumed to reflect 
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the total amount of resources invested in the synthesis of new feathers. It was expressed as the sum 

of the length of all growing feathers, and was assigned a value of 0 if no sign of moult was detected 

or if feathers were shed but had not yet grown (i.e. no resources allocated yet to new feather 

synthesis). Finally, for each individual we collected ca. 500 µl of blood into microhematocrit capillary 

tubes by puncturing the brachial vein using a sterile needle. To separate plasma from blood cells, two 

capillary tubes per individual were centrifuged (11500 rpm × 10 min) within 4 hours of sampling. 

Plasma was then stored at – 20° C for later biochemical assays. 

 

Food supplementation 

We alternately assigned each nestbox where an egg was found to a food supplementation or a control 

treatment. Breeding pairs were supplemented with commercial white laboratory mice (Mus musculus, 

ca. 20 g each) [Rapax Mangimi, Santo Stino di Livenza (VE), Italy] that were placed within the 

nestbox (at the rear end). We provided three mice every two days during the egg laying period and 

after hatching, and one mouse every two days during the incubation period (visits were reduced 

during incubation to limit disturbance to brooding adults). In the vast majority of cases, mice 

disappeared between consecutive monitoring sessions. Although we could not directly assess mice 

consumption by the target breeding pair, the consumption of extra food was confirmed by regularly 

observing regurgitated pellets containing white fur within nestboxes where mice were placed. Food 

supplementation ceased when nestlings were ca. 8 days old (i.e. at the fourth monitoring session) 

because by the time of the subsequent nest visit (14-18 days old) they may start wandering outside 

nestboxes (see above), where they are fed by parents, and we could not provide food outside nestboxes 

(as we could not control whether it was actually consumed by the target individuals or by other birds). 

Overall, each food-supplemented pair received ca. 40 mice (ca. 800 g of extra food). To standardize 

disturbance, control nestboxes were inspected in exactly the same way and with the same frequency 

as those receiving the extra food, simulating mice insertion into the nestbox. The lesser kestrel 

performs intensive mate-feeding (Cramp 1998, Donázar et al. 1992): before and during egg 
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laying/incubation, the male feeds its partner, and deposits prey within the nest cavity for later 

consumption by the female if mate is absent (pers. obs.; Cramp 1998). Hence, placing extra food 

within the nestbox mimicked a natural condition and assured that only the target breeding female 

received most of the extra food, at least during egg laying and early incubation, avoiding common 

pitfalls of food provisioning experiments (where target individuals may not actually consume the 

extra food; Ruffino et al. 2014). During nestling rearing, parents may have used the extra food both 

to feed themselves or to provision their nestlings. 

 

Oxidative status of breeding adults 

The oxidative status of individuals reflects the balance between circulating antioxidants and pro-

oxidants (e.g. free radicals), deriving from normal physiological activity, pathological states, or the 

external environment (Halliwell and Gutteridge 2007). Pro-oxidants may cause oxidative damage to 

biomolecules, cells and tissues, impairing organismal functions (Halliwell and Gutteridge 2007). 

Oxidative stress arises whenever an organism’s antioxidant defences are insufficient to counteract 

oxidative damage (Halliwell and Gutteridge 2007). High levels of antioxidants and low levels of pro-

oxidants are regarded as indicators of good health state and positively predict fitness (e.g. survival; 

Bize et al. 2008, Saino et al. 2011). Food is a major source of antioxidants such as vitamins and 

carotenoids, as well as of substances (e.g. proteins) that do not have direct antioxidant activity, but 

may affect an organism’s resistance to oxidative stress (Halliwell and Gutteridge 2007, Costantini 

2014). Moreover, high food availability might reduce the oxidative costs of foraging for self and 

offspring provisioning (Costantini 2014, Giordano et al. 2015). Hence, extra food may positively 

affect oxidative status through different mechanisms, leading to high levels of antioxidants/low levels 

of pro-oxidants. As proxies of the oxidative status of breeding adults, we measured TAC through a 

global test of blood non-enzymatic antioxidant capacity, and TOS, reflecting the overall concentration 

of circulating pro-oxidants in the blood flow. High TAC indicates high antioxidant capacity, while 

high TOS indicate high levels of circulating pro-oxidants and an increased risk of oxidative damage. 

45



 
 

13 

TAC was measured according to Erel (2004), with some modifications. Briefly, 7 μl of plasma 

were added to 230 μl of the 2, 2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation 

(ABTS*+) solution, which bleaches depending on the concentration of non-enzymatic antioxidants in 

the sample. The reaction was monitored at an absorbance of  = 750 nm by a spectrophotometer. The 

final absorbance is inversely related to TAC of samples. The reaction was calibrated by drawing a 

standard curve with serial dilution of Trolox and the results were expressed as μM Trolox equivalent. 

TOS was measured according to Erel (2005). Briefly, 20 μl of plasma were added to 237 μl 

of a ferrous ion-o-dianisidine and Xylenol Orange solution. Oxidant molecules oxidise the ferrous 

ion to the ferric ion, which reacts with Xylenol Orange to give a coloured (blue) complex. Colour 

intensity was measured by a spectrophotometer at an absorbance of λ = 535 nm and it is proportional 

to the total amount of oxidant agents in the plasma. The assay was calibrated by drawing a standard 

curve with serial dilution of hydrogen peroxide (H2O2) and the results were expressed as nM H2O2 

equivalent ml-1. 

The mean intra- and inter-plate coefficients of variation of TAC, measured on a pool of plasma 

assayed twice in all plates, were 2.7 (0.5 s.d.) % and 5.3 (0.7 s.d.) %, while the same figures for TOS 

were 2.9 (0.9 s.d.) % and 4.8 (1.1 s.d.) %, respectively. We measured TAC for all available plasma 

samples, while TOS could be only measured for a subsample of these because of plasma amount 

limitations. 

 

Statistical analyses 

To investigate the effects of food supplementation (0 = control, 1 = food-supplemented) on fitness, 

we relied on generalized linear, linear mixed or generalized linear mixed models (GLMs, LMMs or 

GLMMs, respectively), as summarized in Table 1. Below we provide details on reasons for including 

specific predictors in models and on coding of dichotomous variables. 

To control for intra-seasonal variation in SMI, oxidative and moult status (birds were captured 

over 38 days, during both incubation and nestling-rearing phases), in GLMs of these variables we 
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included either breeding stage (0 = incubation, 1 = nestling rearing) or sampling date (Julian date; 

day 1 = January 1) as predictors, choosing the one which better fitted the data (Supplementary 

material Appendix 1, Table A2) (selected predictors are shown in Table 1). Due to sex differences in 

body mass [mean body mass: females = 155 g (11 s.d.), males = 135 g (10 s.d.), n = 82 and 76, 

respectively; t156 = 12.1, p < 0.001; see also Donázar et al. 1992], and consequently in SMI (see 

Results), in GLMs where SMI was included as a predictor together with sex (0 = female, 1 = male), 

we centred SMI within each sex category to eliminate the possibility of spurious SMI/sex effects on 

dependent variables (e.g. Lewin and Mitchell 1999). In GLMs of body condition and oxidative status 

we included total moult investment among predictors, as moult might affect physiological state (e.g. 

Hemborg and Lundberg 1998, Rubolini et al. 2002, Costantini 2014). Although adults were food-

supplemented for a variable number of days before sampling [mean value = 27 days (s.d. 7)], there 

was no evidence that such variation affected food supplementation effects on SMI, oxidative and 

moult status (Supplementary material Appendix 1, Table A3). 

Owing to the intrinsic association between laying order and clutch size (only large clutches 

can have large values of laying order), in LMMs of egg mass and hatching success we coded laying 

order as relative laying order, assigning value 1 to the first egg and 3 to the last one. Intermediate 

eggs were assigned values between 1 and 3 according to clutch size (e.g. eggs from a 3-egg clutch 

were coded 1, 2 and 3; eggs from a 5-egg clutch were coded 1, 1.5, 2, 2.5 and 3). In the egg mass 

LMMs we included the squared term of relative laying order because the change in egg mass along 

the laying sequence was best described by a quadratic function of relative laying order 

(Supplementary material Appendix 1, Table A4). Because food supplementation began after laying 

of the first egg, the mass of the first egg could not be affected by food supplementation. The effect of 

food supplementation on egg mass was therefore evaluated as the food supplementation × relative 

laying order interaction. 

The GLM of nest desertion (0 = nest not deserted, 1 = nest deserted) was fitted by including 

both female and male SMI as a predictor (in separate models by sex): although desertion in related 
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species is always initiated by females (see ‘Study species, study area and general field procedures’), 

we cannot rule out the possibility that it was initiated by males and depended on male (rather than 

female) condition. 

Primary sex ratio (PSR) was expressed as the ratio between number of sons and brood size, 

computed for the subset of nests where all eggs hatched. To investigate whether sex allocation varied 

along the laying sequence according to food supplementation, we fitted a binomial GLMM of nestling 

sex and tested the food supplementation × rank interaction. Because we could not assign most of the 

nestlings to their egg of origin, we assumed that laying order was closely reflected by nestling rank, 

an assumption supported by the strong correlation between these variables (for nestlings from eggs 

with known laying order; r = 0.86, n = 49). 

 In LMMs of nestling body mass (recorded at four monitoring sessions) and morphology 

(tarsus, forearm and feather length recorded at a single session), we included ectoparasite load among 

predictors (see Podofillini et al. 2018). Age effects were controlled for by including the linear term 

of age, as growth is mostly linear during the sampled age range (see Podofillini et al. 2018). Nestling 

mortality was evaluated as a nestling being alive (0) or dead (1) by the fifth monitoring session. 

Nestlings that disappeared before they were able to move outside nestboxes were assumed to be dead, 

even if no remains were found (likely removed/eaten by parents/nestmates). In tarsus, forearm and 

feather length LMMs, and in the mortality GLMM, brood size and ectoparasite load were the 

maximum values recorded across all monitoring sessions (Podofillini et al. 2018). 

Due to weak sex differences in body size (Supplementary material Appendix 1, Table A5; see 

Podofillini et al. 2018), we did not consider sex in the analyses of nestling body mass, morphology, 

and mortality to ensure the largest possible sample size (some nestlings could not be sexed due to 

premature death/disappearance). 

 Differential effects of food supplementation on target traits according to other model 

predictors were tested by including two-way interactions between food supplementation and 

additional predictors in initial models. In the nestling body mass LMM, we also included the rank × 
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age interaction (accounting for differential growth of nestlings according to rank; see Podofillini et 

al. 2018). Final models included all main effects and significant interaction terms, while non-

significant (p > 0.05) interactions were removed in a single step. Analyses were run in R 3.3.3 (R 

Core Team 2017). LMMs/GLMMs were fitted using the lme4 package (Bates et al. 2014). Non-

Gaussian models were not overdispersed (see Results). GLMMs overdispersion was computed using 

the blmeco package (Korner-Nievergelt et al. 2015). When GLM residuals showed a highly skewed 

distribution, significance was calculated by randomization (Manly 1991) (permuco package; Frossard 

and Renaud 2018) (see Table 1). For all models, we report R2 as computed by the rsq (GLMs) and 

r2glmm (GLMMs) packages (Dabao 2017, Jaeger et al. 2017). To facilitate comparisons of food 

supplementation effects between different models, and to compare effects between different 

predictors, we report the absolute value of Pearson’s r (obtained from the partial correlation/semi-

partial R2 values returned by the rsq and r2glmm packages). 

We considered data from 100 nestboxes (50 food-supplemented, 50 controls), in which we 

found 423 eggs and captured 160 adults [80 food-supplemented (36 males, 44 females), 80 controls 

(42 males, 38 females)]. To ensure the largest possible sample size in egg and clutch characteristics 

models, if SMI was not significant we reported results while excluding this variable. Twenty-two 

clutches/broods (out of 100) were deserted (13/50 controls, 9/50 food-supplemented). Among these, 

16 were deserted at the clutch stage. We recorded data for 288 nestlings from 42 food-supplemented 

and 43 control broods. Sample size may vary between analyses because of missing data. 
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Results 

 

Effects of food supplementation on body condition, oxidative and moult status 

Extra food did not significantly affect adult body condition and oxidative status (TAC and TOS) 

(Table 2). Because of large sexual dimorphism in body mass, females had considerably larger SMI 

than males (Table 2). Moreover, antioxidant defences progressively improved during the breeding 

season and birds in better body condition had better antioxidant defences, as TAC significantly 

increased with both sampling date and SMI (Table 2, Fig. 1). 

Food supplementation increased resource allocation to primary feather moult. Although the 

proportion of individuals initiating moult did not significantly differ between treatments [controls = 

0.27 (19/70); food-supplemented = 0.38 (28/74), Table 2], the increase of total moult investment with 

sampling date was significantly larger for food-supplemented individuals [estimate = 4.17 (0.50 s.e.) 

mm/day] than controls [1.71 (0.43 s.e.) mm/day] (food supplementation × sampling date interaction, 

Table 2, Fig. 2). Besides, females initiated moult much more frequently (0.52) than males (0.13) 

(Table 2), and the probability of initiating moult markedly increased with sampling date (Table 2). 

However, the total moult investment, after accounting for the strong sampling date effect, did not 

significantly differ between the sexes (Table 2). 

 

Effects of food supplementation on egg mass and hatching success 

Food supplementation significantly mitigated the (non-linear) decline in egg mass along the laying 

sequence observed in control clutches (food supplementation × relative laying order interaction, 

Table 3), food-supplemented females producing larger last-laid eggs compared to controls (Fig. 3) 

(see Supplementary material Appendix 1, Table A6 for details of egg mass models selection). The 

predicted egg mass among last eggs laid by food-supplemented females was 14.58 g, while it was 

13.93 g among control females (Fig. 3). Egg mass peaked at relative laying order 0.96 among control 
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(implying a continuous decline within the actual relative laying order values) and 1.54 among food-

supplemented females, respectively (Fig. 3). 

Extra food allowed females in poor body condition to lay heavier eggs compared to poor 

condition control females: egg mass significantly increased with SMI among control females 

[estimate: 0.032 (0.013 s.e.)], whereas no significant association emerged among food-supplemented 

ones [-0.011 (0.014 s.e.)] (food supplementation × female SMI interaction, Table 3, Fig. 4). Finally, 

eggs belonging to larger clutches were significantly lighter than those belonging to smaller ones 

(Table 3). A similarly supported (according to the Akaike Information Criterion value) model of egg 

mass variation further revealed that food supplementation had stronger positive effects on egg mass 

among early-breeders than among late-breeders (Supplementary material Appendix 1, Table A7 and 

Figure A1; see also Supplementary material Appendix 1, Table A6 for more details about fitting of 

the egg mass models). 

 Hatching success was not significantly affected by food supplementation (Table 3): the 

proportion of hatched eggs was 0.82 (146/178) in control clutches and 0.84 (146/173) in food-

supplemented ones. In addition, hatching success significantly decreased among late-laid eggs in the 

laying sequence (Table 3) (see Supplementary material Appendix 1, Table A8 for further details about 

fitting of the egg hatching success model). 

 

Effects of food supplementation on clutch size, duration of the incubation period, and nest desertion 

Extra food did not significantly affect clutch size [food-supplemented females = 4.3 (0.7 s.d.), 

controls = 4.2 (0.7 s.d.), n = 50 in both groups] and duration of the incubation period [food-

supplemented clutches = 32.6 d (2.4 s.d.), controls = 32.5 (2.3 s.d.), n = 41 and 43, respectively], the 

latter becoming significantly shorter in late-laid clutches compared to early-laid ones (Table 3).  

Body condition significantly mediated the effects of food supplementation on the likelihood 

of nest desertion (food supplementation × female SMI interaction, Table 4): control females in good 

body condition were less likely to abandon their nests than those with poor body condition [estimate 
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= -0.147 (0.065 s.e.)], while this was not the case among food-supplemented females [estimate = 

0.009 (0.044 s.e.)] (Fig. 5). Hence, in the food-supplemented group, females with low SMI were as 

likely to desert their nest as those with high SMI (Fig. 5). This analysis could not be performed by 

including male (instead of female) SMI because we could obtain male SMI data for 5 deserted nests 

only, all of which were controls. However, when restricting the analyses to control clutches/broods, 

female SMI significantly negatively predicted the probability of nest desertion, while male SMI did 

not (Supplementary material Appendix 1, Table A9). 

 

Effects of food supplementation on sex allocation 

PSR was slightly male-biased (0.57, n = 72 males and 54 females from 31 complete clutches) but did 

not significantly deviate from 0.5 (intercept-only binomial GLM, Z = 1.60, p = 0.11). Sex allocation 

was not significantly affected by food supplementation nor by other predictors (Table 4) (see 

Supplementary material Appendix 1, Table A10 for additional details of PSR model fitting).  

When considering the entire set of sexed nestlings, the proportion of males was 0.48 (n = 123 

males and 130 females), again not significantly deviating from 0.5 (intercept-only binomial GLMM 

with clutch identity as a random effect, Z = 0.46, p = 0.64). Food supplementation did not significantly 

affect sex allocation along the laying sequence [food supplementation × nestling rank interaction, 

estimate = -0.31 (0.24 s.e.), Z = -1.29, p = 0.20]. The final model disclosed a strong sex bias along 

the laying sequence (effect of rank, Table 4), with a female bias among high-ranking nestlings 

(hatched from first-laid eggs) and a male bias among low-ranking nestlings (hatched from last-laid 

eggs). A similar tendency emerged also when analysing those nestlings whose egg of origin was 

known (Supplementary material Appendix 1, Table A10). In this subset, there was no significant 

difference in mass between male and female eggs, and no significant difference in mass allocation to 

male and female eggs according to food supplementation (Supplementary material Appendix 1, Table 

A11). 
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Effects of food supplementation on nestling body mass, morphology, and mortality 

Food supplementation significantly improved nestlings’ body mass growth, and significantly 

mitigated body mass loss induced by haematophagous ectoparasites (Table 5, Fig. 6): the mass 

increase of food-supplemented nestlings was ca. 10 % greater than controls, a significant difference 

(food supplementation × age interaction) [food supplemented: 7.17 (0.13 s.e.) g/d; controls: 6.47 

(0.12 s.e.) g/d; Table 5], and body mass significantly decreased with parasite load among control 

nestlings [estimate: -2.62 (0.89 s.e.)], whereas this was not the case among food-supplemented ones 

[0.16 (0.85 s.e.)] (food supplementation × ectoparasite load interaction, Table 5, Fig. 6). Besides, high 

ranking nestlings were significantly larger and grew faster than low ranking ones (Table 5), nestlings 

from late clutches were significantly lighter than those from early clutches, and those from larger 

clutches were lighter than those from smaller clutches (Table 5). 

 Skeletal growth was not significantly affected by food supplementation (Table 5). However, 

food supplementation enhanced forearm growth under highly parasitized conditions (significant food 

supplementation × ectoparasite load interaction, Table 5): in control nestlings, forearm length did not 

significantly change with ectoparasite load [estimate: -0.71 (0.57 s.e.)], whereas it significantly 

increased with ectoparasite load among food-supplemented nestlings [1.11 (0.53 s.e.)] (Fig. 6). Both 

skeletal traits showed a tendency to be larger in nestlings from larger clutches, after accounting for 

age and rank effects (Table 5). 

 Food-supplemented nestlings grew significantly longer feathers than controls at day 16 of age, 

after accounting for age and rank effects (Table 5).  

Overall, 31 % (44/143) control nestlings and 23 % (33/145) food-supplemented ones died by 

16 days of age, a non-significant difference (Table 5). Mortality was considerably higher among low 

ranking nestlings (strong positive effect of rank on mortality) and among those growing in larger 

clutches (Table 5). Results were qualitatively similar if deserted broods were excluded 

(Supplementary material Appendix 1, Table A12). 

  

53



 
 

21 

Discussion 

 

In this study of a mesopredatory avian species, we simulated favourable environmental conditions 

during reproduction by providing extra food to breeders, and assessed the short-term consequences 

of food supplementation for adult conditions, resource allocation to an energy-demanding process 

(wing feather moult) competing with breeding, breeding output, and early offspring growth. Below 

we discuss the main findings. 

 

Moult-breeding overlap and extra food provisioning 

Although moult is mostly temporally separated from competing activities such as reproduction and 

migration (Jenni and Winkler 1994, Barta et al. 2008), in several species, including the migratory 

lesser kestrel, tight annual scheduling of the yearly cycle has promoted the evolution of moult-

breeding overlap (Hemborg and Lundberg 1998, Hemborg 1999, Zuberogoitia et al. 2018). Similarly 

to other raptors, lesser kestrels start their annual wing feather moult when incubating, females being 

more likely to do so than males (review in Zuberogoitia et al. 2018). Males, as in most falcons, are 

smaller, more agile, perform extensive mate-feeding and carry most of the prey to their progeny 

(Donázar et al. 1992, Krüger 2005): they are thus likely to pay a greater cost than females for the 

moult-breeding overlap (Espie et al. 1996). Extra food resulted however in greater moult investment 

in both sexes, after statistically controlling for seasonal effects on timing of moult. The positive effect 

of food supplementation on wing feather renewal supports the idea that moult-breeding overlap is 

costly (Hemborg and Lundberg 1998, Saino et al. 2014) and that favourable environmental conditions 

promote a greater allocation of resources to feather renewal (Espie et al. 1996, Siikamäki 1998, 

Danner et al. 2014). A greater resource allocation to moulting feathers may either be a direct 

consequence of food supplementation, with birds investing extra resources in new feathers’ synthesis, 

or a consequence of lower mobility of fed individuals compared to controls, which may have reduced 

maintenance costs and promoted feather renewal. 
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Extra food effects on egg traits, nest desertion, and nestling body mass and morphology 

Females invested part of resources gained from the extra food in producing heavier last-laid eggs. 

This result is in line with evidence that egg size is a plastic trait that rapidly responds to the ecological 

conditions to which the mother is exposed to (Wiebe and Bortolotti 1995, Karell et al. 2008, Saino et 

al. 2010). Extra food led to a ca. 4 % increase in the mass of last-laid eggs compared to control eggs 

(see also Christians 2002). Although egg size is a critical trait for offspring fitness soon after hatching 

(Williams 1994), such a relatively minor increase in egg size did not produce any significant 

survival/growth advantage of last hatched (low ranking) food-supplemented nestlings compared to 

controls. The lack of detectable egg mass effects on offspring fitness could be due to the moderately 

favourable ecological conditions in the study year (in terms of food supplies and weather; authors’ 

pers. obs.), as the effects of extra food provisioning on fitness may vary according to contingent 

ecological conditions (e.g. Hipkiss et al. 2002, Karell et al. 2008, Ruffino et al. 2014). 

Furthermore, extra food allowed poor-condition females to lay eggs that were as large as those 

laid by good condition ones. Among controls, ca. 16 % of the variation in mean egg mass of a clutch 

was explained by female body condition (correlation between mean egg mass and female SMI, r = 

0.40), in line with previous studies (reviewed by Christians 2002). However, this correlation was 

heavily modified when females could consume extra food, with variance in egg mass explained by 

body condition dropping to 1.6 % (r = -0.13). Overall, we conclude that food provisioning positively 

affected female egg production, and that the benefits of extra food in terms of egg size increase were 

greater for poor condition females.  

A similar finding emerged for the likelihood of nest desertion, which was higher for poor 

condition control females compared to poor condition food-supplemented ones. Nest desertion is 

widespread in birds, especially among long-lived species (Székely et al. 1996). It occurs whenever 

the perceived costs of current reproduction for parents outweigh the expected fitness payoffs of future 

reproduction (Kelly and Kennedy 1993, Székely et al. 1996), which may be the case under harsh 
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ecological conditions (Anderson et al. 1982, Hörnfeldt et al. 1990, Wiggins et al. 1994, Oppliger et 

al. 1994) or among low-quality parents with poor body condition (Kelly and Kennedy 1993, Yorio 

and Boersma 1994, Wiggins et al. 1994). It may also follow from mortality of one parent (Roche et 

al. 2010, Santema and Kempenaers 2018), which may dramatically increase the costs of current 

reproduction for the remaining parent in biparental species (Székely et al. 1996). Our results suggest 

that extra food alleviated the costs of reproduction for females of low phenotypic quality, reducing 

their probability of completely failing reproduction, in accordance with the hypothesis that nest 

desertion is the outcome of an adaptive life-history decision conditional on maternal state (Székely et 

al. 1996). 

Among nestlings, extra food resulted in significantly higher mass gain and increased feather 

growth. Such an effect was most likely due to parents using the extra food to feed their nestlings, as 

by 10-15 days post hatching nestlings are not able to swallow or split to pieces a relatively large food 

item (mice) by themselves (Cramp 1998). It also suggests that parents did not markedly reduce 

nestling provisioning with natural prey items. Furthermore, extra food provisioning affected nestling 

growth dynamics in combination with ectoparasite infestation. First, it significantly alleviated the 

negative effects of an haematophagous ectoparasite on mass gain, whereby body mass significantly 

decreased with ectoparasite load among control nestlings but not among food-supplemented ones. 

Second, it increased resource allocation to flight apparatus development in highly parasitized 

nestlings compared to controls. These two results were not due to differences in ectoparasite load 

between food-supplemented and control nestlings (Supplementary material Appendix 1, Table A13). 

Haematophagous ectoparasites are well known to exert detrimental effects on early growth dynamics, 

either by directly withdrawing resources (blood) or by activating the immune system (Møller 1993, 

Merino and Potti 1995, Saino et al. 1998, Lochmiller and Deerenberg 2000, Nilsson 2003, Tschirren 

et al. 2003). Under food limitation, parasites may impose a trade-off between allocation of resources 

to somatic growth and immunity, diverting limiting resources from somatic growth to immune 

defences (Saino et al. 1998, Lochmiller and Deerenberg 2000, Soler et al. 2003, Brommer 2004, 
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Tschirren and Richner 2006). Extra food may relax such constraints, resulting in weaker 

direct/indirect negative ectoparasite effects (Merino and Potti 1998, Brommer et al. 2011). 

Furthermore, growing nestlings may respond to ectoparasites by differentially allocating resources to 

growth of specific traits in order to increase their short-term fitness prospects (Mainwaring and 

Hartley 2012). For instance, ectoparasite infestation may promote investment in growth of feathers 

at the expense of mass or other skeletal traits, because an earlier maturation of the flight apparatus 

may facilitate escape from the highly parasitized nest environment to avoid detrimental ectoparasite 

effects (Saino et al. 1998). The observation that ectoparasites significantly promoted resource 

allocation to growth of the flight apparatus (forearm length) when provisioned with extra food is 

coherent with the latter suggestion. 

 

Other findings unrelated to extra food provisioning 

Non-enzymatic antioxidant defences increased during the breeding season, which may be due to 

variation in external conditions, diet, or physiological state (Costantini et al. 2010). For instance, the 

strong increase of ambient temperature during the breeding season (ca. 10°C increase between April 

and July; data from http://www.ssabasilicata.it/) may improve flight efficiency in the lesser kestrel 

(Hernández-Pliego et al. 2017) and reduce the oxidative costs of locomotion (e.g. Costantini et al. 

2008), promoting mobilization/redistribution of non-enzymatic antioxidants. Seasonal changes in 

hormone profile (Meijer and Schawbl 1989, Pereira et al. 2010) may also play a role (Costantini et 

al. 2011, Costantini 2014), whereas this is unlikely for seasonal dietary changes (see Rodríguez et al. 

2010), because extra food did not significantly affect oxidative status. In addition, the strong positive 

covariation of antioxidant defences with body condition indicates that levels of non-enzymatic 

antioxidants may represent a reliable indicator of general physiological state and individual quality 

(e.g. Costantini and Bonadonna 2010). 

Irrespective of food provisioning, the duration of the incubation period strongly decreased 

with laying date, a common pattern in birds (e.g. Runde and Barrett 1981, Hipfner et al. 2001, Weiser 
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et al. 2018). In our case, it might be due to seasonal increase in ambient temperature (e.g. Ardia et al. 

2006), or differences in incubation behaviour between early- and late-breeders (late-breeders partly 

compensating for delayed timing by more intense incubation; Hipfner et al. 2001). 

Offspring sex ratio was female-biased among early- and male-biased among late-laid eggs. 

This may suggest that females (the larger sex in terms of adult mass) are more susceptible to harsh 

rearing environments, and that mothers may adaptively bias sex along the laying sequence in order 

to provide daughters with a competitive advantage over their sons (due to earlier hatching of early 

laid eggs; Magrath 1990). In spite of this, no sex difference in nestling mortality was detected, and 

nestling sex ratio was unbiased, in line with previous studies (Tella et al. 1996, Aparicio and Cordero 

2001). 

 Finally, nestling pre-fledging mortality significantly decreased in birds raising larger broods, 

suggesting that parents of high quality (in terms of e.g. nestling provisioning or resource acquisition 

ability) may be able to raise more offspring (van Noordwijk and de Jong 1986). 

 

Concluding remarks 

Our comprehensive analysis of the benefits of extra food provisioning to reproduction under natural 

conditions suggests that parent lesser kestrels invested the extra food mainly in improving current 

reproduction, similarly to most of the bird species studied so far (Ruffino et al. 2014), rather than 

using it to accumulate resources (in terms of e.g. body fat or muscle fibres) for improving their 

residual reproductive value. Indeed, parents mainly used the extra resources for laying larger eggs 

and raising heavier/larger offspring, while the extra food did not improve their own body condition 

or oxidative status. The increase of egg size following extra food provisioning suggests that egg 

formation by females relies partly on resources acquired during the laying period, besides pre-laying 

food provisioning by the male partner through courtship feeding (Donázar et al. 1992), in line with 

an ‘income breeding’ strategy of energy storage for reproduction (Jönsson 1997, Meijer and Drent 

1999). Our findings indicate that food availability during the breeding season can limit population 
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growth of this species. Importantly, maternal condition appears to be a major trait modulating the 

benefits of extra food provisioning to reproduction, whereby such benefits accrued mostly to low-

quality females with poor body condition. Moreover, extra food reduced the costs of the moult-

breeding overlap, and affected early growth trade-offs by fostering development of the flight 

apparatus traits in response to ectoparasite infestation. To sum up, our results illustrate the pervasive 

consequences of food limitation in natural environments for resource allocation to competing energy-

demanding activities (e.g. moult and reproduction), breeding output and offspring development, at 

the same time highlighting that the negative consequences of food limitation on reproductive output 

may be disproportionately larger for individuals of low phenotypic quality. 

 

Data policy/repositories – Data used in statistical analyses will be archived on Dryad upon 

acceptance of the manuscript. 
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Legend to figures 

 

Figure 1. Plasma non-enzymatic total antioxidant capacity (TAC) of breeding adults markedly 

increases with a) sampling date and b) body condition (scaled mass index, SMI; values centered 

within each sex category; see Material and Methods), irrespective of food supplementation. Black 

dots: food-supplemented individuals; grey dots: control individuals. The fitted lines (with 95 % 

confidence bands) are derived from the corresponding model reported in Table 2.  

 

Figure 2. Food supplementation promoted the allocation of resources into renewal and growth of 

primary feathers (total moult investment; see Material and Methods) in breeding adults. Dot size is 

proportional to the number of overlapping datapoints, with the smallest dots corresponding to single 

data, and larger dots proportional to sample size according to the function: dot size = 1 + ln(sample 

size). The fitted lines (with 95 % confidence bands) are derived from the corresponding model 

reported in Table 2. Black line and dots: food-supplemented individuals; grey line and dots: control 

individuals. Data from the two treatment groups were represented with slightly modified x-axis values 

to reduce overlap and improve clarity. 

 

Figure 3. Egg mass significantly declined along the laying sequence (relative egg laying order, see 

Material and Methods) in a quadratic fashion in both control and food-supplemented females, but the 

quadratic function had significantly different peak values for eggs laid by control and food-

supplemented females, resulting in heavier last-laid eggs among food-supplemented females 

compared to controls. The fitted lines (with 95 % confidence bands) are derived from the 

corresponding model reported in Table 3. Black dots and black line: food-supplemented females; 

grey dots and grey line: control females. Data from the two treatment groups were represented with 

slightly modified x-axis values to reduce overlap and improve clarity. 

 

Figure 4. Egg mass significantly increased with body condition (scaled mass index, SMI) among 

control females (a), while no significant association emerged among food-supplemented females (b). 

Partial plots accounting for other model effects are shown. The fitted lines (with 95 % confidence 

bands) are derived from the corresponding model reported in Table 3. Full line: significant slope; 

dotted line: non-significant slope. 
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Figure 5. The probability of nest desertion significantly declined with female body condition (scaled 

mass index, SMI) among control females (a), but not among food-supplemented ones (b). The fitted 

lines (with 95 % confidence bands) from the corresponding binomial model reported in Table 4 are 

shown (full line: significant slope; dotted line: non-significant slope). Dots represent original data. 

 

Figure 6. Variation of a) body mass and b) forearm length according to ectoparasite load in control 

and food-supplemented nestlings (see Material and Methods). Partial plots accounting for other model 

effects are shown. Black dots and black line: food-supplemented nestlings; grey dots and grey line: 

control nestlings. The fitted lines (with 95 % confidence bands) are derived from the corresponding 

models reported in Table 5. Data from the two treatment groups were represented with slightly 

modified x-axis values to reduce overlap and improve clarity. 
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Figure 2 
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Figure 3 
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Figure 4 
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Table 1. Summary of the generalized linear (mixed) models fitted to the data to investigate the effects 

of food supplementation on different fitness components. For consistency, the same sequence of 

analyses is followed in the Results section. All models included the main effect of food 

supplementation (0 = control, 1 = food supplemented). Initial models included all two-way 

interactions between food supplementation and each additional predictors (see Statistical analyses for 

further details). Non-significant (p > 0.05) interactions were removed from initial models in a single 

step. The final models reported in Tables 2-5 thus included all main fixed effects and any statistically 

significant interaction. Random intercept effects were included in LMMs/GLMMs in order to account 

for non-independence of data belonging to the same clutch/brood and for repeated sampling of the 

same individual (in the nestling body mass model).  
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Table 1 

 

Dependent variable Additional predictors (confounding variables) Random 

intercept effects 

Error 

distribution 

Details of 

fitted model 

Notes 

 

Effects of food supplementation on body condition, oxidative and moult status 

Body condition (SMI) Sex, breeding stage, total moult investment - Gaussian Table 2  

Total antioxidant status (TAC) Sex, sampling date, SMI, total moult investment - Gaussian Table 2  

Total oxidant status (TOC) Sex, sampling date, SMI, total moult investment - Gaussian Table 2  

Moult initiation Sex, sampling date, SMI - Binomial Table 2  

Total moult investment Sex, sampling date, SMI - Gaussian Table 2 Skewed residuals 

 

Effects of food supplementation on egg mass and hatching success 

Egg mass Relative laying order, (relative laying order)2, laying date, 

clutch size, female SMI 

Clutch identity Gaussian Table 3  

Egg hatching success Relative laying order, laying date, clutch size, female SMI Clutch identity Binomial Table 3 Deserted nests excluded 

 

Effects of food supplementation on clutch size, duration of the incubation period, and nest desertion 

Clutch size Laying date, female SMI - Gaussian Table 4  

Duration of the incubation period Laying date, clutch size, female SMI - Gaussian Table 4 Skewed residuals 

Nest desertion Laying date, clutch size, female or male SMI - Binomial Table 4  

 

Effects of food supplementation on sex allocation 

Primary sex ratio (PSR) Laying date, clutch size, female SMI Clutch identity Binomial Table 4  

Nestling sex Rank, laying date Clutch identity Binomial Table 4  

 

Effects of food supplementation on nestling body mass, morphology, and mortality 

Body mass Age, rank, laying date, brood size, ectoparasite load  Brood identity, 

nestling identity 

Gaussian Table 5  

Tarsus length Age, rank, laying date, brood size, ectoparasite load Brood identity Gaussian Table 5  

Forearm length Age, rank, laying date, brood size, ectoparasite load Brood identity Gaussian Table 5  

Feather length Age, rank, laying date, brood size, ectoparasite load Brood identity Gaussian Table 5  

Mortality Rank, laying date, brood size, ectoparasite load Brood identity Binomial Table 5  
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Table 2. Generalized linear models of the effects of food supplementation on body condition (scaled 

mass index, SMI), oxidative (TAC, TOS) and moult status (probability of initiating moult, total moult 

investment); the coding of the sex variale is 0 = female, 1 = male; t-values are reported as test statistics 

for Gaussian models, Z-values for the binomial model of moult initiation. 

Predictors Estimate (s.e.)  t/Z p Effect size r 

SMI (n = 144) (R2 = 0.43) 
 

Food supplementation 2.86 (2.16) 1.32 0.19 0.11 

Sex -21.72 (2.21) 9.83 < 0.001 0.64 

Breeding stage -3.66 (2.60) 1.41 0.16 0.12 

Total moult investment -0.02 (0.03) 0.58 0.56 0.05 

  

TAC (n = 126) (R2 = 0.38)  

Food supplementation -65.62 (45.74) 1.43 0.15 0.13 

Sex 5.30 (45.47) 0.12 0.91 0.01 

Sampling date 18.52 (3.66)  5.04 < 0.001 0.42 

SMIa 9.06 (1.74) 5.20 < 0.001 0.43 

Total moult investment 0.23 (0.75) 0.31 0.76 0.03 

  

TOS (n = 71) (R2 = 0.04)  

Food supplementation 0.41 (0.42) 0.99 0.33 0.12 

Sex -0.123 (0.41) 0.32 0.75 0.04 

Sampling date -0.03 (0.04) 0.74 0.47 0.09 

SMIa -0.01 (0.02) 0.88 0.38 0.11 

Total moult investment 0.003 (0.008) 0.34 0.74 0.04 

     

Probability of initiating moult (n = 144)b (R2 = 0.30)  

Food supplementation 0.64 (0.44) 1.46 0.15 0.14 

Sex -1.83 (0.45) 4.04 < 0.001 0.35 

Sampling date 0.13 (0.04) 3.71 < 0.001 0.38 

SMIa -0.01 (0.02) 0.73 0.47 0.07 

  

Total moult investment (n = 144)c (R2 = 0.43)  

Food supplementationd 14.05 (4.61) 3.05 0.003 0.25 

Sex -7.35 (4.67) 1.57 0.12 0.13 

Sampling dated 2.97 (0.34) 8.84 < 0.001 0.60 

SMIa -0.28 (0.18) 1.57 0.12 0.13 

Food supplementation × sampling date 2.46 (0.65) 3.76 < 0.001 0.30 

a: variable group-centered within sex categories (see Statistical analyses) 

b: binomial GLM 

c: p-values from randomization test (see Statistical analyses) 

d: estimate for mean-centered covariate 
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Table 3. Mixed models of the effects of food supplementation on egg mass and hatching success. 

Degrees of freedom for F-tests of the egg mass linear mixed model (LMM) were estimated according 

to the Kenward-Roger’s approximation; Z-values are reported as test statistics for the egg hatching 

success binomial generalized linear mixed model. 

 

Predictors Estimate (s.e.) F/Z d.f. p Effect size r 

Egg mass (n = 349 eggs, n = 82 clutches) (R2 = 0.30)  

Food supplementationa 0.19 (0.25) 0.59 76 0.45 0.08 

Relative laying ordera 0.72 (0.31) 5.21 265 0.023 0.06 

(Relative laying order2)a -0.28 (0.08) 13.29 265 < 0.001 0.10 

Laying date -0.01 (0.02) 0.31 77 0.58 0.05 

Clutch size -0.50 (0.18) 7.48 77 0.008 0.25 

Female SMIa 0.01 (0.01) 0.76 76 0.39 0.09 

Food supplementation ×  

relative laying order 
0.33 (0.09) 13.12 264 < 0.001 0.09 

Food supplementation × female SMI -0.04 (0.02) 5.14 75 0.026 0.23 

      

Egg hatching success (n = 351 eggs, n = 83 clutches)b (R2 = 0.03)  

Food supplementation 0.12 (0.39) 0.31 - 0.76 < 0.01 

Relative laying order -0.69 (0.23) 3.04 - 0.002 0.17 

Laying date 0.01 (0.03) 0.30 - 0.77 < 0.01 

Clutch size 0.03 (0.30) 0.09 - 0.93 < 0.01 

Female SMIc -0.01 (0.01) 0.39 - 0.69 < 0.01 

      

a: estimate for mean-centered covariate 

b: dispersion parameter = 0.88 

c: estimate from a different model (sample size: n = 302 eggs, n = 71 clutches; see Statistical analyses) 
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Table 4. Generalized linear models (GLMs) of the effects of food supplementation on clutch size, 

duration of the incubation period, nest desertion, and primary sex ratio (PSR, proportion of males in 

a brood), and binomial generalized mixed model (GLMM) of the probability of a nestling being male; 

t-values are reported as test statistics for Gaussian GLMs, Z-values for binomial models.  

Predictors Estimate (s.e.) t/Z p Effect size r 

Clutch size (n = 100 clutches) (R2 = 0.01)   

Food supplementation 0.10 (0.14) 0.74 0.46 0.07 

Laying date -0.01 (0.01) 0.79 0.43 0.08 

Female SMIa -0.01 (0.01) 0.62 0.54 0.07 

     

Duration of the incubation period (n = 84 clutches)b (R2 = 0.15)  

Food supplementation 0.07 (0.48) 0.14 0.89 0.02 

Laying date -0.11 (0.03) 3.40  0.001 0.36 

Clutch size 0.53 (0.35) 1.50 0.14 0.17 

Female SMIc -0.01 (0.02) 0.23 0.82 0.03 

     

Probability of nest desertion (n = 82 clutches) (R2 = 0.19)  

Food supplementationd -0.04 (1.01) 0.04 0.97 0.03 

Laying date 0.07 (0.05) 1.37 0.17 0.25 

Clutch size 0.10 (0.57) 0.18 0.86 0.08 

Female SMId -0.06 (0.04) 1.58 0.11 0.17 

Food supplementation × female SMI 0.16 (0.08) 2.07 0.038 0.23 

     

PSR (n = 31 broods)e (R2 = 0.06)  

Food supplementation -0.36 (0.38) 0.95 0.34 0.16 

Laying date -0.01 (0.03) 0.37 0.71 0.07 

Clutch size -0.17 (0.27) 0.62 0.54 0.12 

Female SMIf 0.01 (0.02) 0.18 0.86 0.02 

     

Probability of a nestling being male (n = 253 nestlings, n = 80 broods)g (R2 = 0.05) 

Food supplementation -0.31 (0.27) 1.15 0.25 0.07 

Rank 0.38 (0.12) 3.23 0.001 0.21 

Laying date -0.01 (0.02) 0.22 0.82 0.01 

     

a: estimate from a different model with smaller sample size (n = 82 clutches; see Statistical analyses) 

b: p-values are from a randomization test (see Statistical analyses) 

c: estimate from a different model with smaller sample size (n = 72 clutches; see Statistical analyses) 
d: estimate for mean-centered covariate 

e: dispersion parameter = 1.23; PSR expressed as n males/brood size 

f: estimate from a different model with smaller sample size (n = 25 broods; see Statistical analyses) 
g: dispersion parameter = 1.15 
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Table 5. Mixed models of the effects of food supplementation on nestling body mass (g), morphology 

[tarsus, forearm and feather length (mm)], and mortality. Degrees of freedom for F-tests were 

estimated according to the Kenward-Roger’s approximation. 

Predictors  Estimate (s.e.) F/Z d.f. p Effect size r 

Body mass (n= 288 nestlings, n = 85 broods) (R2 = 0.87)   

Food supplementationa 2.27 (1.22) 3.50 1, 79 0.07 0.16 

Agea 6.47 (0.12) 5836.60 1, 767 < 0.001 0.92 

Ranka -3.99 (0.33) 147.80 1, 238 < 0.001 0.46 

Laying date -0.23 (0.08) 7.60 1, 95 0.007 0.18 

Brood size -1.38 (0.43) 10.30 1, 519 0.001 0.16 

Ectoparasite loada -1.20 (0.62) 3.70 1, 902 0.05 0.07 

Food supplementation × age 0.69 (0.17) 16.30 1, 754 < 0.001 0.12 

Food supplementation × ectoparasite load 2.78 (1.22) 5.20 1, 901 0.023 0.09 

Age × rank  -1.00 (0.08) 171.50 1, 806 < 0.001 0.37 

  

Tarsus length (n = 249 nestlings, n = 79 broods) (R2 = 0.66)   

Food supplementation 0.62 (0.39) 2.56 1, 74 0.11 0.15 

Age 1.54 (0.11) 179.32 1, 227 < 0.001 0.70 

Rank -0.96 (0.12) 62.66 1, 214 < 0.001 0.41 

Laying date -0.03 (0.03) 1.16 1, 81 0.28 0.10 

Brood size 0.37 (0.19) 3.86 1, 95 0.052 0.16 

Ectoparasite load 0.21 (0.24) 0.73 1, 238 0.39 0.06 

  

Forearm length (n = 250 nestlings, n = 79 broods) (R2 = 0.70)   

Food supplementationa 0.64 (0.54) 1.36 1, 72 0.24 0.09 

Age 2.74 (0.19) 213.55 1, 197 < 0.001 0.72 

Rank -1.64 (0.21) 58.31 1, 224 < 0.001 0.42 

Laying date 0.01 (0.04) 0.11 1, 83 0.74 0.03 

Brood size 0.57 (0.28) 4.23 1, 102 0.042 0.15 

Ectoparasite loada 0.26 (0.40) 0.41 1, 192 0.52 0.05 

Food supplementation × ectoparasite load 1.82 (0.76) 5.61 1, 195 0.019 0.17 

  

Feather length (n = 186 nestlings, n = 69 broods) (R2 = 0.61)    

Food supplementation 2.10 (1.04) 4.05 1, 59 0.049 0.19 

Age 4.60 (0.45) 103.59 1, 124 < 0.001 0.66 

Rank -2.75 (0.40) 47.68 1, 150 < 0.001 0.42 

Laying date -0.06 (0.09) 0.42 1, 77 0.52 0.06 

Brood size 0.53 (0.51) 1.07 1, 82 0.30 0.09 

Ectoparasite load 0.46 (0.79) 0.33 1, 154 0.57 0.05 

      

Mortality (n = 285 nestlings, n = 85 broods)b (R2 = 0.17) 

Food supplementation -0.68 (0.54) 1.25 - 0.21 0.09 

Rank 1.32 (0.24) 5.50 - < 0.001 0.37 

Laying date -0.02 (0.04) 0.47 - 0.64 0.04 

Brood size -0.61 (0.28) 2.19 - 0.029 0.18 

Ectoparasite load -0.63 (0.40) 1.56 - 0.12 0.10 

      
a: estimate for mean-centered covariate 

b: dispersion parameter = 0.83 

 

 

73



 
 

41 

References 

 

Alan, R. R. and McWilliams, S. R. 2013. Oxidative stress, circulating antioxidants, and dietary 

preferences in songbirds. – Comp. Biochem. Physiol. 164: 185-193. 

 

Anderson, D. W. et al. 1982. Brown pelicans: influence of food supply on reproduction. – Oikos 39: 

23-31. 

 

Aparicio, J. M. 1997. Cost and benefits of surplus offspring in the lesser kestrel (Falco naumanni). – 

Behav. Ecol. Sociobiol. 41: 129–137. 

 

Aparicio, J. M. and Bonal, R. 2002. Effects of food supplementation and habitat selection on timing 

of lesser kestrel breeding. – Ecology 83: 873-877. 

 

Aparicio, J. M. and Cordero, P. J. 2001. The effects of the minimum threshold condition for breeding 

on offspring sex-ratio adjustment in the lesser kestrel. – Evolution 55: 1188-1197. 

 

Ardia, D. R. et al. 2006. Warm temperatures lead to early onset of incubation, shorter incubation 

periods and greater hatching asynchrony in tree swallows Tachycineta bicolor at the extremes of their 

range. – J. Avian Biol. 37: 137-142. 

 

Bates, D. et al. 2014. Fitting linear mixed-effects models using lme4. – J. Stat. Softw. 67: 1–48. 

 

Barta, Z. et al. 2008. Optimal moult strategies in migratory birds. – Phil. Trans. R. Soc. B 363: 211–

229. 

 

Bize, P. et al. 2008. Fecundity and survival in relation to resistance to oxidative stress in a free-living 

bird. – Ecology 89: 2584–2593. 

 

Boutin, S. 1990. Food supplementation experiments with terrestrial vertebrates: patterns, problems, 

and the future. – Can. J. Zool. 68: 203-220. 

 

Brommer, J. E. 2004. Immunocompetence and its costs during development: an experimental study 

in blue tit nestlings. – Proc. R. Soc. B 271: S110-S113. 

 

Brommer, J. E. et al. 2011. Body size and immune defense of nestling Blue Tits (Cyanistes caeruleus) 

in response to manipulation of ectoparasites and food supply. – Auk 128: 556-563. 

 

Capelle, K. J. and Whitworth, T. L. 1973. The distribution and avian hosts of Carnus hemapterus 

(Diptera: Milichiidae) in North America. – J. Med. Entomol. 10: 525–526. 

 

Catry, I. et al. 2016. Sexual and parent-offspring dietary segregation in a colonial raptor as revealed 

by stable isotopes. – J. Zool. 299: 58-67. 

 

74



 
 

42 

Cecere, J. G. et al. 2018. Spatial segregation of foraging areas between neighbouring colonies in a 

diurnal raptor. – Sci. Rep. 8: 11762. 

 

Christians, J. K. 2002. Avian egg size: variation within species and inflexibility within individuals. – 

Biol. Rev. 77: 1-26. 

 

Costantini, D. et al. 2008. Long flights and age affect oxidative status of homing pigeons (Columba 

livia). – J. Exp. Biol. 211: 377-381. 

 

Costantini, D. and Bonadonna, F. 2010. Patterns of variation of serum oxidative stress markers in two 

seabird species. – Polar Res. 29: 30-35. 

 

Costantini, D. et al. 2010. Relationships among oxidative status, breeding conditions and life‐history 

traits in free‐living Great Tits Parus major and Common Starlings Sturnus vulgaris. – Ibis 152: 793-

802. 

 

Costantini, D. et al. 2011. A meta-analysis of glucocorticoids as modulators of oxidative stress in 

vertebrates. – J. Comp. Physiol. B 181: 447-456. 

 

Costantini, D. 2014. Oxidative stress and hormesis in evolutionary ecology and physiology. A 

marriage between mechanistic and evolutionary approaches. – Springer. 

 

Cramp, S. 1998. The complete birds of the western Palearctic on CDROM. – Oxford University Press. 

 

Cucco, M. and Malacarne, G. 1997. The effect of supplemental food on time budget and body 

condition in the black redstart Phoenicurus ochruros. – Ardea 85: 211-221. 

 

Dabao, Z. 2017. A coefficient of determination for Generalized Linear Models. – Am. Stat. 71: 310-

316. 

 

Danner, M. R. et al. 2014. Winter food limits timing of pre-alternate moult in a short-distance 

migratory bird. – Funct. Ecol. 29: 259-267. 

 

Dawson, R. and Bortolotti, G. 2002. Experimental evidence for food limitation and sex-specific 

strategies of American kestrel (Falco sparvierus) provisioning offspring. – Behav. Ecol. Sociobiol. 

52: 43-52. 

 

Dewey, S. R. and Kennedy, P. L. 2001. Effects of supplemental food on parental-care strategies and 

juvenile survival of Northern Goshawks. – Auk 118: 352-365. 

 

Di Maggio, R., Campobello, D. and Sarà, M. 2018. Lesser kestrel diet and agricultural intensification 

in the Mediterranean: An unexpected win-win solution? J. Nat. Conserv. 45: 122-130. 

 

Dietz, M. W. et al. 1992. Energy requirements for molt in the kestrel Falco tinnunculus. Physiol. 

Zool. 65: 1217-1235. 

75



 
 

43 

 

Donázar, J. A. et al. 1992. Functional analysis of mate-feeding in the Lesser Kestrel Falco naumanni. 

– Ornis Scand. 23: 190-194. 

 

Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a 

new generation, more stable ABTS radical cation. – Clin. Biochem. 37: 277-285. 

 

Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. – Clin. 

Biochem. 8: 1103–1111. 

 

Espie, R.H. et al. 1996. Ecological correlates of molt in Merlins (Falco columbarius). – Auk 113: 

363-369. 

 

Fletcher, Q. E. et al. 2013. Oxidative damage increases with reproductive energy expenditure and is 

reduced by food-supplementation. – Evolution 67: 1527-1536. 

 

Frossard, J. and Renaud, O. 2018. Permutation tests for regression, ANOVA and comparison of 

signals: the permuco package. – https://cran.r-project.org/web/packages/permuco/index.html 

 

Garcia, P. F. J. et al. 1993. Energy allocation to reproduction and maintenance in Mountain Bluebirds 

(Sialia currucoides): a food supplementation experiment. – Can. J. Zool. 71: 2352-2357. 

 

Giordano, M. et al. 2015. Female oxidative status, egg antioxidant protection and eggshell 

pigmentation: a supplemental feeding experiment in great tits. – Behav. Ecol. Sociobiol. 69: 777-785. 

 

Gonzalez, L. M. et al. 2006. Supplementary feeding as an effective tool for improving breeding 

success in the Spanish imperial eagle (Aquila adalberti). – Biol. Conserv. 129: 477-486. 

 

Griffiths, R. et al. 1998. A DNA test to sex most birds. – Molec. Ecol. 7: 1071–1075. 

 

Halliwell, B. and Gutteridge, J. M. C. 2007. Free Radicals in Biology and Medicine. – Oxford 

University Press. 

 

Hemborg, C. 1999. Sexual differences in moult–breeding overlap and female reproductive costs in 

pied flycatchers, Ficedula hypoleuca. – J. Anim. Ecol. 68: 429-436. 

 

Hemborg, C. and Lundberg, A. 1998. Costs of overlapping reproduction and moult in passerine birds: 

an experiment with the pied flycatcher. – Behav. Ecol. Sociobiol. 43: 19-23. 

 

Hernández-Pliego, J. et al. 2017. Combined use of tri-axial accelerometers and GPS reveals the 

flexible foraging strategy of a bird in relation to weather conditions. – PloS ONE 12: e0177892. 

 

Hipfner, J. et al. 2001. Seasonal declines in incubation periods of Brunnich's guillemots Uria lomvia: 

testing proximate causes. – Ibis 143: 92-98. 

 

76



 
 

44 

Hipkiss, T et al. 2002. Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s owl 

nestlings. – J. Anim. Ecol. 71: 693-699. 

 

Hörnfeldt, B. et al. 1990. Effects of cyclic food supply on breeding performance in Tengmalm's owl 

(Aegolius funereus). – Can. J. Zool. 68: 522-530. 

 

Jaeger, B. C. et al. 2017. An R2 statistic for fixed effects in the generalized linear mixed model. – J. 

Appl. Stat. 44: 1086-1105. 

 

Jenni, L. and Winkler, R. 1994. Moult and ageing of European passerines. – Academic Press. 

 

Jönsson, K. I. 1997. Capital and income breeding as alternative tactics of resource use in reproduction. 

– Oikos 78: 57-66. 

 

Kacelnik, A. and Cuthill, I. C. 1990. Central place foraging in starlings (Sturnus vulgaris). II. Food 

allocation to chicks. – J. Anim. Ecol. 59: 655–674. 

 

Karell, P. et al. 2008. Maternal effects on offspring Igs and egg size in relation to natural and 

experimentally improved food supply. – Funct. Ecol. 22: 682-690. 

 

Kelly, E. J. and Kennedy, P. L. 1993. A dynamic state variable model of mate desertion in Cooper's 

hawks. – Ecology 74: 351-366. 

 

Korner-Nievergelt, F. et al. 2015. Bayesian data analysis in ecology using linear models with R, 

BUGS, and Stan. – Academic Press. 

 

Korpimäki, E. and Wiehn, J. 1998. Clutch size of kestrels: seasonal decline and experimental 

evidence for food limitation under fluctuating food conditions. – Oikos 83: 259–272. 

 

Korpimäki, E. et al. 2000. Environmental‐and parental condition‐related variation in sex ratio of 

kestrel broods. – J. Avian Biol. 31: 128-134. 

 

Krüger, O. 2005. The evolution of reversed sexual size dimorphism in hawks, falcons and owls: a 

comparative study. – Evol. Ecol. 19: 467-486. 

 

Lack, D. 1954. The natural regulation of animal numbers. - Oxford Univ. Press. 

 

Lack, D. 1966. Population studies of bird. – Clarendon Press. 

 

La Gioia, G. et al. 2017. Piano d’Azione Nazionale per il grillaio (Falco naumanni). – MATTM-

ISPRA. 

 

Lewin, A. C. and Mitchell, M. N. 1999. Using group mean centering for computing adjusted means 

by site in a randomized experimental design: the case of California's Work Pays Demonstration 

Project. – Evaluation Rev. 23: 146-161. 

77



 
 

45 

 

Lochmiller, R. L. and Deerenberg, C. 2000. Trade‐offs in evolutionary immunology: just what is the 

cost of immunity? – Oikos 88: 87-98. 

 

Magrath, R. D. 1990. Hatching asynchrony in altricial birds. Biol. Rev. 65: 587-622. 

 

Mainwaring, M. C. and Hartley, I. R. 2012. Causes and consequences of differential growth in birds: 

a behavioral perspective. – Adv. Stud. Behav. 44: 225-277. 

 

Manly, B. F. J. 1991. Randomization, Bootstrap and Monte Carlo Methods in Biology. – CRC Press. 

 

Markman, S. et al. 2002. The manipulation of food resources reveals sex–specific trade–offs between 

parental self-feeding and offspring care. – Proc. R. Soc. B 269: 1931-1938. 

 

Martin, T. E. 1987. Food as a limit on breeding birds: a life-history perspective. – Annu. Rev. Ecol. 

Syst. 18: 453-487. 

 

Meijer, T. and Schwabl, H. 1989. Hormonal patterns in breeding and nonbreeding kestrels, Falco 

tinnunculus: field and laboratory studies. – Gen. Comp. Endocrinol. 74: 148-160. 

 

Meijer, T. and Drent, R. 1999. Re-examination of the capital and income dichotomy in breeding birds. 

– Ibis 141: 399–414. 

 

Merino, S. and Potti, J. 1995. Mites and blowflies decrease growth and survival in nestling pied 

flycatchers. – Oikos 73: 95-103. 

 

Merino, S. and Potti, J. 1998. Growth, nutrition, and blow fly parasitism in nestling Pied Flycatchers. 

– Can. J. Zool. 76: 936-941. 

 

Møller, A. P. 1993. Ectoparasites increase the cost of reproduction in their hosts. – J. Anim. Ecol. 62: 

309-322. 

 

Murphy, M. E. 1996. Energetics and nutrition in molt. – In: Carey, C. (ed.), Avian Energetics and 

Nutritional Ecology. Chapman and Hall, pp. 158–198. 

 

Nager, R. G. et al. 1999. Experimental demonstration that offspring sex ratio varies with maternal 

condition. – Proc. Natl Acad. Sci. USA 96: 570–573. 

 

Newton, I. and Marquiss, M. 1984. Seasonal trend in the breeding performance of Sparrowhawks. – 

J. Anim. Ecol. 53: 809-829. 

 

Nilsson, J.-Å. 2003. Ectoparasitism in marsh tits: costs and functional explanations. Behav. Ecol. 14: 

175–181. 

 

78



 
 

46 

Oppliger, A. et al. 1994. Effect of an ectoparasite on lay date, nest-site choice, desertion, and hatching 

success in the great tit (Parus major). – Behav. Ecol. 5: 130-134. 

 

Peig, J. and Green, A. J. 2009. New perspectives for estimating body condition from mass/length 

data: the scaled mass index as an alternative method. – Oikos 118: 1883-1891. 

 

Peig, J. and Green, A. J. 2010. The paradigm of body condition: a critical reappraisal of current 

methods based on mass and length. – Funct. Ecol. 24: 1323–1332. 

 

Pereira, R. J. G. et al. 2010. Annual profile of fecal androgen and glucocorticoid levels in free-living 

male American kestrels from southern mid-latitude areas. – Gen. Comp. Endocrinol. 166: 94-103. 

 

Podofillini, S. et al. 2018. Home, dirty home: effect of old nest material on nest-site selection and 

breeding performance in a cavity-nesting raptor. – Curr. Zool. (doi: 10.1093/cz/zoy012). 

 

R Core Team, 2017. R: A Language and Environment for Statistical Computing. – R Foundation for 

Statistical Computing. 

 

Roche, E. A. et al. 2010. Apparent nest abandonment as evidence of breeding-season mortality in 

Great Lakes Piping Plovers (Charadrius melodus). – Auk 127: 402-410. 

 

Roff, D. A. 1992. The evolution of life histories: theory and analysis. – Chapman and Hall. 

 

Rodríguez, C. et al. 2010. Temporal changes in lesser kestrel (Falco naumanni) diet during the 

breeding season in southern Spain. – J. Rapt. Res. 44: 120-128. 

 

Rubolini, D. et al. 2002. Replacement of body feathers is associated with low pre-migratory energy 

stores in a long-distance migratory bird, the barn swallow (Hirundo rustica). – J. Zool. 258: 441-447. 

 

Ruffino, L. et al. 2014. Reproductive responses of birds to experimental food supplementation: a 

meta-analysis. – Front. Zool. 11: 80-93. 

 

Runde, O. J. and Barrett, R.T. 1981. Variations in egg size and incubation period of the Kittiwake 

Rissa tridactyla in Norway. – Ornis Scand. 12: 80-86. 

 

Saino, N. et al. 1998. Effects of a dipteran ectoparasite on immune response and growth trade-offs in 

barn swallow (Hirundo rustica) nestlings. – Oikos 81: 217–228. 

 

Saino, N. et al. 2010. Sex allocation in yellow-legged gulls (Larus michahellis) depends on nutritional 

constraints on production of large last eggs. – Proc. R. Soc. B 277: 1203-1208. 

 

Saino, N. et al. 2011. Antioxidant defenses predict long-term survival in a passerine bird. – PLoS 

ONE 6: e19593. 

 

79



 
 

47 

Saino, N. et al. 2014. A trade-off between reproduction and feather growth in the barn swallow 

(Hirundo rustica). – PloS ONE 9: e96428. 

 

Santema, P. and Kempenaers, B. 2018. Complete brood failure in an altricial bird is almost always 

associated with the sudden and permanent disappearance of a parent. – J. Anim. Ecol. (doi: 

10.1111/1365-2656.12848).  

 

Sanz, J. J. 1996. Effect of food availability on incubation period in the pied flycatcher (Ficedula 

hypoleuca). – Auk 113: 249-253. 

 

Schoech, S. J. 1996. The effect of supplemental food on body condition and the timing of reproduction 

in a cooperative breeder, the Florida scrub-jay. – Condor 98: 234-244. 

 

Serra, L. et al. 2012. Seasonal decline of offspring quality in the European starling Sturnus vulgaris: 

an immune challenge experiment. – Behav. Ecol. Sociobiol. 66: 697-709. 

 

Siikamäki, P. 1998. Limitation of reproductive success by food availability and breeding time in pied 

flycatchers. – Ecology 79: 1789-1796. 

 

Soler, J. J. et al. 2003. Trade-off between immunocompetence and growth in magpies: an 

experimental study. – Proc. R. Soc. B 270: 241-248. 

 

Stearns, S. C. 1992. The evolution of life histories. – Oxford Univ. Press. 

 

Székely, T. et al. 1996. An evolutionary approach to offspring desertion in birds. – In: Nolan, V. and 

Ketterson, E. D. (Eds.), Current Ornithology, Vol. 13. Springer, pp. 271-330. 

 

Tella, J. L. et al. 1996. Seasonal and interannual variations in the sex-ratio of lesser kestrel Falco 

naumanni broods. – Ibis 138: 342–345. 

 

Tschirren, B. et al. 2003. Sexual dimorphism in susceptibility to parasites and cell‐mediated immunity 

in great tit nestlings. – J. Anim. Ecol. 72: 839-845. 

 

Tschirren, B. and Richner, H. 2006. Parasites shape the optimal investment in immunity. – Proc. R. 

Soc. B 273: 1773-1777. 

 

van Noordwijk, A. J. and de Jong, G. 1986. Acquisition and allocation of resources: their influence 

on variation in life-history tactics. – Am. Nat. 128: 137-142. 

 

Wagner, R. H. and Danchin, E. 2010. A taxonomy of biological information. – Oikos 119: 203-209. 

 

Weiser, E. L. et al. 2018. Life‐history tradeoffs revealed by seasonal declines in reproductive traits 

of Arctic‐breeding shorebirds. – J. Avian Biol. 49: e01531.  

 

80



 
 

48 

West, S. A. and Sheldon, B. C. 2002. Constraints in the evolution of facultative sex ratio adjustment. 

– Science 295: 1685–1688. 

 

West, S. A. et al. 2000. The benefits of allocating sex. – Science 290: 288–290. 

 

Wiebe, K. L. and Bortolotti, G. R. 1992. Facultative sex ratio manipulation in American Kestrels. – 

Behav. Ecol. Sociobiol. 30: 379-386. 

 

Wiebe, K. L. and Bortolotti, G. R. 1995. Egg size and clutch size in the reproductive investment of 

American kestrels. – J. Zool. 237: 285–301. 

 

Williams, T. D. 1994. Intraspecific variation in egg size and egg composition: effects on offspring 

fitness. – Biol. Rev. 68: 35-59. 

 

Wiggins, D. A. et al. 1994. Correlates of clutch desertion by female collared flycatchers Ficedula 

albicollis. – J. Avian Biol. 25: 93-97. 

 

Ydenberg, R. C. 1994. The behavioral ecology of provisioning in birds. – Ecoscience 1: 1–14. 

 

Yorio, P. and Boersma, P. D. 1994. Causes of nest desertion during incubation in the Magellanic 

Penguin (Spheniscus magellanicus). – Condor 96: 1076-1083. 

 

Zuberogoitia, I. et al. 2018. Moult in birds of prey: a review of current knowledge and future 

challenges for research. – Ardeola 65: 183-207. 

  

81



 
 

49 

Supplementary material 
 

 

Appendix 1 

 

 

Table A1. Summary of the scaling relationships between body mass and keel length in male and 

female lesser kestrel used for computing the scaled mass index (SMI). SMI for individual i was 

computed according to the formula SMIi = BMi × (L0/Li)
bSMA, where BMi is the body mass of the 

individual i, L0 is a reference values of the linear body measurement for the population, Li is the linear 

body measurement (in our case keel length) for individual i, and bSMA is the scaling exponent of the 

relationship between body mass and the linear measurement (Peig and Green 2009, 2010) [slope of 

the standardized major axis (SMA) regression between body mass and the linear measurement (both 

natural log-transformed) in the reference population]. As scaling exponents were significantly 

different between males and females (likelihood ratio test: χ2 = 5.58, d.f. = 1, p = 0.018), SMI was 

computed separately for each sex. As the reference value L0 for the population we used mean keel 

length of each sex. Because mean keel length of males and females was very similar [females: 31.9 

mm (1.9 s.d.), males: 31.9 mm (1.6 s.d.); t154 = 0.01, p = 0.99], SMI values of both sexes were 

comparable. Scaling exponents and test statistics of SMA regressions were computed by the smatr R 

package (Warton et al. 2012). 

 

 

 

Sex n bSMA (95% c.i.) Intercept (95% c.i.) pa
 R2 

      

Females 82 1.037 (0.839; 1.281) 1.453 (0.687; 2.220) 0.011 0.08 

Males 74 1.496 (1.202; 1.863) -0.278 (-1.243; 0.867) 0.003 0.11 

      

a: p-values of the null hypothesis that bSMA was equal to zero 
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Table A2. Fit statistics (Akaike Information Criterion value, AIC, and R2) of body condition (scaled 

mass index, SMI), oxidative (TAC, TOS) and moult status GLMs (full models) including either 

breeding stage or sampling date as predictors. These two variables were intrinsically correlated (r = 

0.39) and could thus not be included together in the same model. To control for intra-seasonal 

variation in body condition, oxidative and moult status (birds were captured over 38 days, during both 

incubation and nestling-rearing phases; see e.g. Donázar et al. 1992 for body mass decline from 

incubation to nestling rearing), we therefore included in models either breeding stage or sampling 

date as a predictor, choosing the one which better fitted the data. The best-fitting model (lowest AIC 

value) is highlighted in boldface. List of abbreviations for predictors: FS = food supplementation, SE 

= sex, BS = breeding stage, TM = total moult investment, SA = sampling date, SMIc = scaled mass 

index, centred within sex categories (see Statistical analyses).  

 

 

Model predictors AIC R2 

   

SMI (n = 144)   

FS + SE + BS + TM + (FS × SE) + (FS × BS) + (FS × TM) 1146.5 0.44 

FS + SE + SA + TM + (FS × SE) + (FS × SA) + (FS × TM) 1149.5 0.43 

   

TAC (n = 126)   

FS + SE + BS + SMIc + TM + (FS × SE) + (FS × BS) + (FS × SMIc) + (FS × 

TM) 

1763.3 0.35 

FS + SE + SA + SMIc + TM + (FS × SE) + (FS × SA) + (FS × SMIc) + (FS 

× TM) 

1755.3 0.39 

   

TOS (n = 71)   

FS + SE + BS + SMIc + TM + (FS × SE) + (FS × BS) + (FS × SMIc) + (FS × 

TM) 

286.7 0.06 

FS + SE + SA + SMIc + TM + (FS × SE) + (FS × SA) + (FS × SMIc) + (FS 

× TM) 

285.3 0.08 

   

Moult initiation (n = 144)   

FS + SE + BS + SMIc + (FS × SE) + (FS × BS) + (FS × SMIc) 160.6 0.24 

FS + SE + SA + SMIc + (FS × SE) + (FS × SA) + (FS × SMIc) 147.2 0.32 

   

Total moult investment (n = 144)   

FS + SE + BS + SMIc + (FS × SE) + (FS × BS) + (FS × SMIc) 1421.5 0.19 

FS + SE + SA + SMIc + (FS × SE) + (FS × SA) + (FS × SMIc) 1371.3 0.43 
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Table A3. Summary of body condition, oxidative and moult status GLMs accounting or not for the 

duration of food supplementation (time to sampling). Because birds were captured at different times 

after start of food supplementation [mean value = 27 days (s.d. 7)], we checked whether the duration 

of food supplementation, rather than food supplementation per se, affected adult traits, by re-running 

final models while expressing food supplementation as the interaction between food supplementation 

and the number of days elapsed between sampling date and laying date (time to sampling hereafter; 

corresponding, for food-supplemented individuals, to the duration of food supplementation). The 

food supplementation × time to sampling interaction hence tests for any differential effect of food 

supplementation on measured adult traits according to the duration of food supplementation. In these 

models, breeding stage and sampling date were replaced by time to sampling, because the former two 

variables were intrinsically correlated with the latter (r = 0.70 and 0.44, respectively). Since these 

models provided a similar or worse fit than those including food supplementation only, and the results 

concerning food supplementation effects were qualitatively unaltered, for simplicity we report in the 

main text the results of models not accounting for time to sampling effects (see Table 1). List of 

abbreviations for predictors: FS = food supplementation, SE = sex, BS = breeding stage, TM = total 

moult investment, SA = sampling date, SMIc = scaled mass index, centred within sex categories (see 

Statistical analyses), TS = time to sampling. Estimates for the food supplementation effect are 

reported (upper model: FS effect; lower model: FS × TS effect). 
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Model predictors Estimate (s.e.) t/Z p AIC R2 

SMI (n = 144)      

FS + SE + BS + TM 2.86 (2.16) 1.32 0.19 1146.5 0.44 

FS + SE + TS + TM + (FS × TS) -0.25 (0.29) 0.87 0.39 1141.4 0.45 

      

TAC (n = 126)      

FS + SE + SA + SMIc + TM -65.62 (45.74) 1.43 0.15 1750.8 0.38 

FS + SE + TS + SMIc + TM + (FS × 

TS) 

-6.43 (6.34)  1.01 0.31 1767.6 0.30 

      

TOS (n = 71)      

FS + SE + SA + SMIc + TM 0.41 (0.42) 0.99 0.33 280.1 0.04 

FS + SE + TS + SMIc + TM + (FS × 

TS) 

0.06 (0.06) 1.00 0.32 279.7 0.07 

      

Moult initiation (n = 144)      

FS + SE + SA + SMIc 0.64 (0.44) 1.46 0.15 145.5 0.30 

FS + SE + TS + SMIc + (FS × TS) -0.003 (0.056) 0.05 0.96 163.7 0.20 

      

Total moult investment (n = 144)      

FS + SE + SA + SMIc + (FS × SA) 2.46 (0.65)a 3.76 < 0.001 1367.8 0.43 

FS + SE + TS + SMIc + (FS × TS) 1.54 (0.74)  2.07 0.028 1418.4 0.19 

      
a: estimate refers to the FS × SA interaction (see Table 2).    
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Table A4. Fit statistics for LMMs of egg mass (with clutch identity as a random intercept effect) with 

different codings of laying order. Abbreviations: LOc = laying order (continuous variable); LOf = 

laying order (5-level factor); RLO = relative laying order. Models were fitted on the subset of eggs 

whose laying order was certain (n = 217 eggs and 65 clutches) and are sorted according to AIC value 

[lowest through highest; AIC values computed according to Maximum Likelihood estimation (Zuur 

et al. 2009)]. The best-fitting model is highlighted in boldface. 

 

 

Model predictors AIC R2 

   

RLO + RLO2 589.4 0.11 

LOc + LOc2 600.1 0.10 

LOf 601.3 0.11 

RLO 603.3 0.08 

LOc 603.8 0.09 
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Table A5. Summary of sex differences in nestling body mass, morphology, and mortality (LMM or 

GLMM, see Table 1). Even though tarsus and forearm length were slightly significantly larger in 

males than in females (see Table footnotes), body mass and mortality were not significantly different 

between the sexes, and there were no significant food supplementation × sex effects. Estimates for 

main effects of food supplementation and sex were from models with the same structure as the 

corresponding models reported in Table 5, whereas the food supplementation × sex effect was from 

the corresponding full model. Degrees of freedom for F-tests were estimated according to the 

Kenward-Roger’s approximation. 

 

 

 

Predictors  Estimate (s.e.) F/Z d.f. p Effect size r 

Body mass (n= 253 nestlings, n = 80 broods) (R2 = 0.88)  

Food supplementationa 1.84 (1.22) 2.30 1, 74 0.14 0.12 

Sex 0.37 (0.84) 0.20 1, 220 0.66 0.02 

Food supplementation × sexb -1.12 (1.71) 0.40 1, 215 0.52 0.04 

      

Tarsus length (n = 243 nestlings, n = 77 broods) (R2 = 0.68)   

Food supplementation 0.57 (0.37) 2.35 1, 71 0.13 0.14 

Sexc 0.50 (0.24) 4.10 1, 209 0.044 0.12 

Food supplementation × sexb -0.82 (0.48) 2.92 1, 209 0.09 0.10 

      

Forearm length (n = 244 nestlings, n = 77 broods) (R2 = 0.71)  

Food supplementationa 0.62 (0.54) 1.33 1, 69 0.25 0.09 

Sexd 0.94 (0.42) 4.84 1, 224 0.029 0.14 

Food supplementation × sexb -0.87 (0.86) 1.02 1, 220 0.31 0.06 

      

Feather length (n = 181 nestlings, n = 67 broods) (R2 = 0.60)   

Food supplementation 1.99 (1.07) 3.42 1, 58 0.07 0.18 

Sex -0.32 (0.81) 0.15 1, 161 0.70 0.03 

Food supplementation × sexb -1.76 (1.64) 1.13 1, 160 0.29 0.08 

      

Mortality (n = 250 nestlings, n = 80 broods) (R2 = 0.15)  

Food supplementation -0.01 (0.52) 0.02 - 0.98 < 0.01 

Sex -0.31 (0.46) 0.68 - 0.49 0.04 

Food supplementation × sexb -0.01 (0.95) 0.01 - 0.99 0.01 

      
a: estimate from mean-centered covariate 
b: estimate from the full model, or from a model without other non-significant interactions 

c: estimated mean values: males = 20.7 (0.22 s.e.) mm, females = 20.2 (0.22 s.e.) mm 

d: estimated mean values: males = 28.3 (0.34 s.e.) mm, females = 27.3 (0.34 s.e.) mm 
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Table A6. Fit statistics for LMMs of egg mass including different interaction terms, with clutch 

identity as a random intercept effect. The non-significant food supplementation × (relative laying 

order2) interaction (FS × RLO2, p = 0.14) was removed first. In exploratory analyses, we observed 

that including in the egg mass model both the food supplementation × laying date (FS × LD) and the 

food supplementation × female SMI (FS × SMI) interactions at the same time negatively affected 

model performance because it increased correlations among fixed effects. We therefore fitted two 

separate models and reported in Table 3 the results of model M6 (final model after removing non-

significant interactions), which included the test of differential body condition effects on egg mass 

according to food supplementation (one of the main hypotheses being tested in the study). AIC values 

were computed according to Maximum Likelihood estimation (Zuur et al. 2009). List of abbreviations 

for predictors: FS = food supplementation, RLO = relative laying order, LD = laying date, CS = clutch 

size, SMI = female scaled mass index. 

 

Model predictors AIC R2 

   

M1: Full model (including all 2-way interactions)   

FS + RLO + RLO2 + LD + CS + SMI +  

(FS × RLO) + (FS × RLO2) + (FS × LD) + (FS × CS) + (FS × 

SMI) 

860.0 0.33 

 

M2: Excluding FS × RLO2 
  

FS + RLO + RLO2 + LD + CS + SMI +  

(FS × RLO) + (FS × LD) + (FS × CS) + (FS × SMI) 
860.2 0.33 

 

M3: Excluding FS × RLO2 and (FS × SMI), including (FS × LD) 
  

FS + RLO + RLO2 + LD + CS + SMI +  

(FS × RLO) + (FS × LD) + (FS × CS) 
861.4 0.30 

 

M4: Excluding FS × RLO2 and (FS × LD), including (FS × SMI) 
  

FS + RLO + RLO2 + LD + CS + SMI +  

(FS × RLO) + (FS × CS) + (FS × SMI) 
861.3 0.30 

 

M5: Final model (M3 excluding non significant interactions) (Table A7) 

FS + RLO + RLO2 + LD + CS + SMI +  

(FS × RLO) + (FS × LD) 
860.6 0.30 

 

M6: Final model (M4 excluding non significant interactions) (Table 3) 

FS + RLO + RLO2 + LD + CS + SMI +  

(FS × RLO) + (FS × SMI) 
860.6 0.30 

   

Table A7. Linear mixed model of the effects of food supplementation on egg mass (model M5 from 

Table A6). Degrees of freedom for F-tests were estimated according to the Kenward-Roger’s 
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approximation. See Fig. A1 for graphical representation of the food supplementation × laying date 

interaction. 

 

Predictors Estimate (s.e.) F d.f. p Effect size r 

Egg mass (n = 349 eggs, n = 82 clutches) (R2 = 0.30)  

Food supplementationa 0.17 (0.25) 0.48 76 0.49 0.07 

Relative laying ordera 0.71 (0.31) 5.17 265 0.024 0.10 

(Relative laying order2)a -0.28 (0.08) 13.23 265 < 0.001 0.22 

Laying date -0.02 (0.02) 0.97 77 0.33 0.10 

Clutch size -0.48 (0.18) 6.96 77 0.01 0.24 

Female SMIa 0.02 (0.01) 2.23 76 0.36 0.15 

Food supplementation ×  

relative laying order 
0.33 (0.09) 13.13 264 < 0.001 0.09 

Food supplementation × laying date -0.07 (0.03) 5.36 76 0.023 0.22 

a: estimate for mean-centered covariate  
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Table A8. Fit statistics of GLMMs of hatching success including the squared term of clutch size 

(which significantly predicted hatching success in a previous study; Serrano et al. 2005). The squared 

term of clutch size was not significant (p = 0.24) in the model with main effects and did not 

significantly improve model fit according to AIC values. Clutch identity was included as a random 

intercept effect. See final model in Table 3 for the (non-significant) effect of female SMI on hatching 

success. 

 

Model predictors AIC R2 

   

Full model   

FS + RLO + LD + CS + CS2 +  

(FS × RLO) + (FS × LD) + (FS × CS) + (FS × CS2) 
315.2 0.07 

 

Excluding FS × CS2 
  

FS + RLO + LD + CS + CS2 +  

(FS × RLO) + (FS × LD) + (FS × CS)  
313.3 0.07 

 

Excluding non-significant interactions 
  

FS + RLO + LD + CS + CS2 314.5 0.04 

 

Final model excluding CS2 (Table 3) 
  

FS + RLO + LD + CS 313.9 0.03 

   

 

 

 

 

Table A9. Binomial GLMs (restricted to control clutches/broods) testing the effect of female/male 

SMI on the probability of nest desertion. 

 

Predictors Estimate (s.e.) Z p Effect size r 

Model including female SMI (n = 38 clutches) (R2 = 0.32) 

Laying date 0.16 (0.09) 1.86 0.06 0.41 

Clutch size 1.27 (0.98) 1.30 0.20 0.29 

Female SMI -0.16 (0.07) 2.28 0.023 0.53 

     

Model including male SMI (n = 31 clutches) (R2 = 0.21) 

Laying date -0.12 (0.10) 1.23 0.22 0.33 

Clutch size 1.73 (1.10) 1.57 0.12 0.43 

Male SMI 0.03 (0.06) 0.44 0.66 0.11 
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Table A10. Binomial models of sex allocation: a) testing whether PSR was predicted by the squared 

term of female SMI (see Aparicio and Cordero 2001); b) assessing whether the analysis of factors 

affecting the probability of a nestling being male (Table 4) was affected by excluding those broods 

with one sexed nestling only (final model); c) testing whether the probability of a nestling being male 

varied along the laying sequence, fitted on data from those nestlings with known egg of origin; the 

model-predicted proportion of males in the first-laid egg was 0.18, whereas it was 0.80 in the fifth-

laid egg. Brood identity was included as a random intercept effect in GLMMs. 

 

Predictors 
Estimate 

(s.e.) 
Z p Effect size r 

     

a) Binomial GLM of PSR (n = 25 broods) (R2 = 0.10) 

Food supplementation -0.29 (0.45) 0.65 0.51 0.12 

Laying date -0.02 (0.03) 0.52 0.60 0.10 

Clutch size -0.31 (0.30) 1.00 0.31 0.20 

Female SMI 0.01 (0.02) 0.02 0.99 < 0.01 

Female SMI2 0.01 (0.01) 0.20 0.84 0.04 

     

b) Binomial GLMM of the probability of being male (n = 248 nestlings, n = 75 broods) (R2 = 

0.05)a 

Food supplementation -0.37 (0.27) 1.35 0.18 0.09 

Rank 0.36 (0.12) 3.08 0.002 0.20 

Laying date 0.01 (0.02) 0.05 0.96 < 0.01 

     

c) Binomial GLMM of the probability of being male (n = 51 nestlings, n = 41 broods) (R2 = 

0.14)b 

Laying order  0.65 (0.32) 1.99 0.047 0.37 

     

a: dispersion parameter = 1.15 

b: dispersion parameter = 1.05 
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Table A11. LMM of egg mass fitted on the subset of eggs which could be associated to sexed nestling 

(n = 51 eggs from 41 clutches), with clutch identity as a random intercept effect. The squared term of 

relative laying order was not included in the model as it did not significantly improve model fit in 

this subset. Degrees of freedom were estimated according to the Kenward-Roger’s approximation. R2 

of the final model (excluding the two non-significant interactions) = 0.25. 

 

Predictors Estimate (s.e.) F d.f. p Effect size r 

      

Food supplementation 0.71 (0.41) 2.97 1, 37 0.09 0.26 

Relative laying order -0.64 (0.19) 9.03 1, 21 0.007 0.34 

Sex -0.64 (0.36) 2.78 1, 41 0.10 0.22 

Food supplementation × 

relative laying ordera 

0.07 (0.47) 0.02 1, 20 0.88 0.02 

Food supplementation × sexa 0.44 (0.85) 0.24 1, 37 0.63 0.07 

      

a: excluded term       

 

 

 

Table A12. Binomial GLMM of nestling mortality (final model) excluding deserted broods (sample 

size: n = 266 nestlings from 78 broods) (with brood identity as a random intercept effect). R2 of the 

final model = 0.18. 

 

 

Predictors Estimate (s.e.) Z p Effect size r 

     

Food supplementation 0.10 (0.44) 0.22 0.83 0.02 

Rank 1.38 (0.25) 5.61 < 0.001 0.41 

Laying date -0.01 (0.03) 0.12 0.90 0.01 

Brood size -0.44 (0.26) 1.69 0.09 0.13 

Ectoparasite load -0.15 (0.36) 0.41 0.68 0.05 

     

a: dispersion parameter = 0.85     
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Table A13. LMM of nestling ectoparasite load (final model), with brood and nestling identity as 

random intercept effects. Monitoring session was included in the model as a 3-level factor (see 

Podofillini et al. 2018, which see also for discussion of significant rank and laying date effects on 

ectoparasite load). Degrees of freedom were estimated according to the Kenward-Roger’s 

approximation. R2 of the final model = 0.12. 

 

 

 

Predictors Estimate (s.e.) F d.f. p Effect size r 

      

Food supplementation 0.01 (0.06) 0.01 1, 80 0.92 0.01 

Session - 1.62 3, 723 0.18 < 0.05 

Rank -0.05 (0.01) 12.42 1, 219 < 0.001 0.12 

Laying date -0.02 (0.004) 24.13 1, 90 < 0.001 0.32 

Brood size 0.01 (0.02) 0.01 1, 384 0.96 0.01 
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Figure A1. Egg mass did not significantly vary with laying date among control females [0.02 (0.02 

s.e.)] (a), while it significantly decreased among food-supplemented females [estimate: -0.05 (0.02 

s.e.)] (b). Partial plots accounting for other model effects are shown. The fitted lines (with 95 % 

confidence bands) are derived from the corresponding model reported in Table A7. Full line: 

significant slope; dotted line: non-significant slope. Estimated marginal means (derived from the 

Table A7 LMM) computed at the 10th and 90th percentiles of the distribution of laying date (day 119 

and 141, respectively; shown as thin vertical lines within each panel) revealed that egg mass of food-

supplemented females was significantly larger than control ones early in the season [controls: 14.23 

g (0.37 s.e.); food-supplemented: 15.48 g (0.38 s.e.), t77 = 2.39, p = 0.019], whereas no significant 

difference in egg mass between groups emerged among late-laid clutches [t76 = 0.92, p = 0.36]. 
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Spatial segregation of home ranges 
between neighbouring colonies in a 
diurnal raptor
Jacopo G. Cecere   1, Salvatore Bondì2, Stefano Podofillini3, Simona Imperio1, 
Matteo Griggio4, Egidio Fulco5, Andrea Curcio3, Delphine Ménard3, Ugo Mellone6, 
Nicola Saino   3, Lorenzo Serra1, Maurizio Sarà2 & Diego Rubolini3

Enhancement of information transfer has been proposed as a key driver of the evolution of coloniality. 
Transfer of information on location of food resources implies that individuals from the same colony 
share foraging areas and that each colony can be associated to a specific foraging area. In colonial 
breeding vertebrates, colony-specific foraging areas are often spatially segregated, mitigating 
intercolony intraspecific competition. By means of simultaneous GPS tracking of lesser kestrels (Falco 
naumanni) from neighbouring colonies, we showed a clear segregation of space use between individuals 
from different colonies. Foraging birds from different neighbouring colonies had home ranges that were 
significantly more segregated in space than expected by chance. This was the case both between large 
and between small neighbouring colonies. To our knowledge, the lesser kestrel is the only terrestrial 
species where evidence of spatial segregation of home ranges between conspecifics from neighbouring 
colonies has been demonstrated. The observed spatial segregation pattern is consistent with the 
occurrence of public information transfer about foraging areas and with the avoidance of overexploited 
areas located between neighbouring colonies. Our findings support the idea that spatial segregation of 
exploited areas may be widespread among colonial avian taxa, irrespective of colony size.

Coloniality occurs when conspecifics gather in groups to reproduce close to one another and exploit shared 
resources, often showing reduced territoriality1. The ecological factors promoting the evolution of colonial breed-
ing have long been puzzling to evolutionary biologists2. Evans et al.3 argued that enhancing information use is 
the main advantage of colonial breeding and that it may have contributed more than any other factor to the evo-
lution of coloniality. The transfer of information may allow individuals to gather experience during high-energy 
demanding life-cycle stages, such as reproduction, reducing costly trials and errors. In a colony environment, 
there are indeed several kinds of information that can be either intentionally or inadvertently shared among 
colony members3. The “public information” that can be exploited by conspecifics may be disparate, including for 
example cues useful for sexual choice4, nesting habitat selection5, foraging6,7 and anti-predator defence8–10.

In habitats where food resource distribution is both spatially and temporally predictable, individuals - par-
ticularly in long-lived species - can rely on memory and cognitive maps for targeting food11. In the case of patchy, 
ephemeral and unpredictable food resources, the use of cognitive maps may not be sufficient for efficiently tar-
geting food and individuals can greatly benefit from the recent experience of conspecifics12,13. Transfer of social 
information about the location of profitable foraging areas may occur at the colony site, where individuals can 
actively (as proposed by the “Information Centre Hypothesis”6) or inadvertently14,15 share information on forag-
ing locations. Moreover, social information may be shared outside the colony site, which may occur by means of 
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so-called “local enhancement” processes occurring at the foraging grounds, whereby individuals searching for 
food are attracted to feeding aggregations of other individuals16.

Most of the studies on foraging areas exploited by colonial central-place foragers concerns marine 
top-predators, especially pinnipeds17 and seabirds (e.g. albatrosses, shearwaters, cormorants and gannets), the 
vast majority of which (>90%) breed colonially18. Individuals from different colonies often show colony-specific 
and well-defined foraging areas, which do not overlap with those belonging to neighbouring conspecific colo-
nies19–24. As argued by the “diplomacy” hypothesis20, spatial segregation of foraging individuals from different col-
onies may mitigate intraspecific competition for resources between conspecifics breeding in different colonies. By 
foraging in spatially segregated areas, conspecifics from different colonies may thus “diplomatically” avoid inter-
ference competition for food resources20. For instance, it has been shown that inter-colony competition could be 
one of the main factors driving the at-sea distribution of pelagic foraging birds25. Both local enhancement and the 
transfer of information at the colony site have been hypothesized to be the most important mechanisms generat-
ing and maintaining specific foraging areas exploited by individuals belonging to the same colony23. Such a spatial 
arrangement pattern of foraging areas is peculiar of colonial species (sensu Danchin et al.1) and does not occur, for 
instance, in eusocial insects, where space partitioning between nests originates and is maintained by aggressive 
interactions26–28. In the latter case, spatial arrangement of neighbouring nests often results from the destruction 
of the newer nest by killing or ejecting founding queens27.

During the breeding period, colonial species are central-place foragers (sensu Orians & Pearson29), with indi-
viduals foraging outside the colony, sometimes very far from the breeding site (e.g. seabirds30, seals31 and bats32), 
and consistently returning to the colony (the “central place”) to perform parental duties. The progressive deple-
tion of foraging areas around the breeding sites leads individuals to both increase foraging ranges (the “Ashmole’s 
halo” effect33) and, in the case of neighbouring colonies, to avoid moving towards adjacent colonies when search-
ing for food. This, in turn, may generate and/or reinforce spatial segregation of foraging areas among individuals 
from neighbouring colonies23.

We analyzed the spatial distribution of home ranges of individuals of a landbird species breeding in neigh-
bouring colonies. We focused on the lesser kestrel (Falco naumanni), a small (ca. 120 g) diurnal colonial raptor. 
The lesser kestrel mainly nests in holes and crevices of anthropogenic structures (roofs, ancient monuments, 
buildings) and forages in farmland habitats surrounding breeding sites34, where it targets invertebrates and small 
vertebrates (mice, lizards)35,36. In such farmland landscapes, lesser kestrel prey can be patchily distributed, highly 
ephemeral and unpredictable during the species’ breeding season, since habitat characteristics change continu-
ously as a function of seasonal processes (changes in primary productivity affecting prey distribution/availability) 
and agricultural practices (including pesticide applications, harvesting, stubble burning, ploughing)37. Hence, 
information gathered during previous years or during the pre-breeding period might not be sufficient to identify 
profitable foraging areas, leading us to hypothesize that lesser kestrels should exploit social information to target 
profitable hunting grounds. This is corroborated by the observation that lesser kestrels, similarly to other colonial 
raptors such as vultures (e.g. family Aegypiinae) and the Eleonora’s falcon (Falco eleonorae), commonly forage in 
groups, both during the breeding and the non-breeding season35.

By analysing GPS information collected during the entire nestling-rearing stage (ca. 30 days) from simultane-
ously tracked individuals, we investigated the occurrence of spatial segregation between birds from neighbour-
ing colonies in two geographically distinct lesser kestrel populations (Apulia and Sicily, both in Southern Italy). 
According to the “diplomacy” hypothesis, we predicted spatial segregation of home ranges (assessed by means of 
the utilization distribution38) between lesser kestrels from neighbouring colonies to occur because: 1) resources 
are expected to be depleted in the surroundings of colony sites (Ashmole’s halo)39 and 2) lesser kestrels forage in 
groups, suggesting that they are highly likely to rely on social information to target ephemeral productive foraging 
areas.

Results
Individual home range size largely differed between the two geographical populations (Table 1), being ca. one 
order of magnitude larger among Apulian compared to Sicilian birds [95% Kernel Density Estimation (95% KDE), 
Apulia: 138.8 km2 (84.5 s.d., n = 18 individuals); Sicily: 13.0 km2 (59 s.d., n = 6 individuals); Mann-Whitney U 
test, Z = 3.6, p < 0.001]. No significant sex differences in home range size emerged among Apulian birds [95% 
KDE, males: 121.7 km2 (73.7 s.d., n = 12); females: 172.8 km2 (101.1 s.d., n = 6); Mann-Whitney U test, Z = 0.84, 
p = 0.40)], while sex differences could not be tested for Sicilian birds because a single male was tracked.

Representativeness of tracked individuals from the two Apulian colonies, Gravina in Puglia and Altamura, 
was very high (95% KDE: >94%; Fig. 1), indicating that we captured most of the variability in space use by indi-
viduals from the target colonies. Moreover, the steep curves of the representativeness analysis (Fig. 1) indicated 
that birds belonging to same colony showed highly overlapping home ranges (see also Fig. 2). Although we could 
not test for representativeness of tracked individuals from the Sicilian colonies due to the small sample size, Fig. 1 
suggests that even a few individuals can well represent the space use of the target colony (e.g. with 2 individuals 
representativeness is >75%, a relatively high value40.

Individual home ranges of birds from the two different Apulian colonies showed a very limited overlap 
(Fig. 2). The overlap between home ranges of individuals from neighbouring colonies, computed by means 
of the Utilization Distribution Overlap Index (UDOI)41,42, was very low, varying between 0 and 0.11 (mean 
value = 0.01). At the same time, the UDOI between individuals from the same colony varied between 0.03 and 
1.53 (mean value = 0.53). By randomly rotating individual home ranges, we showed that birds from the two 
Apulian colonies had home ranges that were significantly more spatially segregated than expected by chance 
according to UDOI values (robs = −0.71, prand = 0.024; Fig. 3). The pattern for the Sicilian colonies, albeit based 
on a very small sample size, was even more striking (robs = −0.96, prand = 0.057; Fig. 3): UDOI values between 
individual home ranges of birds belonging to the three neighbouring colonies were indeed 0 or close to 0 in all 
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comparisons (a single comparison had a value of 0.0002), while those between birds from the same colony varied 
between 0.63 and 1.17 (mean value = 0.89). For Apulia, results of the randomization procedure for assessing 
home range segregation were strengthened when considering only GPS positions located outside the urban area 
of the cities where lesser kestrels breed (see Methods) (prand = 0.004).

We could rule out that the observed patterns of spatial segregation resulted from the presence of unsuitable 
foraging habitats in the inter-colony areas. Indeed, the proportion of the main lesser kestrel foraging habitat 
(arable land), which is the main land use in both study areas, was very similar between the inter-colony and the 
outer-colony areas both in Apulia and Sicily (Figs 4 and S1).

Bird 
identity

Study 
area Colony Sex

N GPS 
positions

Hatching 
date

End 
tracking date

Days 
tracked

95% KDE 
area (km2)

H207147 Apulia GRA F 245 161 191 22 266.34

H207149 Apulia GRA M 927 170 200 29 205.29

H207151 Apulia GRA M 803 167 197 28 62.88

H207154 Apulia GRA M 1195 165 195 26 69.94

H207155 Apulia GRA F 424 165 188 19 109.77

H207156 Apulia GRA F 987 171 198 26 206.08

H207200 Apulia GRA F 409 168 198 24 48.35

H207204 Apulia GRA M 993 168 198 24 307.05

H208463 Apulia GRA M 514 171 194 20 149.75

H207172 Apulia ALT M 681 175 199 23 79.86

H207174 Apulia ALT M 295 173 187 13 122.4

H207175 Apulia ALT F 733 169 199 29 303.13

H207176 Apulia ALT M 1137 178 208 29 90.97

H207180 Apulia ALT M 1253 172 202 29 67.98

H207181 Apulia ALT F 363 160 190 20 103.38

H207216 Apulia ALT M 436 173 203 28 133.66

H207220 Apulia ALT M 148 177 188 10 45.51

H207222 Apulia ALT M 1192 172 202 27 125.25

T58200 Sicily TOR F 281 135 152 16 11.19

T67675 Sicily TOR F 879 135 165 29 11.78

TK7884 Sicily CAN F 515 140 170 29 18.58

TK7885 Sicily CAN M 1055 137 167 29 4.09

T69718 Sicily SAN F 651 142 172 29 11.59

TK7978 Sicily SAN F 804 148 177 28 20.54

Table 1.  Summary information of GPS tracking data for each individual included in the study. In Apulia, data 
were collected during the 2016 breeding season, whereas in Sicily data were collected during the 2015 breeding 
season. Within a given study area, birds from different colonies were tracked simultaneously (see also Methods). 
Colony size was ca. 1000 pairs for both Gravina in Puglia (GRA) and Altamura (ALT), 16 for Torrevecchia 
(TOR), 11 for Canalotto (CAN) and 32 for San Gregorio (SAN); sex: M = male; F = female; dates are expressed 
in days since January 1.

Figure 1.  Results of the representativeness analysis showing that the sample of tracked individuals reliably 
represents the variability in space use of birds from each Apulian colony (GRA: Gravina in Puglia, n = 9 
individuals; ALT: Altamura, n = 9 individuals). Circles indicate the average proportion of out-of-sample GPS 
positions located within the 95% KDE areas estimated from sampled positions (Inclusion) for 100 random draws 
of sample sizes, from 1 to 8 individuals. Grey bars indicate variability of inclusion value for 100 random draws 
of tracked individuals, and the solid line represents the fitted nonlinear regression line. Inclusion rate (and thus 
representativeness of the tracking dataset) is based on the estimated asymptote of the nonlinear regression40.
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Discussion
Our findings clearly showed that home ranges of lesser kestrels from neighbouring colonies were spatially seg-
regated during the nestling-rearing period, with home ranges of birds from different colonies overlapping less 
than expected by chance, resulting in space partitioning. This pattern of spatial segregation was observed in two 
geographically distinct populations (Apulia and Sicily) and occurred both between two very large (Apulia) and 
three small (Sicily) neighbouring colonies. Moreover, colonies were associated to specific exploited areas (the col-
ony “hinterland”43, with individuals from the same colony showing overlapping home ranges, supporting the idea 
that individuals belonging to the same colony share information on the location of profitable foraging grounds.

In colonial species, areas surrounding the colonies are likely to rapidly become resource-depleted (Ashmole’s 
halo), and increasing colony size is expected to translate into faster resource depletion and/or progressive expan-
sion of foraging ranges in the course of the breeding season33. If colonies are physically close by, intraspecific 
competition between colonies may then arise, because individuals from different colonies may target the same 
foraging areas located between colonies. Due to the relatively higher density of foraging individuals, those areas 
may rapidly become resource-depleted. Such areas may thus become progressively avoided, possibly leading to 
spatial segregation of foraging areas between birds from different colonies. Segregation may result from individ-
uals preferentially performing foraging trips directed away from any neighbouring colony. For instance, this has 
been clearly shown for northern gannets (Morus bassanus) breeding in 12 neighbouring colonies fringing the 
coastline of the British Isles and Northern France, whose trips towards at-sea foraging areas were directed away 
from closely neighbouring colonies23.

The avoidance of overexploited foraging areas between neighbouring colonies is a density-dependent pro-
cess: spatial segregation is in fact expected to be reinforced with increasing size of neighbouring colonies, which 
imply a greater local density of foraging individuals in the area that is lying between colonies. Our observation of 
spatial segregation occurring also between birds from neighbouring small colonies may at first seem surprising, 

Figure 2.  Home ranges (95% KDE) of lesser kestrels breeding at three colony sites in Sicily (bottom left; 
n = 6 individuals) and at two colony sites in Apulia (bottom right; n = 18 birds). Within each panel, home 
ranges of the same colour denote birds from the same colony (GRA = Gravina in Puglia, ALT = Altamura, 
CAN = Canalotto, SAN = Sangregorio, TOR = Torrevecchia) and breeding sites of tracked birds are marked 
with yellow stars. Satellite images were downloaded from Google EarthPro ver. 7.3.0.3832 3832 (sources: 
“Gravina in Puglia and Altamura”, coordinates 40.82°N - 16.39°E, 12 March 2016–14 August 2017, Map data 
© 2018 Google; “Gela”, coordinates 37.14°N - 14.31°E, 12 March 2016–14 August 2017; Map data © 2018 
TerraMetrics) and elaborated with ArcGIS ver. 10.2.1 for Desktop. Lesser kestrel drawing is by U. Catalano and 
has the ISPRA copyright.
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since it may be hypothesized that density-dependent spatial segregation should be detectable only between large 
neighbouring colonies, whereas competition between colonies should be relaxed when colony size is small23. 
This would be the case if the distance between pairs of large and small neighbouring colonies is similar and/or 
the area of potential overlap between home ranges of foraging individuals from different colonies is comparable 
in both large and small colonies. In our case, the pairwise distances between small neighbouring colonies are 
considerably smaller than those between large colonies, and the area of potential overlap between home ranges 
among small neighbouring colonies is considerably smaller than among large ones (Fig. 2). Although there may 
be a much smaller absolute number of individuals potentially targeting the inter-colony areas between small than 
between large neighbouring colonies, the density of foraging conspecifics in such inter-colony areas (number of 
kestrels foraging per unit area) may be similar in either case. Hence, overexploitation of areas located between 
colonies is likely to occur also between small colonies.

The comparison of land use of outer-colony areas with that of inter-colony areas did not reveal any differences 
for both Apulian and Sicilian colonies. Arable land, which is the main foraging habitat of the lesser kestrel, was 
the predominant land use class in all cases. Hence, we can safely rule out that the spatial segregation patterns we 
observed resulted from the presence of unsuitable foraging habitats in the inter-colony areas.

Despite several studies investigating the spatial ecology of colonial landbirds and mammals, such as vul-
tures44,45 and bats46,47, to our knowledge evidence for spatial segregation of home ranges between individuals from 
neighbouring colonies has been lacking so far in terrestrial animals, with the single exception of the lesser kes-
trel48. Our findings support the idea that mitigation of intraspecific competition between individuals from neigh-
bouring colonies by means of spatial segregation of exploited areas is a general pattern among colonial species.

Figure 3.  Frequency distribution of randomized r values obtained from random rotations of home ranges (with 
breeding site as the anchor point) in a) Apulia and b) Sicily. r values were computed by correlating the matrix of 
Utilization Distribution Overlap Index (UDOI) values with the matrix of colony membership (0 = individuals 
belonged to the same colony; 1 = individuals belonged to different colonies) (see Methods for details). More 
negative r values denote greater spatial segregation of home ranges between lesser kestrels from neighbouring 
colonies (see Fig. 2). The observed r value (robs), resulting from the spatial distribution of home ranges shown 
in Fig. 2, is highlighted with a (continuous) red line within each panel. The 95% empirical quantile of the 
frequency distribution of randomized r values is shown with a (broken) blue line. Representative examples 
of random rotations of home ranges (and the corresponding r value) for each study population are shown on 
the right insets of each panel (home ranges of birds from different colonies are depicted with colour shadings 
corresponding to those used in Fig. 2); for simplicity, overlapping home ranges are represented with 95% KDEs.
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Methods
Target species and study areas.  European populations of the lesser kestrel breed mostly around the 
Mediterranean Sea in pseudo-steppe and open farmland landscapes. Lesser kestrels mostly overwinter in sub-Sa-
haran Africa, returning to the breeding areas in February/March35. Between late April and early May, pairs are 
formed and females lay 3–5 eggs (single brooded). Incubation lasts ca. 30 days and nestlings fledge at ca. 35–40 
days. After hatching, at least one pair member spends the night inside the nest until the late nestling-rearing stage, 
when both pair members shift to frequenting large communal night roosts.

The study was carried out in two geographically distinct populations, both in Southern Italy: one in Apulia 
and the other in Sicily. In Apulia, we collected data at two large urban colonies that are ca. 10 km apart, Altamura 
(40°49′N; 16°33′E) and Gravina in Puglia (40°49′N; 16°25′E). Altamura and Gravina in Puglia are small cities 
(ca. 50–70000 inhabitants) hosting large colonies of ca. 1000 breeding pairs each48. Both cities are surrounded 
by extensive pseudo-steppe farmland landscapes (mostly cereal steppe habitats) where lesser kestrels forage. In 
both colonies, we relied on birds nesting in nestboxes placed on the terraces of large buildings located in the old 
towns (see also Podofillini et al.49. In Sicily, the study was conducted in the Gela Plain (37°07′N; 14°20′E) at three 
small colonies (ca. 11–32 breeding pairs), which are located ca. 5 km apart (Fig. 2). Colonies are settled on rural 
buildings, often abandoned and partly decaying, which are surrounded by croplands mainly represented by wheat 
(Triticum spp.) and artichoke (Cynara spp.) alternated with grassland and other cultivations50. We relied on birds 
nesting both in nestboxes and crevices of rural buildings.

Nests were checked twice per week from 15 April to 30 July (both in Apulia and in Sicily), recording informa-
tion about laying date, brood size, hatching date, hatching success and nestling survival at 20 days from hatching 
of the first egg (it was difficult to follow the fate of nestlings after 20 days because most left their nest to wander 
around, sometimes mixing with nestlings from nearby nests49).

GPS deployment.  All birds were captured by hand within their nestbox or nest cavity, and equipped 
with GPS tags during the late incubation stage, mostly a few days before hatching. The study was conducted in 
accordance with relevant guidelines and regulations. Specifically, captures in Apulia were carried out by Istituto 
Nazionale per la Protezione e la Ricerca Ambientale (ISPRA) under the authorization of Law 157/1992 [Art.4 (1) 
and Art. 7 (5)] and in Sicily by the University of Palermo under authorization n. 1616/2014 issued by Regione 
Sicilia. We equipped with GPS tags 25 lesser kestrels from 25 different nests in Apulia (2016 breeding season), and 
12 individuals from 11 nests in Sicily (2015 breeding season). We deployed solar-driven, remote-downloading 
GPS-UHF tags (NanoFix GEO + RF, PathTrack Ltd., UK, in Apulia and customized Pica, Ecotone, PL, in Sicily) 
using a backpack Teflon harness51. Tags were programmed to record 1 GPS position every 15 min. However, tags 
automatically adjusted the GPS sampling rate according to the actual battery level, preserving battery power and 
allowing UHF data transmission to base stations that were deployed at breeding sites. The weight of tags (NanoFix 

Figure 4.  Proportion of land use classes within outer- (orange, blue or green areas) and inter-colonies areas 
(grey areas). Points represent all recorded GPS positions for a given colony (different colours for neighbouring 
colonies) and stars represent breeding sites of GPS-tagged birds in each colony (GRA = Gravina in Puglia, 
ALT = Altamura, CAN = Canalotto, SAN = Sangregorio, TOR = Torrevecchia). The radius of each buffer 
around colonies (centered on the mean of breeding sites positions) was calculated as the distance between the 
two neighbouring colonies. Land use classes were identified by means of ArcGIS 10.2.1 for Desktop according 
to the Corine Land Cover 2012 classification. Arable land (in bold) represents the main foraging habitat for the 
lesser kestrel in the study areas.
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GEO + RF: 4 g; Pica: 5 g; plus 1 g of Teflon harness) was always below 5% of body mass [NanoFix GEO + RF: 
3.46% (0.41 s.e.m.), range 2.77–4.20%; Pica: 3.49% (0.25 s.e.m.), range 3.33–3.92%].

Data from 18 simultaneously tracked individuals breeding in Apulia (9 from Altamura and 9 from Gravina in 
Puglia) and from 6 simultaneously tracked individuals breeding in Sicily (two for each colony site) were available 
for statistical analyses (Table 1). We excluded birds with largely malfunctioning devices (that in a few cases stopped 
transmitting data a few days after deployment) and those that failed reproduction and did not fledge any nestling 
(as they were no longer tied to the colony site and started wandering far from the colony site; our unpubl. data).

Home range determination.  To identify areas exploited by tracked birds during the nestling-rearing stage, 
we calculated for each individual the Utilization Distribution (UD) using the fixed kernel density estimation 
(KDE) with reference bandwidth (href) by means of the R package adehabitatHR52. To this end, we selected 
GPS positions according to the following criteria: 1) we considered positions collected during the 29 days after 
hatching of the first egg (a few individuals were tracked for a shorter period because of tag failure; see Table 1); 
2) we excluded all positions collected within 50 m of the nest site (to eliminate all instances when the birds were 
perching close to the nest); 3) we avoided the inclusion of roosting sites, used by males and by females only during 
the late nestling-rearing stage, considering only GPS positions recorded between 5:00–17:00 h UTC (7–19 h local 
time, approximately 2 hours after sunrise and 2 before sunset); this time window was identified after exploring 
high-frequency tracking data (1 GPS position every minute for both day- and night-time) of lesser kestrels in 
southern Italy (our unpubl. data).

Because a small fraction of the individuals from each colony was tracked, we can draw inferences at the col-
ony level only if the tracked individuals are representative of the variability of space use by colony members. To 
assess representativeness, we investigated for each colony how the total 95% KDE area increased with sample 
size, performing a bootstrap analysis according to Lascelles et al.40. For each sample size (from 1 to n – 1 indi-
viduals), we plotted a random selection of individual 95% KDEs and calculated the proportion of positions from 
non-selected individuals that overlapped with the sum of selected individual 95% KDEs. This process was iterated 
100 times and the average overlapping proportion (“inclusion”) was calculated for each sample size. Then, we 
fitted a non-linear regression to inclusion values (see details of fitted function in Lascelles et al.40) and the repre-
sentativeness of the tracked individuals was computed as the percentage of the estimated asymptote value reached 
by the highest predicted inclusion value. This test was not performed for Sicilian colonies due to the small sample 
size (see “GPS deployment”). Computations were performed in R 3.3.153.

In order to rule out possible sources of bias when comparing home ranges between colonies, we checked 
for variation in the duration of the tracking, sampling periods, and breeding success between colonies and 
sexes (comparisons were made within each study area, Apulia and Sicily; sex effects were not tested for Sicilian 
birds since only one male was tracked). There were no statistically significant differences between colonies (or 
sexes in Apulia) in the number of days tracked for each individual (linear models; Apulia, colony: F1,15 = 0.21, 
p = 0.66; sex: F1,15 = 0.07, p = 0.79; Sicily, colony: F2,3 = 0.92, p = 0.48), in the end date of tracking (Apulia, colony: 
F1,15 = 0.23, p = 0.64; sex: F1,15 = 1.27, p = 0.28; Sicily, colony: F2,3 = 3.86, p = 0.15) and in the number of nestlings 
at day 20 (Apulia, colony: F1,15 = 0.02, p = 0.89; sex: F1,15 = 0.39, p = 0.54; Sicily, colony: F2,3 = 0.20, p = 0.83). We 
could therefore rule out the possibility that systematic differences between colonies and sexes in tracking effort 
and breeding success biased our findings concerning the spatial distribution of home ranges.

Statistical analysis of home range segregation.  We estimated the magnitude of spatial segregation 
between home ranges of individuals belonging to different neighbouring colonies separately for each study pop-
ulation (i.e. the two neighbouring Apulian colonies and the three neighbouring Sicilian colonies) by means of a 
randomization procedure. We first built a home range overlap matrix between individuals belonging to both the 
same colony and neighbouring colonies according to the UD. The UD overlap between a pair of individuals i,j was 
calculated using the Utilization Distribution Overlap Index (UDOI), as recommended by Fieberg & Kochanny41, 
by means of the kerneloverlap function of the adehabitatHR R package52. The UDOI is an home range overlap 
index which assumes that different individuals use space independently of one another41,42. UDOI values range 
from zero (no overlap) to 1 (uniformly distributed and have 100% overlap; it can however be >1 when UDs are 
non-uniformly distributed and have a high degree of overlap)41. To compute the UDOI home range overlap 
matrix, we specified a grid extent equal to 1 and a grid size equal to 200 in the kerneloverlap function. We then 
built a second matrix of colony membership, whereby each pair of individuals i, j was coded as 0 if both individu-
als belonged to the same colony, and 1 if they belonged to different colonies. After removing diagonals from both 
matrices, we computed a correlation coefficient (Pearson’s r; robs hereafter) between the two matrices. Because 
of the coding of colony membership, highly negative values of robs indicate that 1) home ranges of individuals 
belonging to the same colony are highly overlapping, and that 2) those of individuals belonging to different col-
onies are deeply segregated. We then randomly and independently rotated each individual set of positions (by 
anchoring it to the coordinates of its own breeding site; see stars in Fig. 2) 9999 times and calculated each time 
a new home range overlap matrix, which was correlated with the colony membership matrix. By this way, we 
obtained a distribution of r values representing the null hypothesis of random spatial distribution of home ranges 
around the breeding site, assuming that individuals were free to move in the space surrounding the colonies while 
remaining tied to their breeding site. In the analysis of data from the three Sicilian colonies, we deleted from the 
overlap matrix the data referring to the two most distant colonies, which were non-neighbouring (see Fig. 2). 
Significance of robs was calculated as the probability (prand) of obtaining a more negative value than robs. All com-
putations were performed in R 3.3.153.

Because nestling-feeding lesser kestrels search for food in areas that can be widely scattered in the sur-
roundings of the breeding site but frequently return to the breeding site to deliver food to their progeny, the 
UD had invariably higher values on the breeding site (see Supplementary Figs S2 and S3). The UD might thus 
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overemphasize the exploitation of the areas in the immediate surroundings of the breeding site (where the birds 
did not forage), at the same time underestimating the importance of the use of foraging areas located away from 
the breeding site (see Supplementary Figs S2 and S3), which are important in an inter-colony foraging compe-
tition perspective. To assess the robustness of our conclusions, we therefore repeated the analyses by using only 
the GPS positions located outside the urban area of the cities where tracked birds breed in Apulia (see Fig. 2; 
these urban areas are not used for foraging; urban areas identified by Corine Land Cover 2012, CLC12 hereafter; 
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012; code 111, continuous urban habitat). Such 
a procedure could not be applied to data from the Sicilian colonies, where birds breed on isolated buildings in 
open farmland landscapes.

Comparison of land use in the areas surrounding colonies.  To rule out that spatial segregation 
between neighbouring colonies is actually due to uneven distribution of suitable foraging habitats in the areas 
surrounding colonies, we described land use in these areas. Because the inter-colony areas appeared to be avoided 
in both Apulia and Sicily (Fig. 2), we assessed whether the availability of pseudo-steppe and open farmland 
landscapes (i.e. the main lesser kestrel foraging habitat35) was lower in the inter-colony areas than in the rest of 
the areas surrounding each colony. For each pair of neighbouring colony we created a buffer area centred on the 
nesting site whose radius was equal to the distance between the two nesting sites. The intersection of the two 
buffers created three areas for each pair of neighbouring colonies: one inter-colony area and two different areas 
surrounding colonies (outer-colony areas), one for each colony (see Fig. 4). We then calculated the proportion of 
each land use type from CLC12 within each of these three areas by means of ESRI ArcMap 10.2.1 for Desktop (see 
Supplementary Fig. S1). We pooled together CLC12 land use categories that were similar in habitat and structure, 
hence obtaining 7 land use classes: urban areas (urban fabric; industrial, commercial and transport units), arable 
land, permanent crops (vineyards; fruit tree and berry plantations; olive groves), grasslands (pastures; natural 
grasslands), heterogeneous cultivations (heterogeneous agricultural areas), wooded areas (forests; scrub and/or 
herbaceous vegetation associations), water bodies.

Data Accessibility.  The datasets generated during and/or analysed during the current study are available 
from the corresponding author on reasonable request.

References
	 1.	 Danchin, E., Giraldeau, L.-A. & Cézilly, F. Behavioural Ecology (Oxford University Press, 2008).
	 2.	 Rolland, C., Danchin, E. & de Fraipont, M. The evolution of coloniality in birds in relation to food, habitat, predation, and life-

history traits: a comparative analysis. Am. Nat. 151, 514–529 (1988).
	 3.	 Evans, J. C., Votier, S. C. & Dall, S. R. Information use in colonial living. Biol. Rev. 91, 658–672 (2015).
	 4.	 Griggio, M., Hoi, H., Lukasch, B. & Pilastro, A. Context-dependent female preference for multiple ornaments in the bearded 

reedling. Ecol. Evol. 6, 493–501 (2016).
	 5.	 Aparicio, J. M., Bonal, R. & Muñoz, A. Experimental test on public information use in the colonial lesser kestrel. Evol. Ecol. 21, 

783–800 (2007).
	 6.	 Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115, 517–534 (1973).
	 7.	 Barta, Z. & Giraldeau, L. A. Breeding colonies as information centers: a reappraisal of information-based hypotheses using the 

producer—scrounger game. Behav. Ecol. 12, 121–127 (2001).
	 8.	 Clode, D., Birks, J. D. & Macdonald, D. W. The influence of risk and vulnerability on predator mobbing by terns (Sterna spp.) and 

gulls (Larus spp.). J. Zool. 252, 53–59 (2000).
	 9.	 Danchin, E., Giraldeau, L. A., Valone, T. J. & Wagner, R. H. Public information: from nosy neighbors to cultural evolution. Science 

305, 487–491 (2004).
	10.	 Di Maggio, R., Campobello, D. & Sarà, M. Nest aggregation and reproductive synchrony promote Lesser Kestrel Falco naumanni 

seasonal fitness. J. Ornithol. 154, 901–910 (2013).
	11.	 Weimerskirch, H. Are seabirds foraging for unpredictable resources? Deep Sea Res. Part II 54, 211–223 (2007).
	12.	 Weimerskirch, H. Seabirds - Individuals in Colonies. Science 341, 35–36 (2013).
	13.	 Tóth, Z., Tuliozi, B., Baldan, D., Hoi, H. & Griggio, M. The effect of social connections on the discovery of multiple hidden food 

patches in a bird species. Sci. Rep. 7, 816 (2017).
	14.	 Richner, H. & Danchin, E. On the importance of slight nuances in evolutionary scenario. Anim. Behav. 61, 17–18 (2001).
	15.	 Lachmann, M., Sella, G. & Jablonka, E. On the advantages of information sharing. Proc. R. Soc. B. 267, 1287–1293 (2000).
	16.	 Machovsky-Capuska, G. E., Hauber, M. E., Libby, E., Amiot, C. & Raubenheimer, D. The contribution of private and public 

information in foraging by Australasian gannets. Anim. Cognit. 17, 849–858 (2014).
	17.	 Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. Navigating uncertain waters: a critical review of 

inferring foraging behaviour from location and dive data in pinnipeds. Mov. Ecol. 4, 25 (2016).
	18.	 Coulson, J. C. Colonial breeding in seabirds. In: Schreiber, E. A. & Burger, J. (eds) Biology of marine birds (CRC Press, 2002).
	19.	 Wanless, S. & Harris, M. P. Use of mutually exclusive foraging areas by adjacent colonies of blue-eyed shags (Phalacrocorax atriceps) 

at South Georgia. Col. Waterbirds 16, 176–182 (1993).
	20.	 Grémillet, D. et al. Offshore diplomacy, or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of 

Cape gannets from neighbouring colonies. Mar. Ecol. Prog. Ser. 268, 265–279 (2004).
	21.	 Masello, J. F. et al. Diving seabirds share foraging space and time within and among species. Ecosphere 1, 1–28 (2010).
	22.	 Wakefield, E. D. et al. Habitat preference, accessibility, and competition limit the global distribution of breeding Black-browed 

Albatrosses. Ecol. Monogr. 81, 141–167 (2011).
	23.	 Wakefield, E. D. et al. Space partitioning without territoriality in gannets. Science 341, 68–70 (2013).
	24.	 Ainley, D. G. et al. Geographic structure of Adélie Penguin populations: Overlap in colony-specific foraging areas. Ecol. Monogr. 74, 

159–178 (2004).
	25.	 Cecere, J. G. et al. Commercial fisheries, inter-colony competition and sea depth affect foraging location of breeding Scopoli’s 

Shearwaters Calonectris diomedea. Ibis 157, 284–298 (2015).
	26.	 Cushman, J. H., Martinsen, G. D. & Mazeroll, A. I. Density- and size-dependent spacing of ant nests: evidence for intraspecific 

competition. Oecologia 77, 522–525 (1988).
	27.	 Ryti, R. T. & Case, T. J. The role of neighborhood competition in the spacing and diversity of ant communities. Am Nat. 139, 355–374 

(1992).
	28.	 Adler, F. R. & Gordon, D. M. Optimization, conflict, and nonoverlapping foraging ranges in ants. Am Nat. 162, 529–543 (2003).

104

https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012


www.nature.com/scientificreports/

9SCIentIFIC REPOrTS |  (2018) 8:11762  | DOI:10.1038/s41598-018-29933-2

	29.	 Orians G. H. & Pearson N. E. On the theory of central place foraging. In: Horn D.J., Mitchell R. & Stair G.R. (eds) Analysis of 
ecological systems. Columbus, Ohio: Ohio State University Press; 155–177 (1979)

	30.	 Pinaud, D. & Weimerskirch, H. Scale-dependent habitat use in a long-ranging central place predator. J. Anim. Ecol. 74, 852–863 (2005).
	31.	 Staniland, I. J., Boyd, I. L. & Reid, K. An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus 

gazella). Mar. Biol. 152, 233–241 (2007).
	32.	 Rainho, A. & Palmeirim, J. M. The importance of distance to resources in the spatial modelling of bat foraging habitat. PLoS One 6, 

e19227 (2011).
	33.	 Ashmole, N. P. The regulation of numbers of tropical oceanic birds. Ibis 103, 458–473 (1963).
	34.	 Catry, I. et al. Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in 

a colonial cavity nester. PLoS One 8, e58320 (2013).
	35.	 Cramp, S. The complete birds of the Western Palearctic on CD-ROM (Oxford University Press, 1988).
	36.	 Rodríguez, C., Tapia, L., Kieny, F. & Bustamante, J. Temporal changes in lesser kestrel (Falco naumanni) diet during the breeding 

season in southern Spain. J. Raptor Res. 44, 120–128 (2010).
	37.	 Catry, I., Amano, T., Franco, A. M. & Sutherland, W. J. Influence of spatial and temporal dynamics of agricultural practices on the 

lesser kestrel. J. Appl. Ecol. 49, 99–108 (2012).
	38.	 Van Winkle, W. Comparison of several probabilistic home-range models. J. Wildl. Man. 39, 118–123 (1975).
	39.	 Bonal, R. & Aparicio, J. M. Evidence of prey depletion around lesser kestrel Falco naumanni colonies and its short term negative 

consequences. J. Avian Biol. 39, 189–197 (2008).
	40.	 Lascelles, B. G. et al. Applying global criteria to tracking data to define important areas for marine conservation. Divers. Distrib. 22, 

422–431 (2016).
	41.	 Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: the importance of the utilization distribution. J. Wildl. Manag. 69, 

1346–1359 (2005).
	42.	 Walter, W. D. & Fischer, J. W. Manual of applied spatial ecology. Walter Applied Spatial Ecology Lab, Pennsylvania State University. 

University Park, Pennsylvania, USA. (2015).
	43.	 Cairns, D. K. The regulation of seabird colony size—a hinterland model. Am. Nat. 134, 141–146 (1989).
	44.	 Holland, A. E. et al. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and 

turkey vultures (Cathartes aura). PLoS ONE 12, e0179819 (2017).
	45.	 García-Ripollés, C., López-López, P. & Urios, V. Ranging behaviour of non-breeding Eurasian Griffon Vultures Gyps fulvus: a GPS-

telemetry study. Acta Ornithol. 46, 127–134 (2011).
	46.	 Arlettaz, R. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis 

myotis and Myotis blythii. J. Anim. Ecol. 68, 460–471 (1999).
	47.	 Oleksy, R., Racey, P. A. & Jones, G. High-resolution GPS tracking reveals habitat selection and the potential for long-distance seed 

dispersal by Madagascan flying foxes Pteropus rufus. Glob. Ecol. Conserv. 3, 678–692 (2015).
	48.	 La Gioia, G., Melega, L., & Fornasari, L. Piano d’Azione Nazionale per il grillaio (Falco naumanni). (Quad. Cons. Natura, 41, 

MATTM - Istituto Superiore per la Protezione e la Ricerca Ambientale - ISPRA, 2017).
	49.	 Podofillini, S., et al. Home, dirty home: effect of old nest material on nest-site selection and breeding performance in a cavity-nesting 

raptor. Curr. Zool. https://doi.org/10.1093/cz/zoy012 (2018).
	50.	 Sarà, M., Campobello, D. & Zanca, L. Effects of nest and colony features on lesser kestrel (Falco naumanni) reproductive success. 

Avian Biol. Res. 5, 209–217 (2012).
	51.	 Limiñana, R., Romero, M., Mellone, U. & Urios, V. Is there a different response to winds during migration between soaring and 

flapping raptors? An example with the Montagu’s harrier and the lesser kestrel. Behav. Ecol. Sociobiol. 67, 823–835 (2013).
	52.	 Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 

516–519 (2006).
	53.	 R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2016).

Acknowledgements
This study was developed within the framework of the LIFE+Natura project “Un falco per amico” (LIFE11/
NAT/IT000068). We thank D. Ciampanella (project manager, LIFE11/NAT/IT000068), M. Lorusso (Comune 
di Altamura), F. Parisi (Comune di Gravina in Puglia), P. Giglio and S. C. Pellegrino (LIPU-BirdLife), and 
A. Frassanito (Parco Nazionale dell’Alta Murgia) for assistance and support. Finally, we thank Steffen Oppel, 
Kenneth A. Schmidt and two anonymous referees for their constructive comments on previous versions. Study 
from the Naumanni76 team (paper no. 03).

Author Contributions
J.G.C. and D.R. conceived the study and wrote the paper with inputs from M.S., S.I., U.M., M.G. and N.S., S.B., S.P., 
E.F., M.S., A.C., M.G., L.S., D.R. and J.G.C. carried out fieldwork; D.R., S.I., S.P., J.G.C. and D.M. analysed the data.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-29933-2.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

105

http://dx.doi.org/10.1093/cz/zoy012
http://dx.doi.org/10.1038/s41598-018-29933-2
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTARY INFORMATION 

Spatial segregation of home ranges between neighbouring colonies in a diurnal raptor 

Jacopo G. Cecere1*, Salvatore Bondì2, Stefano Podofillini3, Simona Imperio1, Matteo Griggio4, 

Egidio Fulco5, Andrea Curcio3, Delphine Ménard3, Ugo Mellone6, Nicola Saino3, Lorenzo Serra1, 

Maurizio Sarà2, Diego Rubolini3* 

1. Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale

(ISPRA), via Ca’ Fornacetta 9, I-40064 Ozzano Emilia (BO), Italy 

2. Laboratorio di Zoogeografia ed Ecologia Animale (LABZEA), Dipartimento STEBICEF,

Università degli Studi di Palermo, Via Archirafi 18, I-90123 Palermo, Italy 

3. Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria

26, I-20133 Milano, Italy 

4. Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35131

Padova, Italy. 

5. Studio Naturalistico Milvus, via F.lli Perito snc, I-85010 Pignola (PZ), Italy

6. Vertebrates Zoology Research Group, Departamento de Ciencias Ambientales y Recursos

Naturales, University of Alicante, Apdo. 99, Alicante E-03080, Spain 

*Correspondence: Jacopo G. Cecere (jacopo.cecere@isprambiente.it; ORCID: 0000-0002-4925-

2730), Diego Rubolini (diego.rubolini@unimi.it; ORCID: 0000-0003-2703-5783) 

1 

106

mailto:(jacopo.cecere@isprambiente.it;
mailto:(diego.rubolini@unimi.it;


Figure S1. Land use map (according to land use classes defined in the Methods and Corine Land Cover 
2012) of outer- (coloured buffers) and inter-colonies areas (grey areas). Top panel: Apulian colonies, red 
line = Gravina in Puglia (GRA), blu line = Altamura (ALT). Low panel: Sicilian colonies, red line = Canalotto 
(CAN), green line = San Gregorio (SAN), blue line = Torrevecchia (TOR). Images elaborated with ESRI 
ArcGIS 10.2.1. for Desktop.  
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Kahle D. & Wickham H. ggmap: Spatial Visualization with ggplot2. The R Journal. 5, 144–161 (2013). 

Figure S2. Maps of selected GPS positions (left panels) and volume UD (with 95% KDE) (right panels) for 
each tracked individual in Apulia. The position of the breeding sites are marked with yellow triangles. 
Individuals (see list in Table 1) are sorted according to colony site (GRA = Gravina in Puglia, red dots; ALT = 
Altamura, blue dots). The corresponding metric unit is shown in the first map.  

Map data: Google, TerraMetrics 2018, plotted with the R package ggmap (Kahle & Wickham 2013). 
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Figure S2. Continued 
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Figure S2. Continued 
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Figure S2. Continued 
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Figure S2. Continued 
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Kahle D. & Wickham H. ggmap: Spatial Visualization with ggplot2. The R Journal. 5, 144–161 (2013). 

Figure S3. Maps of selected GPS positions (left panels) and volume UD (with 95% KDE) (right panels) for 
each tracked individual in Sicily. The position of the breeding sites are marked with yellow triangles. 
Individuals (see list in Table 1) are sorted according to colony site (CAN = Canalotto, blue dots; SAN = San 
Gregorio, green dots; TOR = Torrevecchia, red dots). The corresponding metric unit is shown in the first map. 

Map data: Google, TerraMetrics 2018, plotted with the R package ggmap (Kahle & Wickham 2013). 
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Figure S3. Continued 
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Abstract  

1. Consistent inter-individual differences in behavioural phenotypes and their fitness correlates 

have been documented in several animal species. Diversification in foraging behaviours may 

reduce ecological niche overlap, resulting in a mitigation of intraspecific competition. This 

can be particularly advantageous for colonial species breeding in large aggregations and 

exploiting shared foraging areas. At the same time, different foraging behaviours may vary 

in their efficiency and energy expenditure, with different fitness implications.  

2. We investigated individual differences in foraging tactics in a colonial raptor species, the 

lesser kestrel (Falco naumanni), and assessed their implication in terms of energy 

expenditure and fitness.  

3. We analyzed 279 foraging trips from breeding individuals equipped with GPS-

accelerometer data-loggers by means of expectation–maximization binary clustering to infer 

behavioural mode at each GPS position. Cluster analysis of the relative duration of each 

behavioural mode within a given foraging trip identified two distinct foraging tactics: 

widely-foraging and sit-and-wait. Using behavioural reaction norms we investigated 

differences in individual tendency to adopt a specific foraging tactic across weather 

condition gradients. Energy expenditure for each foraging trip was estimated by means of 

accelerometer data. Finally, we assessed the relationship between the individual tendency to 

adopt a given foraging tactic and nestling growth rate (a proxy for fitness).  

4. Overall, lesser kestrels preferred to pursue widely foraging tactic over sit-and-wait as solar 

radiation and cross-wind-component intensity increased, with the individual tendency to 

adopt a specific foraging strategy being consistent across weather condition gradients. 

Energy expenditure in widely foraging trips was markedly higher than in sit-and-wait trips, 

but nestling feeding rates of parents that were more prone to adopt the more energy 

demanding tactic were higher and their nestlings grew faster. 
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5. Our study provided major insights into the intraspecific variability in foraging behaviour of 

a colonial species, and how it is modulated by weather changes. We further highlighted 

broad energy expenditure differences associated with alternative foraging tactics. 

Importantly, the fitness benefits for parents adopting the most energy expensive foraging 

tactic suggest that individual differences in foraging behaviour may play a key role in 

maintaining life-history trade-offs between reproduction and self-maintenance.  
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Introduction 

Inter-individual differences in behavioural phenotypes, that are consistent over time and 

across environmental contexts, have been frequently documented in animals (Réale et al. 2010). 

Besides, individuals can also consistently differ in how they modulate specific behaviours in 

accordance to external stimuli, the so-called contextual plasticity (Stamps & Groothuis 2010). 

Ultimately, inter-individual differences in behavioural phenotypes and in contextual plasticity have 

evolved because they may have major fitness effects (Dingemanse & Réale 2005; Smith & 

Blumstein 2008), which may be translated at the population level (Brown 1996; Hilton et al. 1999; 

Briffa et al. 2008; Refsnider et al. 2012). For instance, individual differences in foraging behaviour 

may favour foraging specialization, resulting in a reduction of intraspecific competition by limiting 

niche overlap (Bolnick et al. 2003; Swanson et al. 2003; Bolnick et al. 2007, Araújo et al. 2011; 

Navarro et al. 2017;).  

In colonial species, where several conspecifics gather in groups to reproduce close to each 

other and exploit shared foraging areas (Kuhn et al.2014; Lascelles et al. 2016; Cecere et al. 2018), 

resource depletion around colony sites commonly occurs (Ashmole 1963). Such depletion may thus 

favour the evolution and maintenance of individual foraging specialization, which may be important 

in limiting the negative fitness effects of intraspecific competition. Indeed, individual differences in 

dietary preferences have been documented in several colonial vertebrates, including birds (e.g. Woo 

et al. 2008; Ceia & Ramos 2015; Camprasse et al. 2017), pinnipeds (e.g. Cherel et al. 2009; 

Hückstädt et al 2012) and a few terrestrial mammals (Cryan et al. 2012). Such dietary preferences 

may originate from spatio-temporal individual variation in foraging behaviour. For example, female 

northern fur seals Callorhinus ursinus show consistent individual differences in foraging trips 

during the lactating phase (Call et al. 2008). Imperial shags Phalacrocorax atriceps are highly 

consistent within individuals in the maximum distances they reached from the shore and the colony, 

as well as in the time invested in flight and diving, both within a single breeding season and across 

years (Harris et al. 2014). The analysis of foraging trips of northern gannets Morus bassanus 
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breeding in two large colonies revealed consistent individual preferences in foraging areas during 

the nestling-rearing period (Patrick et al. 2013). In the latter species, the analysis of both food 

boluses and blood isotopes, combined with the analysis of at-sea foraging behaviour, have allowed 

documenting individual differences in foraging tactics, with some birds exploiting consistently and 

more frequently than others discards from fishing vessels (Votier et al. 2010). In addition, some 

studies have found that individual differences in foraging behaviour may also arise from sexual 

(Lewis et al. 2005; Patrick et al 2014a), age (Field et al. 2007; Votier et al. 2017), reproductive 

stage (Focardi & Cecere 2014) or physiological status differences (Watanabe et al. 2006). 

Individual differences in foraging behaviour can be conceptually considered as personality 

differences whenever these are consistent across environmental contexts (Patrick eta al. 2014b). 

However, in spite of the large number of studies investigating foraging behaviour and diet choice, 

these traits are rarely examined from an animal personality perspective (Dall et al. 2012).  

The lesser kestrel Falco naumanni is a small (ca. 120 g) colonial diurnal raptor, which mostly 

breeds in holes and crevices of buildings in towns and cities, and forages in farmland areas 

surrounding breeding sites (Cramp 1998; Cecere et al. 2018), where it targets a wide spectrum of 

prey including vertebrates (mice and lizards) and invertebrates (mainly Orthoptera but also 

Coleoptera and Scolopendromorpha) (Cramp 1998). Lesser kestrels show a flexible foraging 

behaviour, whereby both flight mode and hunting strategy vary in accordance to weather conditions 

(Hernandez-Pliego et al. 2017): flapping flight is more frequently adopted than soaring-gliding 

when solar radiation is high, and perch-hunting is more frequently used than flight-hunting when 

both wind speed and solar radiation are lower. However, it is as yet unknown whether individuals 

consistently differ in their foraging tactic across weather condition gradients, and whether there are 

individual differences in the reaction norms to weather conditions.  

In this study, we first defined the foraging tactics adopted during each foraging trip by lesser 

kestrels breeding in a large colony and tracked over multiple foraging trips with miniaturized bio-

loggers (GPS and tri-axial accelerometer). By means of expectation–maximization binary clustering 
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(EMbC) (Garriga et al. 2016), which is particularly suitable to investigate behavioural responses to 

environmental cues (Benisson et al. 2017), we inferred behavioural modes (i.e. perching, relocation, 

intensive and extensive search) associated to each 1-min GPS position during foraging trips. 

Foraging tactics were identified through cluster analysis of the relative duration of each behavioural 

mode within a given foraging trip (Louzao et al. 2014). This approach allowed us to identify 

foraging tactics considering the entire behavioural pattern shown by individuals during a given 

foraging trip. Subsequently, using behavioural reaction norms estimated from mixed effect models 

(Dingemanse et al. 2010), we investigated variation in foraging tactics according to weather 

condition gradients (i.e. gradients in solar radiation, rain and wind), controlling for breeding stage 

(incubation vs. nestling-rearing), sex and exploited habitat type. More specifically, we investigated 

whether individual differences in foraging tactics were consistent across environmental contexts, 

i.e. whether individuals showed consistent prey searching personalities (sensu Réale et al. 2010), 

and assessed the extent of individual differences in the behavioural responses to weather condition 

gradients (contextual plasticity sensu Stamps & Groothuis 2010). Since differences in energy 

expenditure according to foraging tactics were suggested for different birds of prey (e.g 

Nadjafzadeh et al. 2016), we estimated the energy expenditure of each foraging trip by means of tri-

axial accelerometer data and assessed the energy expenditure of different foraging tactics. Finally, 

we explored the fitness correlations of foraging strategies by assessing the association between 

offspring growth rates and parental foraging tactics. 

Considering the flexible foraging behaviour of the lesser kestrel (Hernandez-Pliego et al. 

2017), we expected foraging trips to be characterized by two main behavioural modes: specifically, 

birds should mainly search for prey in flight, i.e. adopting a “widely foraging” (WF) tactic, 

whenever weather conditions are particularly favourable to soaring-gliding (high solar radiation; 

Hernandez-Pliego et al. 2017) and with wind assistance (tailwind or crosswind) at departure from 

the nest site (Mellone et al. 2012; Klaasen et al. 2010). Under opposite weather conditions (i.e. low 

solar radiation, headwind at departure), we expected that birds mainly adopt a more static foraging 
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tactic, i.e. “sit-and-wait” (SAW) foraging, characterized by prolonged perching periods waiting for 

prey detection. According to previous studies analyzing individual differences in movement 

patterns of colonial animals (e.g. Call et al. 2008, Votier et al. 2010, Patrick et al. 2013), we 

expected that individuals consistently differ in their tendency to adopt a given foraging tactic, but 

we also predicted such differences to be consistent across weather condition gradients. Finally, we 

predicted WF to be associated with higher energy expenditure compared to SAW (Nadjafzadeh et 

al. 2016.). 

 

 

Materials and methods 

Target species and study area 

The lesser kestrel is a sexually size dimorphic species, females being ca. 15% heavier than 

males (Cramp 1998; our unpubl. data). Females lay up to five eggs that both parents incubate for ca. 

30 days. After hatching, both parents feed the nestlings until fledging, which takes place at 35-40 

days of age. The study was carried out in the lesser kestrel colony of the city of Matera (S. Italy; 

40°39′ N, 16°36’ E), hosting ca. 1000 breeding pairs (La Gioia et al. 2017). We relied on nest-boxes 

placed on buildings roofs in the old town (Podofillini et al. 2018), which allowed us to easily 

capture breeding individuals (by hand or by specially designed nest traps) during both incubation 

and nestling-rearing stages. Data were collected in the first two decades of June of the breeding 

seasons 2016 and 2017, when pairs were in the late incubation or early nestling-rearing stage. 

 

GPS deployment and identification of foraging trips  

We equipped 25 breeding lesser kestrels (7 females and 18 males) with Axy-Trek loggers by 

TechnoSmArt S.pA., Rome, Italy. The Axy-Trek devices, consisting of a GPS logger and a tri-axial 

accelerometer logger, were deployed on the back using Teflon harness. For all devices, the tri-axial 

accelerometer was set to record data at 25 Hz and the GPS to record one position per minute from 
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05:00 to 21:00 local time (i.e. ca. 20 min before sunrise and ca. 30 after sunset). Since our focus 

was on foraging activity, we preserved battery power by stopping collecting data during night-time 

roosting. The total weight of the equipment (including the harness) varied between 6.0 and 7.2 g, 

which on average accounted for 4.6% of the birds’ body mass (range: 3.9 - 5.3%). Nest-boxes were 

monitored three times per week to obtain detailed data about reproduction stage (i.e. laying dates, 

incubation, hatching, nestling growth). Birds were tracked for 2-5 days, after which batteries were 

exhausted. They were thus recaptured and the devices were removed. Birds were tagged in the 

morning and devices were set to start the following day, in order to collect data when the tagged 

birds were likely inured to the device. 

Foraging trips were identified as those tracks starting and ending within a 50-m buffer around 

the nest site, and heading to the rural surroundings, by means of ESRI ArcMap 10.2.1. We did not 

consider as foraging trips all the excursions which only covered the urban area, identified by means 

of the 2012 CORINE Land Cover (CLC) map (codes 111 and 112, respectively continuous and 

discontinuous urban habitat). Each trip was classified as occurring during incubation if only eggs 

were present in the nest of the target individual on the date when the foraging trip was performed, 

or as occurring during the nestling-rearing stage if at least one nestling was present in the nest on 

the date when the trip was performed.  

 

Identification and characterisation of foraging tactics 

To identify and characterise foraging tactics adopted during each foraging trip, we first 

identified behavioural modes from GPS data by applying the Expectation Minimization binary 

Clustering (EMbC) algorithm using the "EMbC" package (Garriga et al. 2016) for R ver. 3.3.2 (R 

Core Team 2016). The EMbC is a state-space model based on maximum likelihood which assigns a 

behavioural mode to each GPS position according to the instantaneous speed and the turning angles 

between successive positions. The algorithm identifies four behavioural modes: perching 

(characterised by low speed and low turns), intensive search (low speed and high turns), relocation 
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(high speed and low turns) and extensive search (high speed and high turns). After clustering, we 

applied a post-processing smoothing implemented in the EMbC package to minimize incorrect 

labelling of single localizations. For this procedure, that is based on the temporal behavioural 

correlations, we used the default value of the maximum likelihood difference to accept a relabelling, 

δw=1, i.e. “accept all changes”.  

Then, to identify the main foraging tactics, we performed a hierarchical clustering of all 

recorded trips based on the proportion of the four behavioural modes observed during each trip, 

using the “Pvclust” R-package (with Euclidean distance and Ward’s aggregation method; Suzuki & 

Shimodaira 2015). To find the optimal number of clusters, we used three different methods:1) the 

‘elbow’ method, selecting the number of clusters that minimizes the total intra-cluster variation; 2) 

the ‘silhouette’ method, which measures the quality of a clustering by assessing the similarity of an 

object compared to the others; and 3) the gap statistics for hierarchical clustering, which compares 

the total within intra-cluster variation with their expected values under null reference distribution of 

the data (Tibshirani et al. 2001). All three methods coherently identified two clusters as those 

optimally grouping foraging trips. These two clusters represent two different foraging tactics. 

To characterize differences between the two foraging tactics, we compared, by means of 

linear mixed models (LMMs, with individual identity as a random factor), the percentage of the 

four behavioural modes (as identified by the EMbC method) in each foraging trip and the following 

descriptors calculated for each trip using the “trip” R-package (Summers et al. 2016): (1) duration; 

(2) total trip length; (3) maximum distance from the nest site; (4) tortuosity, calculated as the ratio 

between the total trip length and the maximum distance from the breeding site. 

Finally, we calculated the overall dynamic body acceleration (ODBA) for each foraging trip 

using tri-axis accelerometer data. ODBA provides a measure of dynamic acceleration mainly 

resulting from the movement of body parts, i.e. excluding the static acceleration resulting from 

body angle with respect to gravity (Wilson et al. 2006; RopertCoudert et al. 2007, Halsey et al. 

2008) and it is considered a proxy of energy expenditure in birds (Halsey et al. 2011; Elliot et al. 
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2013). ODBA was shown to be positively correlated to O2 consumption rates and CO2 production 

in great cormorants (Phalacrocorax carbo) (Wilson et al. 2006) and to heart rate in two griffon 

vulture species (Gyps fulvus and G. himalayensis) (Duriez et al. 2014). According to Wilson et al. 

(2006), we computed ODBA for each foraging trip as the sum of the instantaneous dynamic 

acceleration values, obtained subtracting the total acceleration data from each of the three axes to 

the static acceleration (total acceleration smoothed with a 1 s running). Finally, we investigated 

differences in energy expenditure according to foraging tactics by running LMM of ODBA with 

individual identity as a random intercept effect, and foraging tactic, sex.  

Both LMMs and LMs also included all possible interactions between variables as predictors, 

which were then removed if non-significant (P > 0.05) in the final models. 

 

Environmental variables  

To assess whether the probability to adopt a given foraging tactic was affected by weather 

conditions, each trip was associated to: (1) solar radiation at departure, which seems to be 

determinant for performing soaring-gliding flight in lesser kestrel (Hernandez-Pliego et al. 2017); 

(2) presence/absence of rain at the trip departure, which we hypothesized may affect the decision of 

flying; (3) tail-wind (TWC) and (4) cross-wind components (CWC), both of which are known to 

affect movement activity in soaring raptors (Mellone et al. 2012; Klaasen et al. 2010). We also 

included sex, breeding stage (incubation vs. nestling-rearing) and the proportion of each trip spent 

in arable lands (i.e. the main habitat used for foraging) as covariates.  

Solar radiation and rain information were recorded at a weather station located at 8 km from 

the nest sites (Matera, Contrada Matinelle, 40°41' N; 16°31' E). Wind information (speed and 

direction) were recorded at a different weather station, located at 15 km from the nest sites (Grottole 

40°37’ N; 16°26’ E).  
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TWC and CWC were calculated for each trip from the mean speed and direction of the wind 

(WS and WD respectively) associated to each GPS position, and the mean direction of the trip 

(TD), as follows: 

 

𝑇𝑊𝐶 = 𝑊𝑆 × cos(𝑇𝐷 −𝑊𝐷) 

𝐶𝑊𝐶 = |𝑊𝑆 × sin(𝑇𝐷 −𝑊𝐷)| 

 

The mean direction of the trip was calculated as the angle between the N-S axis (directed 

northwards) and the position of the furthest point of the trip. A positive TWC implies that the bird 

flew globally with tail-wind on its way out of the colony towards the foraging grounds, whereas a 

negative TWC indicates the opposite (outgoing flights with headwinds). A large CWC value means 

that the bird flew with a high global side-wind during the foraging trip. 

To evaluate whether foraging tactics were affected by habitat, we assigned all GPS positions, 

excluding those identified as relocation by the EMbC, to the corresponding habitat type from CLC 

by means of ESRI ArcMap 10.2.1. We pooled together those CLC habitat types that were similar in 

habitat and structure, obtaining 6 habitats classes: artificial landscape (continuous and discontinuous 

urban fabric, infrastructures, industrial areas), arable lands, permanent crops (tree plantations, olive 

groves, vineyards), grasslands (pastures and natural grasslands), heterogeneous agricultural areas 

(annual crops associated with permanent crops, complex cultivation patterns, agro-forestry areas), 

and wooded areas (forests and bushes). Each trip was then characterised by the percentage of 

positions occurring in each habitat class. Arable land was the main used habitat during foraging 

trips (60.22% SE: 2.08) and it was negatively correlated with grassland, the second most frequently 

used habitat (16.92% SE: 1.66) (r = -0.67, p < 0.0001, n = 279 trips). 
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Analysis of factors affecting foraging tactics 

The probability to adopt a given foraging tactic identified by the cluster analysis was 

modelled by means of a binomial generalised linear mixed model (GLMM) with foraging tactic as 

the binary dependent variable (0 = SAW, 1 = WF) and solar radiation, TWC, CWC, and 

presence/absence of rain as predictors, controlling for sex, breeding stage, habitat (% of arable land) 

and sampling year. Because sexually differences in body size (Cramp 1998), we cannot exclude 

different behavioural response of sexes to weather conditions; we hence included in the model all 

the interactions between sex and each of weather variables (i.e. solar radiation, TWC, CW and rain) 

as predictors. The non-significant (P > 0.05) interactions were then removed in a single step. All 

predictors were standardized to have mean = 0 and standard deviation = 1. Bird identity was 

included as a random intercept effect in all models. Binomial GLMMs were checked for 

overdispersion by means of the “blmeco” R-package (Korner-Nievergelt et al. 2015). 

 

Analysis of individual differences and fitness consequences  

The random intercept effect of the above-mentioned binomial GLMM describes the extent to 

which individuals preferentially adopt one of the two foraging tactics (i.e. whether foraging tactics 

can be regarded as a personality trait; Biro 2010). To investigate individual differences in the 

response to environmental gradients (behavioural reaction norms), which represent the extent of 

contextual plasticity (see Dingemanse et al. 2010 for more details), we re-run the final binomial 

GLMM by including a random slope effect at the individual level. Random slopes were fitted only 

for weather variables significantly affecting the modulation of the foraging tactics, as resulting by 

the binary GLMM described above, to avoid model overparametrization and lack of convergence. 

Significance of random intercept and slope effects were tested by means of parametric 

bootstrapping (using the “pbnm” R-package, with n = 10000 resamplings; Banghart 2015).  

To assess whether the individual tendency to adopt one tactic over the other one was 

associated with fitness, we tested the relationship between the individual intercept, derived by 
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binomial GLMM described above using the ranef fuction in “lme4” R-package (Bates et al. 2015), 

and offspring growth rate. The latter was defined as the difference between the mean body mass of 

all nestlings of a given nest at 12 days and that at 3 days after hatching of the first egg of the clutch. 

Given the coding of the foraging tactic in the binomial GLMM (0 = SAW, 1 = WF), higher values 

of the individual intercept imply a higher propensity of individuals to adopt the WF tactic. The 

fitness consequence of the individual tendency to adopt WF tactic was hence tested by means of a 

linear model (LM) with offspring growth rate as dependent variable and individual intercept as a 

predictor, controlling for sex, sampling year and brood size at 12 days from hatching of the first 

egg. This analysis only regarded the 15 successful breeders that were tracked (i.e. those whose eggs 

hatched and whose offspring were alive at 12 days from hatching of the first egg).  

Finally, to assess whether individuals with a higher tendency for WF tactic feed their 

nestlings more frequently than individuals with a lower tendency for WF, we modelled the number 

of foraging trips per hours as a function of the individual tendency to adopt WF, controlling for sex. 

For this latter analysis we only considered foraging trips performed during the nestling-rearing 

stage (from 11 individuals). Because of the small sample size we did not include in the model brood 

size and sampling year which, however, did not significantly affect the number of foraging trips per 

hours in single-variable LMs (P > 0.91). 

 

 

Results 

Identification and characterization of foraging tactics 

We obtained 281 foraging trips (110 in 2016 and 171 in 2017) from 25 breeding birds. Details 

about sub-samples and trip characteristics related to breeding stages and sampled years are reported 

in Table 1. Foraging trips performed during incubation stage were significantly longer than those 

performed during the nestling-rearing stage, with no significant effects of sex and year (Table 2). 

128



14 
 

Consequently, birds covered significantly greater distances during incubation trips than during 

nestling-rearing trips (Table 2).  

Each trip was characterised by the percentage of time spent performing each of the four 

behavioural modes (Fig. S1 and S2). Two trips, which only included relocations, were removed 

from the analyses. The 279 remaining trips were then subjected to hierarchical cluster analysis, 

which identified two distinct clusters (Fig 1). The first cluster included trips characterised by high 

frequency of perching positions, and low frequency of intensive search and relocation positions, 

representing a SAW tactic. The other cluster included trips characterised by high frequency of 

relocation and intensive search positions, and a low frequency of perching positions, representing 

WF tactic, with bird mostly searching for food while flying. On average, SAW foraging trips lasted 

longer than WF trips, whereas all other trip descriptors did not significantly vary according to 

foraging tactic (Table 3). Accelerometer data were available for 23 out of 25 tagged birds. ODBA, 

computed for 219 trips, was markedly higher for WF foraging trips than for SAW foraging with no 

effects of sex and brood size (Table 2). 

 

Environmental gradients affecting foraging tactics, individual differences in foraging behaviour 

and their effects on nestling growth rate 

The probability of adopting WF was positively affected by solar radiation, CWC and breeding 

stage (Table 4): with low CWC and low solar radiation, birds mostly adopted SAW, whereas as 

CWC and solar radiation increased, the probability of adopting WF increased (Fig. 2). Birds 

adopted significantly more WF trips during the nestling-rearing stage compared to the incubation 

stage (Table 4). The random intercept effect was significant (P < 0.01), indicating that individuals 

consistently differed in foraging tactic across solar radiation and CWC gradients (Fig. 3). The 

variance estimate for the random slope in response to changes in weather conditions was not 

significant for both solar radiation (P = 0.92) and CWC (P = 0.77), indicating that tracked 

individuals responded in a similar way to weather condition changes.  
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Offspring growth rate was positively affected by the individual tendency to perform WF, with 

no significant effects of brood size, sex, and sampling year (Table 2). Finally, the number of 

nestling-rearing foraging trips performed per hour was marginally significantly higher among 

parents showing a stronger tendency to adopt WF, with males performing more foraging trips per 

hour than females (Table 2). 

 

 

Discussion 

We analyzed the foraging behaviour of lesser kestrels to investigate the degree of individual 

specialization in foraging tactic during the breeding period in a colonial bird species. Foraging trips 

performed during incubation were more extended in time and space than those performed during 

early nestling-rearing stage, a common pattern in central place foraging bird species (Weimerskirch 

et al. 1993; Guilford et al. 2008; Cecere et al. 2013). Like many other raptor species (Andersson & 

Norberg 1981), male lesser kestrels perform more frequent foraging trips than females during 

nestling-rearing stage. By means of hierarchical cluster analysis based on the relative duration of 

each behavioural mode identified with EMbC algorithm, we identified two distinct tactics adopted 

by breeding lesser kestrels tracked over multiple foraging trips: one was strongly characterized by 

perching, lower proportion of intensive search and relocation and it was associated to long lasting 

trips (SAW tactic); the other one was characterized by a higher proportion of both relocation and 

intensive search, lower perching and it mainly referred to short lasting trips (WF tactic). WF was 

associated to 1.6-fold higher energy expenditure compared to SAW. The probability of adopting 

WF tactic over SAW increased with increasing solar radiation and CWC, and it was higher during 

nestling-rearing stage. 

On top of this, individuals consistently differed in their preference for adopting a given 

foraging strategy, while no significant contextual plasticity emerged (i.e. all individuals modified 

their foraging tactic in a similar way in relation to weather gradients). Finally, the more individuals 
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showed a tendency to adopt the most energy demanding foraging tactic (i.e. WF) tactic, the higher 

the growth rate of their offspring was.  

The occurrence of both SAW and WF tactics has been documented for many predator species, 

including reptiles (e.g. Perry 1999; McLaughlin 1989), fish (e.g. East & Magnan 1991; Grant & 

Noakes 1988), birds (e.g. McLaughlin 1989; Nadjafzadeh et al. 2016) and mammals (Williams et 

al. 2014). However, to our knowledge, the alternation of the two foraging tactics has seldom been 

analyzed at the individual level (Wakeley 1978). The lesser kestrel relies on thermal soaring when 

foraging, especially during periods of high solar radiation (Hernández-Pliego et al. 2015). Here we 

show that foraging individuals of lesser kestrel mainly adopted SAW when weather conditions were 

not ideal for soaring-gliding fights, i.e. with low solar radiation (Hernández-Pliego et al. 2015) and 

low crosswinds, a wind condition which is known to affect movement activity in soaring raptors 

(Mellone et al. 2012; Klaasen et al. 2010). Accordingly to what was predicted by a number of 

studies of raptors (Wakeley 1978; Nadjafzadeh et al. 2016), we found that SAW is a low-energy 

expenditure foraging tactic compared to WF. However, as weather conditions get better for soaring-

gliding individuals preferred to switch to the more energy demanding WF tactic. This was likely the 

case because WF allowed birds to perform shorter lasting foraging trips compared to SAW, thus 

increasing offspring feeding rates. Indeed, WF was more frequently adopted during nestling-

rearing, when breeders are constrained to frequently come back to the nest for feeding their 

offspring, compared to incubation, when foraging trips are aimed at self-feeding.  

We envisage at least two positive fitness effects of adopting the most energy demanding 

foraging tactic for breeding adults. First of all, we were able to show that birds that were more 

prone to adopt WF were able to increase the feeding rate of their offspring with respect to parents 

mainly adopting SAW tactic. Although this finding should be viewed with caution because we 

could assess the behaviour of a single partner, it suggests that, even when considering the 

uniparental contribution to nestling growth, an increased energy expenditure during foraging could 

result in positive effects on fitness and faster offspring growth due to the higher frequency of 
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foraging trips. An additional possible benefit of adopting WF compared to SAW may be the 

increased opportunity to forage in group by means of local enhancement processes, whereby 

individuals searching for food are attracted by feeding aggregations of other individuals 

(Machovsky-Capuska et al. 2014). It has been predicted that social foraging increases individual 

foraging efficiency, particularly when birds exploit unpredictable opportunities (Overington et al. 

2008). The higher opportunity of foraging in groups when adopting the WF tactic may explain the 

shorter duration of foraging trips respect to the one associated to SAW trips. In the study area, we 

regularly observed large aggregations of lesser kestrels following harvesting machines to catch 

large orthopterans flushed during harvesting operations or social foraging around burning cereal 

stubbles, with individuals waiting for prey escaping from fires. It is likely that such unpredictable 

and profitable social foraging opportunities can be better exploited by adopting WF rather than 

SAW.   

Besides the general figure about the alternation of the two foraging tactics according to 

weather conditions, our results also showed an individual component to foraging tactic, with 

individuals being consistently more prone to adopt a specific foraging tactic, and that these 

differences were consistent across different environmental gradients of solar radiation and wind 

assistance. Such individual differences in foraging tactics may reflect foraging specialization, and 

may contribute to reduce intraspecific competition at foraging grounds. By adopting different 

foraging tactics, lesser kestrels may indeed forage in different sites and/or target different prey 

items. Although we did not find any difference in the main used habitats (arable lands and 

grasslands) between SAW and WF trips, it is anyhow possible that birds targeted on different prey 

items accordingly to foraging tactic. According to Greene (1986), indeed, sit-and-wait predators 

generally catch larger prey compared to those taken by active predators (see also de Arruda Bueno 

and Motta-Junior 2008). We hence may hypothesize that lesser kestrel mainly target on lizard and 

small mammals during SAW foraging trips  and that WF is mainly used by lesser kestrels to forage 

on slow-moving and flying large insects. 
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Overall, such individual difference in foraging behaviour, which was consistent across 

contexts, represents a personality difference (Patrick et al. 2014b; Dall et al. 2012). Our study 

supports the idea that individual differences in foraging behaviour widely occur in colonial species, 

likely resulting in a mitigation of intraspecific competition by limiting niche overlaps. Moreover, it 

reveals that foraging tactics are not equivalent in term of energy expenditure and fitness, ultimately 

suggesting that interindividual differences in foraging tactics may contribute maintaining key life-

history trade-offs, such as those between reproduction and self-maintenance. 
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Table 1 – Foraging trip characteristics and sample size (N). For each variable the mean values ± 

S.E. (minimum and maximum value) are reported. 

 

  Duration (h) 
Max distance from 

breeding site (km) 

Total distance 

covered (km) 

2016 Incubation trips 2.4 ± 0.18 5.26 ± 0.28 18.22 ± 1.21 

 (N = 76)  (0.21 - 9.76)  (0.89 - 17.62)  (3.85 - 55.59) 

2017 Incubation trips 2.02 ± 0.16 6.63 ± 0.26 20.79 ± 0.89 

 (N = 91)  (0.37 - 8.61)  (0.61 - 13.33)  (2.79 - 74.79) 

All incubation trips  2.19 ± 0.12 6 ± 0.19 22.93 ± 1.3 

(N = 167)  (0.21 - 9.76)  (0.61 - 17.62)  (2.79 - 74.79) 

2016 Nestling-rearing trips 1.37 ± 0.14  4.75 ± 0.42  14.68 ± 1.4  

 (N = 34) (0.2 - 3.2) (1.43 - 8.18) (3.21 - 29.34) 

2017 Nestling-rearing trips  1.09 ± 0.07  6.03 ± 0.25  16.87 ± 0.83  

(N = 78) (0.24 - 2.93) (2.45 - 13.98) (5.77 - 39.84) 

All nestling-rearing trips  1.17 ± 0.06  5.66 ± 0.22  16.21 ± 0.72  

(N = 112) (0.2 - 3.2) (1.43 - 13.98) (3.21 - 39.84) 
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Table 2 – Models 1 and 2: linear mixed models (LMM) of the effect of breeding stage (incubation 

and nestling-rearing) and sex (male and female) on trip duration and distance covered during 

foraging trips, respectively, while accounting for concomitant effect of sampling year (2016 and 

2017). Model 3: LMM of the effect of foraging tactic (SAW and WF) on overall dynamic body 

acceleration (ODBA), accounting for sex effects. Models 4 and 5: linear models (LMs) of the effect 

of individual tendency to adopt WF (individual intercept from GLMM reported in Table 4) on 

offspring growth rate and number foraging trips per hours during nestling-rearing stage 

respectively, while accounting for the concomitant effects of other predictors. Non-significant 

interactions were removed in the final models. 

 

Predictors Estimate ± SE t P 

1. Trip duration ( N = 279 trips from 25 birds)   

 Breeding stage -0.97 ± 0.16 -6.07 < 0.0001 

 Sex 0.29 ± 0.21 1.34 0.18 

 Sampling year -0.30 ± 0.16 -1.80 0.07 

     

2. Distance covered ( N = 279 trips form 25 birds)  

 Breeding stage -5.26 ± 1.28 -4.10 < 0.0001 

 Sex 0.77 ± 1.71 0.45 0.65 

 Sampling year 4.00 ± 1.35 2.95 0.003 

     
3. ODBA (N = 219 trips from 23 birds)   

 Foraging tactic 0.14 ± 0.01 12.10 < 0.0001 

 Sex -0.004 ± 0.03 -0.32 0.89 

     

4. Offspring growth rate (N = 15 birds)   

 Individual tendency 15.31 ± 6.50 2.36 0.04 

 Brood size -1.48 ± 3.51 -0.42 0.68 

 Sex 5.67 ± 7.71 0.74 0.48 

 Sampling year 5.66 ± 7.71 0.74 0.48 

     

5. Nestling rearing foraging trips/hour (N = 11 birds) 

 Individual tendency 0.22 ± 0.1 2.26 0.05 

  Sex -0.30 ± 0.1 -3.17 0.01 
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Table 3 – Differences between trips belonging to the two foraging strategies (SAW and WF) in 

behaviour and movement parameters, assessed by means of linear mixed models with individual 

identity as a random intercept. For each variable the mean values ± S.E. are reported. 

 

Variable 
SAW  WF 

t df P 
n = 123 n = 156 

Behavioural modes      

 Perching (%) 31.27 ± 2.47 19.34 ± 1.91 -4.21 1 < 0.001 

 Relocation (%) 38.16 ± 1.73 45.30 ± 1.59 3.51 1 < 0.001 

 Intensive search (%) 23.36 ± 1.32 28.38 ± 1.30 2.78 1 0.005 

 Extensive search (%) 7.21 ± 0.79 6.99 ± 0.53 -0.12 1 0.91 

       

Movement descriptors      

 Duration (h) 2.52 ± 0.14 1.20 ± 0.07 -8.51 1 < 0.001 

 Total distance (km) 19.28 ± 0.96 18.69 ± 0.81 -0.65 1 0.52 

 Tortuosity 3.33 ± 0.08 3.15 ± 0.08 -0.4 1 0.7 

 Maximum distance (km) 5.74 ± 0.23 5.96 ± 0.19 -0.15 1 0.9 

  ODBA 0.25 ± 0.002* 0.41 ± 0.009** 12.14 1 < 0.0001 

* n = 107 foraging trips 

** n = 112 foraging trips 
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Table 3 – Binomial generalized linear model of foraging tactic (SAW vs. WF). The binomial 

dependent variable was coded as 0 for SAW and 1 for WF. Estimates refer to standardized 

variables. The model includes individual identity as a random intercept effect. The model was not 

overdispersed (ϕ = 1.0). 

 

Predictors Estimate ± SE Z P 

Solar radiation 0.52 ± 0.16 3.31 0.001 

CWC 0.57 ± 0.17 3.43 < 0.001 

TWC -0.17 ± 0.16 -1.03 0.30 

Rain -0.16 ± 0.16 -0.97 0.33 

Arable lands -0.02 ± 0.16 -0.11 0.91 

Breeding stage 0.46 ± 0.19 2.51 0.01 

Sampling year 0.64 ± 0.23 2.82 0.005 

Sex -0.07 ± 0.21 -0.36 0.72 
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Figure 1 – Cluster analysis of the foraging trips according to the percentage of the four behavioural 

modes identified by the EMbC analysis (extensive search, intensive search within each trip, n = 279 

trips). Left: dendrogram of foraging trips derived from the cluster analysis. Right: percentage of 

positions in each of the four behavioural classes for each trip; red rectangles delimit the two clusters 

(cluster 1: 156 trips referred to WF tactic; cluster 2: 123 trips, referred to SAW tactic).  
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Figure 2 – Variation in the probability of adopting widely foraging (WF) vs. sit-and-wait (SAW) 

foraging tactics according to solar radiation and CWC (cross-wind component). Bold lines represent 

the values predicted by the model shown in Table 3 and the grey area indicates the 95% confidence 

interval.  
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Figure 3 – Probability of adopting WF vs. SAW according to solar radiation and CWC (cross-wind 

component). Lines are model-predicted values for each individual assuming a random intercept, 

fixed slope effect.   

 

 

 

150



 

36 
 

Supplementary materials 1 

 2 

Figure S1 – Scatter-plot of GPS positions in relation to speed and turning angle, showing with 3 

different colours the four behavioural modes identified by the EMbC algorithm (Garriga et al. 4 

2016), before (upper panel) and after (lower panel) post-processing smoothing. Grey lines depict 5 

the values of the binary delimiters (a set of parameters that split input data into high and low values 6 

and define the binary regions of the input space, Garriga et al. 2016). LL = low speed and low turns 7 

(perching); LH = low speed and high turns (intensive search); HL = high speed and low turns 8 

(relocation); HH = high speed and high turns (extensive search); NC = not classified data points 9 

(e.g. the last point of the trajectory). 10 
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Figure S2 – Pairwise comparison of SAW (left panels) and WF (right panels) trips performed by 12 

the same individual during incubation and nestling-rearing stages. Colours represent behavioural 13 

modes: perching (yellow), intensive search (red), relocation (light blue) and extensive search (dark 14 

blue). Bird identity, trip duration and breeding stage of trip are reported on the top of each panel. 15 

Perching points always represent multiple consecutive 1-min GPS-positions with same location. 16 

Large “X” shows the nest site position. 17 
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Abstract 

Environmental conditions and trade-off between costs and benefits of migration led the evolution of 

different migratory strategies. Among all the strategies observed, migratory connectivity describes 

the continental configuration of the breeding areas and how it affects the continental distribution of 

the overwintering grounds, at species and population level. It has been observed that, in several 

long-distance migratory bird species, migratory connectivity is weak with individuals, that belonged 

to different populations during the breeding season, shared the same non-breeding grounds. Since 

environmental conditions occurred during non-breeding period (i.e. food abundancy, intraspecific 

competition and weather conditions) could severely affect individuals, understanding broad patterns 

of migratory connectivity is the first step to evaluate causes of intraspecific population dynamics.  

Following a multi-population approach, in this study we combined all the existing data, obtained 

with different tracking devices (GLS and GPS), of lesser kestrel migration belonged to Spanish, 

Italian, Greek and Bulgarian populations. Aim was to assess whether the continental configuration 

in the breeding grounds could have a role in determining population migration strategy. Irrespective 

to other long-distance migratory bird species, we found that European lesser kestrels show strong 

migratory connectivity and thus the continental configuration in the breeding grounds significantly 

affected overwintering ground locations. Despite lesser kestrel winter grounds are spread out over 

extensive areas, and thus is expected to be more resilient to environmental changes, the spatial 

segregation that occurs among European populations underlined the importance to gather 

information about the associations between breeding and overwinter areas to implement successful 

conservation strategies and deeply understand population dynamics. 

 

Key words: biogeography of migration, migratory connectivity, migratory strategy, satellite 

telemetry 
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Introduction 

 

Avian migration is a naturally plastic trait that has fascinated generations of researchers for its 

evolutionary, ecological, neural and physiological implications (Berthold, 2001, Greenberg & 

Marra, 2005, Alerstam 1990, Newton 2008). During migration, bird populations move from their 

breeding quarters to their non-breeding residence areas, implying that avian migration is essentially 

a geographic process during which species’ ranges become spatially and ecologically separated 

through seasons (Joseph et al., 1999). A consistent part of biogeographic investigation has been 

devoted to the comprehension of the evolution of bird migration, trying to solve the long-standing 

debate about the ‘northern-home’ or ‘southern-home’ origin of migration (e.g. Joseph et al., 1999, 

Salewski & Bruderer, 2007, Louchart, 2008, Zink & Gardner, 2017). Other biogeographic aspects 

of avian migration have been almost overlooked, due to the known difficulties of reconstructing 

both ancestral and current breeding and non-breeding ranges. In the last twenty years, comparative 

phylogenetic analyses have been used to infer the biogeographic history (including ancestral range 

reconstruction) of migratory lineages (Joseph, 2005, Winger et al., 2014), while technological 

advances have revolutionised the study of migration (Bridge et al., 2011) allowing the identification 

of current non-breeding ranges even in species that migrate to remote areas, by means of biologging 

systems (Rutz & Hays, 2009), intrinsic biological markers like nucleotide sequences (e.g. Wink et 

al., 2004, Irwin et al., 2011), stable isotopes (Hobson 2005, Bearhop et al., 2005), which were 

integrated with the traditional analyses of ringing data (e.g. Boulet et al., 2006, Bensch et al., 2009). 

The growing body of individual tracking studies has revealed, or described in more detail than ever 

before, the movement ecology of species within and across continents (Nathan et al., 2008). Explicit 

spatial information on the geographic position of populations in non-breeding areas is therefore no 

longer a limiting factor, and is giving strong impulse to the analysis of migratory patterns in a 

biogeographic perspective. One useful approach in this direction is the study of migratory 
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connectivity (e.g. Calandra et al., 2014, Ouwehand et al., 2015) and of migratory divides (Delmore 

et al., 2012).  

Migratory connectivity is the link between breeding and non-breeding areas of animals 

moving during migrations. Studies of migratory connectivity focus on the retention of breeding 

population structure on the non-breeding grounds, and vice versa (Marra et al., 2006, Cohen et al. 

2018). A ‘weak’ or ‘diffuse’ connectivity occurs when individuals from every breeding population 

spread through several non-breeding grounds, therefore mixing together (Webster et al., 2002). 

Strong connectivity instead occurs when individuals from one breeding population move to a 

specific non-breeding location, so that the inter-population separation of non-breeding areas 

matches the inter-population separation of breeding areas. Strong connectivity is a pre-condition for 

the establishment of migratory divides (Bearhop et al., 2005). These latter are contact zones 

between divergent populations promoted by differences in migratory behaviour that favour 

reproductive isolation and speciation (Irwin & Irwin, 2005). Typical case studies are the 

geographically isolated inland and coastal Swainson’s thrushes (Catharus ustulatus) populations, 

that expanded from separate eastern and western American regions after the Last Glacial Maximum, 

and have current migratory pathways that trace the post-glacial colonization routes (Ruegg et al., 

2006, Delmore et al., 2012), and the Scandinavian willow warbler subspecies (Phylloscopus 

trochilus trochilus and P. t. acredula) (Chamberlain et al., 2000), that breed in adjacent ranges but 

use different migratory routes to reach distinct non-breeding grounds (Helbig, 1996, Bensch et al., 

1999). Migratory divides are considered to maintain genetic differentiation, local adaptation and 

reproductive isolation in many Holarctic species (Chamberlain et al., 2000, Bearhop et al., 2005, 

Rolshausen et al., 2009, Delmore et al., 2012). 

Biologging technologies are providing major insights into the potential contribution of 

seasonal migration to reproductive isolation, and hence in speciation (Turbek et al., 2018).  

At continental scales, comparing non-breeding distribution of conspecifics populations that differ in 

migratory behaviour will be a fundamental step to assess the degree of migratory connectivity. 
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Understanding patterns of migratory connectivity and population differentiation in migratory 

behaviour is of fundamental importance to improve our understanding of ecological processes 

affecting populations of migratory species through their life cycle. For instance, discrete breeding 

populations sharing non-breeding areas (i.e. weak connectivity) would be similarly affected by 

biotic and/or abiotic factors occurring in their non-breeding grounds, whereas the opposite would be 

the case for populations that show strong connectivity (Webster et al., 2002). We know that avian 

migrants are flexible enough to adjust their migration in response to environmental conditions en 

route (e.g. Tøttrup et al., 2008, Vansteelant et al., 2017), yet physical factors and geographic 

configuration can shape the general framework of migration routes (Irwin & Irwin, 2005, Mellone 

et al. 2011a), and in many cases ecological barriers and migratory distances determine the evolution 

of migratory flyways and connectivity links (e.g. Henningsson & Alerstam, 2005). Heterogeneity of 

environmental factors and trade-offs between costs and benefits associated to migration have thus 

shaped migration strategies among populations, and even among individuals within species 

(O’Reilly & Wingfield, 1995, Sergio et al., 2014, Shamoun-Baranes et al., 2017, Monti et al. 2018). 

For Afro-Palaearctic migrant species, the Mediterranean Sea and the Sahara Desert constitute major 

ecological barriers separating breeding and non-breeding ranges. The hazards of long journeys, 

often across hostile habitats and the dependence upon resources and habitats in areas distant 

thousands of kilometres make long-distance migrants more susceptible to anthropogenic impacts 

and global change (Newton, 2008), such that species breeding in Eurasia and spending the boreal 

winter in sub-Saharan Africa are experiencing stronger population declines than short-distance 

migrants or resident species (Sanderson et al., 2006). 

Delineating broad patterns of migratory connectivity at continental scale can thus be a 

primary step in evaluating causes of differential intra-specific population trends among breeding 

populations (Marra et al., 2006).  

In this study we investigate patterns of migratory behaviour and route differentiation among 

breeding populations, and patterns of migratory connectivity in the long-distance migratory lesser 
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kestrel (Falco naumanni), a small (ca. 120 g) diurnal raptor. This species is distributed across the 

Palaearctic region, with populations breeding across southern Europe, North Africa, until to Middle 

East and Central China. During the boreal winter, populations migrate almost entirely to the 

Afrotropical region, south of Sahara (Ferguson-Lees & Christie, 2001). We focus on populations 

breeding in the northern Mediterranean region, whose breeding range is fragmented in three distinct 

main geographic areas (Bounas et al. 2018) corresponding to the main south European peninsulas 

(west to east: Iberia, Italian, and the Balkan peninsulas). Available data suggest that western 

European populations spend the non-breeding period in West Africa (Rodríguez et al., 2009, 

Limiñana et al., 2012), whereas those from eastern Europe, the Middle East and Asia move to non-

breeding areas located in eastern and southern Africa (Pepler & Matin 2001). Analyses of mtDNA 

suggest that west European populations have diverged from east European and Asian populations 

during the Pleistocene (Wink et al., 2004). Rodríguez et al. (2011) further supported this divergence 

by showing that non-breeding individuals from western Africa had the same genetic structure of 

western European breeding populations, while non-breeding birds in South Africa were genetically 

differentiated from western European breeding populations, likely originating from the eastern 

distribution range. Pleistocene glaciations have left a strong biological legacy to the Eurasian biota 

(Hewitt, 2000). It is generally agreed that migratory divides originated after a secondary contact 

between populations that were isolated in different glacial refugia (Møller et al., 2011, Rohwer & 

Irwin, 2011). Populations within these refugia could have diverged in many traits, including 

migratory orientation, so that their current migratory routes probably reproduce those used by the 

related ancient populations (Newton, 2008). The distribution of Eurasian refugia overlays the 

current breeding range of lesser kestrel and it is therefore expected that the investigation of 

migratory connectivity in this species might shed light into its genetic structuring (Wink et al., 

2004, Rodríguez et al., 2011).  

A broad-scale approach encompassing as many as possible populations within a species’ 

range is the preferred approach to study migratory connectivity (e.g. Trierweiler et al., 2014, Finch 
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et al., 2015). Here we combined published and original data about lesser kestrel migration and non-

breeding distribution of birds breeding in three distinct geographic regions of the Mediterranean 

basin (Iberian, Italian, and Balkan regions), that are representative of the whole European 

distribution of the species (collectively, populations from sampled countries encompass ca. 82 % of 

the total European population size; BirdLife International, 2017; La Gioia et al., 2017), and are at 

least partly genetically differentiated (Bounas et al. 2018).. Based on the genetic and migration data 

recalled above, we expected a relatively strong differentiation of migratory routes, behaviour and 

non-breeding areas between birds from these three different regions, leading to a relatively strong 

migratory connectivity. 

 

 

Materials and methods 

 

Data collection and general methods 

Previous studies have reported migration data of breeding birds from Spain (e.g. Rodríguez et al., 

2009, Limiñana et al., 2012), Portugal (Catry et al., 2010) and France (Pilard et al., 2017) using a 

variety of techniques differing in accuracy (light-level global location sensing devices, geolocators 

or GLS: 17 individuals from Portugal and France; Catry et al., 2010, Pilard et al., 2017; Argos 

Platform Transmitter Terminals, Argos PTTs: 5 individuals from Spain; Limiñana et al., 2012). We 

report new data from 29 individuals tracked with GLS, 14 individuals equipped with remote-

downloading archival GPS tags (GPS-UHF devices), and 5 individuals tracked with Argos PTTs, 

which were combined with the above mentioned published data, some of which were partly 

reanalysed (GLS data from Pilard et al., 2017). All devices were deployed on individuals captured 

at or near the respective nest sites, mostly at the end of incubation or during nestling rearing. The 

full list of data used in the study is reported in Table 1. A single track was available for each 

individual. Overall, devices were deployed in 18 breeding colonies from 6 countries (1 Portugal, 2 
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Spain, 3 France, 3 southern Italy, 4 Sicily, 1 Bulgaria, 4 Greece). For the analyses, birds were 

grouped in the three distinct regions, Iberia (Portugal, Spain and France), Italy (southern Italy and 

Sicily) and Balkans (Bulgaria, Greece). Birds from the small French population were considered as 

closely tied to the nearest Iberian core populations. Migration tracks from Bulgaria were collected 

from breeding birds originating from a re-introduction project involving Spanish individuals. 

However, as their migratory behaviour appear similar to the Greek birds (see Results), they were 

treated as belonging to the Balkan group. 

Our sample incorporated a composite set of devices, with GPS-UHF tags and Argos PTTs 

allowing precise inference about migration routes, whereas this information could not be obtained 

from geolocators, because latitudinal uncertainty of geolocator data during movement periods may 

prevent the reconstruction of migratory movements (Lisovski et al., 2018, but see Rakhimberdiev et 

al. 2017). Main parameters and patterns of large-scale migratory flights do not vary conditionally of 

tracking data systems and devices (Kuhn et al., 2009), and multi-population studies employing 

different devices have already been successfully carried out (e.g. Terraube et al., 2012, Chevallier et 

al., 2013, Trierweiler et al., 2014, Finch et al., 2015). We therefore treated data according to the 

protocols detailed below, assuming that heterogeneity of protocols and devices originating from the 

different studies would produce non-systematic errors in the precision of our analyses. 

 

GLS data collection and analysis 

Breeding birds were equipped with GLS (models Mk5 and Mk7, Biotrack Ltd., UK) using a 

backpack wing-loop harness made of braided nylon rope. The total weight of devices (including 

harness) was ca. 2.5 g, corresponding to 1.5-2.0 % of body mass. We processed downloaded data 

according to manufacturer’s specifications, and visually inspected twilight events, removing those 

twilights when the light change profile at sunrise/sunset was unclear (i.e. whenever unexpected 

darkness events, due to light shading or bird behaviour, confounded the light change pattern around 

sunrise/sunset), and those which were obvious outliers, using the TransEdit software (Biotrack Ltd., 
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UK). Latitude and longitude for each twilight event were estimated by means of the R package 

GeoLight v. 2.0 (Lisovski and Hahn 2012), using device-specific estimates of sun elevation angles 

(as recommended by the manufacturer) obtained from pre-deployment calibration performed at the 

breeding site. Due to the uncertainty of latitudinal estimates around equinoxes, we removed all 

latitude estimates in a period spanning 21 days before and after each equinox. Stationary and non-

stationary periods during the non-breeding season were identified using a customized version of the 

R script provided by Liechti et al. (2015). Briefly, stationary periods were identified based on 

patterns of change in the timing of consecutive twilight events, considering that stationary periods 

are expected to show a smooth seasonal variation of timing of sunrise and sunset, whereas 

whenever a bird makes significant movements, this smooth trend is broken, resulting in detectable 

change points of the seasonal trend of sunset/sunrise (Liechti et al. 2015). Timing of 

departure/arrival from/to the breeding area were estimated by visual inspection of light profiles 

(assuming that abrupt occurrences of dark periods corresponded to visits of nest cavities) and from 

concomitant changes in the temporal trend of twilight events. Timing of arrival and departure from 

the sub-Saharan non-breeding residence areas were identified according to Liechti et al. (2015) as 

the first day of the first stationary period or the last day of the last stationary period south of the 

Sahara, respectively. The geographic position of the non-breeding residence area was estimated as 

the centre of density (modal value) of all stationary positions between arrival and departure (Liechti 

et al. 2015). Hence, the geographic position of the non-breeding residence area corresponds to the 

location that has been more frequently used by birds during the non-breeding period (considering 

that birds may move between different non-breeding residence locations, as observed in satellite 

tracked birds; our unpubl. data). Migration routes could not be reconstructed because of the 

uncertainties in latitudinal estimates around the equinoxes and because few reliable twilight events 

were identified during the migration periods, preventing the application of advanced route 

reconstruction methods, such as those provided by the R package FlightR (Rakhimberdiev et al. 

2017) (E. Rakhimberdiev, pers. comm.). We also reanalysed the original geographic positions of the 
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geolocator data reported in Pilard et al. (2017) (which see for methods of calculating 

arrival/departure dates and daily locations) to compute the modal values of all positions between 

arrival/departure to/from the non-breeding residence area. 

 

Satellite tracking devices data collection and analysis 

Three models of solar-powered satellite tracking devices (Argos PTT devices: 5 g PTT 100, 

Microwave Telemetry Inc., USA; GPS-UHF devices: 5 g Pica, Ecotone, Poland, 4 g nanoFix-

Geo+RF, PathTrack Ltd., UK) have been deployed in 2010-2017 in several populations (Table 1). 

From these tracking efforts, we obtained post-breeding migration data and non-breeding residence 

areas for 24 individuals, and pre-breeding migration data for 18 individuals (Table 1). Satellite 

transmitters were mounted as a backpack using a Teflon harness, which added some further 0.9-1.2 

g to the total weight of device. Total mass of tag plus harness was in all cases within the 

recommended 3-5% limit of birds’ body mass (Kenward, 2001). Argos PTTs were programmed 

with an 8-h ON ⁄ 15-h OFF duty cycle and collected on average one fix every 15 minutes during the 

activity period (Limiñana et al., 2012) while GPS-UHF devices were programmed with a 17-h ON / 

7-h OFF duty cycle and were programmed to collect one fix every 15 minutes during wintering and 

one fix every 30 minutes during the migration months, though sampling frequency could actually 

vary according to battery power (Bermejo et al., 2016). Data from GPS-UHF devices was retrieved 

the year after deployment via passive or active UHF base station. Location data were processed by 

QGIS 2.16 (QGIS Development Team, 2016). We filtered and cleaned every location according to 

the accuracy measures provided by the satellite-tracking systems. In the case of Argos PTT devices, 

we used the 0-3 location classes (LC), which have an accuracy of ca. 1.5 km (ARGOS, 2011). In 

the case of GPS-UHF devices, the accuracy of locations was expected to be within 15-50 m in 95% 

of occasions. Outliers with unrealistic geographic locations were removed by visual inspection of 

data and maps. To establish migration routes, distances and migratory phenology, we relied both on 

visualization of movement data and on net displacement values (ND, Kareiva & Shigesada, 1983, 
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Turchin, 1998). ND measures the Euclidean distance between the initial location and each 

subsequent relocation of each individual. Interpretation of ND values varies as a function of season 

and depends from the timing and location of marking (Bunnefeld et al., 2011). When tagging occurs 

during the breeding season, like in our study, increasing ND values represent the onset of autumn 

migration, while the ND will become stable near its maximum value once individuals have reached 

their wintering grounds. Afterwards, the ND values will decrease at the onset of spring migration 

and will stabilize approaching zero when birds arrive again in their breeding colony. We used plots 

of ND values, together with visual maps, to identify both the abrupt change of movement patterns at 

the onset of migration (e.g. the movement of a birds flying from southern Italy to North African 

coasts corresponds to a very large ND value) and the directionality and stability of progressive 

travel movements towards and from the non-breeding residence areas (e.g. the movement of the 

same bird immediately after its arrival to the African coast and flying southbound across North 

Africa corresponds to a very flat ND plot-line). This procedure (cfr. Limiñana et al., 2008, 2012) 

allowed us to accurately classify onset and end dates of migration, duration of migration and 

migration distances of all individuals. Migration distances were the shortest distance between the 

breeding and non-breeding locations for each individual, taking into consideration the curved 

surface of Earth (i.e. orthodromic distance, see Migratory connectivity). Besides, the average 

distance covered in a day was calculated as the migration distance ⁄ number of travelling days 

(excluding stopovers). Duration of the non-breeding residence period was calculated as the interval 

in days occurring from date of arrival to the date of leaving the wintering areas. As the birds could 

move between different nearby non-breeding areas (our unpub. data), the position of the non-

breeding residence area (see Migratory connectivity) was calculated as the modal latitude and 

longitude from all the positions obtained during the non-breeding residence period. This also 

allowed comparisons with data retrieved from GLS (see below)  
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Analysis of migratory connectivity  

Examination of migratory connectivity postulates that individuals move between two separated and 

clearly identifiable geographic ranges (Marra et al., 2006), that in the case of lesser kestrel have 

been assumed to correspond with the south European breeding areas and the sub-Saharan non-

breeding residence areas (Ferguson-Lees and Christie 2001). Migratory connectivity arises through 

both the spreading and mixing of breeding populations across wintering areas, with two major 

components, i.e. the ‘population spread’ and the ‘inter-population mixing’ (Finch et al. 2017). In the 

first case, we considered the spreading of individuals from every region by computing pairwise 

distances between the wintering sites of all individuals from the same breeding region, with high 

values indicating high population spread (Finch et al., 2017). We first checked by a one-way 

ANOVA test whether the mean wintering distances of lesser kestrels coming from any single 

macro-area (intra-distances) differed from the pair-wise combinations of macro-areas (inter-

distances). We then calculated the population spread of lesser kestrels with respect to the country of 

provenance (i.e. breeding area) by a clustering procedure using the Ward’s method. This procedure 

employs an algorithm based on Euclidean distance measure, and joins the clusters such as that the 

increase in within-groups variance is minimized (Hammer et al., 2001). Clustering nodes were 

supported after resampling with a bootstrapping procedure (n = 999 replicates).  

To assess the value of inter-population mixing (i.e. migratory connectivity sensu lato), we 

used orthodromic distances, following the approach of Ambrosini et al. (2009). We obtained two 

matrices of orthodromic distances by using the geographical coordinates of all pair-wise 

combinations of individuals both in the breeding and wintering areas. The breeding orthodromic 

matrix corresponded to the geographical coordinates of colonies, while the wintering one was 

created using the centroids of the overwintering areas. The centroids of individuals equipped with 

GLS and GPS devices were obtained by calculating the arithmetic mode of latitude and longitude 

values of all positions obtained during the non-breeding residence period (i.e. all positions recorded 

between arrival to and departure from the non-breeding areas). In the case of the two ring 
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recoveries, the non-breeding area were a single location and corresponded to the geographical 

coordinates of the roost where the two lesser kestrels were recorded, respectively. We analysed 

whether orthodromic distances differed between macro-areas by means of a linear mixed model 

with a normal error distribution. In such a GLMM, orthodromic distance was the dependent 

variable, macro-area was the fixed factor. We introduced sex as a random factor to check whether 

its unbalanced distribution among locations (Table 1) could potentially confound the geographic 

effects. Then we computed the Mantel correlation coefficient (rM) between the two matrices (i.e. 

breeding and wintering) of orthodromic distances. The rM value is simply the Pearson’s correlation 

coefficient between all the entries in the two symmetric matrices. It ranges from -1 to +1 and 

determines the value of migratory connectivity. The significance of rM was assessed by a 

randomization procedure in which a permutation test compared the original rM to the distribution of 

rM from 9999 random permutations, and is the probability of obtaining a more extreme value than 

the observed one.  

 

 

Results 

Geographic distribution of non-breeding residence areas 

All individuals migrated to non-breeding areas within the Sahel region (Fig 1). Individuals from a 

given breeding region tended to migrate to a specific non-breeding residence area, as expected. 

Iberian individuals had their non-breeding areas in Senegal, Mauritania and western Mali (western 

Sahel), while most of the Balkan individuals went to the central-eastern Sahel countries (Niger, 

Nigeria and Chad). Italian lesser kestrels spread over a broad area of the central Sahel belt, from 

eastern Mali to Niger and Nigeria. A minority of individuals escaped this general pattern, with an 

Iberian kestrel that went Burkina Faso, in the area where most Italian birds spend the non-breeding 

period, while an Italian individual went to Senegal (Fig. 2). 

Differences in migratory behaviour and routes between birds breeding in different regions 

167



14 

 

Detailed information of autumnal migration routes has been outlined by the GPS devices alone (Fig. 

1 above) the only tool allowing the track of birds across their journey. Populations of the western 

European peninsula (WEU), for which we had Spanish and French GPS-equipped lesser kestrels, 

headed to south Iberia to cross the Mediterranean Sea. Only one out 8 birds crossed the sea at the 

Strait of Gibraltar, while the others crossed in a broad front to reach the Moroccan and Algerian 

coasts. Four birds followed a more or less straight route to reach their wintering ground. The most 

remarkable route was that followed by the French lesser kestrel, that passed over Ibiza, then crossed 

the sea to land in Algeria near the salt lakes region of Bougtob, and continued with only a small 

eastern detour to reach the Mauritanian-Mali wintering area. When crossing the Sahara deserts 

either from Morocco and Algeria most WEU kestrels did a detour to adjust the route towards west 

at the moment of reaching the wintering latitudes. The Central European peninsula (CEU) birds, 

coming from both south Italy and the island of Sicily crossed the sea also on a broad front. The 

south Italians travelled more eastbound over the Ionian Sea or approaching the eastern coasts of 

Sicily; while the Sicilians went more westerly over the Sicilian Channel. All Italians landed in 

Tunisia and Libya and all, but one making a large western detour in Libya, did a fairly straight 

flight from north-east to south-west. The Eastern European peninsula (EEU) population represented 

by GPS-equipped birds from Bulgaria behaved similarly to lesser kestrels of the other two 

peninsulas, although more consistent with EEU birds. They crossed the Mediterranean with a broad 

front, arrived to the African coasts in Libya and Egypt and maintained a fairly northeast-southwest 

trajectory to cross the Sahara Desert, until their final destination in Sahel region. Indeed, one of the 

four individuals did a large western detour, while another passed over Naxos (Aegean islands) and 

Crete before to fly to African coasts. During last days of autumnal migration, 46% of the GPS-

equipped individuals stopped their latitudinal descent and made a definite east-west turn to fly 

straight to their wintering quarters. Mean departures data from the breeding sites was 20 September 

(range: 22 August – 23 October). After and average travel of 13 days (range: 3-37 days) spent in 

autumn migration, the lesser kestrels arrived to their wintering grounds on average the 3 of October 
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(range: 17 September – 5 November). Regardless to the macro-area of breeding colony location 

(F2,58 = 1.33, p = 0.27), males tend to leave the breeding areas a week later than females (F1,58 = 

6.05, p = 0.02), and therefore again irrespective to their macro-area (F2,58 = 0.13, p = 0.88) arrive a 

week later than females in the wintering areas (F1,58 = 7.56, p = 0.008). This sex difference does not 

affect the length of autumn migration, as males and females cover the autumnal travel in the same 

number of days (F1,58 = 0.02, p = 0.89), regardless to the macro-area of provenance (F2,58 = 1.57, p = 

0.22), (Table 2). The average (± SE) distance covered during the autumnal travel is 3294.64±115.79 

km (range: 2534.50 – 4469.28, n = 23). There are no statistically significant differences in the 

length (km) of autumnal travel between both sex (F1,19 = 1.04, p = 0.32) and macro-areas (F2,19 = 

0.13, p = 0.88). Eventually, during autumnal migration lesser kestrels cover an average daily 

distance of 356.14 ± 44.65 km (range: 131.84 – 1092.187, n = 17), without sex (F1,19 = 0.01, p = 

0.92), but with macro-area differences (F2,19 = 3.59, p = 0.05).  

Pattern of spring tracks is quite similar to that of autumn migration, with differences mostly 

for WEU birds (Fig. 1 below). Their directions of flight are more westbound than the autumnal 

tracks and WEU lesser kestrels fly along the Atlantic coasts and over the ocean to converge later to 

north-east. Interestingly, the 50% of the WEU individuals used the Strait of Gibraltar to cross the 

Mediterranean and reach the Iberian Peninsula, with respect to the 12.5% during the autumn 

migration. Also most of south Italian lesser kestrels drifted toward west and made the conversion 

toward east, at some 29°-31° latitudes, to rectify their route to Tunisia, in order to cross the 

Mediterranean Sea towards continental Italy (Fig 1 below). Yet, one Sicilian bird had a contrary 

track, going east until southern Libya and then making a western detour to rectify the route and fly 

straight to Sicily. Another south Italian and the remaining Sicilians made a relatively straight fly 

from south-west to north-east, left Africa from Libyan coasts and reached eastern Sicily. 

Bulgarian birds, the only representative of EEU populations, can either fly straight from south Niger 

to Serbia and then adjust in the Balkans, at some 42° latitudes, the route to the breeding colonies, or 

fly eastbound and then adjust the route very early, making the western detour at varying North-
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African latitudes (one in Libya, another in Egypt), and from there flying straight to their breeding 

colony (Fig. 1 below). The same bird, passing over Crete and Naxos islands during autumn, used as 

well the same Aegean islands as spring stopover before reaching its breeding colony.  

The mean date of spring departures is the 9 of March (range: 4 February - 23 April), and the mean 

date of arrival to the colony is the 27 of March (range: 14 February – 14 May), after an average 

travel of 18 days (range: 3 – 49), a flight time that lesser kestrels do without sex (F1,45 = 3.75, p = 

0.06) and macro-area differences (F2,45 = 1.29, p = 0.28), (Table 2). There are no sex differences 

also in the dates of departure from wintering areas (F1,46 = 0.14, p = 0.71) and arrival to breeding 

areas (F1,45 = 2.42, p = 0.13). WEU Lesser kestrels tend to depart earlier from wintering grounds 

than CEU and EEU conspecifics (F2,46 = 8.69, p = 0.001) and, as consequence to arrive earlier to 

breeding areas (F2,45= 8.79, p = 0.001), (Table 2). The average ± SE distance of the spring migration 

is 3572.88±177.98 km (range: 2192.59 – 4890.52, n = 17), a not significantly longer return travel 

with respect to the autumnal one (t39 = 1.487, p = 0.21). There are no statistically significant 

differences in the length (km) of spring travel between both sex (F1,13 = 4.24, p = 0.06) and macro-

areas (F2,13 = 2.16, p = 0.15). Eventually, during spring migration lesser kestrels cover on average a 

daily distance of 165.93 ± 14.65 km (range: 82.89 – 305.79, n = 17), without sex (F1,13 = 0.08, p = 

0.78) and macro-area differences (F2,13 = 1.33, p = 0.30), but this daily average distance is 

significantly shorter than the autumnal one (i.e. 348.18 km/day; t39 = 3.420, p < 0.001). 

Wintering quarters fall within western and central pre-desert areas of Sahel, including eight 

different African countries (Senegal, Mauritania, Mali, Algeria, Burkina Faso, Chad, Niger, 

Nigeria). Lesser kestrels distributed across a huge potential wintering belt extended 5.243.060 km2 

between 20° 44’ 24” and 8° 57’ 35” N of latitude, and -16° 44’ 54” and +20° 44’ 34” E of longitude 

(Fig. 2). However, most of individual records are within a much restricted area (Fig. 2) and data 

from GPS-equipped kestrels show that individuals make small-scale movements across Sahel 

habitats, having multi home-ranges (2.32±0.22 range: 1-4, n =, 19) without sex (F1,15 = 0.54, p = 

0.47) and macro-area (F2,15 = 0.46, p = 0.64) differences, but moving usually in a clock-wise 
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direction through the winter (Cecere, Rubolini, Saràat al. in prep.). Restricting to individuals with a 

complete wintering period, the average extension of winter areas is 7925.31±2230.37 km2 (range: 

362.53-42511.06, n =, 19), without sex (F1,15 = 2.56, p = 0.13) and macro-area (F2,15 = 1.23, p = 

0.32) differences. Total permanence in Sahel is on average 209 days (range: 155 – 261), without sex 

differences (F1,46 = 1.47, p = 0.23), but WEU lesser kestrels spend in Sahel significantly more time 

than EEU (>, 19 days) and CEU (> 17 days) conspecifics (F2,46 = 4.95, p = 0.01), (Table 2). 

There are remarkable differences in the stopover strategy of lesser kestrels during the 

autumnal and spring migrations. Only 29.2% of the 24 individuals, six females and one male, 

stopped during the autumnal travel doing each a single stopover of 3.29 ± 0.81 days (range: 1 – 5). 

Contrariwise, the 94.4% of 18 lesser kestrels stopped during the spring migration on average 1.33 ± 

0.18 times (range: 0 – 3) and for 8.82 ± 2.29 days (range: 1 – 26). Besides, the time of stopover was 

significantly longer for males than for females (t22 = 2.75, p = 0.01), on average 11.7 ± 7.83 vs 4.9 ± 

4.39 days, respectively. The few autumn stopovers are mostly localized into the desert (n = 5), near 

fresh water gullies, locally named “wadi”, like those located inside the Tassili N’Ajjer National 

Park, in Algeria, and in coastal agriculture areas (n = 2). Contrariwise the majority of spring 

stopovers (20 out of 24) is made in coastal agricultural areas, when the lesser kestrels approached 

North African coasts (n = 11) or just few hundred kilometres before (n = 9). These latter coincide 

often with circular irrigated fields created by pumping water from underground aquifers into the 

Sahara in Algeria and Libya. Interestingly, one of the remainder spring stopovers was along the 

Nile River and other two were made in Aegean islands (Naxos, Crete), soon before reaching the 

breeding areas. Indeed, lesser kestrels used to fly over islands without stopping there, as most of 

CEU individuals did over Malta and Lampedusa; and EEU did over the Ionian islands. Few 

individuals also did short pauses of few hours (hence not computed as stopovers), like the WEU 

individual that stayed 5 hours on Lanzarote (Canary Islands), before its long flight over the Atlantic 

Ocean, or the CEU individual that stayed 2 hours on Ischia island, in the Naples gulf, near the 

Italian coasts. The general linear mixed model of 2282 travelling segments indicates a significant 
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effect of the random factor ‘individual’ nested in macro-area (F21,2251 = 14.728, p =0.000), hence a 

strong individuality in flight speed, with some individuals flying fastest than others. One South-

Italian kestrel maintained the highest (35.64±18.49 km/h), and a Sicilian the lowest average speed 

(8.45±5.22 km/h), while all remainder individuals flew in-between these two extreme speeds. Total 

average flight speed resulted 17.22±0.28 km/h (Table 3). The other random factor, the macro-area 

of provenance does not play any role in flight speed variation (F2,2251 = 3.028, p = 0.066). Indeed, 

Lesser kestrels adjust their flight speed in response to the sector (F1,2251 = 19.10, p = 0.000) and time 

of day (F1,2251 = 28.44, p = 0.000) and to sector*time of day (F1,2251 = 5.88, p = 0.015), and 

season*time of day (F1,2251 = 7.65, p = 0.006). Essentially (Table 3), lesser kestrels flight faster over 

sea than over desert (Tukey’s post hoc HSD test p = 0.000) and during night-time than daytime 

(Tukey’s post hoc HSD test p = 0.000). Besides all the flight speeds during season and time of day, 

but one (spring during daytime vs spring during night-time), are statistically different as flight 

speeds over desert during daytime (Tukey’s post hoc HSD, details not showed for brevity). 

 

Migratory connectivity 

Preliminary GLM indicates how orthodromic distances vary among macro-areas (F2,59 = 4.290, p = 

0.018), but not between sex (F1,59 = 0.496, p = 0.484). Lesser kestrels breeding in the WEU 

peninsula are closer than CEU and EEU conspecifics to their overwintering areas (Fig. 3), as the 

above macro-area effect revealed (Table 4 and Fig. 3). Maximum spread among wintering lesser 

kestrels is 3939.59 km (average ± SE = 1183.94 ± 17.51). However, the population spread of lesser 

kestrels coming from each macro-area is significantly lower than the corresponding as calculated by 

mixing distances between macro-areas (F5,2074 = 258.26, p < 0.001). The inter-distance of spreading 

between WEU and EEU individuals provided the highest relative contribution in the prediction of 

population spread (WEU-EEU: beta estimate = 0.499±0.017, t =28.77, p < 0.001), while the WEU 

intra-distances provided the lowest (WEU-WEU: beta estimate = -0.312±0.017, t = -17.92, p < 

0.001). Consistently with model results, lesser kestrels coming from WEU spread in Sahel at an 
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average distance of 564.70±34.81 km between them, while combining WEU kestrels with EEU and 

CEU birds, the population spread becomes 2266.92±38.93 km and 1293.87±22.86 km, respectively. 

In addition, lesser kestrels from CEU spread over an average distance of 774.37±31.15 km, and 

EEU individuals averaged 999.92±93.57 km; while their respective inter-distance of spreading was 

much larger (EEU-CEU = 1223.11±36.86 km). Overall, the total average of intra-distance of 

population spread (699.64±17.20, CL 95% = 665.87-733.40, n = 776) is nearly half lower than the 

corresponding inter-distance (1472.14±22.47, CL 95% = 1428.07-1516.20, n = 1304), and this 

difference is statistically significant (F1,2078 = 582.58, p < 0.001). The Mantel correlation coefficient 

of orthodromic distances was mR = 0.58 and significant (p < 0.001). Individuals from a given 

breeding macro-area tend to migrate to different wintering areas, as most of the western European 

(Portugal, Spain and France) lesser kestrels winter in Senegal, Mauritania and Mali, hence in 

western Sahel. Accordingly, most of the eastern (Bulgaria and Greece) lesser kestrels winter in 

Central Sahel countries (Niger, Nigeria and Chad). Italian lesser kestrels spend the winter in the 

middle of this large Sahel belt, as they are present from Mali and Mauritania to the west, where they 

overlap with Iberian and French kestrels, to Niger and Nigeria in central Sahel where they overlap 

with Greeks and Bulgarians. Only a minority of individuals (n = 3) escapes this general pattern, as a 

French kestrel overwintered in Burkina Faso, in the same area where the most western EEU 

individual from Greece did, while a CEU kestrel from Sicily overwintered in the coast of Senegal 

(Fig. 2). 

 

 

Discussion 

Our sample of 65 lesser kestrels allowed gathering adequate data to sketch out the species’ 

migratory phenology and strategy. Although satellite devices were heterogeneous, the migratory 

information provided by 39 GLS-equipped lesser kestrels were consistent with the more detailed 

routes provided by the 24 GPS-equipped birds. For instance, during autumnal migration all the 13 
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GLS-equipped birds left French coasts to pass over Balearics and arrive to Africa landing in Algeria 

(see Fig. 2 in Pilard et al., 2017), as the single GPS-equipped French bird did (Fig. 1 below). Alike 

other Falco species which use powered flight during migration (e.g. Strandberg et al., 2009, 

Mellone et al., 2011, Dixon et al., 2012, Prommer et al., 2012) also lesser kestrels tend to not use 

Straits (i.e. Gibraltar, Sicily) to cross the Mediterranean Sea, but fly in broad fronts over the open 

sea. Spring travels are generally more western than autumn ones, and eastern detours are made later, 

around 29-31° of latitude to rectify the route towards the northern breeding areas. This is a general 

pattern shown by all trans-Saharan migrants that during their return travels are drifted by eastern 

tailwinds (e.g. Vansteelant et al., 2017). During spring migration lesser kestrels fly at the same 

speed than autumn, nonetheless the travel is longer in time and with many more stopovers than 

autumn migration. These travel breaks made in agricultural areas on African coasts, or immediately 

before, are likely necessary for waiting the optimal conditions (weather, rest and foraging, etc.) 

before the flight over Mediterranean Sea. Besides straits are relatively more used than in autumn. 

These results suggest that lesser kestrels during their spring migration have a more conservative 

strategy to save energy and make a safer travel to reach the breeding grounds in the best conditions 

(Moore et al., 2005, Hahn et al., 2014).  

Former GPS and GLS studies of WEU populations (Rodríguez et al., 2009, Limiñana et al., 

2012, Pilard et al., 2017) recorded wintering only in western Sahel countries (Senegal, Mali, 

Mauritania). Our study extended notably the area showing how lesser kestrels winter in a Sahel area 

large over 5 millions square kilometres, and embedded in eight African countries, from Senegal to 

Chad. Indeed, the lesser kestrel was already recorded as winter visitor in Chad (e.g. Salvan, 1967), 

Niger (Pilard et al., 2004) and Nigeria (Elgood et al., 1964) but not in Burkina Faso (Pilard et al., 

2004). Interestingly, the most southern record at around 9° latitude N coincides with presence in the 

Bauchi highlands of Nigeria already recorded in Pepler & Matin (2001). Despite the large 

population spread, reaching almost a maximum of nearly 4000 km within the sample of 65 

individuals studied, we recorded a significant grouping of wintering populations dependent from the 
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European peninsula of origin. Indeed, continental configuration of breeding range has some 

influence on migration phenology of lesser kestrels. Birds from the western Iberian Peninsula are 

closer to their wintering grounds in western Sahel as the statistically significant orthodromic 

distances revealed. Yet, the length of the spring travel of a Portuguese or Spanish kestrel is on 

average some 800 and 1000 km less than that of an Italian or Balkan bird, respectively, a difference 

not reaching statistical significance perhaps for the limited sample so far available. Other 

phenological differences, like the longest permanence (i.e. > 2 weeks) in Sahel and the earlier 

departures from overwintering grounds and arrival to the breeding areas of WEU lesser kestrels 

than CEU and EEU individuals are very likely linked to such a different geographic configuration. 

Put simply, WEU lesser kestrels are nearest to Sahel than birds of other populations in the species’ 

range and this may affect their timing of migration and creates temporal asynchrony between 

breeding populations with significant effects on populations’ spread and mixing (Bauer et al., 

2016). Longest permanence in the overwintering ground would likely mean better foraging and 

fattening before migration; whereas early arrival in the colony areas would likely mean early 

reproduction and potentially a better breeding success and productivity (e.g. Verhulst & Nilsson, 

2008, Nisbet et al., 2016) than the late central- and eastern European conspecifics. Migratory 

connectivity has important implications for individual fitness (Alves et al., 2013) and we might 

argue whether the geographic position of Iberian kestrels could have elicited in the long-term the 

growth of species’ abundance, as the Spanish population has always been the largest of Europe 

(Ferguson-Lees & Christie, 2001, Iñigo & Barov, 2011). It remains, however, an open question 

about the potential geographic features driving the species’ abundance in the Iberian Peninsula. 

Nonetheless, geography of Europe matters, as connectivity analysis revealed the spatial segregation 

of lesser kestrels wintering in Sahel. In our sample comprising lesser kestrel populations from the 

three major European peninsulas, the birds have a strong connectivity with their breeding areas 

paralleling quite exactly in latitude their wintering locations. The Iberian and French kestrels 

overwinter spreading in western Sahel (Limiñana et al., 2012, Pilard et al., 2017), the Balkan 
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kestrels in central Sahel, whereas the Italians which breed in the central peninsula split half in 

Western and half in Central Sahel. Low levels of connectivity are common in long-distance migrant 

birds (Finch et al., 2017) and the strong connectivity of lesser kestrels would thus be an exception, 

although shared with many other birds (e.g. Calandra et al., 2014, Ouwehand et al., 2015, Ramos et 

al., 2016, Kramer et al., 2017) including raptors (e.g. Symes & Woodborne, 2010, Trierweiler et al., 

2014). The relative homogeneity of habitats across the huge Sahel belt would have favoured the 

non-random spreading out of lesser kestrels in a large overwintering area (> 5 million km2), and 

therefore would have reduced the mixing of populations, augmenting connectivity, as predicted by 

Finch et al. (2017).  

The pattern of connectivity we have found ultimately arise through variation in the 

migratory trajectories of individuals coming from a partitioned, although large, breeding area. It can 

be the result of a conditional strategy followed by lesser kestrels to optimize the energetic 

constraints of their long-distance migration over the Mediterranean Sea and Sahara Desert, as the 

different timing of spring migration, with the major seasonal use of Gibraltar Strait, islands and 

stopovers would indicate. Migratory traits, including departure directions, are under strong genetic 

control and have high heritability (e.g. Berthold et al., 1992, Pulido, 2007), although this control 

can vary greatly between individuals (e.g. Thorup et al., 2007), and due to a vast array of contingent 

and proximate factors (e.g. Pulido 2007 and reference therein), including migratory bottlenecks 

(Newton, 2008), and more generally the geographic configuration of continents (Finch et al., 2017, 

Vansteelant et al., 2017). Thus, selection of the less-costly trajectories to reach the wintering areas 

from a breeding range extended from Portugal to Greece, could be invoked for the establishment of 

spatial segregation in Sahel, and in turn for the realization of connectivity between breeding and 

wintering areas. Winger et al. (2014) suggested that Plio-Pleistocene glaciations have clearly served 

to modify geographic ranges and migratory distances and routes. Indeed, modification of sea and 

land barriers are historical factors that have shaped during Ice Ages the current migratory routes of 

species (Pérez-Tris et al., 2004, Bensch et al., 2009) and might be advanced as a further explanation 
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for the insurgence of connectivity in the lesser kestrel. It is currently becoming evident that 

variation in migratory behaviour of allopatric or co-occurring populations is often associated with 

genetic differentiation (Turbek et al., 2018), even in long-distance migrant species (e.g. Bensch et 

al., 2009, Lehtonen et al., 2009, Neto et al., 2012). Genetic structuring had already been revealed in 

the lesser kestrel at a cross-continental scale, with differences between European and Asian 

populations dating back to the Pleistocene glaciations (Wink et al., 2004, Rodríguez et al., 2011). 

Recently, Bounas et al. (2108) confirmed the genetic separation of European and Asian populations, 

besides finding a good level of genetic structuring internal to the European populations, particularly 

of the Central and Eastern Mediterranean region. Genetic divergence of Central and Eastern. 

Mediterranean populations correlated significantly with the geographical distance among these 

populations (Bounas et al., 2108). As most of the Bounas’ et al. (2018) samples come from the 

same CEU and EEU populations of this study, it is plausible that the strong connectivity revealed 

by our study could be linked with such a genetic structuring. This suggests a scenario in which 

populations isolated in the three European peninsulas (i.e. the main Ice Ages refugia, Hewitt, 2000, 

2004), would have formed independent migratory routes through historical times. 

Our study reveals also the importance of multi-population approach for connectivity 

analysis, since considering most of the lesser kestrel range with the addition of CEU and EEU 

populations to the already known WEU (Rodríguez et al., 2009, Catry et al., 2011, Limiñana et al., 

2012, Pilard et al., 2017), changed the species’ connectivity level from the not statistically 

significant and weak degree (Finch et al., 2017) to the current statistically significant and strong 

degree. In conclusion, although species like the lesser kestrel that spread out over extensive 

nonbreeding areas should be more resilient and affected only by large-scale environmental changes 

(Gilroy et al., 2016); the strong connectivity we have found confirms that information about the 

precise link between breeding and overwintering areas is a pre-requisite to design optimal 

conservation strategies (Webster & Marra, 2005) and points out the urgency of addressing 

population-specific conservation actions.  
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Table 1. List of the lesser kestrel migration data considered in the study of migratory phenology and 

connectivity. Year refers to the device’s deployment time, na = not available. 

 

Sex Macro area Country Colony Device Capture year Reference 

na WEU France Crau ring na  
M CEU Italy (Sicily) Cerasaro ring 2005 PRIN 2010 - 20108TZKHC 

F WEU France Saint-Michel GPS-UHF 2016 LPO Hérault - EDF EN France 

M WEU Spain Pinto GPS-UHF 2016 Migra - SEO BirdLife/GREFA 

na WEU Spain Los Alhorines GPS-PTT 2012 CIBIO - Enerstar Villea, S.A. 

M WEU Spain Los Alhorines GPS-PTT 2010 Limiñana et al. 2012 

M WEU Spain Los Alhorines GPS-PTT 2010 Limiñana et al. 2012 

M WEU Spain Los Alhorines GPS-PTT 2010 Limiñana et al. 2012 

F WEU Spain Los Alhorines GPS-PTT 2010 Limiñana et al. 2012 

F WEU Spain Los Alhorines GPS-PTT 2010 Limiñana et al. 2012 

F CEU Italy (south) Altamura GPS-UHF 2016 LIFE11_NAT_IT068 

F CEU Italy (south) Altamura GPS-UHF 2016 LIFE11_NAT_IT068 

M CEU Italy (south) Gravina GPS-UHF 2016 LIFE11_NAT_IT068 

F CEU Italy (south) Gravina GPS-UHF 2017 LIFE11_NAT_IT068 

F CEU Italy (south) Gravina GPS-UHF 2017 LIFE11_NAT_IT068 

F CEU Italy (south) Altamura GPS-UHF 2017 LIFE11_NAT_IT068 

M CEU Italy (south) Altamura GPS-UHF 2017 LIFE11_NAT_IT068 

M CEU Italy (south) Altamura GPS-UHF 2017 LIFE11_NAT_IT068 

M CEU Italy (Sicily) San Gregorio GPS-UHF 2014 PRIN 2010 - 20108TZKHC 

F CEU Italy (Sicily) Canalotto GPS-UHF 2015 PRIN 2010 - 20108TZKHC 

M CEU Italy (Sicily) Torrevecchia GPS-UHF 2015 PRIN 2010 - 20108TZKHC 

F CEU Italy (Sicily) Canalotto GPS-UHF 2015 PRIN 2010 - 20108TZKHC 

F EEU Bulgaria Sakar GPS-PTT 2016 LIFE 11 NAT/BG/360 

F EEU Bulgaria Sakar GPS-PTT 2015 LIFE 11 NAT/BG/360 

F EEU Bulgaria Sakar GPS-PTT 2016 LIFE 11 NAT/BG/360 

F EEU Bulgaria Sakar GPS-PTT 2015 LIFE 11 NAT/BG/360 

M WEU France Aude GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 

F WEU France Aude GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 

F WEU France Aude GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 

M WEU France Crau GLS 2012 Pilard et al. 2017 

M WEU France Crau GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 

F WEU France Crau GLS 2012 Pilard et al. 2017 
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Sex Macro area Country Colony Device Capture year Reference 

F WEU Portugal Castro-Verde GLS 2008 Catry et al. 2011 

F WEU Portugal Castro-Verde GLS 2008 Catry et al. 2011 

F WEU Portugal Castro-Verde GLS 2008 Catry et al. 2011 

F WEU Portugal Castro-Verde GLS 2008 Catry et al. 2011 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F CEU Italy (south) Matera GLS 2016 Università statale di Milano 

F EEU Greece Modestos GLS 2014 LIFE11NAT/GR/001011 

F EEU Greece Modestos GLS 2014 LIFE11NAT/GR/001011 

F EEU Greece Stefanovikeio GLS 2014 LIFE11NAT/GR/001011 

M EEU Greece Stefanovikeio GLS 2014 LIFE11NAT/GR/001011 

M EEU Greece Kokkina GLS 2016 LIFE11NAT/GR/001011 

F EEU Greece Rizomylos GLS 2016 LIFE11NAT/GR/001011 
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Table 2 (part one and two). Main average parameters of migratory phenology in the lesser kestrel. 

Departure and arrival dates expressed in Julian days (1st January = 1). Statistically significant 

differences of two-way ANOVA are marked in bold. Macro-areas group western breeding 

populations of Portugal, Spain, France (WEU), central breeding populations of South-Italy and 

Sicily (CEU) and eastern ones of Bulgaria and Greece (EEU). 

 

  Macro-area Sex 

 Total WEU CEU EEU Male Female 

Departure from breeding area      

Mean±SE 264±1.37 263±2.60 266±1.86 261±2.36 269±2.83 262±1.49 

CL 95.00% 261.11-266.57 257.29-268.05 262.01 -269.63 255.76-266.44 263.38-275.62 259.19-265.19 

N 62 24 28 10 14 48 

F; p  1.33; 0.27   6.05; 0.02  

Arrival to wintering area      

Mean±SE 277±1.30 277±2.19 277±1.96 275±2.32 283±2.81 275±1.32 

CL 95.00% 274.16-279.23 272.63-281.71 272.79-280.85 269.95-280.45 276.86-288.99 272.21-277.54 

N 62 24 28 10 14 48 

F; p  0.13; 0.88   7.56; 0.008  

Departure from wintering area      

Mean±SE 68±2.21 57±3.44 75±2.98 71±3.25 67±5.79 68±2.38 

CL 95.00% 63.61-72.43 49.70-64.30 68.83-81.17 63.45-78.15 53.49-79-71 63.58-73.22 

N 50 17 23 10 10 40 

F; p  8.69; 0.001   0.14; 0.71  

Arrival to breeding area      

Mean±SE 86±2.83 73±4.81 94±3.50 93±4.79 91±6.72 85±3.14 

CL 95.00% 80.75-92.15 62.74-83.14 86.52-101.05 82.18-104.26 75.51-105.89 79.00-91.2 

N 49 17 23 9 10 39 

F; p  8.79; 0.001   2.42; 0.13  

Length autumn migration (days)      

Mean±SE 13±0.94 14±1.83 11±0.91 14±2.77 13±1.13 13±1.16 

CL 95.00% 10.97-14.74 10.71-18.29 9.12-12.87 7.84-20.36 10.43-15.41 10.34-15.03 

N 62 24 28 10 14 48 

F; p  1.57; 0.22   0.02; 0.89  

Length spring migration (days)      

Mean±SE 18±1.64 16±3.26 19±.91 22±4.35 24±3.33 17±1.83 

CL 95.00% 15.17-21.77 9.03-22.85 14.83-22.74 12.41-32.47 16.56-3.64 13.33-20.72 

N 49 17 23 9 10 39 

F; p  1.29; 0.28   3.75; 0.06  

Length autumn migration (km)      

Mean±SE 3294.64±115.79 3165.98±147.56 3344.24±188.30 3371.00±291.70 3124.82±122.30 3225±177.32 

CL 95.00% 3054.50-3534.79 2804.92-3527.04 2929.79-3758.70 2442.68-4299.33 2842.79-3406.84 3035.80-3771.83 

N 23 7 12 4 9 14 

F; p  0.13;0.88   1.04; 0.32  
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 Marco-areas Sex  

 Total WEU CEU EEU Male Female 

Length spring migration (km)      

Mean±SE 3572.88±177.98 2996.50±184.64 3834.00±241.10 4029.31±442.46 3059.11±44.04 3932.51±244.81 

CL 95.00% 3195.57-3950.19 2521.86-3471.14 3263.87-4404.12 2125.58-5933.05 2951.35-3166.87 3378.71-4486.32 

N 17 6 8 3 7 10 

F; p  2.16;0.15    4.24;0.06 

Length permanence in Sahel (days)      

Mean±SE 209±2.88 221±4.83 202±4.05 204±4.25 218±7.16 207±3.05 

CL 95.00% 203.14-214.70 211.06-231.53 193.33-210.15 193.78-214.02 202.09-234.51 200.39-212.75 

N 50 17 23 10 10 40 

F; p  4.95; 0.01   1.47; 0.23  
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Table 3. GLMMs testing whether season (autumn, spring), time of day (daytime, night-time) and 

sector (Mediterranean Sea, Sahara Desert) are important predictors lesser kestrel flight speeds 

(km/h) during of migration. Individual and macro-area are included as random factors. The best 

levels of predictors are presented in bold and are compared to the respective baseline levels of every 

fixed factor (e.g. Spring vs Autumn, etc.). The descriptive statistics (mean±SE, 95% coefficient 

limits) of fixed factors and their interactions employed in the general linear mixed model have here 

been reported for comparison of flight speeds.  

 

 Mean±SE CL 95.00% N Estimate±SE p 

Total 17.22±0.28 16.66-17.78 2282   

Autumn 17.27±0.33 16.62-17.92 1306   

Spring 17.15±0.49 16.18-18.12 976 0.745+0.629 0.237 

Desert 16.36±0.30 15.78-16.95 1981   

Sea 22.86±0.80 21.28-24.43 301 8.343±1.157 <0.001 

Daytime 15.89±0.28 15.35-16.44 1915   

Night-time 24.14±0.91 22.35-25.93 367 5.284±0.986 <0.001 

Autumn*Desert 16.30±0.34 15.62-16.98 1140   

Autumn*Sea 23.93±0.94 22.08-25.78 166   

Spring*Desert 16.45±0.53 15.41-17.48 841   

Spring*Sea 21.53±1.36 18.85-24.22 135 -2.644±1.675 0.114 

Autumn*Daytime 16.36±0.35 15.68-17.04 1086   

Autumn*Night-time 21.78±0.90 20.01-23.55 220   

Spring*Daytime 15.28±0.46 14.39-16.18 829   

Spring*Night-time 27.68±1.81 24.11-31.25 147 5.382±1.525 <0.001 

Desert*Daytime 15.02±0.29 14.46-15.59 1674   

Desert*Night-time 23.67±1.02 21.66-25.69 307   

Sea*Daytime 21.94±0.87 20.23-23.65 241   

Sea*Night-time 26.53±1.92 22.69-30.37 60 -5.114±2.364 0.030 

Autumn*Desert*Daytime 15.45±0.36 14.75-16.16 963   

Autumn*Desert*Night-time 20.90±1.00 18.92-22.89 177   

Autumn*Sea*Daytime 23.43±1.07 21.30-25.55 123   

Autumn*Sea* Night-time 25.37±1.92 21.49-29.25 43   

Spring*Desert*Daytime 14.44±0.47 13.51-15.36 711   

Spring*Desert*Night-time 27.44±1.95 23.58-31.30 130   

Spring*Sea*Night-time 20.39±1.37 17.67-23.11 118   

Spring*Sea*Night-time 29.46±4.76 19.37-39.55 17 0.511±4.081 0.900 
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Table 4. Orthodromic distances (in km) between breeding and overwintering areas of European 

lesser kestrels. The statistical significance (marked in bold) of GLM model with macro-area as 

fixed factor and sex as random factor depends from the shortest orthodromic distances between 

the WEU and CEU breeding grounds and respective overwintering grounds in Sahel with respect 

to the EEU areas.  

 

  Mean±SE CL95.00% N Estimate±SE p 

Male 3198.90±100.08 2984.25-3413.56 15 0.086±0.122 0.484 

Female 3151.81±45.39 3060.49-3243.13 48  
 

    
 

 

WEU 3085.61±70.48 2940.45-3230.77 26 -0.517±0.177 0.005 

CEU 3156.30±57.87 3037.75-3274.86 29 -0.388±0.176 0.032 

EEU 3410.88±86.40 3215.43-3606.33 10   
    

  
Total 3167.19±42.15 3082.99-3251.40 65  
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Figure Captions 

 

Figure 1. 

Migratory routes of lesser kestrel (Falco naumanni) from the breeding Euroepan grounds to the 

overwintering Sahel areas in Africa. Above autumnal travel, below spring travel. Star = stopover 

site of ≥ 1 day. 

 

Figure 2. 

The overwintering area of lesser kestrel (Falco naumanni) in Sahel. Symbols indicate the 

geographic European origin and colours the device deployed on the 65 individuals. 

 

Figure 3. 

The increasing orthodromic distances from breeding areas in the Western European countries, 

mostly corresponding to the Iberian Peninsula (WEU), to the Central European countries (CEU), 

corresponding to the Italian peninsula and the Eastern European countries (EEU), corresponding to 

the Balkan peninsula.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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 Synthesis 

Aim of the present thesis was to investigate the short and long-term effects of variation in the 

breeding environment on behavioural and fitness traits in the colonial breeding lesser kestrel, using 

both experimental and correlative approaches. Environmental traits I considered in my studies were 

the nest-site quality and consequences for lesser kestrel breeding performance, the availability of 

food resources and the short-term effect of these on fitness and foraging behaviour, the geographic 

distribution of lesser kestrel European populations and its consequences on migratory behaviour. 

 In the first part, I analysed the short-term effects of variation in the breeding environment on 

lesser kestrel breeding behaviour and performance. Starting from nest-site selection, results reported 

in Chapter 2 showed that lesser kestrel exhibited a strong preference for previously used nestboxes 

lined with an organic substrate accumulated during past breeding attempts. However, I did not find 

any strong effects of nest substrate on fitness. A significantly higher occupation rate of nestboxes 

containing old nest material may have several explanations. First, lesser kestrels, as observed in a 

Spanish population (Negro and Hiraldo 1993), may rely on previous breeding attempts to identify 

the most suitable nest-sites within colony sites. Second, it is possible that the preference for 

nestboxes within old nest organic material could be led by differences in the features of the organic 

substrate that is more comfortable and softer. Moreover, the increase (~10%) of hatching success 

observed in eggs laid on the old nest material could be due to better microclimatic conditions within 

the nestbox. Indeed, in species that do not add any material to line their nests, the presence of an old 

organic layer may be a further cue of the nest-site selection since it may contribute to increase 

thermal insulation, reduce egg loss and improve incubation efficiency (Hooge et al. 1999; Cook et 

al. 2003; Ardia et al. 2006). Moreover, eggs laid on the soft mineral material may suffer a lower risk 

of accidental breakage. As expected, nestlings reared in nests with old organic material have a 

higher level of infestation by a common nest-dwelling blood-sucking ectoparasite (Carnus 

hemapterus). However, differences between nestlings reared in clean vs dirty nestboxes disappear 

soon after hatching. I did not find any significant difference in survival between nestlings reared in 
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new vs. old nest substrate, suggesting that breeding in old nest does not entail fitness cost for lesser 

kestrels. It is also possible that benefits from laying on old material could be context-dependent: the 

huge number of individuals composing our study colony (~ 1000 breeding pairs) may indicate 

favourable breeding conditions (availability of food resources surrounding the colony or the 

absence of a relevant predation risk) and thus nest-site selection could be less important in the 

specific environmental context of our study, while it may be more important in other contexts (e.g. 

isolated small colonies, as is the case in other areas of the distribution range of the species).  

 Results described in Chapter 3 showed that in the lesser kestrel population breeding in the 

city of Matera food is a limited resource during the breeding season. Indeed, extra food provided 

benefits to breeding performance and adult moult. I found that food supplemented individuals, 

despite the absence of an improvement of body conditions and antioxidant capacity, invested extra 

food resources into the synthesis of new flight feathers. This result suggested that moult, especially 

during the breeding season, is costly and that only individuals supported by highly favourable 

environmental conditions could promote a greater allocation of resources to feather renewal. 

Regarding breeding performance, I observed that food supplemented females laid heavier last-laid 

eggs, reared nestling with higher body mass and with larger feather growth compared to controls. 

Moreover, nestlings reared by food-supplemented parents were more likely to successfully cope 

with ectoparasite infestation whereas controls showed a decrease in body mass in associations with 

high ectoparasite load. Importantly, I observed that maternal conditions are the major trait 

modulating the benefits of extra food provisioning. Ca. 16% of the variation in egg mass was 

explained by female conditions, with females in better conditions laying heavier eggs. This 

association arose only in the control group while food supplemented females did not show any 

variation in egg mass according to their conditions. I observed a similar association considering the 

premature nest desertion: once again, in the control group, females in poor conditions were more 

likely to abandon the nest, probably due to high perceived costs of the current breeding attempt in 

association with their conditions, while this association did not emerge among females belonging to 
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the food-supplemented group. My comprehensive analysis of the benefits of food supplementation 

on breeding performance and adult traits suggest that lesser kestrels may thus conform to an income 

breeding model of energy storage for reproduction.  

 The importance of food availability as an environmental variable affecting lesser kestrel 

behaviour arose also in Chapter 4. Analysing home ranges of individuals belonging to five 

different colonies (two in Apulia and three in Sicily), we observed that, in both populations studied, 

individuals from the same colony forage in colony-specific areas, likely because they shared 

information about the location of profitable foraging grounds. Our study showed that home ranges 

of lesser kestrels from different neighbouring colonies are spatially segregated. Segregation may 

result from resource depletion in the inter-colony areas, that hence become progressively avoided 

by individuals of the two colonies in the course of the breeding season (Wanless and Harris 1993; 

Grémillet et al. 2004; Masello et al. 2010; Wakefield et al. 2011).  

 The analysis of foraging tactics conducted in the Chapter 5 revealed that, as in other central 

place foraging bird species, foraging trips are more extended in time and space during incubation 

rather than during nestling rearing stage (Woo et al. 2008; Ceia and Ramos 2015; Camprasse et al. 

2017). Moreover, I observed that males performed more frequent foraging trips than females during 

nestling rearing. As expected, two distinct foraging tactics were observed. The ‘sit-and-wait’ tactic 

was associated to long lasting trips and it was characterized by perching, lower proportion of 

intensive search and relocation, while the ‘widely foraging’ tactic was characterized by a higher 

proportion of both relocation and intensive search, lower perching and it mainly referred to short 

lasting trips. The widely foraging tactic was ca. two-fold more energetically expensive than the sit-

and-wait tactic; indeed, lesser kestrels adopted the most expensive foraging tactic when weather 

conditions were favourable for soaring-gliding (high solar radiation for soaring flight and with high 

cross-wind conditions) and during nestling-rearing phase, when offspring provisioning requirements 

are higher. Moreover, despite individuals consistently differed in their preference for adopting a 

given foraging strategy, individuals were consistently more prone to adopt a specific foraging tactic 
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across different environmental gradients of solar radiation and wind assistance. Such individual 

differences in foraging tactics may reflect foraging specialization, and may contribute to reduce 

intraspecific competition at foraging grounds. Furthermore, it is possible that birds targeted on 

different prey items according to foraging tactic. For instance, it has been hypothesized that sit-and-

wait predators generally catch larger prey compared to those taken by active predators (de Arruda 

Bueno and Motta-Junior 2008). We hence suggest that lesser kestrel targets different preys during 

sit-and-wait or widely foraging trips. Moreover, we observed that nestlings reared by parents 

preferring high-energy foraging tactic have a higher growth rate.  

 In the second part of my thesis, I analysed possible long-term effects of variation in breeding 

environmental traits on lesser kestrel migration. In Chapter 6, we investigated whether the 

geographic distribution of breeding areas could affect migratory behaviour, influencing wintering 

areas in sub-Saharan quarters. We found that, contrary to our expectation, European lesser kestrel 

populations show a strong migratory connectivity. Indeed, we observed that grouping of wintering 

populations depended on the breeding area. Therefore, continental configuration of breeding range 

has an influence on migration patterns of lesser kestrels: breeding areas were matched in latitude 

with non-breeding locations. It has been observed that long-distance migratory species generally 

show a weak migratory connectivity (Symes and Woodborne 2010; Trierweiler et al. 2014). 

However, the relative homogeneity of habitats across the huge Sahel belt (> 5 million km2, the 

wintering area of all lesser kestrel populations analysed) would have favoured the non-random 

spread out of lesser kestrels, and therefore would have reduced the mixing of populations, 

increasing connectivity. Different migratory strategies have evolved as a trade-off between costs 

and benefits of migration; it is possible that the overwinter segregation of lesser kestrel population 

observed in sub-Saharan quarters is led by the different migratory trajectories that individuals 

follow during the migratory journey. To conclude, birds from a given European population 

occupied shared areas during the overwinter period and thus were subjected to the same biotic and 
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abiotic conditions, with important consequences on future individual performance during successive 

stages of the life-cycle and, more generally, on population dynamics.  

 

Concluding remarks 

This thesis provides novel information about the effect of several environmental traits on breeding 

performance and behaviour of the European lesser kestrel. Results presented show that lesser 

kestrels are profoundly affected by variations of the breeding area and that such variations could 

also affect several stages of life-cycles. I observed that during the early phases of the breeding 

season lesser kestrel preference for nest-site selection is strongly influenced by public information 

provided by conspecifics. Thus, individuals gather cues about the quality of nest-site from the past 

presence of other individuals in the area. It is possible that this behaviour has evolved to avoid the 

occupancy of inappropriate nest-sites (i.e. cavities that are more exposed to adverse weather 

conditions or easily accessible for predators). The communication between individuals and the 

share of information is also fundamental to face the patchy and heterogeneous distribution of the 

preys around the colonies. Sharing information among individuals belonging to same or different 

colonies could be fundamental for the location of productive foraging areas. Moreover, the search 

of food resources has a major role in determining the relationships among individuals from same 

and different colonies. Hence, both the spatial segregation of neighbouring colonies and the 

implementation of different foraging strategy among individuals belonging to the same foraging 

areas underlined that, in lesser kestrel, the distribution of preys in the breeding environment has led 

to the evolution of strategies to limit intraspecific competition. Finally, breeding habitats affect the 

migratory strategy adopted by lesser kestrels at the end of the breeding season. Therefore, I 

observed that the geographic distribution of European colonies determines the non-breeding areas 

location occupied by individuals in Africa, during the winter. The strong migratory connectivity 

showed by the lesser kestrel could imply severe effects on European population dynamics, since 

individuals are exposed to different biotic and abiotic conditions during the non-breeding stage. 
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 To conclude, despite the potential effects of variations in the environment on current and 

future fitness and behaviour of individuals has been largely investigated in different species, the 

presented scenario is generally contrasting and species-specific (see for example Kruuk et al. 2015; 

Schipper et al. 2016; review in Vázquez et al. 2017). Further investigations are necessary to better 

understand how breeding habitat variation could affect current and future breeding performance and 

behaviour of bird. 
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CIO (Convegno Italiano di Ornitologia), September 2017  

Podofillini S., Curcio A., Griggio M., Rubolini D., Cecere J.G. Oral presentation: Contextual 

effects of food supplementation on lesser kestrel breeding output.  

CIO (Convegno Italiano di Ornitologia), September 2017  

Podofillini S., Curcio A., de Capua E.L., Fulco E., Griggio M., Pirrello S., Rubolini D., Serra L., 

Visceglia M., Cecere J.G. Oral presentation: Home dirty home, lesser kestrel prefers to breed 

in previous used nest sites.  

International Lesser Kestrel Expert Workshop, October 2016  

Podofillini S., Bazzi G., Matyjasiak P., Saino N., Rubolini D. Oral presentation: Flight 

performance of migrating juvenile barn swallows in relation to fat load and wing 

aerodynamics.  

BEM (Behavioural Ecology Meeting), February 2016  

Podofillini S., Bazzi G., Matyjasiak P., Saino N., Rubolini D. Poster presentation: Flight 

performance of migrating juvenile barn swallows in relation to fat load and wing 

aerodynamics. CIO (Convegno Italiano di Ornitologia), September 2015 
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List of Attended Seminars 

 
Mandatory courses of Transferable skills – different authors. 2015, 2016 and 2017 

Bonisoli-Alquati A., December 2017. Environmental disasters and their ecological consequences. 

A short course on how to study them. 

Ficetola F., November 2016. Environmental DNA to understand biodiversity changes. 

Epis S., November 2016. On symbionts arthropods and vector-borne diseases. 

Romano A., March 2016. Evolution of prenatal sex allocation strategies in a sexually promiscuous 

passerine birds. 

Della Torre C. February 2016. Do carbon based nanoparticles act as carrier for benzoαpirene. An 

investigation on Danio rerio embryos. 

Manenti R., November 2015. Cave colonization by the first salamander (Salamandra salamandra): 

zoological, ecological and evolutionary insights. 

Rubolini D., March 2015. Unraveling climate change effects on migration birds: a comparative 

approach. 

Bandi C., February 2015. Gendercide symbionts...e altre storie di sesso, simbiosi e parassitismo. 

 

List of Attended PhD Courses 

December 2017. Environmental disasters and their ecological consequences. A short course on how 

to study them (Dr. Andrea Bonisoli-Alquati). 

November-December 2017. Statistic course organized by the PhD course in Environmental 

Sciences (Prof. Roberto Ambrosini)  

October 2015. Molecular methodologies applied to environmental research (Dr. Diego Fontaneto) 

February 2015. Tree rings as archives to understand past and present environmental conditions. 

(Dr. Paolo Cherubini)  
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