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9	 A brief introduction to 
the mathematical work 
of Isaac Newton
Niccolò Guicciardini

The anxieties of a young student: 
Questiones quaedam philosophiae (1664–5)

When Isaac Newton entered Trinity College in 1661 the political 

situation in the university, and in England in general, was still fluid 

and unstable. The Restoration of the Stuart monarchy had occurred 

just a year earlier and Cambridge, a hotbed of Puritan sympathizers, 

was under pressure. It is easy to imagine the feeling of anxiety that 

the young Isaac must have experienced in such political turmoil. To 

Newton’s generation the future looked uncertain, as no established 

and recognized authority that could validate truth and guarantee 

justice was easily discernible. Such instability also characterized 

the fields of natural philosophy and theology. The Aristotelian phi-

losophy still taught at Cambridge was in disrepute. Various new 

philosophies were being ambitiously advanced by Bacon, Descartes, 

and Hobbes, amongst others, as substitutes for the old forms of 

knowledge. It was perceived that a choice between them would have 

important theological implications, and recent European and English 

history had shown how easily theological debates could translate into 

political unrest and the miseries of war.

Newton soon sought an answer to these concerns in books that 

he could borrow or acquire, and in notebooks he would fill in minute 

and legible handwriting, organizing his ideas according to the genre of 

theological commonplace books. As we shall see in a moment, some 

mathematical books polarized Newton’s attention with a strength 

that, I feel, was not due to any choice on his part but to the fact that his 

mind was extraordinarily equipped for mathematical inventiveness. 
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His annotations after the winter of 1664 reveal the voyage of an inde-

pendent mind that took the existing literature on the most advanced 

mathematical topics as a springboard for creating new concepts and 

methods. It is agreed by all commentators that within the span of a 

few years Newton became one of the greatest mathematicians of all 

ages. Perhaps less known is the fact that he was committed to carving 

out a new role for mathematics within a broad-ranging philosophi-

cal agenda. Indeed, Newton was convinced that mathematics was an 

important tool that could yield a resolution of the daunting issues  

that puzzled the natural philosophers of his age; most notably,  

the theologically laden problems concerning the heliocentric System 

of the World. Is there any proof that the Copernican system is true? 

And if so, what makes the planets revolve around the Sun? Newton 

was convinced that mathematics could provide definitive answers to 

such questions – not hypothetical conjectures but certain answers to 

the questions that had embroiled Galileo and Descartes in heated dis-

putes with philosophers and theologians. But could the certainty of  

mathematical thought be injected into the hypothetical discourse  

of natural philosophy? In order to achieve this end, the relationship 

of mathematics to other disciples, such as optics and astronomy,  

had to be conceived in a new light.

Newton’s early forays outside the standard Aristotelian 

curriculum – where he could not find answers to his anxieties 

concerning the nature of the soul and God, the ultimate structure 

of reality, the System of the World, the phenomena of life, sensa-

tion and volition – are recorded in the “Trinity College Notebook.” 

The range of topics broached in these annotations, most notably in 

the “Questiones [sic] quaedam philosophiae” he probably penned in 

1664–5, is impressive for the modern reader, but indeed it is typi-

cal of the broad view of philosophy entertained in late-seventeenth-

century Europe.1 In the “Questiones” one finds annotations on atoms 

and the “vacuum,” motion, perception (especially vision), the Sun, 

comets, planets and the stars, the structure of the Universe and 

matter, electrical, magnetic and optical phenomena, heat and cold, 
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gravity and levity, earth, water, air and fire, minerals, the faculties of 

memory, imagination, fantasy and invention, the soul and God, and 

much more. The attention of the historian of mathematics will be 

captured by Newton’s annotations on infinity and indivisibles that 

open the “Questiones” with entries on first matter, atoms, the vac-

uum, quantity, and motion. Some of Newton’s sources here are Walter 

Charleton’s Physiologia (1654), Henry More’s Immortality of the Soul 

(1659), and John Wallis’s De angulo contactus (1656) and Mathesis uni-

versalis (1657). The young Newton was addressing the vexed question 

of the composition of the mathematical continuum, and the related 

questions concerning the composition of matter and the representa-

tion of continuously varying motion. An impact between hard atoms 

seemed to cause a discontinuous change of velocity. On the other 

hand, the speed of a body in free-fall might be conceived of as increas-

ing continuously. These issues remained important in Newton’s more 

mature mathematization of motion. Newton was soon to concentrate 

his mind on mathematical methods in which these ancient dilemmas 

acquired a new form, and perhaps became more tractable.

Early mathematical studies in the “Waste 
Book” and the “College Notebook” (1665)

The young Newton had very few mathematical books on his desk 

(see Table 9.1). His early annotations are edited in volume 1 of the 

Table 9.1 Mathematical books annotated by Newton in the 1660s

René Descartes, Geometria, Amsterdam, 1659–61

François Viète, Opera mathematica, Leiden, 1646

Frans van Schooten, Exercitationum mathematicarum, Leiden, 1657

William Oughtred, Clavis mathematicae, 3d edn, Oxford, 1652

John Wallis, Operum mathematicorum Pars Altera, Oxford, 1656

John Wallis Commercium epistolicum, Oxford, 1658

c09.indd   384 11/27/2015   8:47:10 PM



the mathematical work of isaac newton 385

Mathematical Papers of Isaac Newton: some of the most interesting 

are to be found in the “Waste Book” and the “College Notebook.”2 

The new art of algebra, in which symbols for constant and variable 

magnitudes were manipulated, attracted his attention. Newton was 

introduced to this new method by Viète and Oughtred’s works.3

The seminal text in Newton’s mathematical formation was 

Descartes’s Géométrie.4 Descartes had proposed – or so he claimed in 

the opening sentence of the work – a novel method for the solution of 

all the problems of geometry. According to tradition, geometrical prob-

lems could be solved by the intersection of plane curves: in Euclid’s 

Elements, for instance, via the intersection of a circle and a straight 

line. More advanced problems, such as the angle trisection or the 

duplication of the cube, could be solved by the intersection of conics 

(namely the circle, the parabola, the ellipse and the hyperbola). There 

were certain problems (such as the section of an angle into an arbi-

trary number of equal parts or the “squaring” of the circle) that could 

only be solved by using more complex curves (as the quadratrix or the 

spiral). In the Géométrie Descartes had explained how “equations” 

(what we would call polynomial equations in two unknowns) could 

be used in the process of geometrical problem solving. The curves 

employed in geometrical problem solving could be conceived of as 

loci of points (in the plane) the coordinates of which satisfy a relation 

expressed by an equation.5 In the early seventeenth-century algebra 

and geometry were still considered two separate disciplines, the for-

mer dealing with continuous magnitudes, and the latter with discrete 

ones. Descartes, therefore, had to overcome conceptual obstacles that 

should not be underestimated. Most notably, in order to apply alge-

bra to geometry, one had to learn how to interpret all four algebraic 

operations in geometric terms.

By 1665 Newton had already mastered Descartes’s method. 

The representation and study of plane curves via (polynomial) equa-

tions was no mystery to him. While Descartes had used oblique (and 

sometimes orthogonal) coordinates, Newton experimented with polar 

(and bipolar) coordinates as well.6 It is in this context that he began 
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studying the properties of cubic curves (the graphs of third-degree 

polynomial equations in two unknowns).7 Newton was particularly 

interested in a method for determining the subnormal to a curve 

that Descartes had developed in the Géométrie and applied in the 

Dioptrique to devise non-spherical lenses.8

Somewhat simplifying, one might say that Newton became a 

mathematician by studying Descartes’s Géométrie. This short essay, 

which in its Latin edition was accompanied by a lengthy commentary 

by Frans van Schooten and other Dutch mathematicians, provided a 

systematic method for tackling geometrical problems. It also con-

tained a treatment of algebraic equations: one could learn how to 

reduce them to a canonical form, how to determine the interval in 

which their roots were to be found, and how to construct the roots 

geometrically via the intersection of curves. The young Newton 

brought these results to perfection. In this context he conceived a rule 

concerning the number of imaginary roots of an algebraic equation, a 

rule inspired by Descartes’s rule of signs.9

There were, however, open problems in the Géométrie. 

Descartes’s method for drawing normals was clumsy, whereas the 

algorithm by Jan Hudde featured in an appendix to the Latin edi-

tion proved much more promising. Most disappointingly, Descartes 

had confined himself to the algebraic treatment of what he called 

“geometrical” curves (those we would identify as “algebraic” curves) 

and had quite explicitly excluded “mechanical” curves (“transcen-

dental” curves in modern terms) as lacking “exactness.”10 The most 

perceptive mathematicians of Newton’s generation understood that 

the next step in mathematical development was to devise a method 

for tackling the curves that Descartes had excluded from his treat-

ment. At the middle of the century, a mechanical curve – the cycloid – 

attracted the attention of French, Italian and English mathematicians 

(including such worthies as Torricelli, Roberval, Pascal, and Wallis). 

Mechanical curves were interesting as objects of study for a whole 

series of reasons. They naturally emerged as solutions of problems 

concerning technology (for example, the cycloid was used by Huygens 
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in his study of horology) and natural philosophy (for example, in his 

correspondence with Mersenne, Descartes identified the logarithmic 

spiral as the solution of a problem on motion). Mechanical curves 

also occurred as solutions of problems concerning the area of cur-

vilinear surfaces and the arc-length of curves. It was often the case 

that the arc-length of a geometrical curve or the area bounded by 

it could be expressed by a mechanical curve. Most notably, it was 

known that the area bounded by an hyperbola is expressed by the 

logarithmic curve. The calculation of logarithms, a very important 

issue in seventeenth-century mathematics, table making, navigation, 

surveying, and astronomy, was thus related to the mathematical treat-

ment of a curve that had been excluded from Descartes’s canon. Thus, 

mechanical curves, which are not expressible via polynomial equa-

tions in two Cartesian coordinates, emerged as a promising topic for 

young ambitious mathematicians – and Isaac Newton certainly wasn’t 

lacking in ambition. But how could one deal with mechanical curves?

Early discoveries in organic geometry: How  
To Draw Tangents to Mechanicall Lines (1665)11

A promising intake came not from the symbolism of algebra but from 

a research field located at the intersection between pure geometry 

and mixed mathematics, the so-called “geometria organica,” which 

studied the tracing of curves by instruments. This was an important 

topic, since in order to determine the point of intersection of curves 

in the construction of geometrical solutions, it was convenient to 

think of the curves as generated by a continuous motion driven by 

some instrument (an oργαυoυ), such as the compass and a straightedge 

in Euclid’s Elements. It is the continuity of the motion generating 

the curves by means of a tracing mechanism that guarantees that a 

point of intersection can be located exactly, under the assumption 

that the mechanism is handled in an idealized situation in which any 

imprecision can be avoided.12 Descartes had devised several mecha-

nisms for generating curves. In De organica conicarum sectionum 
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in plano descriptione tractatus (1646) van Schooten had presented 

several mechanisms for generating conic sections. This research field 

was connected with practical applications, for instance, lens grinding 

and sundial design. In the late 1660s Newton was able to devise a 

mechanism for generating conics that he later extended to higher-

order curves.13

In 1665 in manuscripts entitled “How to Draw Tangents to 

Mechanicall Lines,” Newton deployed organic descriptions in order 

to determine tangents to mechanical curves, that is, plane curves 

such as the spiral, the cycloid, the quadratrix, and the logarithmic 

curve that were not acceptable according to the criteria stated by 

Descartes in the Géométrie.14 Indeed, Descartes had stated that 

“mechanical” curves (what nowadays we would call “transcenden-

tal” curves) could not be accepted in geometry: he developed a com-

plex argument according to which they were not “exact.” Descartes 

accepted only curves that could be expressed by algebraic equations, 

and he provided a method for finding the normal (and, therefore, the 

tangent) to a point on one of these curves. Newton was able to deter-

mine the tangent to mechanical curves by applying a kinematical 

technique known to Gilles Personne de Roberval. Such a method 

for determining tangents “without calculation” pleased Newton. By 

1665, the young master in algebraic analyses was already experiment-

ing with non-algebraic approaches to geometrical problems.

Early discoveries in the method of series and 
fluxions: the October Tract On Fluxions (1666)

It was by reading van Heureat and Hudde’s annotations to  

the Géométrie, and Wallis’s Arithmetica infinitorum (1656), and 

possibly by exchanging ideas and books with Isaac Barrow – who 

in 1663 had been appointed Lucasian Professor of Mathematics in 

Cambridge – that Newton began mastering a research field that he 

named “new analysis.” In early modern Europe, “analysis” was a 

term that had a complex semantic stratification, as it was used in 
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medicine, chemistry, philosophy, and mathematics. To mathema-

ticians, “analysis” meant the “art of mathematical discovery,” as 

outlined in Pappos’s Mathematical Collections, a fourth-century CE 

work whose Latin edition had appeared in 1588. What was “new” in 

the analysis Newton was interested in; that is, the use of the infi-

nite and infinitesimal? Descartes’s method of problem solving was 

confined to the use of finite magnitudes (such as finite segments) 

expressed by “finite equations” (i.e., polynomial equations with a 

finite number of terms). Wallis, instead, had conceived curvilinear 

surfaces as composed of an infinite number of infinitesimal compo-

nents, and had calculated their areas by means of sums (or products) 

with an infinite number of terms (or factors).

Newton’s “new analysis,” the method of series and fluxions, 

is certainly the most celebrated among Newton’s discoveries. In this 

section, this fundamental turning point in the history of mathe

matics will be very briefly sketched. Our treatment of the subject, 

of course, will hardly do justice to the fascinating and enthralling 

complexity of this intellectual adventure. For brevity’s sake, we shall 

subdivide the discovery process into three steps.

In the first step Newton generalized the results contained in 

Wallis’s Arithmetica infinitorum and made his first mathematical 

discovery: the binomial theorem (winter 1664–5). How to raise a bino-

mial to a positive integer exponent was something already known.15 

Newton was instead interested in calculating binomials raised to a 

negative integer or even a fractional exponent.16 What Newton did 

was the following: he identified a general form for the coefficients 

that occur when a binomial is raised to an positive integer exponent;17 

he tabulated the coefficients, and then, by an act of faith in the uni-

versality of these forms, he extrapolated and interpolated the tables, 

thus finding coefficients for negative and fractional exponents. Thus 

Newton discovered the binomial theorem.18 He tested its validity  

by verifying that it led to correct result for known cases (achievable by 

methods such as long division and root extraction). Newton seems 

to have been aware that the binomial theorem lacked a conclusive 
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demonstration: he found it by a heuristic method and he convinced 

himself of its validity by successful applications. Its rigorous proof 

remained beyond the power of the best mathematical minds until the 

nineteenth century.

The second step consisted in the development of a notation 

and algorithm for calculating tangents to plane curves. Probably fol-

lowing Barrow, Newton conceived curves as generated by the motion 

of a point. He later called “fluents” such magnitudes generated by 

continuous motion, and named “fluxions” their instantaneous rate 

of flow. Newton claimed that during an infinitesimal “moment” of 

time, the fluxion can be considered as constant. The infinitesimal 

increment of a fluent quantity (for example, a point moving along a 

straight line with a variable speed) will be equal to its instantaneous 

speed (or fluxion) multiplied by a moment of time. Such infinitesimal 

increments were called by Newton “moments” of the fluent quan-

tity. Last, Newton calculated the slope of a plane curve by the ratio 

of the moment of the ordinate to the moment of the abscissa.19 It was 

via the above conception and method that the notion of infinitesi-

mal magnitude entered into Newton’s mathematical practice. The 

algorithm that Newton devised for the calculation of the slope of a 

plane curve is basically the one still used in schools, with the cru-

cial difference that today we think in terms of functions rather than 

curves, and justify the calculation of the derivative through limiting 

procedures, rather than through infinitesimals. It must be added that 

such an algorithm had already been sketched in Barrow’s lectures, 

and it is fair to say that it is highly probable that Newton had drawn 

inspiration from them.20

The third step in Newton’s discovery of the method of series and 

fluxions is the so-called “fundamental theorem of the calculus.” This 

is somewhat of a misnomer, as today we understand it as an inverse 

relation between operators acting on functions. In Newton’s day, how-

ever, it was understood as a relation between curves. Torricelli, James 

Gregory, van Heureat, and Barrow had proved theorems concerning 

curves that showed that the operation for calculating the slope is the 
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inverse of the operation for calculating the area subtended to a curve. 

Indeed, when a kinematical conception of magnitudes is accepted – 

that is, if one conceives of curves as traced by the motion of a point –  

such a relation is somewhat intuitively given as follows. It was cus-

tomary, for example after Galileo and his followers, to represent the 

varying speed of a falling body as a graph whose ordinate is the speed 

and abscissa is the time. It was also understood that the area of the 

surface bounded by that graph is proportional to the space travelled 

by the body.21 Newton’s proof of the “fundamental theorem” that he 

penned in 1665 was probably influenced by Barrow’s lectures.22

What was new about Newton’s (and Leibniz’s) approach to the 

fundamental theorem was the fact that they immediately seized the 

opportunity to use it in order to facilitate the calculation of areas of 

curvilinear surfaces and the arc-lengths of curves. Once an algorithm 

for calculating tangents is given, one can construct what Newton 

called “tables of curves” (namely, integral tables) by applying the algo-

rithm to increasingly difficult curves. Newton tabulated equations of 

curves and of the slopes of their tangents as early as 1665–6.23 It was 

in this context that he developed techniques for what we would call 

integration by variable substitution and by parts.

The range of problems that Newton’s new art of discovery – the 

new analysis that he was soon to term the “method of series and 

fluxions” – could broach successfully is really impressive. Newton 

could calculate the area and arc-length of curves important for astron-

omy such as the ellipse, or even of mechanical curves such as the 

cycloid by expanding, via the binomial theorem, the ordinate as a 

power series and then integrating it term by term. He was able to 

express trigonometric magnitudes and logarithms in terms of power 

series. He could calculate tangents and radii of curvature to all 

known curves. He could systematize what we call the integration 

of irrational functions by the use of (integral) tables. The generality 

of this new method brought mathematics up to a level that only a 

handful of mathematicians in Europe could dream of, most notably 

the Scotsman James Gregory, who was developing similar results. 
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Newton systematized his notes into a short treatise that is known as 

the 1666 Tract on Fluxions.24 By the end of the 1660s, the Lucasian 

Professor, Isaac Barrow, realized that his younger fellow in Trinity 

deserved to be known outside the walls of the University.

Publication proposals: De analysi 
(1669) and De Methodis (1671)

Whereas we are uncertain about the nature of Barrow’s relationships 

with Newton in the early years of Barrow’s tenure of the Lucasian 

Chair, it is certain that in 1669 the two were in deep contact on 

matters related to optics and mathematics.25 When Barrow decided 

to quit the Chair in 1669, it was not chance that he was succeeded 

by Newton. The importance of this event for Newton’s intellectual 

life cannot be overestimated, and now with a modicum of teach-

ing duties, he could devote himself to research in a relatively safe 

environment. Before passing the Chair to Newton, Barrow took an 

equally important decision. He asked his young colleague to write 

about his new analysis in order to communicate this discovery to 

other mathematicians.

Thus, through Barrow’s intermediation, a short manuscript 

tract entitled De analysi per aequationes numero terminorum infini-

tas (On the analysis by means of equations with an infinite number 

of terms) was dispatched in July 1669 to London.26 The addressee was 

John Collins, an amateur mathematician who made a living – if only 

a modest one – out of his entrepreneurial activities in the field of  

mathematical book publishing. This sector was in crisis because  

of the depression in the print business caused by the Great Fire, but 

Collins managed to supervise the printing of several books, mostly 

related to algebra. In this discipline there was great need to update 

what was available on the English market.

Newton devoted De analysi to his techniques for calculating 

arc-lengths and curvilinear areas via infinite series. Newton was con-

vinced that infinite power series, which he called “infinite equations,” 
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were the means for solving some of the most advanced open problems 

high up on the agenda of the mathematicians of his age. When he 

summarized its contents for Leibniz in 1676 he stated that the “limits 

of analysis are enlarged” by the use of “infinite equations” in such a 

way that “by their help analysis reaches . . . to all problems.”27 Yet, 

in De analysi Newton avoided including his most powerful method 

for obtaining series expansions, the binomial theorem. Instead, he 

relied on the safer methods of long division and root extraction. “De 

analysi” included power series expansions for the natural logarithm 

function and trigonometric functions (such as the sine, cosine, and 

arctangent), the quadrature of the cycloid, and the quadrature (and 

rectification) of the quadratrix. It ended with a proof of the fundamen-

tal theorem of the calculus and, most interestingly, with an attempt 

to determine the interval of convergence for power series.28

When Collins received Newton’s tract he was thrilled, although 

it is debatable whether he really understood what he had in his hands. 

For Newton, getting in touch with Collins meant having free access 

to a network of mathematical correspondents, both British and 

Continental, and to the bustling world of printers and booksellers 

active in the capital. Newton could not have been offered the option 

to print his method of series in a more conspicuous and attractive 

way, although nothing came out if it. The extant correspondence 

between Newton and Collins reveals much of Newton’s changing 

approach to publishing mathematics in the period from 1669 – the 

year in which he was elected Lucasian Professor in succession to 

Barrow – to late 1670. Collins had several proposals for Newton: for 

example, to issue De analysi together with some of Barrow’s works 

he was expecting to publish. While waiting for Newton’s permission, 

Collins made copies of De analysi, a short tract that would not have 

been so expensive to print, and we have good reasons to think that  

he circulated information about this youthful work by correspond-

ence with British and Continental mathematicians. Reading the 

epistolary exchange between Newton and Collins leads the historian 

to follow a zigzag path: at first, Newton seems close to accepting 
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Collins’s invitations to print De analysi, or even to dispatch him a 

more extensive treatise in which he had systematized his discoveries; 

but then – within a matter of weeks – we find him withdrawing his 

promise, much to Collins’s frustration.

The new treatise was the so-called De methodis serierum et 

fluxionum (On the methods of series and fluxions) he had completed 

in 1671.29 While De analysi would have been suitable for print publica-

tion, De methodis, a much longer treatise, would have changed the his-

tory of mathematics if it had been printed in the 1670s. In the opening 

lines Newton brought to perfection his method of series expansion,30 

and employed it for what we would call the integration of first order dif-

ferential equations. In the second part of the treatise Newton reworked 

some of the results of the “1666 Tract on fluxions.” He introduced a 

notation for fluents and fluxions (but not the familiar dotted one yet), 

presented his improved Hudde algorithm, which he applied to the 

calculation of maxima and minima, tangents and radii of curvature 

(a fluxional measure for the radius of curvature of a plane curve was 

provided). The treatise included two long tables of curves (two integral 

tables, to use Leibnizian terminology) that allowed Newton to solve 

very advanced problems related to the rectification and quadrature of 

curves. This was a masterpiece that was only published in an English 

translation more than sixty years (1736) after its composition, a delay 

caused primarily by Newton’s idiosyncratic attitude towards publi-

cation (an attitude that was fuelled by the polemics surrounding the 

validity of the experimentum crucis in the years 1672–6).31

Newton had achieved results that would have made him 

famous all over Europe as the most creative mathematician alive. Yet 

in letters sent to Collins he stated his increasing reluctance to print 

them. By the mid 1670s, Newton was quite adamant in not allow-

ing his mathematical jewels to escape from his hands. To the few 

lucky ones who had corresponded with him on mathematical sub-

jects and who had had access to his manuscripts he ordered silence 

and secrecy. What was the origin of Newton’s anxieties over printing 

his mathematical discoveries?
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Newton’s philosophical agenda: The 
Lucasian Lectures On Optics (1670–1672)

To answer the above question it is necessary to broaden one’s histori-

cal perspective a little in order to take into consideration the philo-

sophical agenda that Newton set himself in the 1670s. We can learn 

about it by looking briefly at his dealings with the Royal Society and 

by reading some passionate annotations that he jotted down when 

comparing the methods of the ancient mathematicians to those of the 

moderns, as epitomized by Descartes.

Newton became a member of the Royal Society in 1672 after 

having presented his reflection telescope to the society. This inno-

vation fitted in well with the desiderata of the newly established 

institution: which assigned great importance to microscopy, and the 

improvement of telescopic observations. As is well known, in 1672 

Newton was to submit his famous paper on the experimentum crucis, 

in which he claimed to have proved a new theory concerning light 

and colors. For most of the Royal Society’s members, Newton’s confi-

dence in having “proved” a new physical theory could only sound pro-

vocatively arrogant: no such statements were expected. The theory 

had already received a thorough treatment in the Lucasian lectures on 

optics that Newton deposited in 1672 and dated retrospectively from 

1670. In the third lecture, he stated that by the use of “geometry” the 

science of colors, and natural philosophy in general, could achieve 

the “highest evidence.”32 He also expressed his annoyance towards 

those natural philosophers who were confining themselves to “con-

jectures and probabilities.” Newton might have had in mind Robert 

Hooke who in the Micrographia (1665) had warned readers to con-

sider any discourse concerning the “causes of things” contained in 

the book simply a “small conjecture,” a “doubtful problem,” and an 

“uncertain guess.”33 Newton’s discourse against probabilism offered 

a view of natural philosophy at odds with what an influent member 

of the Royal Society such as Boyle was promoting. It is a discourse 

that intertwined with Newton’s well-known rejection of what is now 
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known as hypothetico-deductive method, a method that was cham-

pioned by Descartes.

Hooke was expressing values deeply felt in the Royal Society. One 

should bear in mind that, just after the restoration of the Stuarts, many 

natural philosophers belonging to the Royal Society wished to make 

it clear that no “unquestionable” or “dogmatic conclusions” should 

be feared from them. Politically opinionated philosophers or dogmatic 

theologians were not admitted in the society, which instead promoted 

an innocuous mitigated skepticism. That is why any discourse aimed 

at reaching certainty was looked upon with suspicion, while skepti-

cism and probabilism were approved of in some of the most influential 

Royal Society manifestos, such as Hooke’s masterpiece on microscopy 

and Glanvill’s Scepsis scientifica (1665). In his Lucasian Lectures on 

Optics and his 1672 paper, Newton broke with this code of behavior 

by stating that the theory of colors he was proposing – a topic that he 

knew was regarded as “belonging to physics”34 – was not “an hypoth-

esis but [of the] most rigid consequence.”35

Newton’s claim that he was reaching “the highest evidence” 

in the theory of colors was targeted by Hooke in the heated debate 

that poisoned Newton’s life in the years following the publication of 

the “New Theory about Light and Colors” (1672). The effect of the 

dispute concerning the experimentum crucis on Newton’s reluctance 

to print his mathematical results cannot be overestimated. Newton’s 

great paper of 1672 was fiercely attacked, and this frustrating experi-

ence was to lead him – possibly out of spite – to avoid publishing his 

results in other fields of enquiry. In a letter concerning the project of 

printing his lectures on optics (dated May 25, 1672), Newton wrote to 

Collins: “I have now determined otherwise of them; finding already 

by that little use I have made of the Presse, that I shall not enjoy my 

former serene liberty till I have done with it.”36

Newton claimed that his natural philosophy was certain 

because it was mathematical. However, in order to profile himself as 

the philosopher who via the use of mathematics could transcend the 

kind of probabilism defended in texts such as Hooke’s Micrographia, 
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Newton had to avoid becoming embroiled in a further polemic con-

cerning the certainty of mathematical methods. Newton was keenly 

aware that his method of series and fluxions was open to debate, 

because of the guesswork surrounding his theory of series (for exam-

ple, when the coefficients of all the terms of the series are determined 

by discerning a pattern in the first terms) and the use of rather prob-

lematic concepts – such as that of “infinitesimal” or “moment” – in 

the method of fluxions. He knew that mathematicians who had pub-

lished on the new analysis – such as Wallis, whose methods really 

stood at the root of his use of infinite series – had to withstand the 

criticisms of the defenders of the rigor and certainty of ancient geom-

etry. Such debate would have been lethal for Newton, a philosopher 

who had claimed to be able to bring evidence into natural philosophy 

via the use of geometry: for if mathematics is to endow philosophy 

with evidence, it must be practiced according to criteria that guaran-

tee the certainty of its methods. Newton showed annoyance with the 

qualitative models of the mechanical philosophy: Descartes, and in 

general the followers of the corpuscular philosophy, had attempted 

to explain natural phenomena in terms of impacts of invisible, hypo-

thetical, corpuscles. Newton instead wished to “deduce” the laws of 

nature (most eminently, the laws of optics and the laws of gravitation) 

from the phenomena. This deduction led to a much greater certainty 

compared to the “elegant perhaps and charming” romances (as Cotes 

would say in his preface to the second edition of the Principia (1713)) 

of the corpuscularists, and was the province of the mathematician.

The mathematics that Newton was using in his optical work 

was not particularly advanced, except in a few cases, such as the 

study of atmospheric refraction (1685–95).37 Yet mathematics played 

a fundamental role in Newton’s optical work, especially in the study 

of interference phenomena, and in the deduction of the properties 

of matter that exact measurements concerning these phenomena 

allowed. It is true that Newton’s optical work is largely independ-

ent from the methods of series and fluxions. Still, what I wish to 

suggest is that Newton felt compelled to defend an image of himself 
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as the natural philosopher who, because of mathematics, could go 

beyond the hypothetical discourse “blazoned about everywhere.”38 

Newton cherished the idea that he was able to define a level of dis-

course where natural philosophy could be practiced “with highest 

evidence” and hypotheses avoided: for all his life he stood by this 

position. For Newton, printing De analysi or De methodis would 

have meant tying his name as an author to conjectural and heuristic 

mathematical methods, something which might have led to a defla-

tion of the high status assigned to mathematics in his philosophical 

agenda.

There is another aspect of Newton’s philosophy that we should 

consider in order to appreciate the reasons behind his reluctance 

to grant Collins permission to print the method of series and flux-

ions. In the 1670s Newton began to develop a profound distaste 

for Cartesianism, mechanical philosophy, and “modern philoso-

phers” in general. Descartes epitomized the hubris of the moderns. 

The mechanical philosophy was the invention of a presumptuous 

Frenchman, who instead of looking with reverence to the distant past 

had dared to rebuild philosophy from scratch starting from an act of 

denial, a hyperbolic doubt cast on all past knowledge. Descartes the 

mathematician, at least the one revealed in the Géométrie, was as 

aggressive and innovative as the philosopher of the Discours. In the 

Géométrie one could read that the ancient geometers had not pos-

sessed any systematic method for solving geometrical problems: the 

length of their books and the disorderly presentation of their results 

were positive proof that they were just gathering together those 

propositions “on which they had happened by accident.”39

Descartes’s disparaging attitude towards the Ancients, in 

philosophy and mathematics, was anathema for Newton, who looked 

at the distant past with reverence and admiration. Of course, one 

should bear in mind that reverently referring to an antediluvian 

Hebrew sage such as Noah is something that served quite a different 

function for Newton from the citing of a Greek Alexandrian math-

ematician such as Euclid. A certain resonance between Newton’s 

c09.indd   398 11/27/2015   8:47:11 PM



the mathematical work of isaac newton 399

philosophical and mathematical classicism can be discerned, and 

actually proved by textual evidence. Among Newton’s contemporar-

ies, Huygens was the one to win his admiration. In the Horologium 

oscillatorium (1673) the Dutch polymath showed him how one 

could carry out cutting-edge research in pure and mixed mathemat-

ics by means that were purely geometrical, without the help of any 

equations, infinite series, or infinitesimals. The cycloid, a daunting 

transcendental curve for mid-seventeenth-century mathematicians, 

was tamed with elegance in the Horologium, and put to good use 

in the study of pendulum motion. This example exerted a lasting 

impression on Newton’s mind: the lesson was that one could use 

geometry rather than algebra, in imitation of the Ancients.

As we shall see in the next sections, Newton embarked on 

a research program aimed at refuting Descartes’s claims about 

the superiority of modern algebra over ancient geometry. Newton  

concluded that algebra, as well as the method of series and fluxions, 

were just heuristic tools: they were useful in the art of discovery, 

but lacked the certainty and elegance of geometry. As Newton was 

to tell David Gregory in 1694, “algebra is fit enough to find out, 

but entirely unfit to consign to writing and commit to posterity.”40 

Algebra should not be printed. But Newton was a great algebraist, 

and indeed was proud of his results in the field of algebra and calcu-

lus. From the mid 1670s to the early 1690s, he resolved this tension 

between his mathematical practices and methodological agendas 

by using the register of print publication for demonstrative geo

metry, and that of scribal publication (i.e., manuscript circulation 

and correspondence) for heuristic algebra. Indeed, in 1676 he wrote 

two well thought-out letters for Leibniz on his mathematical meth-

ods (including the binomial theorem).41 What is more, in the 1680s 

and 1690s he allowed some of this correspondence on algebra and 

calculus to be printed in Wallis’s works (see p. XXX). Newton was 

thus able to circulate some of his symbolical results without having 

to commit them to “posterity” in the way he would have through 

printed books.
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Studying the publishing strategies of Newton the mathema-

tician is a challenging task. It might be too much to say that the 

above-mentioned philosophical factors caused Newton to reject 

Collins’s publication proposals in the 1670s. Rather, one might say 

that it was a number of philosophical ideas, and political and religious 

concerns that propelled Newton’s polemical reading of Descartes 

and the “modern philosophers;” that these concerns together with 

Newton’s tense dealings with the Royal Society – like force vectors –  

pointed his mind away from the prospect of committing to print his 

symbolical, rather Cartesian, modern and uncertain mathematical 

discoveries. We should avoid describing Newton’s thought and behav-

ior as governed by causal laws. Newton’s approach to publication 

was far from coherent, and the historical record does not afford us 

any simplistic description. Yet his dealings with Collins and Wallis 

reveal something of his authorial strategies, of the way in which he 

wished to profile himself vis-à-vis his contemporaries, of the role 

he attributed to himself as a rediscoverer of ancient exemplars and 

the defender of an anti-Baconian way of envisaging the relationship 

between mathematics and natural philosophy. Ultimately, we must 

accept that the late publication of Newton’s early mathematical 

writings is also the result of contingencies such as the depression in  

printing caused by the Great Fire of London (1666), Collins’s death 

(1683), and the publication conventions in England under the 

Restoration, an age in which scribal publication flourished.

It is often believed that after the creative outburst of the anni 

mirabiles of his youth Newton abandoned mathematics for other 

interests like alchemy, theology, and natural philosophy. However, 

the extant manuscripts distributed across the eight magnificent 

volumes edited by Whiteside, disprove such a view. Newton con-

tinued to be productive as a mathematician until the mid 1690s, 

when his move from Cambridge to London as Master of the Mint 

brought a real change to his lifestyle. In the following sections,  

I shall attempt to provide a survey of Newton’s mature mathe

matical work.
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Cartesian algebra: The Arithmetica 
Universalis (1673–1684)

Sometime between the autumn of 1683 and early winter of 1684, 

Newton, according to the statutes of the Lucasian Chair, deposited a 

set of lectures that were printed much later with the title Arithmetica 

Universalis (1707).42 The lectures bear dates ranging from 1673 to 

1683, but these were added in retrospect and it is highly unlikely 

that they were ever delivered to Cambridge students. In the Lucasian 

Lectures on Algebra Newton drew on results he had obtained in the 

1660s and observations he had recorded in 1670 while working on the 

project of publishing a treatise by Gerard Kinckhuysen.43 From several 

points of view, Newton’s professed anti-Cartesianism notwithstand-

ing, these lectures can be described as a fulfillment of Descartes’s 

program, since algebra is here extensively presented as the tool to be 

used in the resolution of geometrical problems.

Several lectures were devoted to a systematic treatment of the 

roots of algebraic equations. Descartes’s “rule of signs” already gave 

an upper bound for the number of positive roots of an equation by 

examining changes of sign. Newton added a new rule for determin-

ing the number of “impossible” or imaginary roots. The rules for 

expressing the coefficients of equations as symmetric functions of the 

roots were well known. Newton used these functions to find formu-

las for sums of powers of the roots. He also expressed rules for finding 

bounds between which the roots of an equation must lie.44

This is an impressive list that reveal Newton’s prowess as an 

algebraist. The Lucasian Lectures on Algebra, however, contain some 

critical comments on the use of algebra that are worth considering. 

When, in 1707, the lectures appeared under the title of Arithmetica 

universalis, readers were somewhat puzzled. On the one hand, 

Newton’s lectures can be seen as a fulfillment of the program out-

lined by Descartes in the Géométrie because of the extraordinary 

results on the theory of equations listed above. On the other hand, 

the lectures contain criticisms directed at Cartesian “construction” 
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or “synthesis.”45 In the last section Newton argues that the demar-

cation between acceptable and unacceptable means of construction  

(or synthesis), as well as the characterization of the relative simplic-

ity of such means proposed by Descartes, are far too dependent upon 

algebraic criteria.

One should bear in mind the canon that Descartes had adopted 

in his Géométrie. As Henk Bos has explained, Descartes’s method of 

problem solving was divided, according to the Pappusian canon, into 

an analytical part (resolution) and a synthetic one (construction).46

The analytical part is algebraic: it consists in reducing the 

problem to a polynomial equation. If the equation is in one unknown, 

the problem is determinate. The equation’s real roots would corre-

spond to the solutions of the problem. Methods for the calculation of 

the roots of algebraic equations up to the fourth degree had already 

been developed in the sixteenth century. But even when formulas 

were available, they did not provide indications about how one could 

achieve what was sought for the solution of a geometric problem: 

namely, a geometrical construction (or synthesis). Algebra could do 

only half of the business required by early-modern mathematicians; 

a geometrical construction was needed.

Descartes accepted the traditional idea that such construc-

tions had to be performed through the intersection of curves. One 

had to choose two curves such that their intersections determine 

segments whose lengths geometrically represent the real roots of 

the equation.

The synthetic part of the process of problem solving, known as the 

“construction of the equation,” opened up a series of questions. Which 

curves were admissible in the solution of problems? Which curves, 

among the admissible ones, were to be preferred in terms of simplicity? 

In asking himself these questions Descartes was continuing – albeit on 

a different plane of abstraction and generality – a long debate concern-

ing the role and classification of curves in the solution of problems. 

Descartes prescribed that in the “construction of the equation” one had 

to use “geometric” (i.e., algebraic) curves of the lowest possible degree, 
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whereas Euclid – it might be recalled – accepted in the geometrical con-

structions of the Elements only the use of the circle and the straight line.

In the final part of his lectures on algebra, devoted to the con-

struction of third-degree algebraic equations (i.e., to the geometric 

construction of segments representing the real roots of third-degree 

algebraic equations), Newton fiercely disagreed with Descartes. The 

message that Newton wished to deliver was that in geometrical con-

structions algebraic criteria are misleading. Descartes had admitted 

all geometric (algebraic) curves as means of construction. Most of 

these, however, were, hopelessly complex according to Newton. On 

the other hand, Newton claimed that simple means of construction 

could be found in some “mechanical” (transcendental) curves, such 

as the cycloid. Newton maintained that it would be wrong to think 

that a curve can be accepted or rejected on the basis of its defining 

equation: “[I]t is not the equation but its description which produces 

a geometrical curve,” he argued.47 A circle is a simple and admis-

sible geometrical curve not because it is expressible by means of an 

equation, but because its description can be carried out by means of 

a compass, one of the most fundamental constructions postulated in 

geometry. Further, expressing of a hierarchy of simplicity in terms 

of the degree of algebraic equations is something foreign to geom-

etry. The circle and ellipse are of the same degree, but the former is 

simpler: “It is not the simplicity of its equation, but the ease of its 

description, which primarily indicates that a curve is to be admit-

ted into the construction of problems . . . On the simplicity, indeed, 

of a construction the algebraic representation has no bearing. Here 

the descriptions of curves alone come into the reckoning.”48 When 

practicing geometry, Newton insisted, curves must be seen as being 

traced by motion, hence their defining equation is irrelevant.

Newton’s passionate insistence on the idea that curves must 

be primarily seen as traced by motion rather than as loci of equa-

tions, has deep roots in his conception of the relationship between 

geometry and mechanical practice, a conception whose import

ance in Newton’s mathematized natural philosophy can hardly be 
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overestimated. In the 1690s, in writings devoted to projective geom-

etry, Newton reconsidered this issue. Here we read that the “species” 

of a curve is not revealed by its equation but by the “reason for its 

genesis.”49 The geometer who has learned about the mechanical gen-

esis of curves has an epistemological advantage over the algebraist: 

he knows the nature of curves because he masters their construction. 

Newton seems to suggest that we know what we can construct, not 

what we can calculate. Furthermore, Descartes’s algebraic distinc-

tion between geometrical (algebraic) and mechanical (transcendental) 

curves, and his rejection of the latter, would have imposed unaccep-

table limitations on the geometrized natural philosophy that Newton  

was promoting. The non-algebraic integrability of ovals that  

Newton proved in Lemma 28, Book 1, of the Principia implies  

that the Kepler equation cannot be solved by the means admitted in the 

Géométrie.50 Mechanical (transcendental) curves are basic elements of 

the geometrical structure of natural philosophy. In Newton’s opinion, 

Descartes’s rejection of these curves as lacking exactness (because they 

are not loci of polynomial equations in Cartesian coordinates) depends 

upon an unwarranted privilege given to algebra. Newton declared in 

the preface to the Principia that as these curves belong to Nature 

regardless of the complexity of their algebraic expression, their tracing 

is perfectly “executed by the most perfect mechanics of all.” Indeed, 

as Newton wrote in the 1690s contra Descartes, “any plane figures 

executed by God, nature or any technician you will are measured by 

geometry in the hypothesis that they are exactly constructed.”51

Newton’s fiery invectives against the Cartesian algebraic 

method, which abound in the final section of the Lucasian Lectures on 

Algebra, are not at all paradoxical, as is often claimed. They are rather 

the expression of some of his most deeply felt philosophical convic-

tions. Newton made it clear that in the section on the “construction 

of equations” he was talking about the synthetic, constructive phase 

of the problem-solving process. The analytical stage, discussed in the 

section devoted to the reduction of geometrical questions to equa-

tions, can be carried on in algebraic terms.52 Indeed, in the Lucasian 
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lectures algebra is proposed as one of the admissible analytical tools. 

In the synthetic, constructive stage, however, algebra must not play 

any role. Descartes had claimed that in the synthesis or construc-

tion of a problem, only intersections between geometrical (algebraic) 

curves could be used. For Newton, what was relevant in geometrical 

construction was not the equation of the curves, but the fact that an 

elegant and simple tracing mechanism was deployed.

In search of a geometrical analysis:  
the Solutio Problematis Veterum 
De Loco Solido (late 1670s)

Newton distanced himself from Descartes’s analysis as well. 

“Analysis,” we should bear in mind, meant a method of discovery. 

Newton considered his method of series and fluxions a kind of new 

analysis, a new method of discovery that could be used but was 

unworthy of publication. In writings penned in the late 1670s and 

early 1690s, Newton searched for a geometric analysis, a geometric 

method of discovery alternative to the symbolic, algebraic one.

One of the reasons why Newton distanced himself from  

algebra as a tool of discovery was the fact that geometry is aestheti-

cally more pleasing. The Ancients’ geometrical method – Newton 

often affirmed – is “more elegant by far than the Cartesian one.” The 

enthusiastic acknowledgement of the elegance and conciseness of 

geometry compared to the “tediousness” of the “algebraic calculus” 

is a topos that recurs frequently in Newton’s mathematical manu-

scripts.53 The importance in Newton’s mindset of such aesthetic 

evaluations can hardly be overestimated.

Moreover, according to Newton, algebraic analysis does 

not reveal how the geometrical synthesis can be performed. After 

the geometrical analysis of a problem it is often possible to reach 

a construction (a synthesis) by simply reversing the steps of the 

analysis, but after an algebraic analysis one is left with an additional 

and artificial problem: Descartes’s problem of the construction of 
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the roots of the equation. Newton concluded that such construc-

tions were largely a Cartesian contrivance extraneous to the ancient 

geometrical tradition.54

Newton’s search for a geometric analysis led him to read the 

compilation by Pappos entitled Mathematicae collectiones, published 

in Urbino in 1588. Newton’s attention was particularly focused on a 

branch of the lost Euclidean corpus: the books on Porisms. In the 

early 1690s, Newton gave voice to his hopes and idiosyncrasies as 

follows:

Whence it happens that a resolution which proceeds by means 

of appropriate porisms is more suited to composing demonstra-

tions than is common algebra. Through algebra you easily arrive at 

equations, but always to pass therefrom to the elegant constructions 

and demonstrations which usually result by means of the method of 

porisms is not so easy, nor is one’s ingenuity and power of invention 

so greatly exercised and refined in this analysis.55

“Porisms” are elliptically referred to in the seventh book of the 

Collectiones, where Pappos tells his readers that the Ancients pos-

sessed a method of discovery, a “method of analysis,” that allowed 

them to reach their extraordinary results. This method had been illus-

trated in several works, of which Euclid’s three books on porisms were 

the most advanced. Early modern mathematicians were tantalized and 

tried to reconstruct this method from Pappos, who provided some lem-

mas as an introduction to the reading of Euclid’s work. For Pappos’s 

fourth-century CE readers everything was quite clear, since they had 

Euclid’s work, but for early modern mathematicians the situation was 

really frustrating, since that work was lost (as it still is). Newton came 

to the conclusion that porisms consisted in the kind of results that 

nowadays we would classify as pertaining to projective geometry.56 

Particularly notable, in this respect, is a small treatise entited Solutio 

Problematis Veterum de Loco Solido that he penned in the late 1670s.57

A problem on which Newton had much to say was the  

so-called Pappos problem of 3 or 4 lines. This problem was central 

to the Géométrie, where its algebraic solution was presented as a 
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paradigm for the superiority of Descartes’s method over that of the 

Ancients. Indeed, according to Descartes, neither Euclid nor Apollonius 

had been able to thoroughly tackle the generalization of the Pappos 

problem to n lines. Newton was of a different opinion. In the late 1670s, 

commenting upon Descartes’s solution, he stated with vehemence:

To be sure, their [the Ancients’] method is more elegant by far 

than the Cartesian one. For he [Descartes] achieved the result 

[the solution of the Pappos problem] by an algebraic calculus 

which, when transposed into words (following the practice of 

the Ancients in their writings), would prove to be so tedious and 

entangled as to provoke nausea, nor might it be understood. But 

they accomplished it by certain simple proportions, judging that 

nothing written in a different style was worthy to be read, and 

in consequence they were concealing the analysis by which they 

found their constructions.58

With the benefit of hindsight, we might consider this 

Newtonian statement a misunderstanding of the role and strength of 

Cartesian algebra. Of course, when algebraic symbols are translated 

into connected prose, they often lead to rather opaque mathematical 

demonstrations. It might be claimed that the introduction of 

symbolism at the beginning of the seventeenth century was proposed 

by its defenders as a vehicle for freeing mathematical demonstrations 

from cumbersome verbal formulations. Further, only algebra could 

enable generalizations unthinkable in geometry: in the case at hand, 

a streamlined generalization of the Pappos problem from 4 to n lines.

Descartes solved the problem via algebra. He proved that for  

3 or 4 lines the locus was expressed by a second-degree algebraic equa-

tion in x and y, and hence concluded that it was a conic section. To 

the contrary, Newton approached the problem in geometric terms. 

In the 1670s he developed many interesting ideas on projective 

geometry, reaching a result equivalent to Steiner’s theorem. Indeed, 

Newton’s geometric solution of the Pappos problem for 3 and 4 lines 

is grounded on an understanding of the projective definition of conics.
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The solution of the Pappos problem could be achieved without 

algebra, in purely geometric terms. For Newton this meant a victory 

over the impudence of Descartes, who had dared to challenge the 

Ancients. In Section 5, Book 1, of his Principia, Newton presented his 

geometrical solution of the Pappos problem as having been achieved 

“as the ancients required.” This result was understood by Newton 

as a victory over Descartes, a vindication of the Ancients against the 

Moderns. It is easy to see, however, that – pace Newton – his projec-

tive solution is quite modern (it is a child of the seventeenth century), 

and further that it cannot be generalized to n lines, whereas Cartesian 

algebra offers precisely this great advantage.

Nevertheless, one should not underestimate the values that 

informed Newton’s opposition to Cartesian algebra. That is, with 

the benefit of hindsight, we should avoid judging Newton’s math-

ematical practices and methods as dead-ends in the development of 

mathematics. The invectives against the use of algebraic symbols that 

characterize Newton’s critique of Descartes’s analytic geometry, and 

that later also informed Newton’s critique of the Leibnizian calculus, 

must be viewed as part of a larger philosophical project that he had in 

mind. Reading Newton’s defense of geometry as a backward move, and 

identifying algebraization as a progressive element in seventeenth-

century mathematics, means failing to grasp the values that underlie 

the confrontation between mathematicians such as Huygens, Barrow, 

and Newton on the one side and Descartes, Wallis, and Leibniz on 

the other. First, Huygens, Barrow, and Newton defended visualiza-

tion over algorithmic efficiency. Second, they defended geometry over 

algebra as better anchored to physical reality. Finally, aesthetic crite-

ria, such as conciseness and elegance, played a role in their choice to 

opt for the geometrical methods of the Ancients.

Mathematizing motion: the Principia (1684–87)

The positions concerning mathematical methods that Newton 

defended in the 1670s and early 1680s, as well as the strategies of 

c09.indd   408 11/27/2015   8:47:12 PM



the mathematical work of isaac newton 409

mathematical publication that characterized his correspondence in 

that period, may well have contributed to shape the mathematical 

style of his Principia. As is well known, in this masterpiece geometry 

is given pride of place. Newton’s alleged triumph over Cartesian alge-

bra, his geometrical solving of the Pappos problem – hardly a problem 

related to the mathematization of the System of the World – is pre-

sented in two long sections (4 and 5, Book 1) devoted to the geometry 

of conics. In the first section of Book 1, it is stated that infinitesimal 

magnitudes should be avoided. Newton opted for geometrical limit 

procedures, the so-called “method of the first and last ratios of vanish-

ing quantities” that he had developed around 1680 in a treatise enti-

tled Geometria curvilinea.59 In the Principia Newton has much to say 

to his readers on his methodological preference for geometry. Yet, the 

Principia is a panoply of mathematical methods. Newton, like all great 

scientists, was an opportunist who deployed the methods best suited 

to his purposes, not only geometrical ones but also rather advanced 

symbolical methods of integration and power series expansion.60

It is thanks to a vast array of methods that Newton was able to 

raise the mathematization of natural philosophy to levels of general-

ity and complexity that elicited admiration even from his harshest 

critics. One should bear in mind that before the Principia mathe-

maticians knew how to deal with rather elementary cases such as 

projectile (vertical and parabolic) and pendular (circular and cycloi-

dal) motion in a constant gravitational field, and that merely basic 

steps had been taken in the study of resisted motion. In the Principia 

Newton dealt with topics of unthinkable difficulty for his age, such 

as the three-body problem, the attraction of extended bodies, motion 

in resisting media, the speed of sound, the precession of equinoxes, 

the shape of equilibrium of a rotating fluid mass, tidal motion, the 

irregularities in the Moon’s motion, and planetary perturbations.61 

His treatment of these subjects, however, stood in need of new 

mechanical concepts and mathematical improvements that were 

only to be provided in the eighteenth century. Indeed, the Principia 

became a repertoire of open problems that polarized the attention 
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of mathematicians for more than a century, even those who were 

skeptical about gravitation.

The Principia would often puzzle the most competent mathe-

matical readers. In some cases, Newton does not provide all the details 

necessary to grasp his demonstrations. Most notably, he often proves 

how to reduce a problem to a quadrature, and then proceeds to state 

that “granting the quadrature of curvilinear figures” certain results 

follow. No detail, however, is given about the quadrature techniques 

(integrations) just alluded to in the text. We know that at least in 

some cases, Newton was able to send his acolytes details about rather 

advanced quadratures necessary to achieve some of the results of the 

Principia. This occurred for Cor. 3. Prop. 41, Book 1, where he identi-

fies some of the spiral trajectories traversed by a body in an inverse-

cube force field; and for Cor. 2, Prop. 91, Book 1, he determines the 

attraction exerted by a homogeneous ellipsoid of revolution on a point 

mass located on the prolongation of its axis of revolution.62

The richness of the mathematical methods of the Principia, 

Newton’s pronouncements in favor of geometry, the contiguity of his 

geometrical limit procedures with techniques typical of the infini-

tesimal calculus, his employment of Taylor series, and his ellipti-

cal reference to quadrature techniques the details of which do not 

appear in the printed text, have given rise to the vexed question con-

cerning Newton’s use of calculus in the Principia: a question that 

played a prominent role in the controversy between Newtonians and 

Leibnizians. Did Newton use his calculus in the Principia? This is a 

question that cannot be broached here. It is a difficult question both 

because different readers of Newton’s masterpiece have taken the 

term “calculus” to mean different things, and because the application 

of calculus techniques to the science of motion was far from being 

an established practice in Newton’s times.63 The contributions to the 

analytical treatment of mechanics made in the Principia, their mag-

nitude notwithstanding, were soon to be superseded by the analytical 

dynamics promoted by Continental mathematicians such as Pierre 

Varignon, Johann Bernoulli, and Leonhard Euler.
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Later years: De Quadratura, Geometriae 
libri, Enumeratio linearum Tertii Ordinis, of 
Quadrature by Ordinates, the brachistochrone 
problem, and Commercium epistolicum

In the 1690s Newton worked on a lengthy treatise entitled Geometriae 

libri, achieving results that would nowadays be expressed in terms 

of the theory of birational correspondences of second degree.64 He 

also penned his masterpiece on the theory of integration, De quad-

ratura curvarum, where he introduced his dotted notation for first 

order and higher-order fluxions and further systematized his quad-

rature techniques.65 In a draft of this work, which unfortunately was 

never published, Newton proved that a fluent can be expanded into a 

Taylor power series, the terms of which are higher-order fluxions of 

the given fluent multiplied by the appropriate coefficients.66 Newton 

also systematized his results on the classification of cubic curves that 

he had achieved in the 1670s,67 reaching an (incomplete) enumeration 

of 72 species.68 Perhaps the most striking result was the statement 

that all cubic curves can be subdivided into five projective classes: 

that is, that the five diverging parabolas69 can generate all other cubic 

curves by central projection.70 Newton also wrote a short treatise 

entitled Of Quadrature by Ordinates in the context of his studies 

on interpolation.71 The Newton–Cotes formula originates from this 

research. Newton’s work on interpolation dates from 1676 and, as we 

have seen, was partly published in Lemma 5, Book 3, of the Principia.

The above texts were Newton’s last creative mathematical 

works. In 1696 a momentous change occurred in his life. He moved to 

London as Warden of the Mint, becoming a well-paid public servant. 

Newton had to face new challenges, as he grew involved in the politi-

cal and theological debates raging in the aftermath of the Glorious 

Revolution. Challenges were also coming from mathematicians, 

since both in England and on the Continent the progress of math-

ematics was eroding Newton’s advantage over his contemporaries. 

David Gregory had already threatened Newton’s superiority in 1685 
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with the publication of his Uncle James’s results on infinite series. 

This event prompted Newton to compile a defense, the Matheseos 

universalis specimina and De computo serierum,72 texts that most 

probably were not meant for publication but rather for private circu-

lation. John Craig, Ehrenfried Walther von Tschirnhaus, and David 

Gregory were also working on quadratures, albeit still on a lower 

level than the one the author of De quadratura could achieve.

The greatest challenge came from Leibniz, who began print-

ing his differential (1684) and integral (1686) calculi in the Acta 

Eruditorum. He promoted the new method in France, Switzerland, 

and Italy. A small group of aggressively innovative mathematicians 

began treading in his footsteps and a steady flow of papers spread 

knowledge about the Leibnizian calculus, which indeed started influ-

encing even British mathematicians. Leibniz was able to establish a 

form of cooperation and competition with these younger mathemati-

cians that differed from the reverent submission of Newton’s acolytes 

towards their master. Leibniz and his followers also brought about 

considerable innovations in publication practices – not only were 

Continentals now publishing their results in newly founded journals, 

but more emphasis was being laid on methods than results.

In 1685 and 1693 Wallis was able to obtain permission from 

Newton to print extracts from the two letters to Leibniz he had 

penned in 1676, together with a brief presentation (1693) of the 

method of series and fluxions (see Table 9.2). Wallis was inflamed 

by nationalism. He would often complain about the machinations of  

the Continentals, whom he accused of stealing English discoveries. 

He warned Newton that his method of fluxions was circulating on 

the Continent “by the name of Leibniz’s calculus differentialis.”73

In 1697 Johann Bernoulli circulated the brachistochrone prob-

lem as a challenge “to the sharpest mathematicians in the whole 

world.” Newton’s solution soon appeared anonymously in the 

Philosophical Transactions. He had probably achieved this solution 

through a fluxional equation similar to the (unpublished) one he had 

employed in the Principia for the solid of least resistance problem.74 
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Table 9.2 The publication of Newton’s mathematical works

1685 Wallis, Algebra paraphrased translation of letters to 
Leibniz (1676)

1693 Wallis, Opera, vol. 2 paraphrase of letters to Leibniz (1676) 
and additions on fluxional notation 
and quadratures

1697 Philosophical 
Transactions

Anonymous solution of Johann 
Bernoulli’s two challenge problem  
(one is the brachistochrone)

1699 Wallis, Opera, vol. 3 letters to Leibniz (1676) verbatim

1702 David Gregory, 
Astronomiae Physicae & 
Geometricae Elementa

Theoria Lunae (in appendix). English 
version as a pamphlet (1702) and in 
English transl. of Gregory (1715)

1704 Opticks De quadratura and Enumeratio 
linearum tertii ordinis

1706 Optice De quadratura and Enumeratio 
linearum tertii ordinis

1707 Arithmetica  
universalis

Lucasian lectures on algebra (1684) 
edited by William Whiston. English 
trans., 1720, second Latin edn, 1722

1710 Harris, Lexicon 
Technicum, vol. 2

English translation of De quadratura 
and Enumeratio linearum tertii ordinis

1711 Analysis per  
quantitatum series, 
fluxiones, ac  
differentias

De analysi, Methodus differentialis, 
De quadratura, Enumeratio linearum 
tertii ordinis, some correspondence, 
edited by William Jones

1713 Commercium  
epistolicum

De analysi, mathematical 
correspondence

1715 Philosophical 
Transactions

Anonymous Account of the 
Commercium Epistolicum

1716 Philosophical 
Transactions

Anonymous solution of Leibniz’s 
challenge problem (on orthogonal 
trajectories)

1723 Principia (Amsterdam) William Jones’s edition of Newton’s 
mathematical tracts (1711) printed in 
Appendix
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Newton’s paper contained a geometrical construction of the curve 

required (a cycloid) but no fluxional analysis.75 In 1699, Fatio de 

Duillier, one of Newton’s protégés, in a work devoted to the bra-

chistochrone, Lineae brevissimi descensus investigatio geometrica 

duplex, accused Leibniz of having plagiarized Newton’s method of 

fluxions. This episode was dealt with diplomatically, and the case 

was soon brought to rest.

Many in Newton’s entourage, particularly those who had 

enjoyed privileged access to his mathematical manuscripts by visiting 

him in his private quarters, were convinced that – via correspondence 

with Collins, Oldenburg and Newton himself – Leibniz had gained 

information on the calculus, which he had then printed as his own 

discovery after changing the notation. After studying Leibniz’s manu-

scripts, twentieth-century historians were able to disprove this accu-

sation. It is an established fact that by 1675 Leibniz had come up with 

the calculus notation and algorithm that is still in use today.

The situation degenerated when, in 1708, in the journal of the 

Royal Society a mathematician of minor stature, John Keill, claimed 

that Leibniz was a plagiarist. The latter demanded that the Royal 

Society protect him from the “empty and unjust braying” of such an 

“upstart.” Consequently, a committee of the Royal Society, secretly 

led by its president, Isaac Newton, produced a detailed report, the 

Commercium epistolicum (1713). The committee maintained that 

Newton had been the “first inventor” and that “Leibniz’s Differential 

Method was one and the same with the Method of Fluxions, except-

ing the Name and Mode of Notation.” It was also strongly suggested 

that Keill’s offending statements were justified.

The ensuing controversy between Newton and Leibniz involved 

a number of Continental and British mathematicians, theologians and 

pamphleteers, thus causing a complex splintering of the European 

mathematical community. It would be simplistic to describe the 

controversy as a fight between two well defined opposing groups 

divided by the Channel. On the Continent, philo-Newtonian out-

posts were especially prominent in the Low Countries and in France, 
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where Varignon, for instance, enjoyed cordial relationships with both 

Newton and Leibniz. In Basel, one of the main defenders of Leibniz, 

Johann Bernoulli, was far from confining his role to that of a follower 

of the German mathematician; rather, he played on the controversy 

to aggrandize himself. In a paper published anonymously in 1716, 

after recognizing Leibniz’s claim to the invention of the differential 

calculus, Bernoulli claimed the discovery of the much more difficult 

integral calculus for himself.76

The controversy offered the two rivals a chance to make their 

views on mathematical method explicit. The two of them proved to 

have different views as to what the fundamental contribution made 

by the discovery of the calculus actually was. Leibniz was much more 

interested in defending the importance of notation and algorithm 

compared to Newton, who rather praised geometry. For Leibniz what 

was at stake in the dispute was the invention of an efficient algorithm. 

He also stressed the idea that the power of the algebraic method con-

sisted in the fact that one could free the mind from the “burden of 

imagination” and manipulate symbols without worrying about their 

meaning. Newton despised those who practiced algebra like Leibniz, 

dismissing them as “bunglers of mathematics.”77 He instead praised 

mathematical procedures in which concepts “visible to the eye” are 

organized in the mind of the mathematician without his loosing a 

firm grasp of the meaning of symbols. For Newton, mathematical 

concepts had to represent existing phenomena of which we have a 

clear intuition, such as motion and velocity. Leibniz rather conceived 

the rules of the calculus as symbolic manipulations well-grounded 

on metaphysical principles, such as that of continuity. One might 

say that Leibniz was a logician who gave pride of place to the basic 

notation and rules of the calculus, and who praised the generality of 

symbolical methods, whereas Newton was a geometer who sought 

conceptually profound solutions to advanced problems. The two 

mathematicians approached the dispute from very different angles.

The political arena, in which Leibniz and Newton each took on 

a leading role, also fueled the dispute, and this in part explains why the 
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abstractions of mathematics could ignite so much fury. Newton had 

been a member of the Convention Parliament in 1689: he belonged 

to the entourage of Lord Halifax, and was very close to sectors of 

the Church of England that had promoted the Glorious Revolution. 

Contemporaneously, Leibniz had become a counselor of the Emperor 

and of the Czar, and was in the service of the Duke of Hanover. It was 

in part thanks to Leibniz’s diplomatic efforts that his patron acceded to 

the throne of Great Britain and Ireland in 1714 as George I. The pros-

pect of having Leibniz – a towering diplomat and metaphysician who 

actively pursued an ecumenical policy of reconciliation between the 

Christian Churches – as Royal Historian in London must have been a 

daunting one for Newton’s party, which favored anti-Catholicism and 

a Protestant interpretation of Anglicanism. The priority dispute served 

the purpose of discrediting Leibniz at the Royal Court well.78

It might be contended that the anxieties and passions 

surrounding Newton’s thought on mathematical method that we 

have reviewed in this chapter were determined by the fact that math-

ematics played such a prominent role in his broad-ranging philosophi-

cal agenda – one polemically oriented against the theological heresies 

of the mechanism promoted by the Cartesians and by Hobbes, the 

probabilism in vogue at the Royal Society, and the irenicism defended 

by the diplomatic endeavors of Leibniz. The greatest mathematician 

since Archimedes’s time, like the Syracusan geometer and mechanic 

himself, used mathematics for belligerent purposes.
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