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Abstract

We present a new release of the QCDLoop library based on a modern object-oriented framework.
We discuss the available new features such as the extension to the complex masses, the possibility
to perform computations in double and quadruple precision simultaneously, and useful caching
mechanisms to improve the computational speed. We benchmark the performance of the new
library, and provide practical examples of phenomenological implementations by interfacing this
new library to Monte Carlo programs.
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Program Summary

Name of the program: QCDLoop

Version: 2.0.0

Program obtainable from: http://cern.ch/qcdloop

Distribution format : compressed tar file from the GitHub git repository

E-mail : stefano.carrazza@cern.ch, keith.ellis@durham.ac.uk giulia.zanderighi@cern.ch

License: GNU Public License GPLv3

Computers: all

Operating systems: all with a c++11 compliant compiler with quadmath support, see Sect. 3.

Program language: c/c++, fortran 77/90, and python

Memory required to execute: . 2 MB

Other programs called : None

External files needed : None

Number of bytes in distributed program, including test data etc.: ∼ 1.0 MB

Keywords: one-loop scalar integrals, tadpole, bubble, triangle, box, numerical evaluation, QCD,
Feynman integrals

Nature of the physical problem: Computation of one-loop scalar integrals

Solution Method : Numerical evaluation of one-loop scalar integrals such as tadpole, bubble,
triangle and box through analytic expressions.

Typical running time: detailed performance benchmark presented in Sect. 4
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1 Introduction

The requirements of precision physics at the LHC and future experiments demand high precision
theoretical predictions. In this context perturbative expansions in the coupling constant play
a prominent role. The field of next-to-leading order (NLO) QCD corrections has undergone a
revolution in the last 10-15 years, see e.g. Refs. [1, 2] and references therein. This revolution
resulted in computational tools that allow one to obtain NLO results for generic processes in
a semi- or fully automated way [3–6]. One longstanding bottleneck in NLO calculations has
been the computation of virtual corrections. Recently, it was understood how to use algebraic
methods to write any virtual amplitude as a product of coefficients (that can be computed
essentially as products of tree level amplitudes) and of one-loop scalar master integrals. Still,
for complicated final states often several CPU years are required to obtain distributions that
are smooth both at low and high momentum scales. Practically, this means that one needs to
run codes for several days on computer farms. Obviously any improvement in the performance
of these tools would be welcome.

In more recent years, a NNLO (next-to-next-to-leading) revolution has also started, and now
almost all 2→ 2 Standard Model processes are known to this accuracy. One of the ingredients
required to achieve NNLO accuracy for pp → X is a pure NLO prediction pp → X + 1 parton
in the kinematic configuration where the parton becomes unresolved. Hence, one loop scalar
integrals are a crucial ingredient for both NLO and NNLO calculations, and a fast computation
of these integrals, that remains stable also in kinematic regions where external partons become
soft or collinear, is required. In the original paper by two of us (Ellis and Zanderighi [7]) an
algorithm was provided to calculate all the divergent one-loop integrals. The algorithm proceeds
by defining a basis set of divergent integrals, some of which were available in the literature prior
to ref. [7], and some of which were calculated ab initio. The results for all the divergent integrals
in the basis set were given in ref. [7] and they were implemented in a fortran code, dubbed
QCDLoop. For finite triangle- and box-integrals QCDLoop relied on ff [8]. One-loop scalar integrals
have been implemented also in a number of other packages: LoopTools [9], OneLoop [10] and
Collier [11]. In the case of unstable particles, calculations are often performed in the complex
mass scheme [12]. So far, the QCDLoop library was limited to real masses in the propagators.
Here we present an extension of the package to deal with complex masses. More generally, the
aim of this paper is to present QCDLoop 2.01, a new library written in c++ and based on the
QCDLoop 1.96 formalism documented in Ref. [7]. This new framework includes, new features
such as the extension to complex masses, the possibility to switch precision from double to
quadruple precision on the fly. Furthermore this new framework provides an abstract object-
oriented inheritance mechanism which simplifies the implementation of caching algorithms which
is useful when high performance is required.

The outline of this paper is the following. In Section 2 we present a short summary of the
analytic expressions and relative diagrams implemented in QCDLoop. In Section 3 we describe
the library structure and we introduce the main functionalities of QCDLoop and describe the
standard user interface. In Section 4 we present a detailed performance benchmark followed by
results obtained with the integration of QCDLoop in a few public Monte Carlo simulation codes.
Finally, in Section 5 we summarize the features and advantages of the new QCDLoop package.

1In the following sections the label “QCDLoop” refers to the new library
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2 One-loop scalar integral formalism

The QCDLoop library provides the numerical evaluation of one-loop scalar integrals such as
tadpole, bubble, triangle and box through analytic expressions. This set of integrals constitutes
a basis for one-loop scalar integrals. In Fig. 1 we provide a graphical representation for the
definition of the following integrals:
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where qn ≡
∑n

i=1 pi and sij = (pi + pj)
2. The above expressions are in the Bjorken-Drell metric

so that l2 = l20− l21− l22− l23. In this paper we consider momenta to be real, but the masses to be
either real or complex. Near four dimensions we use D = 4− 2ε and µ is a scale introduced so
that the integrals preserve their natural dimensions, despite excursions away from D = 4. We
have also removed the overall constant term which occurs in D−dimensional integrals

rΓ ≡
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
=

1

Γ(1− ε)
+O(ε3) = 1− εγ + ε2

[
γ2

2
− π2

12

]
+O(ε3). (5)

The explicit expressions for all the divergent integrals in QCDLoop 2.0 are presented in detail
in the original paper of Ellis and Zanderighi [7]. As noted in that paper, some of the results for
the divergent integrals were new, but many of them were not. We refer the reader to Ref. [7] for
details and the appropriate references. These expressions have been adjusted for performance
optimization and the proper analytical continuation has been performed to deal with complex
masses. The finite integrals for the bubble topology are taken from Refs. [13,14]. Finite integrals
for the triangle topology with real masses are obtained from Refs. [15,16] following the LoopTools
implementation. Expressions for complex masses can be derived from Refs. [13, 15–17]. We
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Figure 1: The notation for the one-loop tadpole, bubble, triangle and box integrals.

found that the expressions of Ref. [17], as implemented in OneLoop, had the best performance
and hence this was the approach that we followed in our implementation. Finally, the finite box
integrals are based on Ref. [17], following the LoopTools implementation. We invite the reader
to examine the QCDLoop 2.0 source code and documentation for further details.

3 QCDLoop library documentation

In this section we present the user manual for the QCDLoop library. First of all, we discuss
how to download and install QCDLoop. After that, we illustrate the new framework design in
c++, explaining how objects are organized and how to run a simple program. We conclude
the discussion by presenting the available caching mechanisms and the fortran and python

wrappers.

3.1 Download and installation

The QCDLoop library is available from the website:

http://cern.ch/qcdloop

The installation of the QCDLoop library can be easily performed using the standard autotools

sequence:

6
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1 ./ configure

2 make

3 make install

which automatically installs QCDLoop in /usr/local/. Note that the QCDLoop library requires
a c++11 compliant compiler with quadmath support, such as g++ 4.72, icpc 133 and or more
recent versions of these compilers. The configure script will check for these and other system
requirements before building the makefiles. In order to use a different installation path one
can use the option:

1 ./ configure --prefix=<path to the installation folder >

In this case, the QCDLoop installation path should be included to the environment variables PATH
and LD LIBRARY PATH, adding to the local .bashrc file (or .profile file on Mac) the string:

1 export PATH=$PATH:<installation folder >/bin

2 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<installation folder >/lib

If the system provides more than one c++ compiler we suggest to set the preferable choice
when running configure:

1 ./ configure CXX=<compiler name / path >

Finally, this package provides a qcdloop-config tool which simplifies the usage of the library
when linking and compiling with user’s codes. We provide the following flags: --help: shows the
help message; --prefix: shows the installation prefix; --incdir: shows the path to the qcdloop
header directory; --libdir: shows the path to the qcdloop library directory; --cppflags: gets
compiler flags for use with the C preprocessor stage of c++ compilation; --ldflags: gets compiler
flags for use with the linker stage of any compilation; --version: returns qcdloop release version
number

3.2 The framework design

The development of a new framework for QCDLoop is motivated by the following needs:

• generalization of the code to support complex masses;

• provision of the ability to provide double and quadruple precision results simultaneously;

• the removal of code dependencies such as the ff library [8];

• improvement of performance by implementing more sophisticated LRU cache algorithms;

• provision of a modern framework based on an object-oriented language, such as c++, which
simplifies future developments and native integration with modern codes.

2https://gcc.gnu.org/
3https://software.intel.com/
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QCDLoop framework design

Tools

Topology

Tadpole Bubble Triangle Box

QCDLoop Wrappers

LRUCache

Constants

Common Functions

Hash mechanism

Load/Save LRUIntegral template

Triggers topology automatically

Evaluate integral Exposes specialized functions

Fortran, C and Python

inheritance inheritance

inheritance

Figure 2: QCDLoop framework design.

The new QCDLoop framework design is presented schematically in Fig. 2. The core of the
code is the Topology class which inherits common methods from Tools and LRUCache classes.
Topology is a templated class which provides the public pure virtual integral method for the
specialization of the one-loop scalar integrals, together with the basic mechanism for load and
storage of cached results. The Tools templated class initializes real and complex constants
based on the allocated precision type, and it provides a common set of functions which are
shared by the specialization of topologies. It is important to highlight that this template class
reduces to a minimum the duplication of code when a method or constant is required by several
specializations. The LRUCache class implements a “latest recent used” (LRU) caching algorithm
for dynamic caching sizes which are discussed in detail in Sec. 3.2.3.

The specialization of the one-loop scalar integrals are implemented in four classes, one for
each topology: Tadpole, Bubble, Triangle and Box. These classes implement the public pure
virtual integral method from Topology. For each topology the integral method triggers
automatically the kinematics and selects the appropriate function call, when possible it also
provides the public methods for the direct computation of the specific kinematics. A detailed
summary of the function calls and the corresponding class methods are shown in Table 1 using
the notation from Ref. [7].

On top of the specialized topologies we provide the QCDLoop class. This is a high-level user
interface which detects the topology by checking the size of the integral arguments. This
function verifies the consistency of the input arguments and calls the respective topology:
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1 /*!

2 * Standard arguments to retrieve one -loop scalar integrals.

3 * output:

4 * res: vector of dim(3) containing the coefficients in the Laurent series

5 * res [0]: finite part (1/eps^0)

6 * res [1]: single pole (1/eps^1)

7 * res [2]: double pole (1/eps^2)

8 * input:

9 * mu2: is the square of the scale mu

10 * m: array containing the squares of the masses of the internal lines

11 * p: array containing the four -momentum squared of the external lines

12 */

13 ql::QCDLoop <TOutput ,TMass ,TScale >:: integral(vector <TOutput > &res ,

14 TScale const& mu2 ,

15 vector <TMass > const& m,

16 vector <TScale > const& p) const;

The trigger mechanism employed by the QCDLoop class is the safest and simplest way to access all
the library functionalities, however when maximum performance is required the user is invited
to allocate the specific topology in order to remove the overhead due to the triggering procedure.

We conclude the description of the framework design by highlighting the availability of c++
wrappers to fortran, c and python, further details about these interfaces are presented in
Sect. 3.2.4. The native c++ interface of the QCDLoop library is thread-safe only when the caching
algorithms are switched off. It is particularly important to highlight that the fortran wrapper
is not thread-safe by construction.

Further details about the code are fully documented using the doxygen4 syntax. The re-
spective documentation is located in the qcdloop/doc folder.

3.2.1 The namespace ql: types, typedefs and templates

From a technical point of view all objects of the QCDLoop library are implemented in the ql

namespace. In this namespace we define also aliases for double and quadruple precision real and
complex types so that the primitive ql types are double, qdouble, complex and qcomplex:

1 namespace ql

2 {

3 typedef __float128 qdouble; // quadruple precision real type

4 typedef __complex128 qcomplex; // quadruple precision complex type

5 typedef std::complex <double > complex; // double precision complex type

6 }

The quadruple real and complex types are standard quadmath objects, and the double complex
type corresponds to the std::complex type. Specialized mathematical operations are imple-
mented for each type in the inline header qcdloop/math.h.

In order to allocate simultaneously double and quadruple precision objects, all classes pre-
sented in Fig. 2 are templated with three typenames: TOutput the output type, TMass the mass
type and TScale the scale and momenta type. The accepted types for each typename is listed
below:

4www.doxygen.org
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Function Short name Method specialization

ID1 (m2) Tadpole TadPole<>::integral()

ID2 (s;m2
1,m

2
2) Bubble finite (BB0) Bubble<>::BB0()

ID2 (m2; 0,m2) Bubble BB1 Bubble<>::BB1()

ID2 (0; 0,m2) Bubble BB2 Bubble<>::BB2()

ID2 (s; 0, 0) Bubble BB3 Bubble<>::BB3()

ID2 (s; 0,m2) Bubble BB4 Bubble<>::BB4()
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Table 1: Summary of the function calls and the corresponding class methods in QCDLoop following
the notation from Ref. [7]. The second column refers to the labels used in Figs. 3 and 4. Note
that finite configurations do not require D dimension.
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1 // Typenames and possible combinations (columns)

2 typename TOutput -> complex | qcomplex | complex | qcomplex

3 typename TMass -> double | qdouble | complex | qcomplex

4 typename TScale -> double | qdouble | double | qdouble

Template classes are locked to these combinations. The compiler prevents the allocation of
wrong combinations at compilation time. Further extensions for the typenames are possible if
required.

3.2.2 Code examples

A simple example of code usage in c++ is presented in the code snippet given below. The code
shows how to compute a tadpole double precision integral first by using the QCDLoop trigger and
then the direct allocation of the TadPole class. A similar example is then illustrated for the
quadruple precision and complex mass calculation, see comments in the code. In order to change
the topology it is sufficient to modify the content and size of the squared momenta and mass
vectors and the initialization of the specific topology class if a direct computation is desired.
Further examples are available and are build at the compilation time in the examples/ folder.

1 #include <qcdloop/qcdloop.h>

2 using namespace ql;

3

4 int main() {

5 // double precision variables

6 double mu2 = ql::Pow (1.7 ,2);

7 std::vector <double > p = {};

8 std::vector <double > m = {5.0};

9 std::vector <complex > res (3);

10

11 // Trigger example - Tadpole double precision with real mass

12 ql::QCDLoop <complex ,double ,double > auto_trigger;

13 auto_trigger.integral(res , mu2 , m, p);

14

15 // Tadpole direct call - double precision with real mass

16 ql::TadPole <complex ,double ,double > tp;

17 tp.integral(res , mu2 , m, p);

18

19 // quadruple precision and complex mass variables

20 qdouble mu2q = ql::Pow (1.7q,2);

21 std::vector <qdouble > pq = {};

22 std::vector <qcomplex > mq = { {5.0q,-1.0q} };

23 std::vector <qcomplex > resq (3);

24

25 // Trigger example - Tadpole quadruple precision with complex mass

26 ql::QCDLoop <qcomplex ,qcomplex ,qdouble > auto_trigger_q;

27 auto_trigger_q.integral(resq , mu2q , mq, pq);

28

29 // Tadpole direct call - quadruple precision with complex mass

30 ql::TadPole <qcomplex ,qcomplex ,qdouble > tpq;

31 tpq.integral(resq , mu2q , mq , pq);

32

33 return 0; }
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3.2.3 Caching mechanisms

We provide two caching algorithms for fast retrieval of previously computed one-loop scalar
integrals. By default the Topology class implements and allocates a “last-used” LU cache, with
dimension N = 1, where only the last computed result is stored. Such a caching mechanism is
similar to the previous QCDLoop 1.96 version, however a faster argument comparison algorithm
parser is employed. Note that this approach is the fastest method when using a small cache
with N = 1.

Due to the practical limitations of this approach we implement a dynamic size “last-recent-
used” (LRU) algorithm in the LRUCache class. Such approach provides a simple and fast method
to store the last N computed integrals, where N is chosen by the user. The algorithm first
computes a key associated with the integral arguments by using the Murmur hash algorithm from
the std::Hash function available from the c++ standard library. We have verified explicitly that
the rate of hash collisions is negligible in the context of one-loop scalar integral computations.
Secondly, the result of the integral is stored in an unordered map so that the searching mechanism
is based on a single key search. Performance results are presented and discussed in detail in
Sec. 4.1.

In order to activate the different caching algorithms the user should call the setCacheSize(int
const& size) method which is available from all inherited classes from Topology and QCDLoop.
The code automatically selects the appropriate caching algorithm based on the size parameter:

1 ql::TadPole <complex ,double ,double > tp; // default cache size N = 1

2 tp.setCacheSize (10); // sets the cache to N=10

3 // perform calculation ...

Note the possibility to switch off the caching algorithm by setting size = 0.

3.2.4 Fortran and python wrappers

The QCDLoop library provides wrappers to fortran (77/90) and c based on the same syntax of
QCDLoop 1.96 in [7]. Table 2 lists the available functions for different topologies and argument
types. We enlarge the previous qlIj (j = 1, 2, 3, 4) syntax with extra functions identified by new
prefixes: qlIjc computes integrals in double precision and complex masses, qlIjq computes in-
tegrals in quadruple precision and real masses, qlIjqc computes integrals in quadruple precision
and complex masses. In parallel to these functions we included the new qlcachesize(size)

function which provides the interface to modify the cache size. Further details of these wrappers
are available in the header qcdloop/wrapper.h

We also provide a basic python interface to the library through cython which can be extended
by the user easily. In order to build and install the python module for QCDLoop the user should
first install the library following the instructions in Sect. 3.1 (and exporting the PATH and
LD LIBRARY PATH environment variables) and then perform the following operations:

1 cd pywrap

2 python setup.py install

The last command invokes the cython compiler and installs the module to the system PYTHONPATH.
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Integral fortran function Description

- qlinit() initializes the library

- qlcachesize(size) sets the cache size

Precision Masses

ID1

ql1(m1,mu2,ep) double real

ql1c(m1,mu2,ep) double complex

ql1q(m1,mu2,ep) quadruple real

ql1qc(m1,mu2,ep) quadruple complex

ID2

qlI2(p1,m1,m2,mu2,ep) double real

qlI2c(p1,m1,m2,mu2,ep) double complex

qlI2q(p1,m1,m2,mu2,ep) quadruple real

qlI2qc(p1,m1,m2,mu2,ep) quadruple complex

ID3

qlI3(p1,p2,p3,m1,m2,m3,mu2,ep) double real

qlI3c(p1,p2,p3,m1,m2,m3,mu2,ep) double complex

qlI3q(p1,p2,p3,m1,m2,m3,mu2,ep) quadruple real

qlI3qc(p1,p2,p3,m1,m2,m3,mu2,ep) quadruple complex

ID4

qlI4(p1,p2,p3,p4,s12,s23,m1,m2,m3,m4,mu2,ep) double real

qlI4c(p1,p2,p3,p4,s12,s23,m1,m2,m3,m4,mu2,ep) double complex

qlI4q(p1,p2,p3,p4,s12,s23,m1,m2,m3,m4,mu2,ep) quadruple real

qlI4qc(p1,p2,p3,p4,s12,s23,m1,m2,m3,m4,mu2,ep) quadruple complex

Table 2: fortran and c wrapper functions.

The python wrapper contains the qcdloop.QCDLoop object which reflects exactly the class
ql::QCDLoop from the library. One can obtain results by querying the python console with:

1 # TadPole computation in python

2 from qcdloop import QCDLoop as ql

3 m = [0.5]

4 mu2 = 1.7**2

5 out = ql.integral(mu2 ,m)

4 Validation and benchmarks

In this section we quantify and benchmark the performance of the new QCDLoop library in terms
of computational time and then in terms of phenomenological results.

4.1 Performance tests

All the topologies implemented in QCDLoop 2.0 have been validated successfully by direct com-
parison with QCDLoop 1.96 [7] for configurations with real masses and OneLoop 3.6 [10] for
complex masses.

The performance benchmark is based on a common setup: all libraries compiled with
gcc-5.2.1 using -O2 optimization flags on a i7-6500U CPU @ 2.50GHz. Kinematical con-
figurations are constructed before the computation of the scalar integrals in order to avoid
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copy-assignment operations during the computation loop. We use the native language of each
library when performing the benchmark in order to avoid eventual overhead due to wrapper
manipulation. We remove the initialization time of OneLoop from the results.

In Figure 3 we present four performance tests. In the upper left plot we compare the two
versions of QCDLoop, i.e. the new c++ library QCDLoop 2.0 (red triangles) and the previous
fortran library QCDLoop 1.96 (yellow circles), to OneLoop 3.6 (blue boxes). Computations
are performed with disabled cache over 107 random configurations using real masses and double
precision accuracy. Results are quoted in terms of average time in milliseconds for each topology
and specific kinematics, following the notation of Table 1. The right inset shows the ratio to
QCDLoop 1.96 where we notice that, on average, the new library provides the best performance
for tadpole, bubble and triangle integrals, but we obtain similar timings to OneLoop for box
configurations. Overall we conclude that the new library provides an improvement in comparison
to past releases, in particular when considering finite boxes computed in QCDLoop 1.96 through
the ff library. The upper right plot compares the LRU cache between the two versions of
QCDLoop. We perform 107 trials of the same configuration for all topologies using real masses
and double precision. The new library cache is 20 to 30% faster than the previous one for
tadpoles, bubbles and triangles, meanwhile we observe a consistent speed-up of 70% for boxes.
In the lower left plot we compare the performance of the new QCDLoop library when using the
LRU cache with N = 10 in comparison to the direct computation of 10 configurations repeated
107 times. Results show a great performance improvement when using this caching mechanism.
For some simple topologies like the tadpole the caching algorithm has similar performance in
comparison to the direct computation, however when considering the most time consuming
configurations, like BIN4, differences of a factor 40 are observed. Finally, in the lower right plot
we compare the performance of the new QCDLoop library when computing results in double and
quadruple precision. In this case the same configuration is repeated 107 times with double and
quadruple variables. Differences are proportional to the complexity of the integral. We always
observe a slowdown factor in the range 1.8 to 3 when using quadruple precision.

In Figure 4 we compare the performance of the new QCDLoop library when computing one-
loop scalar integrals with real and complex masses. We observe a performance loss above 50%
when activating complex masses for non finite integrals. Differences are smaller for finite triangles
and boxes due to the fact that those implementations rely on complex objects for both mass
types.

4.2 Phenomenological applications

In this section we test the new QCDLoop library in Monte Carlo environments. We first show
results for real masses using simulations obtained with the MCFM 7.0.1 [18,19] interface. We then
test complex masses using interfaces to Ninja [20,21] and GoSam [22] in a Sherpa 2.2.0 [23,24]
simulation.

4.2.1 MCFM interface

The interface to the new QCDLoop library and MCFM is straightforward, thanks to the backward
compatible fortran wrapper presented in Section 3.2.4. The only technical requirement in MCFM

consists in editing the makefile and updating the links and paths to the new library.
Simulations are performed for the LHC setup at

√
s = 13 TeV, using NNPDF3.0 NLO [25]

set of PDFs and the default parameters of the MCFM 7.0.1 input card. Here we focus on the
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Figure 3: Performance comparisons. Upper left: QCDLoop 2.0 vs QCDLoop 1.96 vs OneLoop 3.6 perfor-
mance for real masses and double precision for 107 configurations. Upper right: QCDLoop 2.0 vs QCDLoop
1.96 cache N = 1 with real masses and double precision, for 107 trials of the same configuration. Lower
left: QCDLoop 2.0 cache N > 1 vs no cache for 107 trials of ten configurations. Lower right: QCDLoop

2.0 double vs quadruple precision performance for 107 trials of the same configuration.
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Figure 4: QCDLoop real vs complex masses performance.

predictions of three processes which cover a large range of topologies, including massive and
massless loops, namely: WW (nproc=61), ZZ (nproc=81) and γγγγ (nproc=289) production.
The aim of the results presented here is to show that fully compatible results are obtained when
running the MC simulation with both versions of the library, i.e. QCDLoop 1.96 and 2.0.

In Figure 5 we plot the inclusive cross-section for WW , ZZ and γγγγ processes respectively
for both versions of QCDLoop. Numerical results are in agreement for all processes. In terms of
performance we observe 10% improvement with the new library for WW and ZZ production
meanwhile 5% improvement for γγγγ production.

In Figure 6 we show differential distributions for the three processes described above, always
comparing both versions of the QCDLoop library. In the top left panel we show the WW -pair
transverse mass, mWW

T , distribution. The top right panel presents the rapidity of the lepton-
pair yZ for the ZZ production. Finally, the bottom plot highlights the photon pγT distribution
in the γγγγ production. In all cases the agreement is very good; for the pγT distribution we
have performed a simulation of few hours (low statistics) in order to check that even with a low
number of iterations the final agreement between both codes is excellent.

4.2.2 Ninja and GoSam interface

For the validation of complex masses in a Monte Carlo environment we considered the Ninja

library [20, 21], which provides the integrand reduction via Laurent expansion method for the
computation of one-loop integrals, and the GoSam [22] automated package.

First, we expanded the Ninja library with the new QCDLoop interface. We then verified the
consistency of the new interface by comparing the output between OneLoop 3.6 and QCDLoop

2.0 for the examples provided by the Ninja test codes. Second, this new version of Ninja was
linked to GoSam granting access of matrix elements to Monte Carlo simulation tools.

In order to provide quantitative results we used Sherpa 2.2.0 to simulate H+2j process at
NLO, for the LHC setup at

√
s = 13 TeV with the NNPDF3.0 NLO PDF set. Such process is

interesting for our tests because it calls several topologies with complex masses. We performed
two simulations, the first with OneLoop and the second with QCDLoop. Table 3 shows the
inclusive cross-section values obtained with both codes with 50M events, and Figure 7 presents
the corresponding rapidity yH and pHT distributions for the Higgs boson. This simulation shows
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Figure 5: Examples of inclusive cross-sections obtained with MCFM 7.0.1 using both versions of QCDLoop
for WW (nproc=61), ZZ (nproc=81) and γγγγ (nproc=289) production. Simulations performed for LHC
@ 13 TeV, using NNPDF3.0 NLO.

that numerical results are in agreement for all distributions within Monte Carlo uncertainties.
In terms of performance, both codes require ∼ 10 CPU hours to complete the simulation.

Library H + 2j cross-section (Sherpa 2.2.0)

OneLoop 3.6 5.5867± (0.0121 = 0.21%) pb

QCDLoop 2.0 5.5838± (0.0121 = 0.21%) pb

Table 3: Inclusive cross-section forH+2j at NLO obtained with 5M events from Sherpa 2.2.0 interfaced
with OneLoop 3.6 and QCDLoop 2.0 through the Ninja and GoSam interfaces.

Finally, other interfaces to Monte Carlo codes are possible, users are invited to interface
their own code with QCDLoop.

5 Conclusions

In this work we presented a new object-oriented framework for the QCDLoop library. The new
features compared with the fortran version are

• QCDLoop 2.0 calculates all integrals using native implementations. The reliance on the
external library ff is no longer present.
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Figure 6: Examples of differential distributions obtained with MCFM 7.0.1 using both versions of
QCDLoop, for the mWW

T transverse mass in WW production, the average yZ rapidity distribution in
ZZ production and the average pγT distribution in 4-γ production. Simulations performed for LHC @ 13
TeV, using NNPDF3.0 NLO.

• Full implementation of double and quadruple precision for the whole library, including
the possibility of switching between the two dynamically. This can be useful in regions of
phase space in which double precision is not sufficient. This can occur in corners of phase
space, for example, in the context of NNLO calculations when unresolved regions of phase
space are probed.

• Improvements in the evaluation time with respect to the Fortran version.

• Improvements in the caching algorithm. For certain applications, in which the same inte-
grals are needed several times, this can lead to great improvements in evaluation time with
respect to the Fortran version. In the new version one can adjust the size of the cache to
yield the best performance.

The new QCDLoop library is publicly available from the webpage:
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Figure 7: Examples of differential distribution obtained with Sherpa 2.2.0 using Oneloop and QCDLoop

through the Ninja/GoSam interfaces. Simulations performed for LHC @ 13 TeV, using NNPDF3.0 NLO.

http://cern.ch/qcdloop

where instructions on how to install and run the code are also provided.
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