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Abstract: In the Boyalı area (northern Anatolia), a thick succession of 

the Early Maastrichtian - Middle Paleocene Taraklı Flysch crops out. The 

Taraklı Flysch represents a foredeep deposit sedimented during the final 

stage of collision between Sakarya and Istanbul-Zonguldak continental 

margins, that developed as consequence of the closure of the Intrapontide 

oceanic basin.  

The top of the Taraklı Flysch is characterized by a level of slide-block 

in shaly-matrix lithofacies that can be considered as a fast catastrophic 

event predating the closure of the basin and its deformation. This level 

consists of slide-blocks sourrounded by monomict pebbly-mudstones and 

pebbly-sandstones. Among the slide-blocks, the biggest one consists of 

quartz-monzonites and leucocratic granodiorites of Late Permian age 

(260.8 ± 2.2 Ma) dated by zircon LA-ICP-MS method. By comparison with the 

regional data, the source area of these granitoids can be identified in 

the Istanbul-Zonguldak terrane. This evidence suggests a new picture for 

the paleogeographic setting of the ultimate stage of the continental 

collision between the Istanbul-Zonguldak and Sakarya continental margins. 

In this scenario the coarse-grained deposits of the Taraklı Flysch are 

supplied by an orogenic wedge, consisting of oceanic units topped by the 

Istanbul-Zonguldak terrane. This orogenic wedge represents the northern 

side of the foredeep, where the southern one is represented by the still 

undeformed Sakarya continental margin. 

 

 

 

 

 

Vurgu

Vurgu

Vurgu

Yapışkan Not
Middle to Late Permian

Vurgu

Yapışkan Not
sediment deposited

Vurgu

Vurgu

Yapışkan Not
surrounded

Vurgu

Vurgu



Highlights 
- The Early Maastrichtian – Middle Paleocene Taraklı Flysch is a foredeep deposit sedimented 
during the continental collision between Sakarya and Istanbul-Zondulgak continental margins.  
- The stratigraphic top of the Taraklı Flysch is represented by a "slide-blocks in shaly-matrix" 
lithofacies.  
- The Permian magmatic age of the felsic plutonic rocks from a slide-block found at the top of the 
Taraklı Flysch is determined by U-Pb geochronology on zircon crystals.  
- The souce area of the slide-block of Permian felsic plutonic rocks is identified in the Istanbul-
Zondulgak continental margin. 
- The geodynamic setting of the foredeep during the sedimentation of the Taraklı Flysch is 
reconstructed. 
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ABSTRACT 25 

 26 

In the Boyalı area (northern Anatolia), a thick succession of the Early Maastrichtian - Middle 27 

Paleocene Taraklı Flysch crops out. The Taraklı Flysch represents a foredeep deposit 28 

sedimented during the final stage of collision between Sakarya and Istanbul-Zonguldak 29 

continental margins, that developed as consequence of the closure of the Intrapontide 30 

oceanic basin.  31 

The top of the Taraklı Flysch is characterized by a level of slide-block in shaly-matrix 32 

lithofacies that can be considered as a fast catastrophic event predating the closure of the 33 

basin and its deformation. This level consists of slide-blocks sourrounded by monomict 34 

pebbly-mudstones and pebbly-sandstones. Among the slide-blocks, the biggest one 35 

consists of quartz-monzonites and leucocratic granodiorites of Late Permian age (260.8 ± 36 

2.2 Ma) dated by zircon LA-ICP-MS method. By comparison with the regional data, the 37 

source area of these granitoids can be identified in the Istanbul-Zonguldak terrane. This 38 

evidence suggests a new picture for the paleogeographic setting of the ultimate stage of 39 

the continental collision between the Istanbul-Zonguldak and Sakarya continental margins. 40 

In this scenario the coarse-grained deposits of the Taraklı Flysch are supplied by an 41 

orogenic wedge, consisting of oceanic units topped by the Istanbul-Zonguldak terrane. This 42 

orogenic wedge represents the northern side of the foredeep, where the southern one is 43 

represented by the still undeformed Sakarya continental margin. 44 

 45 

KEY-WORDS 46 

Permian granitoids, slide-block, foredeep, U/Pb zircon geochronology, Taraklı Flysch, 47 

Turkey.48 
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1. INTRODUCTION  49 

 50 

Foreland basins represent a first-order tectonic element in the framework of collisional 51 

belts (e.g., Allen et al., 1986; DeCelles and Gilles, 1996). They originate during the first 52 

stage of collision when a passive margin collides with an active continental margin after the 53 

closure of an oceanic basin by subduction/obduction processes. One of the depozones of 54 

the foreland basin is represented by the foredeep, i.e. an elongate, deep sea-floor 55 

depression generally filled by turbidites, sometime associated to debris flows and slide 56 

deposits, which are supplied by the advancing orogenic wedge or, to a lesser extent, by the 57 

peripheral bulge. In addition, turbidites supplied by extrabasinal, distal domains and 58 

transported parallel to the front of the advancing wedge can be also deposited in the 59 

foredeep.  60 

The characteristics of these sediments provide useful insights for the reconstruction of the 61 

history of the collisional belt through time and space (e.g. Dickinson, 1988; Fedo et al., 62 

2003; Carrapa, 2010). In this frame, the coarser grained deposits, like the slide-blocks, can 63 

be used to retrieve direct information on the source areas that sorrounded the foredeep, 64 

providing valuable paleogeographic constraints. 65 

The tectonic setting of Turkey (Fig. 1) can be described as a puzzle of amalgated continental 66 

microplates separated by ophiolite-bearing sutures derived by the closure of different 67 

branches of oceanic basins whose ages range from Late Neoproterozoic to Late Cretaceous 68 

(e.g. Göncüoğlu et al., 1997; Okay and Tüysüz, 1999; Moix et al., 2008 and quoted 69 

references). The closure of these oceanic branches by subduction/obduction processes is 70 

followed by various stages of continental collision leading to the development of foredeeps 71 

that change in time and in space their shape, infilling mechanism and sediment types. One 72 
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of these sutures is the Intrapontide suture (IPS) zone, located in the northern Turkey 73 

between the Sakarya (SK) and Istanbul-Zonguldak (IZ) continental terranes. In this suture 74 

zone, the foredeep deposits are represented by the Late Cretaceous - Middle Paleocene 75 

Taraklı Flysch deposited at the top of the SK terrane during the final stage of the 76 

continental collision between the SK and IZ continental margins (Catanzariti et al., 2013 77 

and quoted references). Until now, the scenario during this late stage collision has not 78 

been reconstructed in detail, because the original tectonic setting of the IPS zone has been 79 

strongly reworked by the active strike-slip North Anatolian Shear Zone (NASZ; Şengör et al., 80 

2005; Ellero et al., 2015a). However, useful information on this scenario can be obtained by 81 

the analysis of the coarse-grained deposits occurring in the Taraklı Flysch, these can shed 82 

light on the nature of the domains that surrounded the foredeep during the deposition of 83 

the Taraklı Flysch. 84 

In this paper, we have studied the petrography and determined the U-Pb age of plutonic 85 

rocks found as an exotic block in the Late Cretaceous - Paleocene Taraklı Flysch from Boyalı 86 

area (central Anatolia). In order to identify the source area of this intrusive body, its age 87 

and first-order petrographic characteristics are compared with other plutonic rocks 88 

described in both the SK and IZ terranes. At last, the resulting evidence, together with a 89 

review of the main stratigraphic features of the Taraklı Flysch, allows a better 90 

understanding on the final stage of the continental collision, as, for instance, the features 91 

of the orogenic wedge at the border of the foredeep. 92 

 93 

 94 

2. THE INTRAPONTIDE SUTURE ZONE: TECTONIC BACKGROUND  95 

 96 
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The tectonic setting of Turkey (Fig. 1) is characterized by several Paleo- and Neotethys 97 

suture zones that are distributed around several continental terranes of both Gondwana- 98 

and Laurasia-origin (Şengör and Yilmaz, 1981; Okay, 1986; Robertson, 2002; Moix et al., 99 

2008; Göncüoğlu, 2010; Plunder et al., 2013; van Hinsbergen et al., 2016). This tectonic 100 

setting is the result of a long-lived geodynamics history of Mesozoic age and is originated 101 

by the complex interplay between small continental microplates and wide oceanic areas, 102 

all located between the continental margins of two megaplates, the Gondwana to the 103 

south and the Laurasia to the north (Stampfli and Borel, 2002; Stampfli and Kozur, 2006). 104 

These oceanic areas were originated and subsequently destroyed by subduction and 105 

obduction processes leading to multiple continental collisional events whose record is 106 

partially preserved in the suture zones. 107 

The northernmost suture zone preserved in Turkey IPS zone, an east-west trending 108 

assemblage of deformed and metamorphic con nental and oceanic units running from the 109 

 egean coast to the central  natolia (e.g. Şengör and Yılmaz, 1981; Okay and Tüysüz, 1999; 110 

Göncüoğlu et al., 2008; Hippolyte et al., 2010, 2016; Marroni et al., 2014; Frassi et al., 2016; 111 

Okay et al., 2017). The units of IPS zone are thrust by the IZ continental terrane and both 112 

are, in turn, thrust over the SK continental terrane. However, the pristine tectonic 113 

relationships of these units with the continental terranes are strongly modified since Early 114 

Eocene by the brittle tectonics related to the NASZ (Ottria et al., 2017 and references 115 

therein). 116 

The oceanic units occurring in the IPS zone indicate that a large oceanic area, known as the 117 

Intra-Pontide Ocean basin, existed since the Trias between the SK and the IZ continental 118 

margins (Şengör and Yılmaz, 1981; Göncüoğlu et al., 1987, 2008, 2012, 2014; Yılmaz, 1990; 119 

Göncüoğlu and Erendil, 1990; Robertson et al., 1991; Okay et al., 1996; Yılmaz et al., 1997; 120 
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Okay and Tüysüz, 1999; Okay, 2000; Robertson and Ustaömer, 2004; Akbayram et al., 2012; 121 

Marroni et al., 2014; Frassi et al., 2018). The SK and IZ margins were part of two 122 

microplates which were separated by the Intra-Pontide Ocean basin, a large oceanic area 123 

that was progressively closed by subduction and obduction events as proven by the 124 

occurrence of oceanic units showing HP/LT metamorphism of Late Jurassic age (Daday, 125 

Saka and Domuz Dag Units; Okay et al., 2006, 2013; Marroni et al., 2014; Aygül et al., 126 

2015a; Frassi et al., 2018). These units are associated to non-metamorphic Late Jurassic 127 

ophiolites and ophiolite-bearing sedimentary mélanges of Late Cretaceous age (Arkotdag 128 

and Kızılırmak mélanges; Tokay, 1973, Göncüoğlu et al., 2012, 2014; Çelik et al., 2016). 129 

Further evidence supporting the closure of the Intra-Pontide Ocean basin are provided by 130 

the remnants of volcanis arc of Late Cretaceous age, today preserved as tectonic units 131 

within the IPS zone (Ellero et al., 2015b; Aygül et al., 2015b).  132 

The tectonic units from the IPS zone are thrust over the SK continental terrane that 133 

consists of a Variscan continental basement associated with a strongly deformed and 134 

metamorphosed Triassic subduction complex (i.e. the Karakaya Complex; Okay et al., 2002; 135 

Okay and Göncüoğlu, 2004; Sayit and Göncüoğlu, 2013). This basement is unconformably 136 

covered by Early Jurassic to Late Cretaceous, continental to deep-marine sedimentary 137 

succession passing upward to turbidites (here reported as Taraklı Flysch), regarded as a 138 

foredeep deposits ranging in age from Early Maastrichtian to Middle Paleocene (Catanzariti 139 

et al., 2013).  140 

In turn, the IZ terrane includes a Neoproterozoic basement (e.g. Ustaömer and Rogers, 141 

1999) unconformably overlain by a very thick sedimentary sequence whose age spans from 142 

Ordovician to  arboniferous (e.g. Görür et al., 1997). Such a Paleozoic sequence is 143 

unconformably overlain by a thick sequence of Late Permian-Triassic continental clastic 144 



deposits topped by Middle to Late Jurassic carbonate deposits, which are covered by Late 145 

Cretaceous-Paleocene turbidite deposits interleaved with andesitic volcanic flows (e.g. 146 

Dizer and Meriç, 1983;  ydın et al., 1986). 147 

In this framework, the Taraklı Flysch deserves special attention mainly because it allowed 148 

assigning the ultimate stage of collision between IZ and SK terranes to the Middle 149 

Paleocene (Catanzariti et al., 2013).  150 

 151 

 152 

3. THE TARAKLI FLYSCH IN THE BOYALı AREA 153 

 154 

3.1 Geological setting  155 

The studied section of the Taraklı Flysch is located in the Boyalı area, northern Anatolia 156 

along the  kçay Valley between the Bahçecik and Boyalı Villages (Fig. 2a). This valley shows 157 

an east-west trend and its northern flank is delimited by the  ylı Dağ Mountain. 158 

In this area the tectonic setting is dominated by the deformation related to the NASZ which 159 

affected a tectonic stacking characterized by three imbricate units belonging to the IPS 160 

zone, namely the ophiolite  ylı Dağ Unit (Göncüoğlu et al., 2012), the  rkot Dağ Mélange 161 

(Göncüoğlu et al., 2014) and the Daday Unit (Frassi et al., 2018), that are thrust all together 162 

over the SK terrane (Catanzariti et al., 2013; Ellero et al., 2015a) (Fig. 2a and b). In this area, 163 

the SK terrane display a stratigraphic log that includes continental- to shallow-marine Early 164 

Jurassic clastic rocks that are disconformably topped by the Middle Jurassic to Early 165 

 retaceous neritic limestones ( ltıner et al., 1991). The neritic limestones are 166 

unconformably overlain by the Early to Late Cretaceous pelagic limestones showing a 167 
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transition to turbidite deposits of the Taraklı Flysch ranging in age from Early Maastrichtian 168 

to Middle Paleocene.  169 

South of Boyalı village (Fig. 2a), the Taraklı Flysch is imbricated with slices of the Tafano 170 

Unit (Ellero et al., 2015b) probably as result of the strike-slip tectonics of the NASZ. The 171 

Tafano Unit consists of a Late Cretaceous sequence including a volcanic complex covered 172 

by sedimentary succession. The volcanic rocks, that display basaltic and basaltic-andesitic 173 

compositions with sub-alkaline affinities, are associated with volcaniclastic deposits 174 

evolving to late Santonian-middle Campanian marly-calcareous turbidites.  175 

In addition, a small klippe of the IZ terrane consisting of Devonian deposits has been 176 

identified between two NE-SW striking strike-slip faults at the top of the  rkot Dağ 177 

Mélange, west of the  yli Dağ Mountain (Fig. 2a).  178 

The relationships among these units are sealed by the Late Paleocene-Eocene deposits of 179 

the Safranbolu-Karabuk Basin (Fig. 2a) that widely crop out in the in the western part of the 180 

Akçay Valley. Thus, the relationships between the tectonic units of the IPS zone and the SK 181 

and IZ terranes can be regarded as the result of the pre-Eocene tectonic events. 182 

 183 

3.2 Stratigraphic features 184 

The stratigraphy of the Taraklı Flysch (Fig. 3a) has been reconstructed by Catanzariti et al. 185 

(2013) in the sections cropping out along the northern side of the Akçay Valley, between 186 

the Bahçecik and Boyalı Villages and along the Boyalıçay Valley. In this study we have 187 

expanded the field survey of Catanzariti et al. (2013), mapping the western extent of the 188 

Akçay Valley (Fig. 2c). 189 

The thickness of the Taraklı Flysch is at least 700 m and shows a thickening and coarsening 190 

upward evolution (Fig. 3a). According to Catanzariti et al. (2013) it can be divided in five 191 
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different lithofacies that, from the bottom to the top, are: "thin-bedded turbidites", 192 

"medium-grained arenites", "conglomerates", "calcareous coarse-grained turbidites" and 193 

"slide-blocks in shaly-matrix" lithofacies (Fig. 3b). In the study area the "calcareous coarse-194 

grained turbidites" facies is not present while the conglomerates facies is well developed.  195 

The thin-bedded turbidites facies is, at least, 400 m thin to medium beds of medium- to 196 

fine-grained arenites and coarse-grained siltites (Fig. 3c) . These strata are well graded low 197 

density turbidites (F9a facies of Mutti, 1992) and current ripples and sinusoidal lamina are 198 

common. 199 

The medium-grained arenites lithofacies is characterized by up to 70 m thick sequence of 200 

turbidites represented by 0.4-2 m thick beds of amalgamated medium- to fine-grained 201 

arenites (Fig. 3d). These strata are characterized by a massive structure and they can be 202 

compared with the F8 facies of Mutti (1992). The bottom surface of these strata is 203 

characterized by sole marks and by the common presence of organic matter. 204 

A thick level of well rounded clast- to matrix-supported conglomerates (F3 facies of Mutti, 205 

1992) characterizes the medium part of the Taraklı Flysch (Fig. 3e). These strata are 206 

associated with coarse-grained high density turbidity current deposits. Thick to medium 207 

beds without internal structures and with poor sorting are the most common facies. The 208 

“conglomerates” lithofacies is characterized by granitoids-dominated composition of the 209 

pebbles while the carbonatic clasts are rare. These beds, derived from high density erosive 210 

flows probably connected to a coarse-grained river-delta systems. 211 

The upper part of the succession, which in the studied area is more than 300 m thick, is 212 

dominated by slide-blocks embedded in a fine grained-matrix (Fig. 3f). The matrix of this 213 

lithofacies is characterized by varicolored mainly shaly to silty deposits. The slide-blocks, 214 

usually with lenticular shapes, have variable composition and sizes ranging from metre-215 
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sized boulder up to more than 100 m-thick blocks. Even if the primary relationships 216 

between the slide-blocks and the surrounding matrix are always tectonized, their 217 

emplacement due to submarine landslides for these blocks is suggested by synsedimentary 218 

deformation structures recognized in the sediments around the blocks and by slide-block-219 

derived monomict pebbly-mudstones and pebbly-sandstones that are present around 220 

several slide-blocks. The slide-blocks are mainly granitoids (Fig.3g), orthogneisses, 221 

metagabbros/amphibolites, Jurassic carbonatic turbidites as well as Ordovician 222 

quartzarenites, black shales, crinoidal and brachiopod-bearing Devonian-Carboniferous 223 

limestones and probably Triassic red quartz-arenites which are typically derived from the IZ 224 

terrane. As indicated in the geological scheme of Fig. 2a, the granitoids blocks are the most 225 

common and those cropping out between the villages of Boyalı and Bahcecik and, to a 226 

lesser extent between Boyalı and Bayamoren villages, can be mapped at the 1:10.000 scale. 227 

Within the individual slide-blocks of plutonic rocks primary relationships among different 228 

magmatic lithofacies can be recognized. These slide-blocks can be regarded as “exotic” as 229 

similar lithologies have not been found in the units cropping out in the sorrounding area. 230 

We have sampled a large intrusive exotic block that, as illustrated in the geological map of 231 

Fig. 2c, covers an area of ca. 9 km2. In the next paragraphs the textural features of this 232 

block as well as its zircon U-Pb age will be presented and discussed in relationship to 233 

granitoids occurring in various terranes surrounding the IPS zone. 234 

 235 

 236 

 237 

4. ZIRCON SEPARATION AND U-Pb GEOCHRONOLOGY 238 
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Zircons were extracted from their host rocks at the University of Geneva (Switzerland) by 239 

standard crushing, gravimetric- and magnetic-separation techniques. Approximately 200 240 

zircon crystals were selected from each hand sample. These crystals were hand-picked 241 

under a binocular microscope and mounted in epoxy resin. The mounts were polished to 242 

expose the crystal interior domains and imaged by cathodoluminescence using a JEOL JSM-243 

7001F Schottky scanning electron microscope at the University of Geneva.  244 

In-situ zircon U-Pb isotope analysis were performed at the Institute of Earth Sciences of the 245 

University of Lausanne (Switzerland) using a Thermo ELEMENT XR sector field ICP-MS 246 

coupled with a Resolution 193 nm Excimer laser ablation system. Data were acquired in 247 

time-resolved, peak-jumping, pulse-counting mode utilizing a routine where 30 seconds of 248 

background measurement were followed by 30 seconds of sample ablation. Laser induced 249 

fractionation of Pb and U was minimized during analysis by employing a soft ablation 250 

regime using a repetition rate of 5 Hz and an energy density of ~3 J/cm2 per pulse. Laser 251 

spot sizes were 30 μm. The measurement protocol and the parameters of mass 252 

spectrometer optimization follow Ulianov et al. (2012). Laser-induced elemental 253 

fractionation and instrumental mass discrimination were corrected by normalization to the 254 

reference zircon GJ-1. To test the accuracy and external reproducibility of the obtained age 255 

data, the Plešovice reference zircon (Sláma et al., 2008) was measured after every ~ 8 256 

unknowns and the data are presented in Table 1. The Plešovice secondary standard gave a 257 

weighted mean age of 337.5 ± 0.6 Ma (2SD, n = 21; MSWD = 0.66). The calculated age is 258 

consistent, within uncertainty, with the ID-TIMS value reported by Sláma et al. (2008). All 259 

raw data from Lausanne was processed using the LAMTRACE software package (Jackson, 260 

2008) and no common Pb correction was applied due to the presence of trace 204Hg in the 261 

Ar gas. Common Pb was dealt with by monitoring 201Hg, 204(Hg+Pb) as well as 262 



(204Pb+204Hg)/206Pb ratios. The homogeneity of the ablated material was confirmed by 263 

monitoring the 206Pb/238U and 207Pb/235U vs. time spectra, and fluctuations in these ratios 264 

were interpreted to represent mixing between different age domains within the crystals. 265 

Spectra with mixed domains were subsequently discarded. 266 

 267 

 268 

5. INTRUSIVE ROCKS IN THE BOYALı AREA 269 

 270 

5.1 Field data and petrography 271 

We have sampled a large-block of granitoids that, as illustrated in the geological map of Fig. 272 

2b, occurs as a square body and it is cut, in its northern side, by an E-W trending strike-slip 273 

fault. The granitoids are well exposed along the Akçay river where two different facies 274 

were recognized (Fig. 4a).  275 

The main, melanocratic facies (Fig. 4b) is located in the upper level of the --block and 276 

consists of medium-grained quartz-monzonites (Fig. 4c) with crystal of amphibole 277 

representing the dominant rock-forming phase forming up to ca. 50 vol% of the rock 278 

assemblage. The quartz-monzonites also contains widespread crystals of quartz, titanite as 279 

well as primary iron-rich epidote and a minor amount of chlorite replacing former biotite 280 

crystals. Other common accessory phases are apatite, magnetite and zircon. No preferred 281 

orientation of the minerals has been observed in these rocks. The most voluminous facies 282 

is intruded by a second leucocratic unit (Fig. 4d) that occurs in the lower level of the slide-283 

block. This second facies is made of coarse-grained leucocratic granodiorites (Fig. 4e) with 284 

crystals reaching up to 5 cm of K-feldspar, quartz and plagioclase. Mirmekitic textures are 285 

common in some of the analyzed thin sections. Biotite is the main ferromagnesian phase in 286 
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the rock forming less than 5 vol% of the granodiorites and biotite crystals are pervasively 287 

altered to iron-rich chlorites (i.e. chamosite). Accessory phases are titanite crystals, 288 

reaching up to 1 mm in size, primary iron-rich epidote (i.e. pistacite), apatite and zircon. In 289 

thin section, both lithofacies are crosscut by different generations of calcite veins and the 290 

plagioclase in the quartz-monzonites is commonly pervasively altered to sericite. Dikes of 291 

the leucocratic granodiorites cut the quartz-monzonites (Fig. 4f) whereas the latter form 292 

enclaves that are recognized along the contact zone between the two units. Finally, both 293 

the lithotypes are cross-cut by fine-grained aplitic dikes. 294 

 295 

5. 2 Zircon texture and U-Pb geochronology 296 

Zircon were extracted from three samples (Fig. 5). Two samples of the quartz-monzonites 297 

(i.e. TC316a and TC316b) and one from the leucocratic granodiorites (TC319). Zircon 298 

crystals from both lithofacies are subhedral to euhedral and reach up to 350 µm in length. 299 

Under cathodoluminescence (hereafter CL), most of the grains from the quartz-monzonites 300 

are characterized by the occurrence of CL-dark homogeneous or faintly zoned centres 301 

surrounded by fine-scale oscillatory zoned rims. The centres commonly exhibit evidence of 302 

resorption, they can be fractured and occasionally metamictic (Fig. 5). Most of zircon grains 303 

from the leucocratic granodiorites exhibit complex core-to-rim growth zoning with 304 

common local intermediate resorption features that allows distinguish centres and rims 305 

(Fig. 5). A subset of zircon crystals from both rock-types are homogeneous under CL, either 306 

bright or dark. 307 

Seventy-two zircon crystals were dated by LA-ICP-MS U-Pb analysis. The complete dataset 308 

is provided in Table 1. In Fig. 6, Concordia diagrams and weighted average plots are shown. 309 

The analyses performed on both centres and rims yield apparent spot ages that vary from 310 
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270 to 232 Ma, with most of the data forming a cluster at ca 260 Ma. Most of the spot 311 

analyses are discordant and only twenty-three analyses passed the <10% discordancy test 312 

(Conc.(%) in Tab.1). The two samples analysed for the quartz-monzonites yielded weighted 313 

average 206Pb/238U ages of 261.0 ± 1.6 Ma (n=16, MSWD = 0.5) and 258.3 ± 2.1 Ma (n=15, 314 

MSWD = 1.2). Zircon spot ages from the leucocratic granodiorites are more scattered giving 315 

a weighted average 206Pb/238U age of 256.8 ± 2.8 Ma (n=18, MSWD = 3.1). These three 316 

calculated ages are the same within error, a weighted mean 206Pb/238U age determined 317 

considered only the sub-concordant spot analyses for the three rocks considered together 318 

yielded an age of 260.8 ± 2.2 Ma. This is considered to be the age of emplacement of the 319 

intrusive body. 320 

 321 

 322 

6. DISCUSSION 323 

 324 

6.1 Occurrence of slide-blocks of Late Permian granitoids in the Taraklı Flysch 325 

The succession of the Taraklı Flysch cropping out in the Boyalı area (Fig. 3a) shows all the 326 

features of  syn-tectonic sedimentation in a foredeep environment with a clear thickening 327 

and coarsening upward evolution from thin-bedded turbidites to medium-grained arenites 328 

and calcareous coarse-grained turbidite lithofacies (Catanzariti et al., 2013). This succession 329 

ends with a level of slide-blocks in shaly-matrix lithofacies, that can be considered as the 330 

result of a fast and catastrophic sedimentary event that predates the closure of the basin 331 

and its deformation. This catastrophic event originated by the instability of the front of the 332 

orogenic wedge probably triggered by earthquakes induced by the underthrusting of a 333 

lower plate with rugged morphology, as detected in modern  and fossil foredeep and 334 



trench deposits (Festa et al., 2010 and quoted references.). The slide-blocks are 335 

sourrounded by monomict pebbly-mudstones and pebbly-sandstones whereas the 336 

sediments around show synsedimentary deformation structures. Among the different 337 

slide-blocks, the largest one is the studied zoned pluton with other petrographically similar 338 

blocks of minor dimensions cropping out next to it (Fig. 2c). These lines of evidence suggest 339 

that all the slide-blocks derived from a source area that was located close to the foredeep 340 

where the Taraklı Flysch sedimented. Thus, this source area can be identified either in the 341 

front of the advancing orogenic wedge or, alternatively, in the peripheral bulge, being 342 

these areas the only ones that are able to provide coarse-grained deposits in the upper 343 

part of the Taraklı Flysch. In the first hypothesis, the source area of the slide-blocks of 344 

granitoids is represented by IZ terrane, whereas in the second one the same role is played 345 

by the SK terrane. 346 

 347 

6.2  Felsic plutonic rocks in the SK and IZ terranes  348 

Undeformed plutonic rocks of Paleozoic age occur in both the SK and IZ terranes (Okay and 349 

Topuz, 2017). In the SK terrane, most of the unmetamorphosed granitoids are Devonian 350 

and crop out in the western part of the Sakarya zone as tectonic slices generally occurring 351 

within the Triassic subduction-accretion complexes (Karakaya Complex), (Okay et al., 1996, 352 

2006; Aysal et al., 2012; Sunal, 2012). These intrusives, which are mainly  granodiorites, 353 

monzogranites and monzodiorites show geochemical and petrographic features of 354 

continental arc magmas (Aysal et al., 2012). In the SK terrane Carboniferous - Early Permian 355 

granitoids are also common and widespread intruding the LP-HT metamorphic rocks 356 

cropping out in Eastern Pontide area. The U-Pb zircon ages of these granitoids, which 357 

exhibit both high-K I- and S-type signatures, range from 330 to 294 Ma (e.g., Ustaömer et 358 
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al., 2012, 2013; Kaygusuz et al., 2012). Therefore the age of the intrusive rocks cropping 359 

out in the Sakarya terranes does not match with the age of the exotic block in the upper 360 

part of the Taraklı Flysch. 361 

In the IZ terrane the Paleozoic se uence is con nuous from Ordovician to  arboniferous 362 

with no intervening phases of magma sm or deforma on (e.g., Görür et al., 1997;  zgül, 363 

2012). The Ordovician sedimentary rocks are underlain by late Neoproterozoic granitoids 364 

(Ustaömer et al., 2005). The late Neoproterozoic granitoids as well as the Paleozoic 365 

sedimentary sequence were deformed and metamorphosed during the Carboniferous and 366 

were subsequently intruded by syn- and post-tectonic Late Carboniferous and Permian 367 

granitoids. These intrusive rocks show a wide range of ages from 309 to 235 Ma similar to 368 

the plutonic rocks described in the Strandja massif, Istanbul area and central Pontides 369 

(Ustaömer et al., 2005; Sunal et al., 2006; Sahin et al., 2014; Machev et al., 2015).  370 

The Kürek granite, located in the IZ terrane only few kilometeres north of the studied 371 

exotic blocks in the Taraklı Flysch, has a Late Permian age of 262 ± 3 Ma (Okay et al., 2013) 372 

which overlaps with the age of the slide-block dated in this study. Therefore, this granitoid 373 

is considered to be the best candidate to represent the source of the slide-block in the 374 

Taraklı Flysch. It is worth no ng that the Kürek granite and the slide-block also share similar 375 

petrographic features, with the former described by Okay et al. (2013) as a composite 376 

pluton consisting of hornblende-bearing diorites intruded by granites-granodiorites. The 377 

Kürek granites occurs at the top of the oceanic metamorphic units belonging to the IPS 378 

zone. This tectonic position suggests that the Kürek granites can be interpreted as a klippe 379 

belonging to the southernmost part of the IZ terrane, subsequently dislocated by the 380 

strike-slip tectonics related to the NASZ (Ellero et al., 2015a; Ottria et al., 2017). 381 

 382 
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6.3 Potential source area of slide-blocks in the Taraklı Flysch 383 

The age and the petrography of the granitoids in the Taraklı Flysch match with those of 384 

granitoids derived from the IZ terrane. In fact, the IZ terrane differently from Sakarya, hosts 385 

Late Carboniferous to Permian granitoids, that crop out also in the Central Pontides. 386 

Klippes of IZ terrane occur 5 km north of the studied granitoids whereas another klippe of 387 

the I  terrane bearing granitoids (Kürek granite) showing similar petrography and age occur 388 

about 25 Km northward. As previously stated, these klippes can be regarded the remnants 389 

of the southernmost part the IZ terrane, subsquently dismembered and isolated by the 390 

strike-slip tectonics.  391 

Our data suggest that the slide-blocks of granitoids are derived from the advancing front of 392 

the IZ terrane located at the top of the orogenic wedge that bounded northward the 393 

foredeep where the Taraklı Flysch deposited. Another evidence in support of this 394 

hypothesis comes from the occurrence, in the uppermost part of the Taraklı Flysch of 395 

crinoidal and brachiopod-bearing Devonian-Carboniferous limestones and Triassic red 396 

quartzarenites. These lithologies are found in the IZ terrane. In this reconstruction, the IZ 397 

terrane can be regarded as a wide nappe that thrust over the IPS units reaching the rim of 398 

the foredeep. The slide-block of granitoids were then detached from the IZ terrane, 399 

emplaced by slide in the foredeep and interposed within the turbidites of the Taraklı 400 

Flysch. Conversely, the opposite side of the foredeep is represented by the SK continental 401 

margin, not still affected by deformation, that represents the source area for the thin-402 

bedded turbidites of the Taraklı Flysch. A reconstruction of the depositional setting of the 403 

Taraklı Flysch is proposed in the Fig. 7.  404 

 405 

 406 
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7. CONCLUSION 407 

 408 

The Taraklı Flysch from the Boyalı area is a turbidite deposit of Early Maastrichtian to 409 

Middle Paleocene age that sedimented in a foredeep during the ultimate stage of the 410 

collision between SK and I  continental margins. The top of the Taraklı Flysch is 411 

characterized by a level of slide-blocks in shaly-matrix lithofacies, that can be considered as 412 

the fast catastrophic event that predates the closure of the basin and its deformation. This 413 

level consists of slide-blocks sourrounded by monomict pebbly-mudstones and pebbly-414 

sandstones, whereas the sediments around show synsedimentary deformation structures. 415 

Among the slide-blocks, the largest one consists of intrusive rocks of Late Permian age by 416 

U/Pb geochronology.  ccording to the available regional data, these “exotic” granitoids are 417 

derived from the IZ terrane, where Late Permian granites are widespread.  418 

This evidence suggests a new picture for the paleogeographic setting in the Paleocene 419 

time, i.e. during the final stage of the continental collision between the IZ and SK 420 

continental margins (Fig. 7). In this picture the slide-blocks of granites are supplied from 421 

the advancing front of the IZ terrane located at the top of the orogenic wedge that 422 

bounded northward the foredeep. This wedge can be depicted as consisting of IPS units 423 

thrust by the IZ terrane. This picture is coherent with thrusting of the IZ terrane over the 424 

IPS units across the whole extension of the IPS zone during the continental collision and 425 

before the inception of the NASZ.  426 

 427 
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CAPTIONS 644 

 645 

Fig. 1 - The major tectonic zones of Turkey separated by sutures (thick dotted lines). In red, 646 

Neogene to Holocene active regional structures are indicated. The boxed sector indicates 647 

the study area.  648 

Fig. 2 - Geology of the study area. a) tectonic scheme of the Daday-Arac-Bayamoren area. 649 

Boxed area indicate the location of Fig.2c. b) N-S Geological section of the IPS zone area. c) 650 

Close-up of the geology of the study area. The samples location is indicated.  651 

Fig. 3 - Stratigraphic features of the Taraklı Flysch in the study area. a) Reconstructed 652 

stratigraphic log of the Taraklı Flysch. The position of the studied samples are indicated in 653 

the left side of the log while the pictures position is indicated in the right side. b) 654 

Lithofacies legend: 1: slide-block in shaly-matrix; 2: clast supported-conglomerates; 3: 655 

coarse-grained turbidites; 4: medium-grained arenites; 5: thin-bedded turbidites. c-g) Field 656 

occurrence of the Taraklı Flysch in the Bahcecik area. c) Thin Bedded Turbidites lithofacies; 657 

d) level of well rounded clast- to matrix-supported conglomerates (arrows) associated with 658 

coarse-grained arenites. e) well-rounded matrix-supported conglomerates showing several 659 

granitoids clasts. f)  slide-blocks of Permian granitoids. g) slide-blocks of Permian granitoids 660 

(arrow) and crinoidal Devonian-Carboniferous limestones.  661 

Fig. 4 - Field occurence and photomicrographs of the study rocks. a) and b) Quartz-662 

monzonites (TC316). c) and d) leucocratic granodiorites (TC319). e) cm and f) mm 663 

leucocratic granodiorites veinlet intruding quartz-monzonites. The arrows indicate the 664 

magmatic relationships. 665 

Fig. 5 - Zircon CL images and analysis points of the samples a) TC316a, b) TC316b and c) 666 

TC319. In blue are indicated the spots whose value has been used to calculate the 667 

Vurgu

Yapışkan Not
Figure Captions



weighted average age of the samples; green color has been used for the spots whose value 668 

has been used to calculate the weighted average age and that is included within the error 669 

of the sample age. In red are marked the spots whose age has not been considered for the 670 

age calculation.  671 

Fig. 6 - Concordia diagrams of TC316a and TC319 samples and weighted average diagrams 672 

of the three samples TC316a, TC316b and TC319. 673 

Fig. 7 - 3D reconstruction of the Taraklı Flysch depositional system and surrounding areas 674 

during the Late Cretaceous-Middle Paleocene time. The setting of the study granitoids are 675 

indicated as part of IZ zone as well as slide-block in the inner foredeep of the Taraklı basin. 676 

Table 1 - Results of zircon LA-ICP-MS U-Pb age determination of the samples TC316a, 677 

TC316b, TC319. The results related to the secondary standard “Plešovice” is also reported. 678 
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zircon 
Isotopic ratios 

ρ 
Age (Ma) Apparent ages (Ma) 

Conc.(%) 206Pb/238U 2S.D. 207Pb/235U 2S.D. 206Pb/238U S.D. 207Pb/235U S.D. 207Pb/206Pb S.D. 
TC316A 
jn11n05 0.041 0.0003936 0.2905 0.008 0.34 258.8 2.4 258.9 6.4 270 54 95.9 
jn11n06 0.0411 0.00040278 0.2928 0.008 0.37 259.7 2.5 260.7 6.1 300 56 86.6 
jn11n08 0.0416 0.00034112 0.2922 0.006 0.41 262.8 2.1 260.3 4.5 274 40 95.9 
jn11n09 0.0399 0.00035112 0.2903 0.005 0.53 252 2.2 258.8 3.8 322 34 78.3 
jn11n10 0.0418 0.00043472 0.3031 0.010 0.32 263.8 2.7 268.8 7.7 332 66 79.5 
jn11n11 0.0407 0.00047212 0.2932 0.012 0.29 256.9 2.9 261.1 9.3 306 86 84.0 
jn11n12 0.0378 0.00050652 0.2768 0.009 0.42 239.2 3.1 248.1 7 338 64 70.8 
jn11o05 0.0418 0.00035112 0.3015 0.006 0.40 264.3 2.2 267.6 5 304 46 86.9 
jn11o06 0.0428 0.00041944 0.3042 0.009 0.34 270.4 2.6 269.7 6.8 304 56 88.9 
jn11o09 0.0408 0.00042432 0.2864 0.010 0.31 257.8 2.6 255.7 7.7 266 72 96.9 
jn11o12 0.0388 0.0004656 0.2783 0.008 0.41 245.3 2.9 249.3 6.5 290 60 84.6 
jn11o13 0.0414 0.00043884 0.3051 0.008 0.42 261.4 2.7 270.4 6 368 48 71.0 
jn11o14 0.0366 0.00076128 0.2666 0.022 0.25 232 4.8 240 17.7 326 188 71.2 
jn11t10 0.0418 0.00035112 0.2961 0.005 0.49 264 2.2 263.4 3.9 272 36 97.1 
jn11t12 0.0413 0.00047908 0.2997 0.013 0.28 261 3 266.2 9.8 296 90 88.2 
jn11v05 0.0399 0.00075012 0.2815 0.028 0.19 252.1 4.7 251.9 22.5 308 184 81.9 
jn11v06 0.041 0.0004182 0.3007 0.009 0.35 258.7 2.6 266.9 6.9 338 60 76.5 
jn11v07 0.0412 0.00042024 0.2964 0.009 0.34 260.5 2.6 263.6 7 306 62 85.1 
jn11v08 0.0414 0.00042228 0.3041 0.008 0.37 261.3 2.6 269.6 6.5 354 56 73.8 
jn11v09 0.0408 0.00045696 0.2846 0.011 0.28 258.1 2.8 254.3 9 282 86 91.5 
jn11v13 0.0426 0.00039192 0.3068 0.008 0.35 269.2 2.4 271.7 6.3 290 52 92.8 

TC316B 
jn11e05 0.04 0.00042 0.287 0.010 0.29 253.1 2.6 256.2 8 288 74 87.9 
jn11e06 0.0413 0.00038 0.3006 0.008 0.34 261 2.3 266.9 6.4 332 52 78.6 
jn11e08 0.0435 0.00051 0.3088 0.017 0.22 274.4 3.2 273.3 12.8 272 104 100.9 
jn11e09 0.041 0.000418 0.2939 0.010 0.30 259 2.6 261.6 7.9 314 66 82.5 
jn11e11 0.0414 0.00041 0.2988 0.010 0.29 261.5 2.6 265.4 8.1 276 72 94.7 
jn11e12 0.0409 0.00052 0.2987 0.015 0.24 258.5 3.2 265.4 12 352 102 73.4 
jn11e14 0.0422 0.00041 0.2977 0.010 0.29 266.2 2.5 264.6 7.7 262 70 101.6 
jn11f05 0.0411 0.000411 0.2933 0.009 0.34 259.8 2.6 261.2 6.7 280 62 92.8 
jn11f06 0.0402 0.00039 0.2815 0.009 0.30 253.9 2.4 251.8 7 264 66 96.2 
jn11f07 0.041 0.000402 0.2932 0.008 0.34 259.1 2.5 261.1 6.6 294 56 88.1 
jn11f09 0.0405 0.00049 0.2949 0.012 0.30 255.9 3 262.4 9.3 300 78 85.3 
jn11f10 0.0404 0.00042 0.292 0.011 0.27 255.2 2.6 260.2 8.7 316 76 80.8 
jn11f12 0.0407 0.00034 0.2954 0.006 0.42 257.3 2.1 262.8 4.6 308 42 83.5 
jn11f13 0.04 0.00038 0.2811 0.009 0.31 253 2.3 251.5 6.8 248 60 102.0 
jn11f14 0.0394 0.00039 0.274 0.007 0.37 248.9 2.4 245.9 5.7 240 56 103.7 

TC319 
jn11p05 0.0401 0.0003609 0.2908 0.006 0.41 253.7 2.2 259.2 5.1 338 46 75.1 
jn11p06 0.042 0.0004032 0.3036 0.009 0.33 265.3 2.5 269.2 6.8 304 62 87.3 
jn11p07 0.0406 0.00041412 0.2981 0.010 0.31 256.6 2.6 264.9 7.6 342 64 75.0 
jn11p09 0.0394 0.00048856 0.2765 0.010 0.36 249.2 3 247.9 7.6 272 72 91.6 
jn11p10 0.0414 0.00036432 0.2951 0.007 0.35 261.6 2.3 262.5 5.8 292 54 89.6 
jn11p12 0.041 0.00041 0.2964 0.008 0.38 258.8 2.5 263.6 6.1 306 56 84.6 

Table 1



jn11p13 0.0439 0.0005268 0.3333 0.011 0.35 277 3.2 292.1 8.7 420 70 66.0 
jn11q05 0.0412 0.00040376 0.2866 0.009 0.30 260.1 2.5 255.9 7.4 298 58 87.3 
jn11q06 0.0421 0.00040416 0.295 0.009 0.32 265.6 2.5 262.5 7 258 60 102.9 
jn11q14 0.039 0.0004524 0.2822 0.015 0.22 246.3 2.8 252.4 11.9 352 104 70.0 
jn11t05 0.0408 0.0004488 0.2952 0.010 0.31 257.8 2.8 262.7 8.2 290 70 88.9 
jn11t06 0.0393 0.00036156 0.2883 0.008 0.32 248.6 2.2 257.3 6.5 326 58 76.3 
jn11z05 0.0377 0.00055796 0.2813 0.014 0.29 238.3 3.4 251.7 11.5 352 110 67.7 
jn11z06 0.0401 0.00036892 0.287 0.008 0.35 253.4 2.3 256.2 6 286 60 88.6 
jn11z07 0.0401 0.00039298 0.2873 0.009 0.30 253.3 2.5 256.5 7.3 300 70 84.4 
jn11z08 0.0418 0.00043472 0.3048 0.008 0.40 264 2.7 270.1 6.2 320 54 82.5 
jn11z09 0.0411 0.00039456 0.2907 0.009 0.30 259.9 2.5 259.1 7.2 260 64 100.0 
jn11z10 0.0387 0.0005418 0.2737 0.013 0.29 244.7 3.4 245.6 10.5 294 102 83.2 
jn11z11 0.0375 0.0006 0.2647 0.016 0.27 237.5 3.7 238.5 12.8 264 130 90.0 
jn11z12 0.0396 0.00045936 0.2819 0.011 0.29 250.2 2.9 252.2 8.8 242 84 103.4 
jn11z13 0.0411 0.00037812 0.2988 0.009 0.32 259.5 2.3 265.5 6.7 332 58 78.2 

Plešovice 
ples-a15 0.0535 0.000417 0.4025 0.008 0.39 335.9 2.6 343.5 5.8 392 40 85.7 
ples-b15 0.054 0.000421 0.3954 0.008 0.39 338.8 2.6 338.3 5.8 330 40 102.7 
ples-b16 0.0538 0.000463 0.3957 0.009 0.38 337.8 2.8 338.5 6.5 334 46 101.1 
ples-c15 0.054 0.000432 0.4008 0.007 0.43 339 2.7 342.2 5.4 356 38 95.2 
ples-d15 0.0536 0.000429 0.4008 0.010 0.33 336.9 2.6 342.2 7.1 372 50 90.6 
ples-e16 0.0536 0.00045024 0.4031 0.009 0.36 336.3 2.7 343.9 6.8 378 44 89.0 
ples-f16 0.0538 0.0004842 0.3915 0.009 0.40 337.9 2.9 335.4 6.5 322 46 104.9 
ples-h15 0.054 0.000454 0.3924 0.009 0.35 339.1 2.8 336.1 6.9 318 50 106.6 
ples-i15 0.0537 0.000462 0.4098 0.010 0.37 337.1 2.8 348.8 6.9 402 44 83.9 
ples-i16 0.0537 0.000473 0.3991 0.011 0.33 337.4 2.9 341 7.6 348 50 97.0 
ples-m15 0.0536 0.000461 0.3847 0.007 0.45 336.9 2.8 330.5 5.4 312 40 108.0 
ples-m16 0.0539 0.000464 0.4001 0.008 0.41 338.7 2.8 341.7 6.1 356 42 95.1 
ples-n16 0.0537 0.00047256 0.4011 0.008 0.43 337.3 2.9 342.5 5.9 382 38 88.3 
ples-o16 0.0538 0.00045192 0.3964 0.008 0.42 337.6 2.8 339 5.8 348 44 97.0 
ples-p15 0.0539 0.00044198 0.3952 0.008 0.41 338.2 2.7 338.2 5.7 344 38 98.3 
ples-r15 0.054 0.000475 0.4062 0.009 0.42 339.1 2.9 346.2 6.2 354 38 95.8 
ples-t15 0.0535 0.0004387 0.3993 0.008 0.39 336.1 2.7 341.1 6.1 378 40 88.9 
ples-t16 0.054 0.000486 0.3937 0.010 0.37 338.9 2.9 337.1 7 338 50 100.3 
ples-u16 0.0537 0.000451 0.3946 0.008 0.42 336.9 2.7 337.7 5.7 350 42 96.3 
ples-v15 0.0535 0.0004815 0.3905 0.008 0.42 336 3 334.7 6.1 338 42 99.4 
ples-z16 0.0535 0.0004922 0.404 0.009 0.42 335.8 3 344.5 6.4 386 40 87.0 

 




