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Abstract In this paper we introduce a model describing a layered structure
composed by two thermoelastic adherents and a thin adhesive subject to a
degradation process. By an aymptotic expansion method, we derive a model
of imperfect interface coupling damage and temperature evolution. Moreover,
assuming that the behaviour of the adhesive is ruled by two different regimes,
one in traction and one in compression, we derive a second limit model where
unilateral contact conditions on the interface are also included.

Keywords Thin film · Bonding · Asymptotic analysis · Damage · Tempera-
ture · Imperfect interface

1 Introduction

In this paper, we perform a formal derivation of models of imperfect interface,
coupling damage and temperature effects, as the formal asymptotic limits of
models of a composite body made by two adherents with an adhesive substance
located between them. The problem of finding effective models for imperfect
interfaces is nowadays a subject of great interest both in engineering literature
and in the analytical and numerical investigation of surface and bulk damage
models [1,8,9,11,14–17,19,20]. Indeed, there are many applications of this
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kind of problems, in particular related to the development of layered compos-
ite structures. Moreover, it is known that interface regions between materials
are fundamental to ensure strength and stability of structural elements. Thus,
the theory of damage in (thermo)-elastic materials can be applied to derive
models of contact with adhesion, assuming that the effectiveness of the ad-
hesion between two bodies may be described in terms of a surface damage
parameter (which is related to the active bonds in the adhesive substance on
the contact interface).

Following the approach introduced in [3], we obtain models for a compos-
ite structure made by two thermoelastic bodies which are bonded together
through an adhesive substance on a contact interface between them. It is as-
sumed that microscopic damage in the interface may influence the strength of
the adhesion and an unilateral condition is included ensuring non-penetrability
between the bodies. We first consider a system describing the thermomechan-
ical evolution of an adhesive substance located in a thin domain between two
deformable bodies, subjected to the action of a damage process (described in
terms of a damage parameter as in the phase transition theory), combined
with thermal effects. The equations are recovered by the theory of Frémond
for damage evolution of thermo-elastic materials [2,12,13], generalizing the
principle of virtual powers and introducing the effects of microscopic forces,
responsible for damage, in the whole energy balance of the system. Then, by
using a formal asymptotic expansion method [18], letting the thickness of the
adhesive substance go towards zero, we get limit models of imperfect interface
coupling temperature and damage evolution. They are actually related with
the models for contact with adhesion introduced and investigated, e.g., in [4–7].
Indeed, models describing contact with adhesion can be seen as surface dam-
age models, in which the effectiveness of the adhesive bonds is related to the
state of damage of microscopic cohesive links in the adhesive substance. In this
sense a surface adhesive parameter actually corresponds to the local propor-
tion of active bonds at the microscopic level of the adhesive substance, located
on the contact surface. Note that some internal constraints on the damage pa-
rameter and its time derivative are considered, in order to guarantee physical
consistency and to render the irreversible character of the degradation process,
i.e. the material cannot repair itself once it results to be damaged. Moreover,
assuming that the behaviour of the adhesive is ruled by two different regimes,
one in traction and one in compression, in the limit model we include unilat-
eral contact conditions on the interface, avoiding interpenetration between the
adherents.

This kind of asymptotic analysis, introducing the interfaces as the limit of
a thin medium bonding two adherents, has been investigated in the literature
also to relate damage and delamination models (see e.g. [25] and [10,21]).
Moreover, we recall [3] where, by the same approach used in the present paper,
a model for imperfect interface with damage is obtained through an asymptotic
analysis once the thickness ε of the adhesive substance between the adherents
goes towards 0.
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Here, in this contribution, we add the effects of the temperature, which is
governed by evolution laws with different physical coefficients defined in the
different regions and possibly depending on the thickness ε of the adhesive
substance. Moreover, irreversibility of damage evolution is taken into account.
The limit systems are complicated by the presence of internal constraints and
by quadratic dissipative contributions coupling the equations. Actually, in the
resulting limit models the jump of the temperatures ant the heat flux through
the interface is activated by the evolution of surface damage. Consequently,
the boundary conditions for the bulk equations of the temperatures are related
to a dissipative evolution equation written on the interface for the damage
parameter.

Now, let us make precise the outline of the paper. In Section 2 we introduce
notation. In Section 3 we state the problem written in two main domains (the
adherents) and on the thin layer located between them and corresponding to
the adhesive substance with a given thickness ε > 0. In Section 4, we exploit
the asymptotic expansion method to pass to the limit in the system as ε↘ 0.
Finally, in Section 5 we recover the unilateral condition in the limit system
by use of an asymptotic analysis of some anisotropic property of the adhesive
substance.

2 Nomenclature

In the following, a composite structure made by two adherents and a thin
adhesive is considered. For the sake of simplicity, but without loss of generality,
we simplify the geometry of the domain, as it is shown in Fig. 1. Then, the
following notations are introduced:

– (O, e1, e2, e3) is a Cartesian basis; the origin lies at the center of the adhe-
sive midplane and the x3−axis runs perpendicular to the plane x3 = 0,

– (x1, x2, x3) are the three coordinates of a particle,
– ε is the constant thickness of the adhesive,

– Bε = {(x1, x2, x3) ∈ Ωε : |x3| <
ε

2
} is the domain of IR3 occupied by the

adhesive (or interphase),

– Ωε± = {(x1, x2, x3) ∈ Ω : ±x3 >
ε

2
} are the two domains of IR3 occupied

by the adherents,

– Sε± = {(x1, x2, x3) ∈ Ω : x3 = ±ε
2
} are the interfaces between the adhesive

and the adherents,
– Sg ⊂ ∂Ωε is the part of the boundary where an external load g is applied,
– Su ⊂ ∂Ωε is the part of the boundary where the displacement is imposed

to be equal to 0,
– f is a body force which is applied in Ωε±,
– S = {(x1, x2, x3) ∈ Ωε : x3 = 0} will be called in the following the inter-

face, as it will formally correspond to the limit adhesive interface between
the two bodies,
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– S± = {(x1, x2, x3) ∈ Ω : x3 = ±1

2
} are the rescaled interfaces between

the adhesive and the adherents,
– uε is the displacement field,
– θε is the temperature field,
– σε is the Cauchy stress tensor field,
– qε is the thermal flux,
– e(uε) is the strain tensor field which, under the small strain hypothesis, is

defined by eij(u
ε) =

1

2
(uεi,j + uεj,i), where the comma denotes the partial

derivative,
– qεi,i means div qε, since repeated indexes are implicitly summed over; anal-

ogously, σεij,j means divσε,
– χε is the damage variable field,
– λε and µε are the Lamé’s coefficients of the adhesive, which depend a priori

on the thickness ε,
– aε is the fourth order elasticity tensor of the adhesive, verifying the usual

conditions of positivity and symmetry, which depends a priori on the thick-
ness ε,

– αε, cε, ωε, ηε and γε are given material positive coefficients of the adhesive,
which depend a priori on the thickness ε,

– a± is the fourth order elasticity tensor of the adherents, verifying the usual
conditions of positivity and symmetry, which does not depend on the thick-
ness ε,

– α±, c± and γ± are given material positive coefficients of the adherents,
which do not depend on the thickness ε,

– I is the identity second order tensor in three dimensions,
– ḟ is the time derivative of a function f ,
– [[f ]]± denotes the jump of f along Sε± i.e.
f(x1, x2, (±ε/2)±)−f(x1, x2, (±ε/2)∓). We recall that f(a+) = limx−→a,x>a f(x)
and f(a−) = limx−→a,x<a f(x),

– ( )+ denote the positive part of a function, i.e. (x)+ = max{x, 0},
– ( )− denotes the negative part of a function, i.e. (x)− = min{x, 0},

– [f ] = f(x1, x2,
1

2
)− f(x1, x2,−

1

2
) denotes the jump of f along S±,

– [] f [] = f(x1, x2, 0
+)− f(x1, x2, 0

−) denotes the jump of f along S,

– 〈f〉0 =
1

2

(
f(x1, x2, 0

+) + f(x1, x2, 0
−)
)

denotes the average of a function

f on S,
– IA denotes the indicator function of the set A, i.e. IA(x) = 0 if x ∈ A and
IA(x) = +∞ if x /∈ A.

Moreover, it is assumed that

– Sg ∩ Su = ∅,
– Su ∩ ∂Bε = ∅,
– Sg ∩ ∂Bε = ∅.
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Fig. 1 Composite body: initial structure

3 The three-dimensional equations of the composite body

A composite structure made by two adherents and a thin adhesive is con-
sidered (see figure 1). The three solids are supposed to be deformable. The
two adherents are supposed to be thermoelastic. We introduce the free en-
ergy functional, defined in the two adherents and in the domain occupied by
the adhesive. For ε > 0, we let ψ+ (respectively ψ−) the free energy in Ωε+
(respectively in Ωε−) be defined as it follows

ψ±(e(uε), θε) =
1

2
a±e(uε) : e(uε) + α±θεtr(e(uε))− c±θεlogθε (1)

and, using the analogous notation, the pseudo-potential of dissipation is de-
fined by

φ±(∇θε) =
γ±

2θε
|∇θε|2 (2)

Moreover, we suppose that the adhesive is an isotropic thermoelastic ma-
terial undergoing a damaging process. According to the Frémond theory on
damage in thermo(visco)elasticity [2,12,13], we specify the free energy in the



6 Bonetti, Bonfanti, Lebon

interphase Bε as follows

ψε(e(uε), θε, χε) =
1

2
χεaεe(uε) : e(uε) + ωε(1− χε)

+αεχεθεtr(e(uε))− cεθεlogθε + I[0,1](χ
ε)

(3)

where

aεe(uε) : e(uε) = λε(ekk(uε))2 + 2µε(e(uε))2 (4)

In (3) the indicator function I[0,1] yields the constraint on the damage parame-
ter i.e χε ∈ [0, 1], where χε = 1 and χε = 0 correspond to the undamaged and
completely damaged material, respectively. Next, we introduce the pseudo-
potential of dissipation by

φε(∇θε, χ̇ε) =
1

2

γε

θε
|∇θε|2 +

1

2
ηε |χ̇ε|2 + IIR−(χ̇ε) (5)

Note that the term IIR−(χ̇ε) forces χ̇ε to assume non-positive values and ren-
ders the irreversible character of the damage.

In the adherents, it is obtained the classical thermoelastic constitutive
equation

σε = ∂ψ±,e(e(u
ε), θε) = a±e(uε) + α±θεI (6)

Moreover, the entropy is defined by

sε = −∂ψ±,θ(e(u
ε), θε) = c±(logθε + 1)− α±tr(e(uε)) (7)

and the thermal flux by

qε = θε∂φ±,∇θ(∇θ
ε) = γ±∇θε (8)

In the same way, it is obtained in the adhesive

σε = ∂ψε,e(e(u
ε), θε, χε) = χεaεe(uε) + αεθεχεI, (9)

qε = θε∂φε,∇θ(∇θε, χ̇ε) = γε∇θε (10)

To simplify notations, in the following we use the indices i, j = 1, 2, 3 while
the notation α for the index when it is intended to vary just for α = 1, 2.
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The equilibrium problem of the composite structure is described by the
following system

σεij,j + fi = 0 in Ωε±
c±θ̇ε − qεi,i = 0 in Ωε±
σεijnj = gi on Sg
[[σεi3]]± = [[qεi ]]± = 0 on Sε±
[[uεi ]]± = [[θε]]± = 0 on Sε±
uεi = 0 on Su
σεij = a±ijhkehk(uε) + α±θεδij in Ωε±
qε = γ±∇θε in Ωε±
qεi ni = 0 on ∂Ωε± \ Sε±
σεij,j = 0 in Bε

cεθ̇ε − qεi,i − αεθε(χ̇εdivuε + χεdivu̇ε) = ηε
∣∣∣χ̇ε∣∣∣2 in Bε

σεij = χεaεe(uε) + αεθεχε I in Bε

qε = γε∇θε in Bε

ηεχ̇ε =

(
ωε − 1

2
aεe(uε) : e(uε)− αεθεtr(e(uε))

)
−

in Bε

χε > 0 in Bε

(11)

supplemented by given initial data. In particular, on the initial condition
χ0 for the damage variable we assume that 0 < χ0 ≤ 1. Note that this con-
dition along with the irreversible character of the damage process (χ̇ε cannot
increase) yields in particular the upper bound χε ≤ 1.

In the following, the adhesive will be supposed as isotropic i.e. defined by
the Lamé coefficients λε and µε.

4 The asymptotic expansion method

Since the thickness of the interphase is very small, it is natural to seek the
solution of problem (11) using asymptotic expansions with respect to the pa-
rameter ε [20–23]. In particular, the following asymptotic series with integer
powers are assumed: 

uε = u0 + ε u1 + o(ε)
σε = σ0 + ε σ1 + o(ε)
θε = θ0 + ε θ1 + o(ε)
qε = q0 + ε q1 + o(ε)
χε = χ0 + ε χ1 + o(ε)

(12)

The domain is then rescaled (see figure 2) using a classical procedure:

– In the adhesive, the following change of variable is introduced

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B, with (z1, z2, z3) = (x1, x2,
x3
ε

)

and it is set ûε(z1, z2, z3) = uε(x1, x2, x3) and σ̂ε(z1, z2, z3) = σε(x1, x2, x3),

where B = {(x1, x2, x3) ∈ Ω : |x3| <
1

2
}.
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Fig. 2 Composite body: rescaled structure

– In the adherent, the following change of variable is introduced

(x1, x2, x3) ∈ Ωε± → (z1, z2, z3) ∈ Ω±, with (z1, z2, z3) = (x1, x2, x3±1/2∓ε/2)

and it is set ūε(z1, z2, z3) = uε(x1, x2, x3) and σ̄ε(z1, z2, z3) = σε(x1, x2, x3),

where Ω± = {(x1, x2, x3) ∈ Ω : ±x3 >
1

2
}. The external forces is as-

sumed to be independent of ε. As a consequence, it is set f̄(z1, z2, z3) =
f(x1, x2, x3) and ḡ(z1, z2, z3) = g(x1, x2, x3).

The governing equations of the rescaled problem are as follows:
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

σ̄εij,j + f̄i = 0 in Ω±

c± ˙̄θε − q̄εi,i = 0 in Ω±
σ̄εijnj = ḡi on S̄g
ūεi = 0 on S̄u
σ̄εij = ā±ijhkēhk(ūε) + ᾱ±θ̄εδij in Ω±
q̄ε = γ̄±∇θ̄ε in Ω±
σ̄εi3 = σ̂εi3 on S±
ūεi = ûεi on S±
θ̄ε = θ̂ε on S±
q̄εi = q̂εi on S±
q̄εi ni = 0 on ∂Ω± \ S±
σ̂εij,j = 0 in B

σ̂εij = χ̂εâijhkêhk(ûε) + χ̂εα̂εθ̂εδij in B

ĉε
˙̂
θε − q̂εi,i − α̂εθ̂ε( ˙̂χεdivûε + χ̂εdiv ˙̂uε) = η̂ε

∣∣∣ ˙̂χε
∣∣∣2 in B

q̂ε = γ̂ε∇θ̂ε in B

η̂ε ˙̂χε =

(
ω̂ε − 1

2
âεê(ûε) : ê(ûε)− α̂εθ̂εtr(e(ûε))

)
−

in B

χ̂ε > 0 in B

(13)

where .̄, .̂ denote the rescaled operators in the adherents and in the adhesive,
respectively.
In view of (12) the displacement field, stress field, flux field, temperature field
and the damage field are written as asymptotic expansions



σ̂ε = σ̂0 + ε σ̂1 + o(ε)
ûε = û0 + ε û1 + o(ε)
q̂ε = q̂0 + ε q̂1 + o(ε)
χ̂ε = χ̂0 + ε χ̂1 + o(ε)

θ̂ε = θ̂0 + ε θ̂1 + o(ε)
σ̄ε = σ̄0 + ε σ̄1 + o(ε)
ūε = ū0 + ε ū1 + o(ε)
q̄ε = q̄0 + ε q̄1 + o(ε)
θ̄ε = θ̄0 + ε θ̄1 + o(ε)

(14)

in the rescaled adhesive and adherents, respectively. In the following, only the
soft case is considered i.e. λε = ελ0, µε = εµ0, γε = εγ0 and αε = εα0. In
addition, it is supposed that ηε = ε−1η−1 and ωε = ε−1ω−1.
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4.1 Expansions of the equilibrium equations in the adherents

Substituting (14) into the first to sixth equations of (13) and into the eleventh
one, it is obtained at the first order of expansion (power 0 in ε)

σ̄0
ij,j + f̄i = 0 in Ω±
σ̄0
ijnj = ḡi on S̄g
ū0i = 0 on S̄u
σ̄0
ij = ā±ijhkēhk(ū0) + ᾱ±θ̄0δij in Ω±

c± ˙̄θ0 − q̄0i,i = 0 in Ω±
q̄0 = γ̄±∇θ̄0 in Ω±
q̄0i ni = 0 on ∂Ω± \ S±.

(15)

A quite classical problem of thermo-elasticity is obtained.

4.2 Expansions of the equilibrium equations in the adhesive

Substituting (14) into the twelfth equation of (13) it is deduced that the fol-
lowing conditions hold in B (power −1 in the expansions):

σ̂0
i3,3 = 0, (16)

i.e. σ̂0
i3 does not depend on z3, that it can be expressed as[

σ̂0
i3

]
= 0 (17)

In the adhesive the strain field becomes:

ê(ûε) = ε−1ê−1 + ê0 + εê1 + o(ε) (18)

where
ê−133 = û03,3

ê−1α3 =
1

2
û0α,3,

(19)

Thus it is obtained
σ̂0
α3 = χ̂0µ0û0α,3 (20)

and
σ̂0
33 = χ̂0(λ0 + 2µ0)û03,3 (21)

It is observed that σ̂0
i3 does not depend on z3, thus

µ0û0α,3 =
(
χ̂0
)−1

σ̂0
α3

(λ0 + 2µ0)û03,3 =
(
χ̂0
)−1

σ̂0
33

(22)

and thus by integration in z3

σ̂0
α3 =

〈〈
χ̂0
〉〉
µ0
[
û0α
]

σ̂0
33 =

〈〈
χ̂0
〉〉

(λ0 + 2µ0)
[
û03
] (23)
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where
〈〈
χ̂0
〉〉

=

(
1/2∫
−1/2

(
χ̂0
)−1

dz3

)−1
.

It is obtained a soft model of imperfect interface with damage.

In the following lines, we will prove that χ̂0 does not depend on z3.
If we consider that the damage parameter χ̂ε decreases (i.e. ˙̂χε ≤ 0), the

first term in the expansion gives (power -1 in ε)

η−1 ˙̂χ0 = ω−1 − 1

2

(
µ0((û01,3)2 + (û02,3)2) + (λ0 + 2µ0)(û03,3)2

)
or equivalently

η−1 ˙̂χ0 = ω−1 − 1

2

(
σ̂0
13û

0
1,3 + σ̂0

23û
0
2,3 + σ̂0

33û
0
3,3

) (
χ̂0
)−1

or equivalently

η−1 ˙̂χ0 = ω−1 − 1

2

((
σ̂0
13

)2
/µ0 +

(
σ̂0
23

)2
/µ0 +

(
σ̂0
33

)2
/(λ0 + 2µ0)

) (
χ̂0
)−2

Now, these three last equations can be integrated along the third direction. Let〈
χ̂0
〉

=
1/2∫
−1/2

χ̂0dz3 and
〈〈
χ̂0
〉〉

2
=

1/2∫
−1/2

(
χ̂0
)−2

dz3. Particularly, it is obtained

η−1
〈

˙̂χ0
〉

= ω−1− 1

2

(
µ0
[
û01
]2

+ µ0
[
û02
]2

+ (λ0 + 2µ0)
[
û03
]2) 〈〈

χ̂0
〉〉

2

〈〈
χ̂0
〉〉2

or

η−1
〈

˙̂χ0χ̂0
〉

= ω−1
〈
χ̂0
〉
− 1

2

(
µ0
[
û01
]2

+ µ0
[
û02
]2

+ (λ0 + 2µ0)
[
û03
]2) 〈〈

χ̂0
〉〉

The two last equations are verified simultaneously for any choice of η−1 and

ω−1 if and only if
〈

˙̂χ0χ̂0
〉

=
〈

˙̂χ0
〉 〈

χ̂0
〉
. This latter (assuming that the initial

value of χ̂0 does not depend on z3) is equivalent to
(〈
χ̂0
〉)2

=
1/2∫
−1/2

(χ̂)2dz3 and

this holds if and only if χ̂0 does not depend on z3.
It is obtained

η−1 ˙̂χ0 = ω−1 − 1

2

(
µ0
[
û01
]2

+ µ0
[
û02
]2

+ (λ0 + 2µ0)
[
û03
]2)

This equation can be decomposed, as classical, into normal and tangential
parts

η−1 ˙̂χ0 = ω−1 − 1

2

(
λ0 + 2µ0

) [
û0N
]2 − 1

2
µ0

[
û0T
]
.
[
û0T
]

Now, we are interested by the two penultimate equations in (13). Let us
consider the case where cε does not depend on ε. It is obtained
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−q̂03,3 = η−1
∣∣∣ ˙̂χ0
∣∣∣2

q̂0α,α = 0, α = 1, 2

q̂03 = γ0θ̂0,3

and [
q̂03
]

= −η−1
∣∣∣ ˙̂χ0
∣∣∣2

4.3 Matching between the adhesive and the adherents

Substituting (16) into the seventh to tenth equations of (13), it is deduced
that the following conditions hold on S± :

σ̂0
i3(z1, z2,±

1

2
) = σ̄0

i3(z1, z2,±
1

2
) = σ0

i3(x1, x2,±
ε

2
) ≈ σ0

i3(x1, x2, 0)

û0i (z1, z2,±
1

2
) = ū0i (z1, z2,±

1

2
) = u0i (x1, x2,±

ε

2
) ≈ u0i (x1, x2, 0±)

θ̂0(z1, z2,±
1

2
) = θ̄0(z1, z2,±

1

2
) = θ0(x1, x2,±

ε

2
) ≈ θ0(x1, x2, 0

±)

q̂0(z1, z2,±
1

2
) = q̄0(z1, z2,±

1

2
) = q0(x1, x2,±

ε

2
) ≈ q0(x1, x2, 0

±)

(24)

In conclusion, it is obtained on the final configuration (figure 3)



σ0
ij,j + fi = 0 in Ω±
σ0
ijnj = gi on Sg
u0i = 0 on Su
σ0
ij = a±ijhkehk(u0) + α±θ0δij in Ω±
c±θ̇0 − q0i,i = 0 in Ω±
q0 = γ±∇θ0 in Ω±
q0i ni = 0 on ∂Ω± \ S
[]σ0

i3 [] = 0 on S
σ0
α3 = χ0µ0 []u0α [] on S
σ0
33 = χ0

(
λ0 + 2µ0

)
[]u03 [] on S

η−1χ̇0 =
(
ω−1 −

(
µ0 []u01 []

2
+ µ0 []u02 []

2
+ (λ0 + 2µ0) []u03 []

2
))
−

on S

χ0 > 0 on S

[] q03 [] = −η−1
∣∣χ̇0
∣∣2 on S

[] θ0 [] = (γ0)−1
〈
q03
〉
0

on S

(25)
It is obtained a model of imperfect soft interface with damage evolution

which takes into account thermal variations. The temperature is activated by
the damage evolution.
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0

e1

e2

e3

+

−

𝑆

Fig. 3 Composite body: final configuration

5 Introducing unilateral contact

In this section, it is shown how to introduce unilateral conditions [15,11]. The
initial system of constitutive equations

σε = χεaεe(uε) + αεθεχε I in Bε

ηεχ̇ε =

(
ωε − 1

2
aεe(uε) : e(uε)− αεθetr(e(uε))

)
−

in Bε
(26)

is replaced by constitutive equations with two regimes



σε = χεaεe(uε) + αεθεχε I if tre(uε) ≥ 0 in Bε

σε = χεbεe(uε) + αεθεχε I if tre(uε) ≤ 0 in Bε

ηεχ̇ε =

(
ωε − 1

2
aεe(uε) : e(uε)− αεθetr(e(uε))

)
−

if tre(uε) ≥ 0 in Bε

ηεχ̇ε =

(
ωε − 1

2
bεe(uε) : e(uε)− αεθetr(e(uε))

)
−

if tre(uε) ≤ 0 in Bε

(27)
where bε is a fourth order tensor of elasticity with the usual conditions of
symmetry and positivity. In addition, the material is supposed to be isotropic
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and the Lamé’ coefficients associated to bε are λε = λ1 and µε = εµ0.
The asymptotic method presented above is used. Let us consider the term
tre(ûε) whose first term in the expansion (order −1) is û03,3. By integration in

z3 it becomes
[
û03
]
. Thus tre(ûε) ≥ 0 (resp. tre(ûε) ≤ 0) gives

[
û03
]
≥ 0 (resp.[

û03
]
≤ 0). Note that the second term in the expansion gives û01,1 + û02,2 + û13,3.

Proceeding as in the previous section, in the case tre(ûε) ≥ 0 (leading to[
û03
]
≥ 0 and []u03 [] ≥ 0), we have

σ0e3 = χ0
(
µ0 []u01 [] , µ0 []u02 [] , (λ0 + 2µ0) []u03 []

)
and

η−1χ̇0 =
(
ω−1 −

(
µ0 []u01 []

2
+ µ0 []u02 []

2
+ (λ0 + 2µ0) []u03 []

2
))
−

Now, the case tre(ûε) ≤ 0 (corresponding to
[
û03
]
≤ 0 or []u03 [] ≤ 0) is

studied. The (constitutive) second equation of (27) leads to

û03,3 = 0

or equivalently [
û03
]

= 0

or

[]u03 [] = 0

and also to

σ̂0
α3 = χ̂0µ0û0α,3, α = 1, 2

Moreover, it holds

σ̂0
33 = χ̂0λ1(û01,1 + û02,2 + û13,3) + 2µ0û03,3 = χ̂0λ1(û01,1 + û02,2 + û13,3),

since û03,3 = 0. Then, letting τ̂0 = χ̂0λ1(û01,1 + û02,2 + û13,3), we recall that
τ̂0 ≤ 0.

In conclusion, also considering the two situations for tre(ûε) ≥ 0 and
tre(ûε) ≤ 0, the following system is written, coupling bulk and surface equa-
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tions and including Signorini type unilateral conditions

σ0
ij,j + fi = 0 in Ω±
σ0
ijnj = gi on Sg
u0i = 0 on Su
σ0
ij = a±ijhkehk(u0) + α±θ0δij in Ω±
c±θ̇0 − q0i,i = 0 in Ω±
q0 = γ±∇θ0 in Ω±
q0i ni = 0 on ∂Ω± \ S
[]σ0

i3 [] = 0 on S
σ0
α3 = µ0 []u0α [] on S
σ0
33 = (λ0 + 2µ0) []u03 []+ + τ0 on S

[]u03 [] ≥ 0, τ0 ≤ 0, []u03 [] τ0 = 0 on S

η−1χ̇0 =
(
ω−1 −

(
µ0 []u01 []

2
+ µ0 []u02 []

2
+ (λ0 + 2µ0) []u03 []

2
+

))
−

on S

χ0 > 0 on S

[] q03 [] = −η−1
∣∣χ̇0
∣∣2 on S

[] θ0 [] = (γ0)−1
〈
q03
〉
0

on S

(28)
Note that the resulting system may be read as a model for contact with ad-
hesion between two deformable solids including thermal effects. In particular,
conditions on the traces of the temperatures of the two adherents on the con-
tact interface provide boundary conditions for the evolution of the temperature
inside the domains which turns out to be activated by damage evolution.

6 Conclusion

In this paper a model of imperfect interface is derived by an asymptotic ex-
pansion method. The model takes into account damage evolution and thermal
couplings. It is shown how it is possible to introduce unilateral conditions by
the same methodology.
In the future, we intend to implement this model in a numerical software [10,
11,26] to study a larger family of parameters and to propose more general
damage evolution.
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Tome 1 : Matériaux aléatoires élastiques et milieux périodiques . Hermes Sciences, Paris
(2001).

9. Challamel, N., Girhammar, U.A., Boundary-layer effect in composite beams with inter-
layer slip, Journal of Aerospace Engineering, 24 (2), 199-209 (2011).

10. Dumont, S.,Lebon, F., Rizzoni, R., An asymptotic approach to the adhesion of thin stiff
films, Mech. Res. Com., 58, 24-35 (2014).

11. Dumont, S.,Lebon, F., Raffa, M.L., Rizzoni, R., Towards nonlinear imperfect interface
models including micro-cracks and smooth roughness, Ann. Solid Struct. Mech., 9, 13-27
(2017).
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