
Submitted to:
F-IDE 2018

c© P. Arcaini, R. Melioli & E. Riccobene
This work is licensed under the
Creative Commons Attribution License.

AsmetaF: a flattener for the ASMETA framework

Paolo Arcaini∗

National Institute of Informatics
Japan

arcaini@nii.ac.jp

Riccardo Melioli Elvinia Riccobene
Dipartimento di Informatica, Università degli Studi di Milano

Italy
riccardo.melioli@studenti.unimi.it elvinia.riccobene@unimi.it

Abstract State Machines (ASMs) have shown to be a suitable high-level specification method for
complex, even industrial, systems; the ASMETA framework, supporting several validation and ver-
ification activities on ASM models, is an example of a formal integrated development environment.
Although ASMs allow modeling complex systems in a rather concise way –and this is advantageous
for specification purposes–, such concise notation is in general a problem for verification activities
as model checking and theorem proving that rely on tools accepting simpler notations.

In this paper, we propose a flattener tool integrated in the ASMETA framework that transforms
a general ASM model in a flattened model constituted only of update, parallel, and conditional rules;
such model is easier to map to notations of verification tools. Experiments show the effect of applying
the tool to some representative case studies of the ASMETA repository.

1 Introduction

Abstract State Machines [11, 10] (ASMs) is a formal specification method based on model refinement,
which has been used in several application domains and case studies [4, 1, 7]. To overcome the lack
of tool support and foster the use of ASMs for rigorous software development, in 2008 we started the
ASMETA (ASM mETAmodeling) project1 with the goal of developing a set of tools supporting different
activities of the ASM-based system development process [4], and operating in an integrated way to
reuse model information. Today, ASMETA [6] exists as a framework for specification, validation (by
simulation, scenario construction, model-based testing) and verification (static analysis, model checking,
symbolic verification, refinement correctness, runtime verification), as well as automatic code generation.
Exploiting the Model-Driven methodology (which is at the base of the whole framework development),
some of these tools have been developed from scratch, while many others have been obtained by mapping
ASMs (usually by exploiting model2model or model2text transformations) into the native formalisms of
already existing tools (e.g., model checkers and SMT solvers) in order to exploit their functionalities.
Our whole project is, indeed, based on the idea that the ASMETA tool-set should be a formal integrated
development environment for ASMs. However, the integration of tools into the ASMETA framework
has caused some difficulties that justify the work we present here and that we motive in the following.
Motivation ASMs use a plain mathematical notation to model a system configuration (i.e., a state) in
terms of a mathematical algebra, and use a set of powerful rule constructors to specify system behavior
(i.e., state transitions). ASMs provide, therefore, a powerful language that permits to describe complex
systems in a rather concise way. Although it is an advantage when modeling, this notational conciseness
can be a problem for tools integration: target languages have their own syntax and semantics, and trans-
lating an ASM to a target model by maintaining the intended computational model is not a trivial work;
moreover, ASM specifications must often be translated to less expressive languages, and implementing

∗The author is supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST.
1http://asmeta.sourceforge.net/

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://asmeta.sourceforge.net/

2 AsmetaF: a flattener for the ASMETA framework

these transformation tools is rather complicated, as the semantics of the complex rule constructors of the
ASM language must be taken into account and guaranteed.

In the past, different mappings have been developed to model checkers as SPIN [14] and NuSMV [2],
to SMT solvers [5, 3], and to C++ code [9]. All these target notations, although can in principle represent
the same class of systems as ASMs, have syntaxes that are very different from the ASM notation, with
less expressive constructs; therefore, the integration of these tools into ASMETA usually supports only
specific classes of ASMs. Some constructs of the ASM formalism are indeed difficult to translate in
the target notation, and, although possible, we did not implement such translations because too much
complex (e.g., the mappings to model checkers NuSMV and SPIN do not support variable arguments in
functions). On the other hand, we observe that tools integrated into ASMETA usually perform similar
pre-processing of supported ASM constructs (e.g., translation of unbounded parallelism of the forall
rule is usually implemented by an unfolding), and that this pre-processing could be extracted from the
integrated tools and made separately available for all the integrations.

This necessity was again confirmed by our recent work on devising a new mapping to the proba-
bilistic model checker PRISM2 that will be used for ASM-based analysis of cyber-physical systems in
the context of the ERATO MMSD project [15]: we realized that instead of trying to directly map any
ASM in PRISM (that provides an extremely limited language), it would have been better to go through a
simpler, but still equivalent, ASM that uses a limited set of ASM constructs. Such simpler ASM would
have been as the result of the pre-processing phase of other integrated tools.
Contribution To simplify the porting of ASMs towards other modeling languages, to reuse tools for
model validation and verification, and to foster tool integration into the ASMETA framework, we here
propose a flattener (AsmetaF) that, given an ASM model M, produces an equivalent model M f that only
contains update, conditional, and parallel rules; we consider the M f model to be in a normal form. The
idea is that translating the normal form to the target languages of verification frameworks (e.g., NuSMV,
SMT-LIB) or code is much easier than considering ASMs containing any possible construct. We are
currently using AsmetaF in the development of the mapping of ASM to PRISM. Moreover, we have
integrated the tool with the AsmetaSMV tool; this has allowed us to support a wider set of specifications,
namely those having variable function arguments. In the future, we will integrate it in verification tools
of the ASMETA framework and in future integrated tools requiring flattening.
Paper structure Sect. 2 presents some background on the ASM method. Sect. 3 introduces the flat-
tener transformations, and describes how we validated the approach. Sect. 4 describes some preliminary
experiments, Sect. 5 reviews some related work, and Sect. 6 concludes the paper.

2 Abstract State Machines

Abstract State Machines (ASMs) [11, 10] are transition systems based on the concept of state represent-
ing the instantaneous system configuration, and transition rules describing the change of state.

ASM states are multi-sorted first-order structures, i.e., domains of objects with functions and pred-
icates defined on them. An ASM state S is represented by a set of couples (location, value). ASM
locations, namely pairs (function-name, list-of-parameter-values), represent the abstract ASM concept
of basic object containers (memory units). Location updates represent the basic units of state change and
they are given as assignments, each of the form loc := v, where loc is a location and v its new value.

ASM transition rules express how function interpretations are modified from one state to the next
one, and therefore describe the system configuration changes. The basic form of a transition rule is

2http://www.prismmodelchecker.org/

http://www.prismmodelchecker.org/

P. Arcaini, R. Melioli & E. Riccobene 3

the conditional rule: “if Condition then Updates”, where Updates is a set of function updates (or
update rules) of the form f (t1, . . . , tn) := t which are simultaneously executed when Condition is true;
f is an n-ary function and t1, . . . , tn, t are terms. Due to their parallel execution, we require updates to be
consistent, i.e., no pair of updates can simultaneously update the same location to different values.

Besides update and conditional, there is a finite set of rule constructors to model submachine calls
(macro (call) rule), simultaneous parallel actions (par rule), non-determinism (choose rule), unre-
stricted synchronous parallelism (forall rule), abbreviation on terms or rules (let rule). There are also
derived rule constructors, as the case rule that is defined as alternative disjointed guarded rules.3

Functions remaining unchanged during the computation are static. Those updated by agent actions
are dynamic, and distinguished in monitored (read by the machine and modified by the environment) and
controlled (read and written by the machine).

A computation of an ASM is a finite or infinite sequence S0,S1, . . . ,Sn, . . . of machine states, where
S0 is an initial state and each Sn+1 is obtained from Sn by simultaneously firing all the transition rules
which are enabled in Sn. The (unique) main rule is a transition rule and represents the starting point of
the computation. An ASM can have more than one initial state. It is possible to specify state invariants.

A multi-agent ASM models concurrent and distributed computations. It is defined as a set of pairs
M = {(a,ASM(a))}where a is an element of a predefined set Agent, and ASM(a) is a machine specifying
its behavior. A predefined function program on Agent associates an agent with its ASM, and a special
function self : Agent, interpreted by each agent a as itself, allows for self-reference in transition rules.

ASMETA [6] is a tool-set for ASMs, which provides basic functionalities for specification and model
analysis techniques (validation, verification, testing, model review, requirements analysis, runtime mon-
itoring, etc.). AsmetaL is the textual notation to encode ASM models into ASMETA.

3 Flattener

In order to improve tools integration in ASMETA and to overcome some shortcomings due to the high
level and concise mathematical notation of the ASMs w.r.t. less expressive (in terms of conciseness)
formalisms of the integrated tools, we developed a flattener. Given an ASM M written in general form—
i.e., containing any kind of rule and any level of nesting—, the flattener produces an ASM M f in normal
form (if all the flattener transformation rules are applied). An ASM is in normal form if, in the main
rule, it only contains a parallel rule composed of a set of update rules and conditional rules (without else
branch); each conditional rule must contain either an update rule or a parallel of update rules.

The flattener applies a series of transformations shown in Table 1 and described in the following.

MCR: Macro Call rule Remover A macro rule is a named rule r with some formal parameters v1, . . . ,
vn, and a rule body R defined in terms of the parameters. A macro call rule is an invocation of rule r
with actual parameters t1, . . . , tn. The flattener transformation MCR replaces each occurrence of a call
rule r with the macro rule body R; occurrences of formal parameters in the rule are replaced by the
actual parameters used in the macro call rule. In multi-agent ASMs, given a specific subset AgentKind
of Agent, a macro rule rAgentKind specifies the program of all agents in AgentKind, and, by the keyword

3All above mentioned rule constructors are characteristics of the so called basic ASMs, which dispose of potentially unre-
stricted non-determinism and parallelism (appearing in the form of the choose and forall rules defined above) and to distinguish
a version with flat specifications from structured versions (by using the macro call rule). Besides basic ASMs, there are ad-
vanced classes of ASMs having mechanisms for domain extention (extend rule), action sequentialization (seq rule), and
invocation of sub-machines reporting values. In the current work, we do not take in consideration such advanced classes of
ASMs that will be addressed as future work (see Sect. 6).

4 AsmetaF: a flattener for the ASMETA framework

Original ASM Flattened ASM
M
C
R rule r(v1 in D1, . . .,vn in Dn) = R[v1,...,vn]

. . .
r[t1,...,tn] //macro call rule

//Macro rule r is removed

R[v1 7→ t1, . . ., vn 7→ tn]

M
C
R rule rAgentKind = R[self]

. . .
program(a) //a is an AgentKind agent
. . .
agent AgentKind: rAgentKind[]

//Macro rule rAgentKind is removed

R[self 7→ a]

//Program declaration for AgentKind is removed

F
R

forall v1 in D1, . . ., vn in Dn
with guard[v1, . . ., vn] do
R[v1, . . ., vn]

(d1
1,. . .,d

1
n), . . . , (d

m
1 , . . ., d

m
n) ∈ D1×. . .×Dn with m = ∏

n
j=1 |D j|

par

if guard[v1 7→ d1
1, . . ., vn 7→ d1

n] then

R[v1 7→ d1
1, . . ., vn 7→ d1

n]
endif
...

endpar

C
h
R

choose v in D with guard[v] do
R[v]

[ifnone Rnone]

function fchoose = chooseone({v in D | guard[v] : v})

if isDef(fchoose) then R[v 7→ fchoose]
[else Rnone]
endif

A
R f(t1, . . ., tn) let (v1 = t1, . . ., vn = tn) in f(v1, . . ., vn) endlet

L
R

let (v1=t1, . . ., vn=tn) in
R[v1, . . ., vn]

endlet

D1, . . ., Dn are the domains of t1, . . . , tn and

(d1
1,. . .,d

1
n), . . . , (d

m
1 , . . ., d

m
n) ∈ D1×. . .×Dn with m = ∏

n
j=1 |D j|

par

if t1 = d1
1 and . . . and tn = d1

n then R[v1 7→ d1
1, . . ., vn 7→ d1

n]
endif
. . .

endpar

C
a
R

switch(t)
case t1: R1
. . .
case tn: Rn
[otherwise Ro]

endswitch

par
if t = t1 then R1 endif
. . .
if t = tn then Rn endif
[if t != t1 and . . . and t != tn then Ro endif]

endpar

N
R if guard1 then

if guard2 then Rt
else Re endif

endif

par
if guard1 and guard2 then Rt endif
if guard1 and not(guard2) then Re endif

endpar

Table 1: Flattener transformations

program, it is possible to invoke the program of an agent a in AgentKind; in rule rAgentKind, the keyword
self is used to reference the current agent executing the rule. MCR flattens also program invocations; an
invocation program(a) is replaced with the rule R (body of the agent rule), where each occurrence of self

P. Arcaini, R. Melioli & E. Riccobene 5

is replaced with a. At the end, all the macro rules declared in the ASM model are removed.

FR: Forall rule Remover In a forall rule, the rule R is executed in parallel with all the values of variables
v1, . . . , vn satisfying the guard. The flattener transformation FR, for each combination d = (d1, . . . ,dn) of
values of the domains D1, . . . , Dn, builds a conditional rule (without else branch)4 whose guard is that of
the forall rule, instantiated over values d (i.e., variables v1, . . . , vn are replaced by values d1, . . . , dn); in
a similar way, the rule in the then branch is the rule R of the forall body instantiated over d.

ChR: Choose rule Remover In a choose rule, the rule R is executed with a value of v, nondetermin-
istically chosen, that satisfies guard. If such value does not exist, the choose rule does nothing. The
flattener transformation ChR embeds the non-deterministic choice in a derived function fchoose that ran-
domly selects one of the values of the choose domain; the rule is replaced by a conditional rule that
checks whether fchoose is defined (i.e., it is possible to select a value from the domain) and, if so, calls R
instantiated over fchoose. In a choose rule, it is also possible to specify a rule Rnone that must be executed
when no choice can be performed; in the flattened version, this rule is reported in the else branch.

AR: Arguments Remover Function locations are identified at runtime by interpreting the terms used as
function arguments. Such feature is usually particularly difficult to handle in target notations; NuSMV,
for example, allows to specify arrays (that could be used to model functions), but does not allow to
dynamically accessing them. The flattener transformation AR removes terms used as function arguments
and replaces them by suitable let rules (that can then be flattened by the flattener transformation LR).

LR: Let rule Remover A let rule associates logical variables v1, . . . , vn to terms t1, . . . , tn; the rule body
R is defined in terms of the variables. The flattener transformation LR removes the rule by considering all
the possible values assumed by the terms; for each combination d = (d1, . . . ,dn) of values of the terms
domains, a conditional rule is created: the guard checks whether the terms assume the values in d, and
the then rule is the rule body R of the let rule, instantiated over d.

CaR: Case rule Remover In a case rule, a term t is compared with terms t1, . . . , tn, each one associated
with a rule Ri to be executed if t evaluates as ti. An optional otherwise branch can specify a rule Ro to
execute when t does not match to any of the ti. The flattener transformation CaR introduces a parallel of
conditional rules, each checking whether t is equal to ti and then executing the corresponding rule Ri in
the then branch. An additional conditional rule is added if the otherwise branch is present.

NR: Nesting Remover A nested conditional rule is replaced by parallel conditional rules, by unfolding
the rules and aptly combining their guards.

Simplifier Applying the previous flattener transformations could produce some terms only containing
constants; such terms can be evaluated statically at parsing time. Therefore, in order to avoid unnecessary
rules in the flattened models, after the application of a flattener transformation, we apply two simplifiers:

1. TS visits all the terms and, if possible, evaluates them or simplifies them; for example, a function
term and(a, true) is simplified to a, 3 < 4 is simplified to true, 2+1 is simplified to 3, and so on;
TS can simplify logical, mathematical, and relational terms;

2. RS visits all the rules and, if possible, removes or simplifies them; for example a conditional rule
with guard equal to true is replaced with its then rule.

Application order of flattener transformations All the flattener transformations are applied in the
order in which they have been presented. The order guarantees that no construct that should be flattened

4Note that in AsmetaL the domains of a forall must be finite, so the number of generated conditional rules will be finite.

6 AsmetaF: a flattener for the ASMETA framework

is not. Indeed, a transformation could introduce some constructs that are further flattened by another one;
namely, LR must be executed after AR because AR introduces let rules that are then flattened by LR; in a
similar way, NR must be applied after all the other transformations because it must remove the nesting
they introduce. However, the chosen order is not the only possible; indeed, although there are couples of
transformations that must be executed in a given order, the order of other couples could be exchanged.
We will discuss about the best order in the experiments (see RQ1 in Sect. 4).

Tool implementation The flattener has been implemented in the tool AsmetaF. The tool has been
designed in a modularized way such that the user can decide which flattener transformations to apply; in
some cases, it may be not necessary to flatten all the ASM constructs, as some of them could be natively
supported by the target language. For example, a programming language as C supports nesting, and so it
is not necessary to remove it. The tool is meant to be used as pre-processing step of other tools. However,
we provide a standalone version for demonstration purposes.5

3.1 Validation of the approach

The proposed flattener transformations preserve the ASM semantics; however, it could be that their
implementation in AsmetaF is not correct. In order to guarantee the correctness of AsmetaF, we should
prove semantic equivalence between original and flattened models, but this is in general difficult to
achieve. Therefore, we perform two kinds of validation, syntactic and semantic.

In syntactic validation, we simply check whether the produced flattened ASM is syntactically correct,
i.e., it can be parsed correctly by the ASMETA parser.

In the semantic validation, by means of model checking and scenario-based validation, we try to
check that the semantics of the model is preserved. We use the AsmetaSMV tool to check that the
temporal properties specified in the original model are equally evaluated in the flatten model. The tool
AsmetaV, instead, allows to write scenarios (similar to test cases) that drive the model simulation and
check that the ASM state (values of controlled locations) is as expected; we run the scenarios written for
the original model also on the flattened model and we expect that it passes them.

In the future, we plan to devise a more systematic way to perform validation. For example, we
could automatically produce scenarios achieving rule coverage of the original and target models: the
target model should pass scenarios generated for the original one (to check that the flattener preserves
the behavior), and the original model should pass scenarios generated for the target one (to check that
the flattener does not introduce additional behaviors).

4 Experiments

We applied all the transformations to 13 representative models of the ASMETA repository6 as a Landing
Gear System [4], a hemodialysis device [1], a device for measuring amblyopia, and a termination detec-
tion algorithm by Dijkstra (from Dagstuhl Seminar 133727). Note that some of the case study models
were obtained by refinement and we took the last refined model. Table 2 reports, for all the models,
the number of their rules. The table also reports, for each kind of rule, the average number among the

5A jar file of the tool can be downloaded from https://goo.gl/vShfbJ
6All the original and the flattened models, together with the scenarios used for validation, are available at http://fmse.

di.unimi.it/sw/FIDE2018AsmetaF.zip
7https://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13372

https://goo.gl/vShfbJ
http://fmse.di.unimi.it/sw/FIDE2018AsmetaF.zip
http://fmse.di.unimi.it/sw/FIDE2018AsmetaF.zip
https://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13372

P. Arcaini, R. Melioli & E. Riccobene 7

Rule
Model Update Parallel Conditional Forall Choose Case Let MacroCall All

CoffeeVendingMachine 2 1 3 0 1 0 0 2 9
DijkstraTermination 9 6 8 1 3 0 0 9 36
ferrymanSimulator raff1 5 1 3 0 0 0 0 2 11
GameOfLife 2 0 3 1 0 0 0 1 7
GilbreathCardTrick 15 5 7 2 3 1 0 9 42
HemodialysisRef3 146 78 228 1 0 0 0 192 645
LandingGearSystem 3L 38 15 9 0 0 5 0 4 71
OneWayTrafficLight 5 9 8 0 0 0 0 16 38
PetriNet 1 0 0 1 1 0 0 1 4
philosophers1 6 3 4 0 1 0 0 3 17
Roulette 4 2 3 0 1 0 0 4 14
SluiceGateMotorCtl 9 7 8 0 0 0 0 4 28
StereoacuityRaff5 20 6 11 0 0 0 0 15 52
AVG 20.15 10.23 22.69 0.46 0.77 0.46 0 20.15 74.92

Table 2: Benchmarks size

Flattener transformation Simplifier
Model MCR FR ChR AR LR CaR NR TS RS Time (sec)

CoffeeVendingMachine 2 0 1 1 1 0 2 0 0 0.01
DijkstraTermination 9 1 18 12 42 0 5 0 0 0.11
ferrymanSimulator raff1 2 0 0 3 9 0 2 1 1 0.08
GameOfLife 1 1 0 0 0 0 2 0 0 0.02
GilbreathCardTrick 9 4 3 50 50 1 4 12 0 0.37
HemodialysisRef3 192 1 0 0 0 0 8 0 0 0.94
LandingGearSystem 3L 4 0 0 0 0 6 4 0 0 0.03
OneWayTrafficLight 16 0 0 12 20 0 1 96 16 0.04
PetriNet 1 1 1 4 4 0 1 0 0 0.01
philosophers1 3 0 1 10 5414 0 2 20102 1802 59.93
Roulette 4 0 1 1 1 0 3 37 37 1.36
SluiceGateMotorCtl 4 0 0 4 4 0 1 2 2 0.01
StereoacuityRaff5 15 0 0 0 0 0 6 0 1 0.06
AVG 20.15 0.62 1.92 7.46 426.54 0.54 3.15 2892.86 265.57 4.84

Table 3: Applied flattener transformations and execution time

models. We observe that the update, the conditional, and the macro call rules are the most used ones.

RQ1: Which are the most applied flattener transformations?
We are here interested in finding which are the transformations that are applied more often. Table 3
reports how many times each transformation is applied to each model. Since MCR is used at the beginning,
it is applied exactly the same number of times as the number of macro call rules (see Table 2); note that,
although MCR could be applied at any stage during the flattening process, it makes sense to use it at the
beginning since it is applied so many times (it is the second most used transformation). Applying it after
some other transformations (e.g., FR) would probably increase even more the number of times it is used.

The most used transformation is LR; although the original models do not contain any let rule, these
are introduced by AR. Note that in some models (e.g., philosophers1) the number of applications of LR is

8 AsmetaF: a flattener for the ASMETA framework

Rule
Model Update Parallel Conditional All ∆ %

CoffeeVendingMachine 6 2 5 13 44%
DijkstraTermination 276 13 252 541 1403%
ferrymanSimulator raff1 145 1 145 291 2545%
GameOfLife 32 1 32 65 829%
GilbreathCardTrick 900 2 898 1800 4186%
HemodialysisRef3 214 54 154 422 -35%
LandingGearSystem 3L 46 19 18 83 17%
OneWayTrafficLight 72 9 56 137 261%
PetriNet 8 1 8 17 325%
philosophers1 118800 1 118800 237601 1397553%
Roulette 5404 2703 2702 10809 77107%
SluiceGateMotorCtl 20 9 8 37 32%
StereoacuityRaff5 30 7 16 53 2%
AVG 9688.69 217.08 9468.77 19374.54 25759%

Table 4: Size of the flattened models

much higher than that of AR, because the let rules are nested: during the flattening, the inner let rule is
visited as many times as the number of conditional rules created by outer let rule.

The value reported for NR is the difference between the maximum nestings of the starting model and
of the flattened one (i.e., how many nesting levels have been removed). We observe that, on average,
3.15 levels of nesting are removed, meaning that the developers tend to write quite nested models.

RQ2: Which is the effect of flattening?
We are now interested in evaluating the effect of applying the flattener to the models. Table 4 reports
the size of the flattened models in terms of number of update, parallel, and conditional rules. The table
also reports the total number of rules and their percentage change w.r.t. the original model (∆). We can
observe that usually the flattened model has many more rules. The model that has the greatest increment
in the number of rules is philosophers1; indeed, the model has several dynamic function arguments that,
when flattened by AR and LR, produce several rules (see Table 3).

However, there are also some models for which the number of rules is similar or also decreases; these
models are already quite flatten: for example, the original model of HemodyalisisRef3 already contains
almost only update, parallel, and conditional rules (see Table 2), and the application of the flattener has
the effect of reducing the conditional rules by merging some of them through NR (see Table 3).

We can interpret ∆ as an index of the conciseness of the model: the higher ∆ is, the more concise
the original model is. Indeed, a very concise model (as philosophers1) specifies, by using few powerful
rules, a complex behavior; when flattened, this results in a big number of rules.

RQ3: Does the simplification have any effect?
We here check whether the simplification of terms and rules (embedded in all the flattener transforma-
tions) has some effect. Table 3 reports, for each model, the number of simplifications performed by
the two simplifiers. We observe that, for more than half of the models, the simplifications are actually
applied. For example, in the flattening of OneWayTrafficLight and philosophers1, several terms are sim-
plified; this is due to the fact that both models contain several guards of conditional rules that depend

P. Arcaini, R. Melioli & E. Riccobene 9

on functions with dynamic arguments. When these arguments are flattened by AR and LR, some result-
ing guards can be simplified by TS either to true or to false; as a consequence of the simplifications of
guards, some conditional rules can be simplified by RS, either by removing them (if the guard is false) or
by replacing them with the then branch (if the guard is true).

RQ4: Which is the computational effort required by the flattener?

To answer this question, we performed 100 executions of the flattener over all the models on a macOS
machine, 3.1 GHz Intel Core i5, and 16GB. Table 3 reports, for each model, the average time (in seconds)
taken by the flattener, and the average time among models. We observe that for almost all models the
execution time is less than 1.5 secs. We can notice that the model for which it takes longer (59.93 secs
for philosophers1) is a very concise model that has been flattened a lot (see Tables 3 and 4).

5 Related work

Flattening a model in order to simplify it is a rather common activity. The authors in [13] present flat-
tening transformations for state machines equipped with hierarchy and parallelism, in order to transform
models into executable code or inputs for model-based testing and verification techniques.

Model checkers use flatteners to simplify the notation of the models, as for example the NuSMV
flattener [12], that produces a synchronous flat model from a modular description of a model.

Model flattening has been exploited also in [8] to reduce model to code, in particular to generate
efficient C code from B formal models in the domain of smart card applications.

In the context of the ASMs, Winter [16] proposed some ad-hoc transformations for mapping ASMs
to SMV models; differently, our flattener aims at producing a normal form of the model more widely
usable for transformation to several other tools. A different ASM model refactoring approach appears
in [17] where a number of refactoring patterns are presented to restructure ASM models with the goal
of improving their intelligibility, maintainability, abstraction, and conciseness. In a way, applying such
patterns produces an effect which is opposite w.r.t. our flattener transformations: the latter ones may
increase the model size, and may compromise model intelligibility; on the other side, they provide a
normal form of the model in term of a very limited number of rule constructors, and the flattened model
is not to be intended for readability and comprehension, but to facilitate tools integration.

6 Conclusions

In this paper, we propose a flattener tool, AsmetaF, integrated in the ASMETA framework that trans-
forms an ASM in a flattened model constituted only of update, parallel and conditional rules. The goal
of the flattener is to support a pre-processing of ASM transformations towards tools having less expres-
sive notational constructs, as, for example, those of verification tools. We claim that ASM flattening can
improve the strengths of ASMETA as formal integrated development environment for ASMs.

In ASMs, functions are total by assigning the undef value to undefined locations. In the translators
developed in the past, handling the undef has been challenging, and only some partial solutions (i.e.,
only for some domains) have been proposed. As future work, we plan to devise a special transformation
able to produce an ASM in which the undef can not occur and it is handled explicitly in the model.

As future step, we also plan to include in our flattener suitable transformations to handle extend and
seq rules. This would allow reducing in normal form also advanced ASM classes that would become
accessible to verification tools not yet able to support some classes of models.

10 AsmetaF: a flattener for the ASMETA framework

References
[1] Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, Atif Mashkoor & Elvinia Riccobene (2018): Integrating

formal methods into medical software development: The ASM approach. Science of Computer Programming
158, pp. 148 – 167.

[2] Paolo Arcaini, Angelo Gargantini & Elvinia Riccobene (2010): AsmetaSMV: a way to link high-level ASM
models to low-level NuSMV specifications. In: Proceedings of the 2nd International Conference on Abstract
State Machines, Alloy, B and Z (ABZ 2010), LNCS 5977, Springer, pp. 61–74.

[3] Paolo Arcaini, Angelo Gargantini & Elvinia Riccobene (2016): SMT-based automatic proof of ASM model
refinement. In: Software Engineering and Formal Methods: 14th International Conference, SEFM 2016,
Proceedings, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 253–269.

[4] Paolo Arcaini, Angelo Gargantini & Elvinia Riccobene (2017): Rigorous development process of a safety-
critical system: from ASM models to Java code. International Journal on Software Tools for Technology
Transfer 19(2), pp. 247–269.

[5] Paolo Arcaini, Angelo Gargantini & Elvinia Riccobene (2018): SMT for state-based formal methods: the
ASM case study. In: Automated Formal Methods, Kalpa Publications in Computing 5, EasyChair, pp. 1–18.

[6] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene & Patrizia Scandurra (2011): A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience 41(2), pp. 155–166.

[7] Paolo Arcaini, Roxana-Maria Holom & Elvinia Riccobene (2016): ASM-based formal design of an adaptivity
component for a Cloud system. Formal Aspects of Computing 28(4), pp. 567–595.

[8] Didier Bert, Sylvain Boulmé, Marie-Laure Potet, Antoine Requet & Laurent Voisin (2003): Adaptable Trans-
lator of B Specifications to Embedded C Programs. In: FME 2003: Formal Methods, Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 94–113.

[9] Silvia Bonfanti, Marco Carissoni, Angelo Gargantini & Atif Mashkoor (2017): Asm2C++: A Tool for Code
Generation from Abstract State Machines to Arduino. In: NASA Formal Methods, Springer International
Publishing, Cham, pp. 295–301.

[10] Egon Börger & Alexander Raschke (2018): Modeling Companion for Software Practitioners. Springer,
Berlin, Heidelberg.

[11] Egon Börger & Robert Stärk (2003): Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer Verlag.

[12] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri,
Roberto Sebastiani & Armando Tacchella (2002): NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 359–364.

[13] X. Devroey, M. Cordy, P. Y. Schobbens, A. Legay & P. Heymans (2015): State machine flattening, a mapping
study and tools assessment. In: 2015 IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pp. 1–8.

[14] Angelo Gargantini, Elvinia Riccobene & Salvatore Rinzivillo (2003): Using Spin to Generate Tests from
ASM Specifications. In: Abstract State Machines 2003, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
263–277.

[15] Ichiro Hasuo (2017): Metamathematics for Systems Design. New Generation Computing 35(3), pp. 271–305.
[16] Kirsten Winter (1997): Model Checking for Abstract State Machines. Journal of Universal Computer Science

(J.UCS) 3(5), pp. 689–701.
[17] Hamed Yaghoubi Shahir, Roozbeh Farahbod & Uwe Glässer (2012): Refactoring Abstract State Machine

Models. In: Abstract State Machines, Alloy, B, VDM, and Z: Third International Conference, ABZ 2012,
Pisa, Italy, June 18-21, 2012. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 345–348.

	Introduction
	Abstract State Machines
	Flattener
	Validation of the approach

	Experiments
	Related work
	Conclusions

